	BUREAU VERITAS
	FCC Test Report (Z-Wave)
Report No.:	RF180611E01-5
FCC ID:	2ABLK-GS2026
Test Model:	GS2026E
Received Date:	June 08, 2018
Test Date:	June 11 to 21, 2018
Issued Date:	July 12, 2018
Applicant:	Calix Inc.
	1035 N. McDowell Blvd. Petaluma, CA 94954 U.S.A.
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
Lab Address:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.
Test Location:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.
FCC Registration / Designation Number:	723255 / TW2022
	Taring Laboratory 2022

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Release Contro	ol Record	. 3			
1 Certifica	1 Certificate of Conformity				
2 Summar	ry of Test Results	. 5			
	rement Uncertainty cation Record				
3 General	Information	. 6			
3.2 Descri 3.2.1 Test M 3.3 Duty C 3.4 Descri 3.4.1 Config	al Description of EUT (Z-Wave) ption of Test Modes lode Applicability and Tested Channel Detail Cycle of Test Signal ption of Support Units uration of System under Test al Description of Applied Standards	. 8 . 9 10 11 12			
4 Test Typ	es and Results	14			
 4.1.1 Limits 4.1.2 Test In 4.1.3 Test Pi 4.1.4 Deviati 4.1.5 Test Si 4.1.6 EUT O 4.1.7 Test Ri 4.2 Condu 4.2.1 Limits 4.2.2 Test In 4.2.3 Test Pi 4.2.4 Deviati 4.2.5 Test Si 4.2.6 EUT O 4.2.7 Test Ri 	ted Emission and Bandedge Measurement of Radiated Emission and Bandedge Measurement	14 15 16 17 18 19 25 25 26 26 26 26 27			
	of Test Arrangements				
Appendix – Inf	ormation on the Testing Laboratories	30			

	Release Control Record	
Issue No.	Description	Date Issued
RF180611E01-5	Original release.	July 12, 2018

1	Certificate of Conformity		
	Product:	GigaSpire	
	Brand:	Calix	
	Test Model:	GS2026E	
	Sample Status:	MASS-PRODUCTION	
	Applicant:	Calix Inc.	
	Test Date:	June 11 to 21, 2018	
	Standards:	47 CFR FCC Part 15, Subpart C (Section 15.249) ANSI C63.10: 2013	

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	Mary Ko Mary Ko / Specialist	_, Date:	July 12, 2018
Approved by :	May Chen / Manager	_, Date:	July 12, 2018

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.249)					
FCC Clause	Test Item Result Remarks				
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -13.34dB at 0.41563MHz.		
15.209 15.249 15.249 (d)	Radiated Emission Test Band Edge Measurement Limit: 50dB less than the peak value of fundamental frequency or meet radiated emission limit in section 15.209	PASS	Meet the requirement of limit. Minimum passing margin is -0.1dB at 908.40MHz, 916.00MHz.		
15.203	Antenna Requirement	PASS	No antenna connector is used.		

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.84 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.33 dB
	1GHz ~ 6GHz	5.10 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	4.85 dB
	18GHz ~ 40GHz	5.24 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (Z-Wave)

GigaSpire	
Calix	
GS2026E	
MASS-PRODUCTION	
12Vdc from adapter	
FSK	
9.6/40/100 kbit/s	
908.4 ~ 916MHz	
3	
Refer to Note	
Refer to Note	
Adapter x 1	
NA	

Note:

1. There are WLAN, Bluetooth, Zigbee and Z-wave technology used for the EUT. The EUT has below radios as following table:

Radio 1	Radio 2	Radio 3	Radio 4	Radio 5	
WLAN - 4TX (2.4GHz+5GHz)	WLAN - 4TX (5GHz)	Bluetooth	Zigbee	Z-wave	
Note: For WLAN- 5GHz based on Radio 1 + 2 operating at same time.					

2. Simultaneously transmission condition.

Condition	Technology				
1	WLAN 2.4GHz	WLAN 5GHz	Bluetooth	Zigbee	Z-wave
Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found.					

