

	FCC Test Report (BT-EDR)		
Report No.:	RF180611E01-2		
FCC ID:	2ABLK-GS2026		
Test Model:	GS2026E		
Received Date:	June 08, 2018		
Test Date:	June 16 to 25, 2018		
Issued Date:	July 12, 2018		
Applicant: Address:	Calix Inc. 1035 N. McDowell Blvd. Petaluma, CA 94954 U.S.A.		
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory		
Lab Address:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.		
Test Location:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.		
FCC Registration / Designation Number:	723255 / TW2022		

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

R	Release Control Record 4			
1	Certificate of Conformity5			
2	S	Summary of Test Results	6	
	2.1 2.2	Measurement Uncertainty Modification Record		
3	C	General Information	7	
	3.1	General Description of EUT (BT-EDR)	7	
	3.2	Description of Test Modes		
	3.2.1	Test Mode Applicability and Tested Channel Detail		
	3.3	Description of Support Units		
	3.3.1	Configuration of System under Test		
	3.4	General Description of Applied Standards		
4				
	4.1 4.1.1	Radiated Emission and Bandedge Measurement Limits of Radiated Emission and Bandedge Measurement	15	
		Test Instruments		
		Test Procedures		
		Deviation from Test Standard		
		Test Setup		
		EUT Operating Conditions		
		Test Results		
	4.2	Conducted Emission Measurement		
		Limits of Conducted Emission Measurement		
		Test Instruments		
		Test Procedures		
		Deviation From Test Standard		
		Test Setup		
		EUT Operating Condition		
		Test Results		
	4.3	Number of Hopping Frequency Used		
	4.3.1	Limits of Hopping Frequency Used Measurement		
	4.3.2			
	4.3.3	Test Instruments	31	
	4.3.4	Test Procedure	31	
	4.3.5	Deviation from Test Standard	31	
	4.3.6	Test Results	-	
	4.4	Dwell Time on Each Channel		
	4.4.1	Limits of Dwell Time on Each Channel Measurement	33	
		Test Setup		
		Test Instruments		
		Test Procedures		
		Deviation from Test Standard		
		Test Results		
	4.5	Channel Bandwidth		
		Limits of Channel Bandwidth Measurement		
		Test Setup		
		Test Instruments		
		Test Procedure		
		Deviation from Test Standard EUT Operating Condition		
		Test Results		
	4.5.7	Hopping Channel Separation		
	4.6.1			
	- 1 .0.1		40	

4.6.2	Test Setup Test Instruments	40 40
	Test Procedure	
	Deviation from Test Standard	
4.6.6	Test Results	41
4.7	Maximum Output Power	42
4.7.1		
	Test Setup	
	Test Instruments	
	Test Procedure	
	Deviation from Test Standard	
	EUT Operating Condition	
	Test Results	
4.8	Conducted Out of Band Emission Measurement	
4.8.1	Limits of Conducted Out of Band Emission Measurement	
	Test Instruments	
	Test Procedure	
	Deviation from Test Standard	
	EUT Operating Condition	
4.8.6	Test Results	44
5 P	Pictures of Test Arrangements	47
Append	lix – Information on the Testing Laboratories	48

	Release	e Control Record	
Issue No.	Description		Date Issued
RF180611E01-2	Original release.		July 12, 2018

1	Certificate of Conformity		
	Product:	GigaSpire	
	Brand:	Calix	
	Test Model:	GS2026E	
	Sample Status:	MASS-PRODUCTION	
	Applicant:	Calix Inc.	
	Test Date:	June 16 to 25, 2018	
	Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247) ANSI C63.10: 2013	

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	Mary Ko Mary Ko / Specialist	_, Date:	July 12, 2018	_
Approved by :	May Chen / Manager	, Date:	July 12, 2018	_

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.247)					
FCC Clause	Test Item	Result	Remarks		
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -13.56dB at 0.41563MHz.		
15.247(a)(1) (iii)	Number of Hopping Frequency Used	PASS	Meet the requirement of limit.		
15.247(a)(1) (iii)	Dwell Time on Each Channel	PASS	Meet the requirement of limit.		
15.247(a)(1)	 Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System 	PASS	Meet the requirement of limit.		
15.247(b)	Maximum Peak Output Power	PASS	Meet the requirement of limit.		
15.205 & 209 & 15.247(d)	Radiated Emissions & Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -4.5dB at 36.21MHz.		
15.247(d)	Antenna Port Emission	PASS	Meet the requirement of limit.		
15.203	Antenna Requirement	PASS	No antenna connector is used.		

NOTE: If The Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.84 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.33 dB
	1GHz ~ 6GHz	5.10 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	4.85 dB
	18GHz ~ 40GHz	5.24 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (BT-EDR)

Product	GigaSpire	
Brand	Calix	
Test Model	GS2026E	
Status of EUT	MASS-PRODUCTION	
Power Supply Rating	12Vdc from adapter	
Modulation Type	GFSK, π/4-DQPSK, 8DPSK	
Modulation Technology	FHSS	
Transfer Rate Up to 3Mbps		
Operating Frequency 2402MHz ~ 2480MHz		
Number of Channel	79	
Output Power 8.472mW		
Antenna Type Refer to Note		
Antenna Connector Refer to Note		
Accessory Device	Adapter x 1	
Data Cable Supplied NA		

Note:

1. There are WLAN, Bluetooth, Zigbee and Z-wave technology used for the EUT. The EUT has below radios as following table:

Radio 1	Radio 2	Radio 3	Radio 4	Radio 5
WLAN - 4TX (2.4GHz+5GHz)	WLAN - 4TX (5GHz)	Bluetooth	Zigbee	Z-wave
Note: For WLAN, SCH2 based on Radia 1 + 2 operating at some time				

Note: For WLAN- 5GHz based on Radio 1 + 2 operating at same time.

2. Simultaneously transmission condition.

	Condition	Technology				
	1	WLAN 2.4GHz	WLAN 5GHz	Bluetooth	Zigbee	Z-wave
ľ	Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found.					