3. The EUT must be supplied with a power adapter as following table:

Model No.	Spec.
	Input: 100-240Vac, 1.6A, 50/60Hz AC intput cable: Unshielded, 1.0m
	Output: 12V, 5A
E60 1205008 DA	DC output cable: Unshielded, 1.5m
F60-1205005FA	Input: 100-240Vac, 1.6A, 50/60Hz
	AC intput cable: Unshielded, 1.5m
	Output: 12V, 5A
	DC output cable: Unshielded, 1.5m
	Model No. F60-120500SPA

Note: From the above spec., the radiated emissions worse case was found in **AC input cable: Unshielded**, **1.0m**. Therefore only the test data of the mode was recorded in this report.

4. The antennas provided to the EUT, please refer to the following table:					
WLAN Directional gain table					
Frequency range (GHz)	Directional Antenna Gain (dBi)	Antenna Type	Antenna Connector		
2.4 ~ 2.4835	7.41				
5.18 ~ 5.24	9.7				
5.26 ~ 5.32	9.9	Dipole	i-pex(MHF)		
5.50 ~ 5.70	9.83				
5.745 ~ 5.825	10.27				
	Bluetooth ar	itenna spec.			
Antenna Net Gain (dBi)	Frequency range (GHz)	Antenna Type	Antenna Connector		
3.04	2.4~2.5	PIFA	None		
	Zigbee ante	enna spec.			
Antenna Net Gain (dBi)	Frequency range (GHz)	Antenna Type	Antenna Connector		
3.29	3.29 2.4~2.5		None		
Z-wave antenna spec.					
Antenna Net Gain (dBi)	Frequency range (MHz)	Antenna Type	Antenna Connector		
2.76 850~920 PIFA None					
Note: More detailed information, please refer to opearating description.					

4. The antennas provided to the EUT, please refer to the following table:

5. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 Description of Test Modes

3 channels are provided to this EUT:

Channel	Frequency	Channel	Frequency
1	908.4 (9.6kbit/s)	3	916 (100kbit/s)
2	908.4 (40kbit/s)		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT		APPLICABLE TO				DECODIDITION
CONFIGURE - MODE	RE≥1G	RE<1G	PLC	;		DESCRIPTION
-	\checkmark	√	\checkmark	-		
here Bandeo	: Radiated Emis dge Measureme ower Line Cond		RE<1G:	Radiated Emissio	n below 1G	Hz
_		Above 1GHz):	11		.	
	vailable mod	ulations, data rates a			•	ossible combinations ntenna diversity
Following	channel(s) w	as (were) selected fo	or the fin	al test as listed	below.	
AVAILABL	E CHANNEL	TESTED CHANNEL	MODU	JLATION TYPE		
1	to 3	1, 2, 3		FSK		
architectur	e).	ulations, data rates a as (were) selected fo				
AVAILABL	E CHANNEL	TESTED CHANNEL	MODU	JLATION TYPE		
1	to 3	3		FSK		
Pre-Scan between a architectur	has been cor vailable mod re).	nducted to determine ulations, data rates a	and ante	nna ports (if E	UT with a	ossible combinations ntenna diversity
 Pre-Scan between a architectur Following 	has been cor vailable mod e). channel(s) w	nducted to determine ulations, data rates a as (were) selected fo	and ante	nna ports (if E al test as listed	UT with a	
 Pre-Scan between a architectur Following AVAILABL 	has been cor vailable mod e). channel(s) w .E CHANNEL	nducted to determine ulations, data rates a as (were) selected fo TESTED CHANNEL	and ante	nna ports (if E al test as listed JLATION TYPE	UT with a	
 Pre-Scan between a architectur Following AVAILABL 1 	has been cor vailable mod e). channel(s) w E CHANNEL to 3	nducted to determine ulations, data rates a as (were) selected fo	and ante	nna ports (if E al test as listed	UT with a	
 Pre-Scan between a architectur Following AVAILABL 1 	has been cor vailable mod e). channel(s) w E CHANNEL to 3	aducted to determine ulations, data rates a as (were) selected fo TESTED CHANNEL 3	and ante or the fin MODU	nna ports (if E al test as listed JLATION TYPE FSK	JT with a	ntenna diversity
between a architectur Following	has been cor vailable mod e). channel(s) w E CHANNEL to 3 to 3	nducted to determine ulations, data rates a as (were) selected fo TESTED CHANNEL	and ante or the fin MODU	nna ports (if E al test as listed JLATION TYPE	JT with a I below.	