3. The EUT must be supplied with a power adapter as following table:

Brand	Model No.	Spec.
Frecom	F60-120500SPA	Input: 100-240Vac, 1.6A, 50/60Hz AC intput cable: Unshielded, 1.0m Output: 12V, 5A DC output cable: Unshielded, 1.5m Input: 100-240Vac, 1.6A, 50/60Hz AC intput cable: Unshielded, 1.5m Output: 12V, 5A DC output cable: Unshielded, 1.5m
Note: From the above spec., the radiated emissions worse case was found in AC input cable: Unshielded ,		

1.0m. Therefore only the test data of the mode was recorded in this report.

4. The antennas provided to the EUT, please refer to the following table:						
	WLAN Direction	onal gain table				
Frequency range (GHz)	Directional Antenna Gain (dBi)	Antenna Type	Antenna Connector			
2.4 ~ 2.4835	7.41					
5.18 ~ 5.24	9.7					
5.26 ~ 5.32	9.9	Dipole	i-pex(MHF)			
5.50 ~ 5.70	9.83					
5.745 ~ 5.825	10.27					
	Bluetooth an	itenna spec.				
Antenna Net Gain (dBi)	Frequency range (GHz)	Antenna Type	Antenna Connector			
3.04	2.4~2.5	PIFA	None			
	Zigbee ante	enna spec.				
Antenna Net Gain (dBi)	Frequency range (GHz)	Antenna Type	Antenna Connector			
3.29	2.4~2.5	MONOPOLE	None			
	Z-wave ante	enna spec.				
Antenna Net Gain (dBi)	Frequency range (MHz)	Antenna Type	Antenna Connector			
2.76 850~920 PIFA None						
Note: More detailed information	ation, please refer to opeara	ting description.				

4. The antennas provided to the EUT, please refer to the following table:

5. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 Description of Test Modes

79 channels are provided for BT-EDR mode:

Channel	Freq. (MHz)						
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

MODE					DESCRIPTION	
	RE≥1G	IG RE<1G PLC APCM		DESCRIPTION		
-	\checkmark	\checkmark	\checkmark	\checkmark		
here RE	≥ 1G: Radiat	ted Emission abo	ve 1GHz	RE<10	G: Radiated Emission	on below 1GHz
diated Em	ission Te	st (Above 1G	iHz):			
Pre-Scan between a architectu	has been available n re).	conducted to nodulations, c	determine lata rates a	nd ante		rom all possible c JT with antenna d
Following		TESTED	MODULAT		MODULATION	
AVAILAE CHANN	EL	CHANNEL	I TECHNOL			_
AVAILAE CHANN 0 to 7		CHANNEL 0, 39, 78	TECHNOL FHSS		GFSK	DH5
CHANN 0 to 7 0 to 7 adiated Em Pre-Scan between a architectu	8 8 ission Te has been available n re).	0, 39, 78 0, 39, 78 st (Below 1G conducted to nodulations, c	FHSS FHSS FHZ): determine data rates a	the wor nd ante	GFSK 8DPSK rst-case mode fi enna ports (if EL	DH5 3DH5 rom all possible c
CHANN 0 to 7 0 to 7 0 to 7 adiated Em Pre-Scan between a architectu Following AVAILAR	8 8 iission Te has been available n re). channel(s BLE	0, 39, 78 0, 39, 78 st (Below 1G conducted to nodulations, c s) was (were) TESTED	FHSS FHSS determine data rates a selected fo	the wor nd ante r the fin	GFSK 8DPSK rst-case mode fr enna ports (if EU nal test as listed MODULATION	DH5 3DH5 rom all possible c
CHANN 0 to 7 0 to 7 diated Em Pre-Scan between a architectu Following	8 8 iission Te has been available n re). channel(s BLE IEL	0, 39, 78 0, 39, 78 st (Below 1G conducted to nodulations, c s) was (were)	FHSS FHSS Hz): determine lata rates a selected fo	the wor nd ante r the fin TION OGY	GFSK 8DPSK rst-case mode fi enna ports (if EU nal test as listed	DH5 3DH5 rom all possible c JT with antenna d below.
CHANN 0 to 7 0 to 7 adiated Em Pre-Scan between a architectu Following AVAILAE CHANN 0 to 7 Discrete Chann CHANN 0 to 7 CHANN 0 to 7 CHANN 0 to 7 CHANN CHANN 0 to 7 CHANN CHANN 0 to 7 CHANN CHANN 0 to 7 CHANN CHANN 0 to 7 CHANN CHAN	8 8 8 1 <t< th=""><th>0, 39, 78 0, 39, 78 st (Below 1G conducted to nodulations, c s) was (were) TESTED CHANNEL 39 d Emission T conducted to nodulations, c</th><th>FHSS FHSS FHSS determine data rates a selected fo MODULAT TECHNOL FHSS determine data rates a selected fo MODULAT TECHNOL FHSS determine data rates a</th><th>the wor nd ante r the fin rion ogy the wor nd ante</th><th>GFSK 8DPSK rst-case mode fi enna ports (if EL nal test as listed MODULATION TYPE GFSK</th><th>DH5 3DH5 rom all possible c JT with antenna d below. PACKET TYPE DH5 Tom all possible c JT with antenna d</th></t<>	0, 39, 78 0, 39, 78 st (Below 1G conducted to nodulations, c s) was (were) TESTED CHANNEL 39 d Emission T conducted to nodulations, c	FHSS FHSS FHSS determine data rates a selected fo MODULAT TECHNOL FHSS determine data rates a selected fo MODULAT TECHNOL FHSS determine data rates a	the wor nd ante r the fin rion ogy the wor nd ante	GFSK 8DPSK rst-case mode fi enna ports (if EL nal test as listed MODULATION TYPE GFSK	DH5 3DH5 rom all possible c JT with antenna d below. PACKET TYPE DH5 Tom all possible c JT with antenna d
CHANN 0 to 7 0 to 7 adiated Em Pre-Scan between a architectu Following AVAILAE CHANN 0 to 7 Discrete Chann CHANN 0 to 7 CHANN 0 to 7 CHANN CHANN 0 to 7 CHANN CHANN 0 to 7 CHANN CHAN	8 8 8 iission Te has been available n re). channel(s BLE BLE bas been available n re). channel(s bas been available n re). channel(s BLE BLE	0, 39, 78 0, 39, 78 st (Below 1G conducted to nodulations, c s) was (were) TESTED CHANNEL 39 d Emission T conducted to nodulations, c	FHSS FHSS FHSS determine data rates a selected fo MODULAT TECHNOL FHSS determine data rates a selected fo MODULAT TECHNOL FHSS determine data rates a	the wor nd ante r the fin TION OGY the wor nd ante r the fin	GFSK 8DPSK rst-case mode fr enna ports (if EL nal test as listed MODULATION TYPE GFSK rst-case mode fr enna ports (if EL	DH5 3DH5 rom all possible c JT with antenna d below. PACKET TYPE DH5 Tom all possible c JT with antenna d

3.2.1 Test Mode Applicability and Tested Channel Detail

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

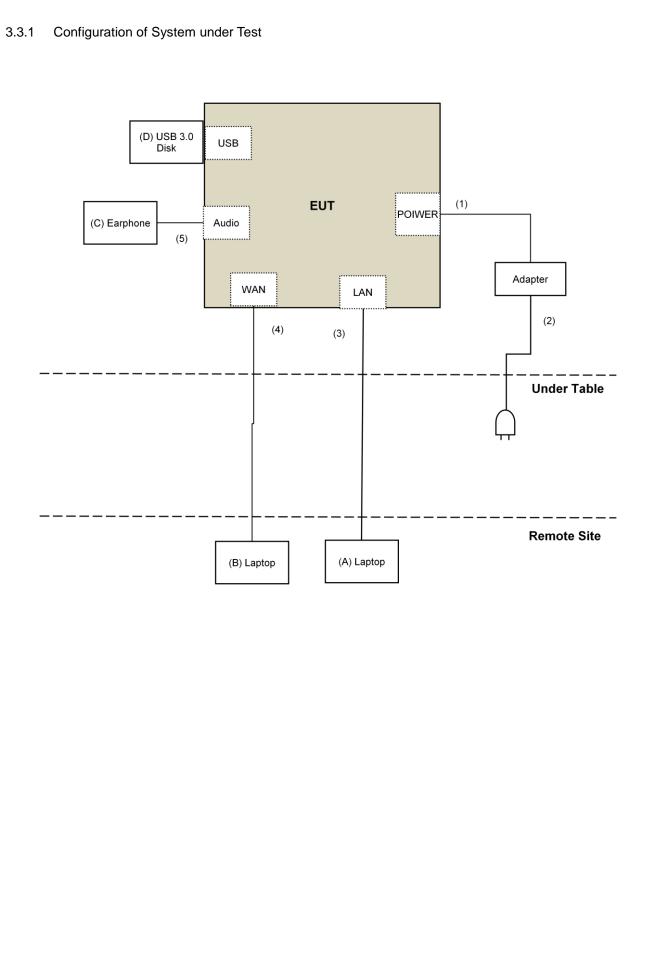
AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
0 to 78	0, 39, 78	FHSS	GFSK	DH5
0 to 78	0, 39, 78	FHSS	8DPSK	3DH5

Test Condition:

APPLICABLE TO	APPLICABLE TO ENVIRONMENTAL CONDITIONS		TESTED BY	
RE≥1G	RE≥1G 22deg. C, 67%RH		Eason Tseng	
RE<1G	21deg. C, 64%RH	120Vac, 60Hz	Robert Cheng	
PLC	23deg. C, 75%RH	120Vac, 60Hz	Andy Ho	
APCM	21deg. C, 60%RH	120Vac, 60Hz	Jyunchun Lin	

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Laptop	DELL	E5430	HYV4VY1	FCC DoC	Provided by Lab
В.	Laptop	DELL	E6420	B92T3R1	FCC DoC	Provided by Lab
C.	Earphone	Apple	NA	NA	NA	Provided by Lab
D.	USB 3.0 Disk	Transcend	16GB	NA	NA	Provided by Lab

Note:

1. All power cords of the above support units are non-shielded (1.8m).

1.7.01	All power cords of the above support drifts are non-shielded (1.0m).							
ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks		
1.	DC Cable	1	1.5	No	0	Supplied by client		
2.	AC Cable	1	1.0	No	0	Supplied by client		
3.	RJ-45 Cable	1	10	No	0	Provided by Lab		
4.	RJ-45 Cable	1	10	No	0	Provided by Lab		
5.	Audio Cable	1	1.2	No	0	Provided by Lab		

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO. CALIBRATED		CALIBRATED UNTIL	
			DATE	UNTIL	
Test Receiver Keysight	N9038A	MY54450088	July 08, 2017	July 07, 2018	
Pre-Amplifier EMCI	EMC001340	980142	Feb. 09, 2018	Feb. 08, 2019	
Loop Antenna ^(*) Electro-Metrics	EM-6879	264	Dec. 16, 2016	Dec. 15, 2018	
RF Cable	NA	LOOPCAB-001 LOOPCAB-002	Jan. 15, 2018	Jan. 14, 2019	
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-01	Nov. 09, 2017	Nov. 08, 2018	
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-406	Nov. 29, 2017	Nov. 28, 2018	
RF Cable	8D	966-4-1 966-4-2 966-4-3	Mar. 21, 2018	Mar. 20, 2019	
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-4-01	Oct. 03, 2017	Oct. 02, 2018	
Horn_Antenna SCHWARZBECK	BBHA 9120D	9120D-783	Dec. 12, 2017	Dec. 11, 2018	
Pre-Amplifier EMCI	EMC12630SE	980385	Jan. 29, 2018	Jan. 28, 2019	
RF Cable	EMC104-SM-SM-1200 EMC104-SM-SM-2000 EMC104-SM-SM-5000	160923 150318 150321	Jan. 29, 2018	Jan. 28, 2019	
Pre-Amplifier EMCI	EMC184045SE	980387	Jan. 29, 2018	Jan. 28, 2019	
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170608	Dec. 14, 2017	Dec. 13, 2018	
RF Cable	EMC102-KM-KM-1200	160925	Jan. 29, 2018	Jan. 28, 2019	
Software	ADT_Radiated_V8.7.08	NA	NA	NA	
Boresight Antenna Tower & Turn Table Max-Full	MF-7802BS	MF780208530	NA	NA	
Spectrum Analyzer R&S	FSV40	100964	June 20, 2018	June 19, 2019	
Power meter Anritsu	ML2495A	1014008	May 09, 2018	May 08, 2019	
Power sensor MA2411B		0917122 May 09, 2018		May 08, 2019	