RE<1G

PLC

120Vac, 60Hz

120Vac, 60Hz

21deg. C, 64%RH

23deg. C, 75%RH

Robert Cheng

Andy Ho

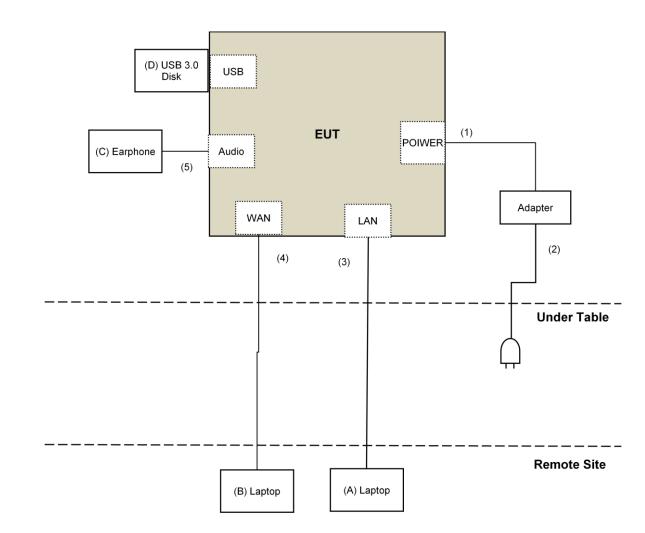
3.3 Duty Cycle of Test Signal

908.4MHz (9.6kbit/s): Duty cycle = 23.6/47.845 = 0.493 **908.4MHz (40kbit/s):** Duty cycle = 3.138/27.85 = 0.113 **916MHz (100kbit/s):** Duty cycle = 3.05/28.25 = 0.108

3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Laptop	DELL	E5430	HYV4VY1	FCC DoC	Provided by Lab
В.	Laptop	DELL	E6420	B92T3R1	FCC DoC	Provided by Lab
C.	Earphone	Apple	NA	NA	NA	Provided by Lab
D.	USB 3.0 Disk	Transcend	16GB	NA	NA	Provided by Lab


Note:

1. All power cords of the above support units are non-shielded (1.8m).

 T. All power cords of the above support drifts are non-sineided (1.0m).								
ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks		
1.	DC Cable	1	1.5	No	0	Supplied by client		
2.	AC Cable	1	1.0	No	0	Supplied by client		
3.	RJ-45 Cable	1	10	No	0	Provided by Lab		
4.	RJ-45 Cable	1	10	No	0	Provided by Lab		
5.	Audio Cable	1	1.2	No	0	Provided by Lab		

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.249)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following

Fundamental Frequency	Field Strength of Fundamental (millivolts/meter)	Field Strength of Harmonics (microvolts/meter)
902 ~ 928 MHz	50	500
2400 ~ 2483.5 MHz	50	500
5725 ~ 5875 MHz	50	500
24 ~ 24.25 GHz	250	2500

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits as below table, whichever is the lesser attenuation

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION &	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED
MANUFACTURER				UNTIL
Test Receiver Keysight	N9038A	MY54450088	July 08, 2017	July 07, 2018
Pre-Amplifier EMCI	EMC001340	980142	Feb. 09, 2018	Feb. 08, 2019
Loop Antenna ^(*) Electro-Metrics	EM-6879	264	Dec. 16, 2016	Dec. 15, 2018
RF Cable	NA	LOOPCAB-001 LOOPCAB-002	Jan. 15, 2018	Jan. 14, 2019
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-01	Nov. 09, 2017	Nov. 08, 2018
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-406	Nov. 29, 2017	Nov. 28, 2018
RF Cable	8D	966-4-1 966-4-2 966-4-3	Mar. 21, 2018	Mar. 20, 2019
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-4-01	Oct. 03, 2017	Oct. 02, 2018
Horn_Antenna SCHWARZBECK	BBHA 9120D	9120D-783	Dec. 12, 2017	Dec. 11, 2018
Pre-Amplifier EMCI	EMC12630SE	980385	Jan. 29, 2018	Jan. 28, 2019
RF Cable	EMC104-SM-SM-1200 EMC104-SM-SM-2000 EMC104-SM-SM-5000	160923 150318 150321	Jan. 29, 2018	Jan. 28, 2019
Pre-Amplifier EMCI	EMC184045SE	980387	Jan. 29, 2018	Jan. 28, 2019
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170608	Dec. 14, 2017	Dec. 13, 2018
RF Cable	EMC102-KM-KM-1200	160925	Jan. 29, 2018	Jan. 28, 2019
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Boresight Antenna Tower & Turn Table Max-Full	MF-7802BS	MF780208530	NA	NA