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 3. The test was performed in 966 Chamber No. 4.
- 4. The CANADA Site Registration No. is 20331-2
- 5. Loop antenna was used for all emissions below 30 MHz.
- 6. Tested Date: June 21 to 25, 2018

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

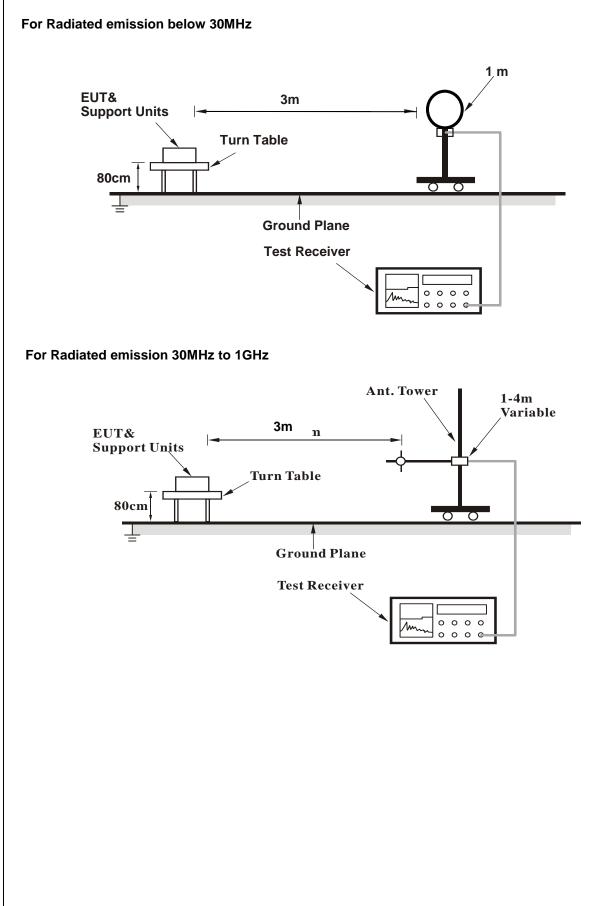
NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

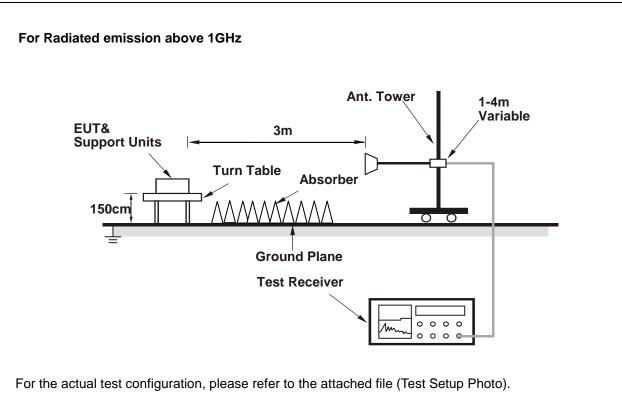
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

- 4.1.6 EUT Operating Conditions
- a. Connected the EUT with the Notebook Computer which is placed on remote site.
- b. Controlling software (HyperTerminal paste WNC_LCS1_BT_set-up SOP.xlsx command) has been activated to set the EUT on specific status.

4.1.7 Test Results

Above 1GHz Data:

BT_GFSK

(CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
I	FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	44.6 PK	74.0	-29.4	1.88 H	161	46.8	-2.2	
2	2390.00	33.5 AV	54.0	-20.5	1.88 H	161	35.7	-2.2	
3	*2402.00	102.6 PK			1.88 H	161	104.9	-2.3	
4	*2402.00	72.5 AV			1.88 H	161	74.8	-2.3	
5	4804.00	47.2 PK	74.0	-26.8	1.14 H	67	45.4	1.8	
6	4804.00	17.1 AV	54.0	-36.9	1.14 H	67	15.3	1.8	
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	44.2 PK	74.0	-29.8	2.42 V	118	46.4	-2.2	
2	2390.00	33.2 AV	54.0	-20.8	2.42 V	118	35.4	-2.2	
3	*2402.00	104.1 PK			2.42 V	118	106.4	-2.3	
4	*2402.00	74.0 AV			2.42 V	118	76.3	-2.3	
5	4804.00	51.4 PK	74.0	-22.6	1.28 V	78	49.6	1.8	

REMARKS:

4804.00

6

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

-33.1

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

1.28 V

78

19.1

1.8

3. The other emission levels were very low against the limit.

54.0

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

20.9 AV

6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB

7. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle)

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2441.00	102.6 PK			1.89 H	154	105.2	-2.6	
2	*2441.00	72.5 AV			1.89 H	154	75.1	-2.6	
3	4882.00	46.8 PK	74.0	-27.2	1.18 H	68	44.8	2.0	
4	4882.00	16.7 AV	54.0	-37.3	1.18 H	68	14.7	2.0	
5	7323.00	52.6 PK	74.0	-21.4	2.09 H	20	44.2	8.4	
6	7323.00	22.5 AV	54.0	-31.5	2.09 H	20	14.1	8.4	
		ANTENNA	POLARITY	' & TEST DI	STANCE: V	ERTICAL A	Т 3 М		

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2441.00	104.3 PK			2.32 V	103	106.9	-2.6
2	*2441.00	74.1 AV			2.32 V	103	76.7	-2.6
3	4882.00	51.1 PK	74.0	-22.9	1.27 V	65	49.1	2.0
4	4882.00	20.7 AV	54.0	-33.3	1.27 V	65	18.7	2.0
5	7323.00	53.5 PK	74.0	-20.5	2.01 V	200	45.1	8.4
6	7323.00	23.5 AV	54.0	-30.5	2.01 V	200	15.1	8.4