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. The test was performed in 966 Chamber No. 4.
- 4. The CANADA Site Registration No. is 20331-2
- 5. Loop antenna was used for all emissions below 30 MHz.
- 6. Tested Date: June 11 to 21, 2018

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

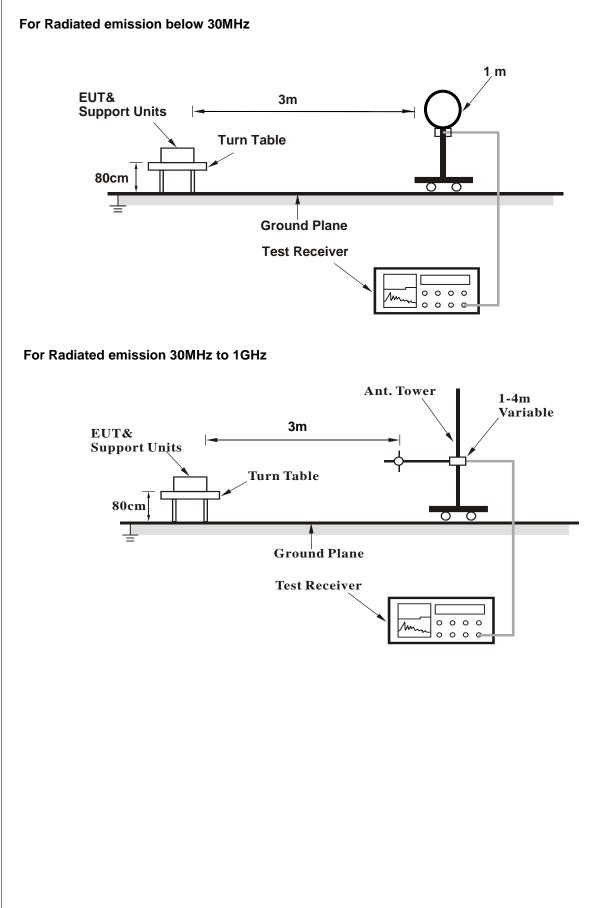
NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

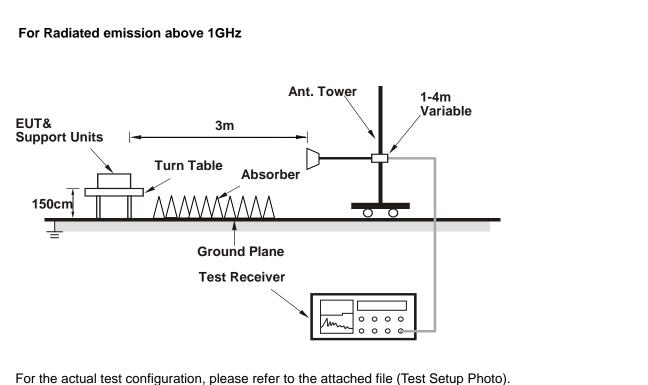
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

- 4.1.6 EUT Operating Conditions
- a. Connected the EUT with the Notebook Computer which is placed on remote site.
- a. Controlling software (HyperTerminal paste LCS1_Zigbee+Z-wave SOP.doc command) has been activated to set the EUT under transmission/receiving condition continuously.