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle)

CHANNEL	TX Channel 78	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2480.00	102.7 PK			1.84 H	164	105.3	-2.6	
2	*2480.00	72.6 AV			1.84 H	164	75.2	-2.6	
3	2483.50	54.2 PK	74.0	-19.8	1.84 H	164	56.6	-2.4	
4	2483.50	24.1 AV	54.0	-29.9	1.84 H	164	26.5	-2.4	
5	4960.00	47.4 PK	74.0	-26.6	1.14 H	75	45.3	2.1	
6	4960.00	17.3 AV	54.0	-36.7	1.14 H	75	15.2	2.1	
7	7440.00	52.1 PK	74.0	-21.9	2.05 H	36	43.3	8.8	
8	7440.00	22.0 AV	54.0	-32.0	2.05 H	36	13.2	8.8	
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2480.00	104.4 PK			2.36 V	108	107.0	-2.6	
2	*2480.00	74.3 AV			2.36 V	108	76.9	-2.6	
3	2483.50	54.4 PK	74.0	-19.6	2.36 V	108	56.8	-2.4	
4	2483.50	24.3 AV	54.0	-29.7	2.36 V	108	26.7	-2.4	
5	4960.00	50.6 PK	74.0	-23.4	1.27 V	49	48.5	2.1	
6	4960.00	20.5 AV	54.0	-33.5	1.27 V	49	18.4	2.1	
7	7440.00	53.7 PK	74.0	-20.3	2.05 V	197	44.9	8.8	
8	7440.00	23.6 AV	54.0	-30.4	2.05 V	197	14.8	8.8	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle)

BT_8DPSK

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	44.7 PK	74.0	-29.3	1.79 H	176	46.9	-2.2
2	2390.00	32.8 AV	54.0	-21.2	1.79 H	176	35.0	-2.2
3	*2402.00	93.1 PK			1.79 H	176	95.4	-2.3
4	*2402.00	63.0 AV			1.79 H	176	65.3	-2.3
5	4804.00	47.2 PK	74.0	-26.8	1.16 H	60	45.4	1.8
6	4804.00	17.1 AV	54.0	-36.9	1.16 H	60	15.3	1.8
		ANTENNA		& TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	57.7 PK	74.0	-16.3	1.15 V	287	59.9	-2.2
2	2390.00	32.3 AV	54.0	-21.7	1.15 V	287	34.5	-2.2
3	*2402.00	95.7 PK			1.15 V	287	98.0	-2.3
4	*2402.00	65.6 AV			1.15 V	287	67.9	-2.3
5	4804.00	50.4 PK	74.0	-23.6	3.16 V	181	48.6	1.8
6	4804.00	20.1 AV	54.0	-33.9	3.16 V	181	18.3	1.8
	VDKG.							

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle)

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2441.00	96.3 PK			1.85 H	176	98.9	-2.6	
2	*2441.00	66.2 AV			1.85 H	176	68.8	-2.6	
3	4882.00	46.0 PK	74.0	-28.0	1.19 H	65	44.0	2.0	
4	4882.00	15.9 AV	54.0	-38.1	1.19 H	65	13.9	2.0	
5	7323.00	47.0 PK	74.0	-27.0	2.03 H	25	38.6	8.4	
6	7323.00	16.9 AV	54.0	-37.1	2.03 H	25	8.5	8.4	
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ.	EMISSION LEVEL		MARGIN	ANTENNA HEIGHT	TABLE ANGLE	RAW VALUE	CORRECTION FACTOR	

NO.	FREQ. (MHz)	LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	HEIGHT (m)	ANGLE (Degree)	VALUE (dBuV)	FACTOR (dB/m)
1	*2441.00	98.4 PK			2.41 V	111	101.0	-2.6
2	*2441.00	68.3 AV			2.41 V	111	70.9	-2.6
3	4882.00	50.9 PK	74.0	-23.1	3.16 V	171	48.9	2.0
4	4882.00	20.6 AV	54.0	-33.4	3.16 V	171	18.6	2.0
5	7323.00	46.6 PK	74.0	-27.4	1.05 V	279	38.2	8.4
6	7323.00	16.3 AV	54.0	-37.7	1.05 V	279	7.9	8.4

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle)