4.1.7 Test Results

Above 1GHz Data :

CHANNEL	TX Channel 1	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 10GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	3633.60	46.4 PK	74.0	-27.6	1.49 H	97	47.0	-0.6	
2	3633.60	39.5 AV	54.0	-14.5	1.49 H	97	40.1	-0.6	
3	4542.00	46.0 PK	74.0	-28.0	2.00 H	90	44.9	1.1	
4	4542.00	40.0 AV	54.0	-14.0	2.00 H	90	38.9	1.1	
5	6358.80	52.8 PK	74.0	-21.2	2.30 H	4	47.8	5.0	
6	6358.80	50.3 AV	54.0	-3.7	2.30 H	4	45.3	5.0	
		ANTENNA		& TEST D	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	3633.60	42.3 PK	74.0	-31.7	1.65 V	200	42.9	-0.6	
2	3633.60	29.5 AV	54.0	-24.5	1.65 V	200	30.1	-0.6	
3	4542.00	44.8 PK	74.0	-29.2	1.35 V	94	43.7	1.1	
4	4542.00	35.1 AV	54.0	-18.9	1.35 V	94	34.0	1.1	
5	6358.80	51.5 PK	74.0	-22.5	3.17 V	360	46.5	5.0	
6	6358.80	49.2 AV	54.0	-4.8	3.17 V	360	44.2	5.0	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

CHANNEL	TX Channel 2	DETECTOR	Peak (PK)
FREQUENCY RANGE		FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	3633.60	46.3 PK	74.0	-27.7	1.49 H	97	46.9	-0.6	
2	3633.60	39.5 AV	54.0	-14.5	1.49 H	97	40.1	-0.6	
3	4542.00	46.3 PK	74.0	-27.7	2.01 H	78	45.2	1.1	
4	4542.00	40.2 AV	54.0	-13.8	2.01 H	78	39.1	1.1	
5	6358.80	52.6 PK	74.0	-21.4	2.30 H	16	47.6	5.0	
6	6358.80	50.0 AV	54.0	-4.0	2.30 H	16	45.0	5.0	
		ANTENNA		& TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	3633.60	41.7 PK	74.0	-32.3	1.65 V	204	42.3	-0.6	
2	3633.60	29.1 AV	54.0	-24.9	1.65 V	204	29.7	-0.6	
3	4542.00	45.2 PK	74.0	-28.8	1.41 V	109	44.1	1.1	
4	4542.00	35.4 AV	54.0	-18.6	1.41 V	109	34.3	1.1	

REMARKS:

5

6

6358.80

6358.80

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

-22.1

-4.5

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3.17 V

3.17 V

360

360

46.9

44.5

5.0

5.0

3. The other emission levels were very low against the limit.

74.0

54.0

4. Margin value = Emission Level – Limit value

51.9 PK

49.5 AV

	1		
CHANNEL	TX Channel 3	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 10GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	3664.00	46.6 PK	74.0	-27.4	1.49 H	81	47.1	-0.5
2	3664.00	39.6 AV	54.0	-14.4	1.49 H	81	40.1	-0.5
3	4580.00	46.6 PK	74.0	-27.4	1.95 H	82	45.3	1.3
4	4580.00	40.4 AV	54.0	-13.6	1.95 H	82	39.1	1.3
5	6412.00	52.9 PK	74.0	-21.1	2.32 H	4	47.8	5.1
6	6412.00	50.7 AV	54.0	-3.3	2.32 H	4	45.6	5.1
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	3664.00	41.7 PK	74.0	-32.3	1.70 V	200	42.2	-0.5
2	3664.00	29.1 AV	54.0	-24.9	1.70 V	200	29.6	-0.5
3	4580.00	45.2 PK	74.0	-28.8	1.35 V	87	43.9	1.3
4	4580.00	35.5 AV	54.0	-18.5	1.35 V	87	34.2	1.3

REMARKS:

6412.00

6412.00

5

6

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

-22.6

-5.1

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3.14 V

3.14 V

46.3

43.8

360

360

5.1

5.1

3. The other emission levels were very low against the limit.

74.0

54.0

4. Margin value = Emission Level – Limit value

51.4 PK

48.9 AV

Below 1GHz Data:

CHANNEL	TX Channel 1	DETECTOR	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	75.64	33.8 QP	40.0	-6.2	2.00 H	232	50.1	-16.3
2	124.97	38.7 QP	43.5	-4.8	2.59 H	96	53.1	-14.4
3	153.83	39.4 QP	43.5	-4.1	2.00 H	272	52.1	-12.7
4	312.43	39.0 QP	46.0	-7.0	1.00 H	360	50.6	-11.6
5	494.70	40.2 QP	46.0	-5.8	2.00 H	93	47.1	-6.9
6	902.00	22.6 QP	46.0	-23.4	1.65 H	252	22.2	0.4
7	*908.40	93.6 QP	94.0	-0.4	1.65 H	252	93.2	0.4
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	43.53	35.0 QP	40.0	-5.0	1.00 V	16	48.0	-13.0
2	67.18	35.6 QP	40.0	-4.4	1.00 V	278	49.7	-14.1
3	124.97	37.3 QP	43.5	-6.2	1.00 V	221	51.7	-14.4
4	306.08	40.1 QP	46.0	-5.9	1.50 V	173	52.0	-11.9
5	494.70	42.6 QP	46.0	-3.4	1.00 V	60	49.5	-6.9
6	902.00	23.0 QP	46.0	-23.0	1.00 V	28	22.6	0.4
7	*908.40	92.0 QP	94.0	-2.0	1.14 V	316	91.6	0.4

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 2	DETECTOR	Quesi Desk (QD)	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)	