CHANNEL	TX Channel 78	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
*2480.00	97.5 PK			1.88 H	163	100.1	-2.6	
*2480.00	67.4 AV			1.88 H	163	70.0	-2.6	
2483.50	51.1 PK	74.0	-22.9	1.88 H	163	53.5	-2.4	
2483.50	21.0 AV	54.0	-33.0	1.88 H	163	23.4	-2.4	
4960.00	45.4 PK	74.0	-28.6	1.49 H	60	43.3	2.1	
4960.00	15.3 AV	54.0	-38.7	1.49 H	60	13.2	2.1	
7440.00	46.7 PK	74.0	-27.3	1.74 H	199	37.9	8.8	
7440.00	16.6 AV	54.0	-37.4	1.74 H	199	7.8	8.8	
	ANTENNA		& TEST DI	STANCE: V	ERTICAL A	Т 3 М		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
*2480.00	98.8 PK			2.44 V	111	101.4	-2.6	
*2480.00	68.7 AV			2.44 V	111	71.3	-2.6	
2483.50	58.9 PK	74.0	-15.1	2.44 V	111	61.3	-2.4	
2483.50	28.8 AV	54.0	-25.2	2.44 V	111	31.2	-2.4	
4960.00	50.4 PK	74.0	-23.6	3.11 V	171	48.3	2.1	
4960.00	20.3 AV	54.0	-33.7	3.11 V	171	18.2	2.1	
7440.00	46.9 PK	74.0	-27.1	1.10 V	271	38.1	8.8	
7440.00	16.8 AV	54.0	-37.2	1.10 V	271	8.0	8.8	
	FREQ. (MHz) *2480.00 *2480.00 2483.50 2483.50 2483.50 4960.00 4960.00 7440.00 7440.00 7440.00 2483.50 2483.50 2483.50 2483.50 2483.50 2483.50 2483.50 4960.00 7440.00	FREQ. (MHz) EMISSION LEVEL (dBuV/m) *2480.00 97.5 PK *2480.00 97.5 PK *2480.00 67.4 AV 2483.50 51.1 PK 2483.50 21.0 AV 4960.00 45.4 PK 4960.00 15.3 AV 7440.00 46.7 PK 7440.00 16.6 AV EMISSION LEVEL (dBuV/m) *2480.00 98.8 PK *2480.00 68.7 AV 2483.50 58.9 PK *2480.00 50.4 PK *2480.00 50.4 PK	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) *2480.00 97.5 PK *2480.00 67.4 AV 2483.50 51.1 PK 2483.50 21.0 AV 2483.50 21.0 AV 2480.00 45.4 PK 4960.00 45.4 PK 4960.00 15.3 AV 54.0 4960.00 16.6 AV 7440.00 16.6 AV 7440.00 16.6 AV FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) *2480.00 98.8 PK *2480.00 68.7 AV 2483.50 58.9 PK *2480.00 50.4 PK *2480.00 58.9 PK *2480.00 50.4 PK *2480.00 58.9 PK *2480.00 50.4 PK *2480.00 68.7 AV 2483.50 28.8 AV 54.0 4960.00 4960.00 50.4 PK 74.0 4960.00	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) *2480.00 97.5 PK	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) *2480.00 97.5 PK 1.88 H *2480.00 67.4 AV 1.88 H 2483.50 51.1 PK 74.0 -22.9 2483.50 21.0 AV 54.0 -33.0 1.88 H 2483.50 21.0 AV 54.0 -33.0 1.88 H 4960.00 45.4 PK 74.0 -28.6 1.49 H 4960.00 15.3 AV 54.0 -38.7 1.49 H 7440.00 46.7 PK 74.0 -27.3 1.74 H 7440.00 16.6 AV 54.0 -37.4 1.74 H ANTENNA POLARITY & TEST DISTANCE: V FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) *2480.00 98.8 PK 2.44 V 2.44 V *2480.00 68.7 AV 2.44 V 2.44 V 2483.50 28.8 AV 54.0 -25.2 2.44 V 2483.50 28.8 AV 54.0	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) *2480.00 97.5 PK 1.88 H 163 *2480.00 67.4 AV 1.88 H 163 2483.50 51.1 PK 74.0 -22.9 1.88 H 163 2483.50 21.0 AV 54.0 -33.0 1.88 H 163 2483.50 21.0 AV 54.0 -33.0 1.88 H 163 4960.00 45.4 PK 74.0 -22.9 1.49 H 60 4960.00 15.3 AV 54.0 -38.7 1.49 H 60 7440.00 16.6 AV 54.0 -37.4 1.74 H 199 7440.00 16.6 AV 54.0 -37.4 1.74 H 199 7440.00 16.6 AV 54.0 -37.4 1.74 H 199 ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT ANGLE ANGLE ANGLE (MHz) (MBuV/m) (dBuV/m) MARGIN ASTENNA HEIGHT	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (dB) TABLE ANGLE (Degree) RAW VALUE (dBuV) *2480.00 97.5 PK 1.88 H 163 100.1 *2480.00 67.4 AV 1.88 H 163 100.1 *2480.00 67.4 AV 1.88 H 163 70.0 2483.50 51.1 PK 74.0 -22.9 1.88 H 163 53.5 2483.50 21.0 AV 54.0 -33.0 1.88 H 163 23.4 4960.00 45.4 PK 74.0 -28.6 1.49 H 60 43.3 4960.00 15.3 AV 54.0 -37.4 1.49 H 60 13.2 7440.00 46.7 PK 74.0 -27.3 1.74 H 199 7.8 HEIGHT (MHz) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) RAW VALUE (dBuV) *2480.00 68.7 AV 2.44 V 111 101.4 *2480.00 68.7 AV 2.44 V 111 <	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle)

Below 1GHz Data:

BT_GFSK

CHANNEL	TX Channel 39	DETECTOR	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	72.34	34.1 QP	40.0	-5.9	1.45 H	302	49.6	-15.5	
2	187.41	33.7 QP	43.5	-9.8	1.65 H	201	49.0	-15.3	
3	237.82	39.8 QP	46.0	-6.2	1.35 H	200	54.3	-14.5	
4	296.72	39.1 QP	46.0	-6.9	1.42 H	100	51.3	-12.2	
5	315.51	37.5 QP	46.0	-8.5	1.47 H	202	49.0	-11.5	
6	692.42	36.1 QP	46.0	-9.9	1.54 H	200	39.3	-3.2	
		ANTENNA		(& TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	NO. FREQ. LEVEL LIMIT MARGIN HEIGHT ANGLE VALUE FAC							CORRECTION FACTOR (dB/m)	
1	36.21	35.5 QP	40.0	-4.5	1.22 V	66	49.3	-13.8	
2	76.53	35.1 QP	40.0	-4.9	1.65 V	302	51.6	-16.5	
3	315.11	41.1 QP	46.0	-4.9	1.75 V	122	52.6	-11.5	
4	419.43	38.0 QP	46.0	-8.0	1.45 V	66	46.8	-8.8	
5	443.76	37.2 QP	46.0	-8.8	1.45 V	245	45.0	-7.8	
6	750.12	36.6 QP	46.0	-9.4	1.55 V	99	38.3	-1.7	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)			
Frequency (MHz)	Quasi-peak	Average		
0.15 - 0.5	66 - 56	56 - 46		
0.50 - 5.0	56	46		
5.0 - 30.0	60	50		

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

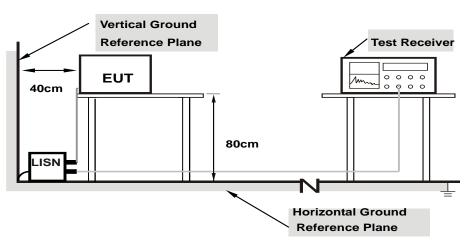
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Nov. 01, 2017	Oct. 31, 2018
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Nov. 15, 2017	Nov. 14, 2018
Line-Impedance Stabilization Network (for Peripheral) R&S	ENV216	100072	June 04, 2018	June 03, 2019
50 ohms Terminator	N/A	EMC-02	Sep. 22, 2017	Sep. 21, 2018
RF Cable	5D-FB	COCCAB-001	Sep. 29, 2017	Sep. 28, 2018
Fixed attenuator EMCI	STI02-2200-10	003	Mar. 16, 2018	Mar. 15, 2019
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note:

1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Conduction 1.