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	64.49	34.9 QP	40.0	-5.1	2.00 H	118	48.8	-13.9	
2	124.97	39.4 QP	43.5	-4.1	2.59 H	277	53.8	-14.4	
3	153.29	39.9 QP	43.5	-3.6	2.00 H	282	52.6	-12.7	
4	296.81	41.0 QP	46.0	-5.0	1.00 H	121	53.2	-12.2	
5	494.70	40.3 QP	46.0	-5.7	2.00 H	111	47.2	-6.9	
6	902.00	22.6 QP	46.0	-23.4	1.66 H	251	22.2	0.4	
7	*908.40	93.9 QP	94.0	-0.1	1.66 H	251	93.5	0.4	
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	43.51	35.1 QP	40.0	-4.9	1.25 V	300	48.1	-13.0	
2	64.10	35.2 QP	40.0	-4.8	1.35 V	304	49.1	-13.9	
3	124.92	37.2 QP	43.5	-6.3	1.32 V	304	51.6	-14.4	
4	306.06	40.3 QP	46.0	-5.7	1.50 V	165	52.2	-11.9	
5	494.73	41.3 QP	46.0	-4.7	1.04 V	75	48.2	-6.9	
6	902.00	27.5 QP	46.0	-18.5	1.00 V	100	27.1	0.4	
7	*908.40	92.0 QP	94.0	-2.0	1.00 V	100	91.6	0.4	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 3	DETECTOR	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M			
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
124.97	39.6 QP	43.5	-3.9	2.55 H	270	54.0	-14.4		
151.50	39.6 QP	43.5	-3.9	2.00 H	249	52.2	-12.6		
168.86	39.3 QP	43.5	-4.2	2.00 H	255	52.5	-13.2		
237.93	39.9 QP	46.0	-6.1	1.00 H	312	54.4	-14.5		
494.65	40.8 QP	46.0	-5.2	2.00 H	101	47.7	-6.9		
*916.00	93.9 QP	94.0	-0.1	1.66 H	249	93.0	0.9		
928.00	27.3 QP	46.0	-18.7	1.66 H	249	26.4	0.9		
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
58.91	35.4 QP	40.0	-4.6	1.11 V	214	48.6	-13.2		
67.18	36.1 QP	40.0	-3.9	1.08 V	34	50.2	-14.1		
309.13	42.6 QP	46.0	-3.4	1.50 V	215	54.4	-11.8		
419.57	38.4 QP	46.0	-7.6	1.00 V	172	47.2	-8.8		
443.87	37.4 QP	46.0	-8.6	1.00 V	279	45.2	-7.8		
*916.00	92.0 QP	94.0	-2.0	1.14 V	316	91.1	0.9		
928.00	25.6 QP	46.0	-20.4	1.14 V	316	24.7	0.9		
	FREQ. (MHz) 124.97 151.50 168.86 237.93 494.65 *916.00 928.00 FREQ. (MHz) 58.91 67.18 309.13 419.57 443.87 *916.00	FREQ. (MHz) EMISSION LEVEL (dBuV/m) 124.97 39.6 QP 151.50 39.6 QP 151.50 39.6 QP 168.86 39.3 QP 237.93 39.9 QP 494.65 40.8 QP *916.00 93.9 QP 928.00 27.3 QP ANTENNA FREQ. (MHz) EMISSION LEVEL (dBuV/m) 58.91 35.4 QP 67.18 36.1 QP 309.13 42.6 QP 419.57 38.4 QP 443.87 37.4 QP *916.00 92.0 QP	FREQ. (MHz)EMISSION LEVEL (dBuV/m)LIMIT (dBuV/m)124.97 $39.6 QP$ 43.5 151.50 $39.6 QP$ 43.5 151.50 $39.6 QP$ 43.5 168.86 $39.3 QP$ 43.5 237.93 $39.9 QP$ 46.0 494.65 $40.8 QP$ 46.0 *916.00 $93.9 QP$ 46.0 *916.00 $27.3 QP$ 46.0 FREQ. (MHz)EMISSION LEVEL (dBuV/m)LIMIT (dBuV/m)58.91 $35.4 QP$ 40.0 67.18 $36.1 QP$ 40.0 309.13 $42.6 QP$ 46.0 443.87 $37.4 QP$ 46.0 *916.00 $92.0 QP$ 94.0	FREQ. (MHz)EMISSION LEVEL (dBuV/m)LIMIT (dBuV/m)MARGIN (dB)124.97 39.6 QP 43.5 -3.9 151.50 39.6 QP 43.5 -3.9 168.86 39.3 QP 43.5 -4.2 237.93 39.9 QP 46.0 -6.1 494.65 40.8 QP 46.0 -5.2 *916.0093.9 QP 94.0 -0.1 928.00 27.3 QP 46.0 -18.7 ANTENNA POLARITY & TEST DIFREQ. (MHz)EMISSION LEVEL (dBuV/m)LIMIT (dBuV/m)MARGIN (dB)58.91 35.4 QP 40.0 -4.6 67.18 36.1 QP 40.0 -3.9 309.13 42.6 QP 46.0 -3.4 419.57 38.4 QP 46.0 -7.6 443.87 37.4 QP 46.0 -8.6 *916.00 92.0 QP 94.0 -2.0	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) 124.97 39.6 QP 43.5 -3.9 2.55 H 151.50 39.6 QP 43.5 -3.9 2.00 H 168.86 39.3 QP 43.5 -4.2 2.00 H 237.93 39.9 QP 46.0 -6.1 1.00 H 494.65 40.8 QP 46.0 -5.2 2.00 H *916.00 93.9 QP 94.0 -0.1 1.66 H 928.00 27.3 QP 46.0 -18.7 1.66 H 928.00 27.3 QP 46.0 -18.7 1.66 H MATENNA POLARITY & TEST DISTANCE: V MARGIN (dBuV/m) ANTENNA HEIGHT (dBuV/m) ANTENNA HEIGHT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) 58.91 35.4 QP 40.0 -3.9 1.08 V 309.13 42.6 QP 46.0 -3.4 1.50 V 419.57 38.4 QP 46.0 -7.6 1.00 V 443.87 37.4 QP 46.0 -8.6	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) 124.97 39.6 QP 43.5 -3.9 2.55 H 270 151.50 39.6 QP 43.5 -3.9 2.00 H 249 168.86 39.3 QP 43.5 -4.2 2.00 H 255 237.93 39.9 QP 46.0 -6.1 1.00 H 312 494.65 40.8 QP 46.0 -5.2 2.00 H 101 *916.00 93.9 QP 94.0 -0.1 1.66 H 249 928.00 27.3 QP 46.0 -18.7 1.66 H 249 928.00 27.3 QP 46.0 -18.7 1.66 H 249 928.00 27.3 QP 40.0 -18.7 1.66 H 249 928.01 LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (dB) TABLE ANGLE (Degree) 58.91 35.4 QP 40.0 -3.9 1.08 V 34 309.13	FREQ. (MHz) LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) HEIGHT (m) ANGLE (Degree) VALUE (dBuV) 124.97 39.6 QP 43.5 -3.9 2.55 H 270 54.0 151.50 39.6 QP 43.5 -3.9 2.00 H 249 52.2 168.86 39.3 QP 43.5 -4.2 2.00 H 249 52.2 237.93 39.9 QP 46.0 -6.1 1.00 H 312 54.4 494.65 40.8 QP 46.0 -5.2 2.00 H 101 47.7 *916.00 93.9 QP 94.0 -0.1 1.66 H 249 93.0 928.00 27.3 QP 46.0 -18.7 1.66 H 249 96.4 KIMIT (MBz) MARGIN (dB) ANTENNA HEIGHT (dB) TABLE ANGLE RAW yALUE (dBuV/m) UW/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE RAW yALUE (dBuV/m) 40.0 -3.9 1.08 V 34 50.2 309.13		