3. Tested Date: June 16, 2018


4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation From Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Same as 4.1.6.

4.2.7 Test Results

Phase Line (L)					Detector Function Quasi-Peak (QP) / Average (AV)					/
_ Corr		Corr.	Reading Value		Emissio	Emission Level		Limit		gin
No	Freq.	Factor	[dB ((uV)]	[dB	(uV)]	[dB ((uV)]	(dl	3)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.03	36.69	20.22	46.72	30.25	66.00	56.00	-19.28	-25.75
2	0.20078	10.06	27.33	12.02	37.39	22.08	63.58	53.58	-26.19	-31.50
3	0.41563	10.11	30.48	23.60	40.59	33.71	57.54	47.54	-16.95	-13.83
4	0.75156	10.13	15.14	8.30	25.27	18.43	56.00	46.00	-30.73	-27.57
5	3.01172	10.23	12.33	2.06	22.56	12.29	56.00	46.00	-33.44	-33.71
6	13.03125	10.72	12.89	5.94	23.61	16.66	60.00	50.00	-36.39	-33.34

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase Neutral (N)			C	Detector Function Quasi-Peak (QP) Average (AV)				/		
	_ Corr		: Reading Value		Emiss	Emission Level		Limit		gin
No	Freq.	Factor	[dB ((uV)]	[dB	5 (uV)]	[dB (uV)]	(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	9.94	36.69	20.54	46.63	30.48	66.00	56.00	-19.37	-25.52
2	0.17734	9.95	31.83	16.18	41.78	26.13	64.61	54.61	-22.83	-28.48
3	0.41563	10.00	30.59	23.98	40.59	33.98	57.54	47.54	-16.95	-13.56
4	0.75156	10.02	18.45	11.14	28.47	21.16	56.00	46.00	-27.53	-24.84
5	13.16797	10.56	12.10	4.03	22.66	14.59	60.00	50.00	-37.34	-35.41
6	28.67188	10.97	11.89	6.34	22.86	17.31	60.00	50.00	-37.14	-32.69

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

4.3 Number of Hopping Frequency Used

4.3.1 Limits of Hopping Frequency Used Measurement

At least 15 channels frequencies, and should be equally spaced.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.
- 4.3.5 Deviation from Test Standard

No deviation.

4.3.6 Test Results

There are 79 hopping frequencies in the hopping mode. Please refer to next page for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

4.4 Dwell Time on Each Channel

4.4.1 Limits of Dwell Time on Each Channel Measurement

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2 Test Setup

4.4.3 Test Instruments

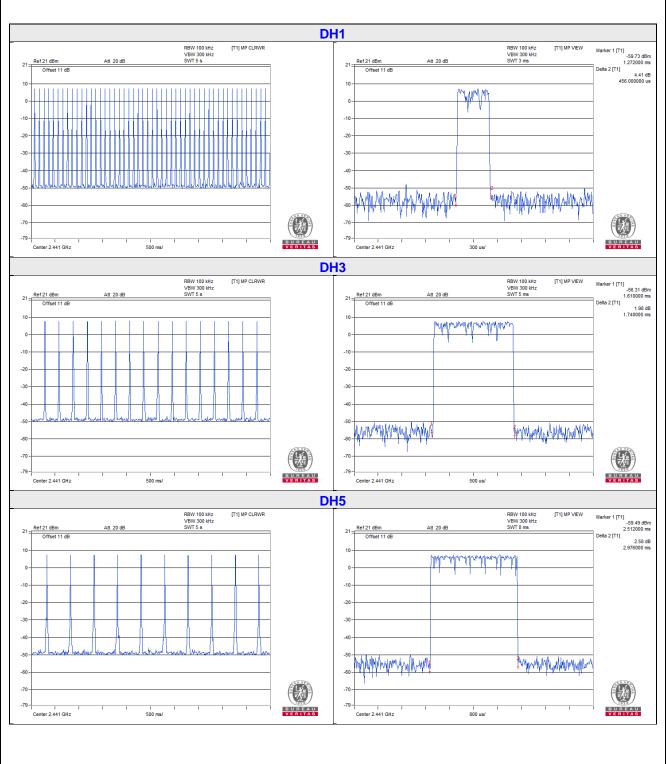
Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

4.4.5 Deviation from Test Standard

No deviation.


4.4.6 Test Results

GFSK

Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
DH1	50 (times / 5 sec) * 6.32 = 316 times	0.456	144.1	400
DH3	16 (times / 5 sec) * 6.32 = 101.12 times	1.74	175.95	400
DH5	10 (times / 5 sec) * 6.32 = 63.2 times	2.976	188.08	400

NOTE: Test plots of the transmitting time slot are shown on next page.



8DPSK

Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
3DH1	51 (times / 5 sec) * 6.32 = 322.32 times	0.474	152.78	400
3DH3	17 (times / 5 sec) * 6.32 = 107.44 times	1.72	184.8	400
3DH5	10 (times / 5 sec) * 6.32 = 63.2 times	3.008	190.11	400

NOTE: Test plots of the transmitting time slot are shown on next page.