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

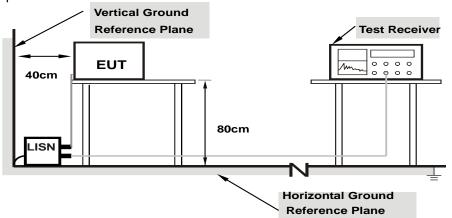
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Nov. 01, 2017	Oct. 31, 2018
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Nov. 15, 2017	Nov. 14, 2018
Line-Impedance Stabilization Network (for Peripheral) R&S	ENV216	100072	June 04, 2018	June 03, 2019
50 ohms Terminator	N/A	EMC-02	Sep. 22, 2017	Sep. 21, 2018
RF Cable	5D-FB	COCCAB-001	Sep. 29, 2017	Sep. 28, 2018
Fixed attenuator EMCI	STI02-2200-10	003	Mar. 16, 2018	Mar. 15, 2019
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note:

1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Conduction 1.

3. Tested Date: June 16, 2018



4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.
- 4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

Phase Line (L) Detector Function Average (AV)	Phase Line (L)	Detector Function	Quasi-Peak (QP) / Average (AV)
---	----------------	-------------------	-----------------------------------

	Phase Of Power : Line (L)									
No	Frequency	Correction Factor		g Value uV)		on Level uV)		nit uV)	Mar (d	rgin B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.03	36.10	19.12	46.13	29.15	66.00	56.00	-19.87	-26.85
2	0.18906	10.05	28.98	13.02	39.03	23.07	64.08	54.08	-25.05	-31.01
3	0.41563	10.11	29.96	23.86	40.07	33.97	57.54	47.54	-17.47	-13.57
4	0.74766	10.13	14.71	8.76	24.84	18.89	56.00	46.00	-31.16	-27.11
5	3.15625	10.24	12.36	1.30	22.60	11.54	56.00	46.00	-33.40	-34.46
6	13.07813	10.72	13.15	5.88	23.87	16.60	60.00	50.00	-36.13	-33.40

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level – Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value



Phase	9	Neut	tral (N)		Dete	ector Fund	ction	Quasi-Pe Average	eak (QP) / (AV)	/	
Phase Of Power : Neutral (N)											
No	Frequency	Correction Factor	U U			mission Level (dBuV)		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	ÁV.	Q.P.	ÁV.	Q.P.	ÁV.	Q.P.	ÁV.	

	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	9.94	36.24	19.38	46.18	29.32	66.00	56.00	-19.82	-26.68
2	0.18906	9.96	29.29	13.92	39.25	23.88	64.08	54.08	-24.83	-30.20
3	0.41563	10.00	30.82	24.20	40.82	34.20	57.54	47.54	-16.72	-13.34
4	0.74766	10.02	18.16	12.47	28.18	22.49	56.00	46.00	-27.82	-23.51
5	2.83594	10.10	10.47	0.86	20.57	10.96	56.00	46.00	-35.43	-35.04
6	13.48438	10.57	11.85	3.46	22.42	14.03	60.00	50.00	-37.58	-35.97

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---