4.5 Channel Bandwidth

4.5.1 Limits of Channel Bandwidth Measurement

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

4.5.2 Test Setup

4.5.3 Test Instruments

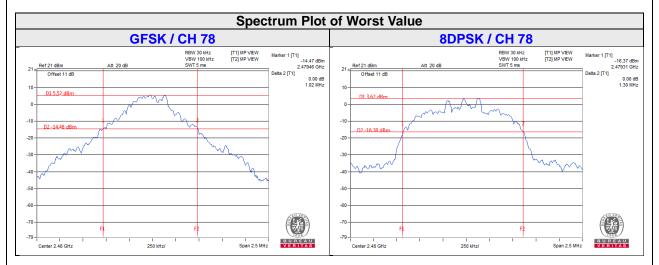
Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.5.5 Deviation from Test Standard

No deviation.


4.5.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.5.7 Test Results

Channel	Frequency (MHz)	20dB Bandwidth (MHz)			
		GFSK	8DPSK		
0	2402	0.96	1.28		
39	2441	0.97	1.29		
78	2480	1.02	1.30		

4.6 Hopping Channel Separation

4.6.1 Limits of Hopping Channel Separation Measurement

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

4.6.2 Test Setup

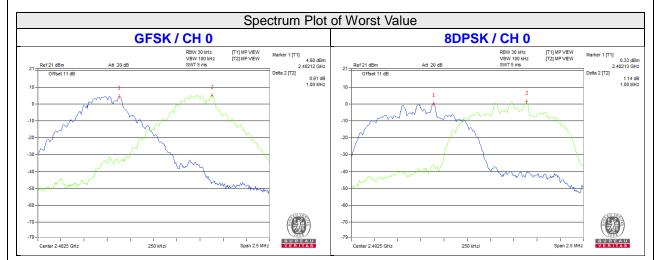
4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

Measurement Procedure REF

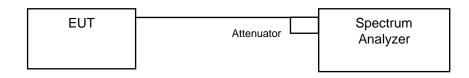
- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.
- 4.6.5 Deviation from Test Standard


No deviation.

4.6.6 Test Results

Channel	Frequency (MHz)	Adjacent Channel Separation (MHz)		20dB Bandwidth (MHz)		Minimum Limit (MHz)		Pass / Fail
		GFSK	8DPSK	GFSK	8DPSK	GFSK	8DPSK	
0	2402	1.00	1.00	0.96	1.28	0.64	0.86	Pass
39	2441	1.00	1.00	0.97	1.29	0.65	0.86	Pass
78	2480	1.00	1.00	1.02	1.30	0.68	0.87	Pass

NOTE: The minimum limit is two-third 20dB bandwidth.



4.7 Maximum Output Power

4.7.1 Limits of Maximum Output Power Measurement

The Maximum Output Power Measurement is 125mW.

4.7.2 Test Setup

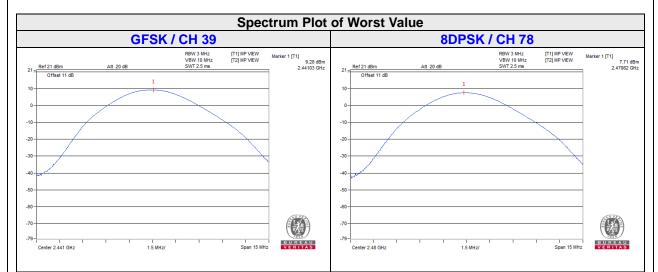
4.7.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.7.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 3MHz RBW and 10 MHz VBW.
- d. Measure the captured power within the band and recording the plot.
- e. Repeat above procedures until all frequencies required were complete.
- 4.7.5 Deviation from Test Standard

No deviation.


4.7.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.7.7 Test Results

Channel	Frequency (MHZ)	Output Power (mW)		Output Power (dBm)		Power Limit (mW)	Pass / Fail
		GFSK	8DPSK	GFSK	8DPSK	· · ·	
0	2402	6.531	2.564	8.15	4.09	125	Pass
39	2441	8.472	4.645	9.28	6.67	125	Pass
78	2480	7.816	5.902	8.93	7.71	125	Pass

4.8 Conducted Out of Band Emission Measurement

4.8.1 Limits of Conducted Out of Band Emission Measurement

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.8.2 Test Instruments

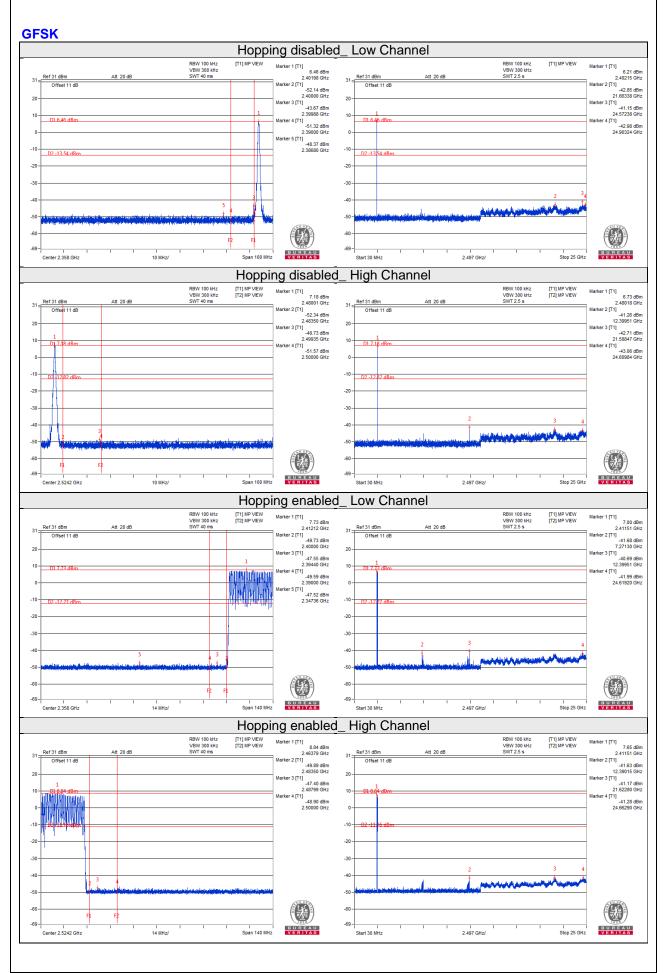
Refer to section 4.1.2 to get information of above instrument.

4.8.3 Test Procedure

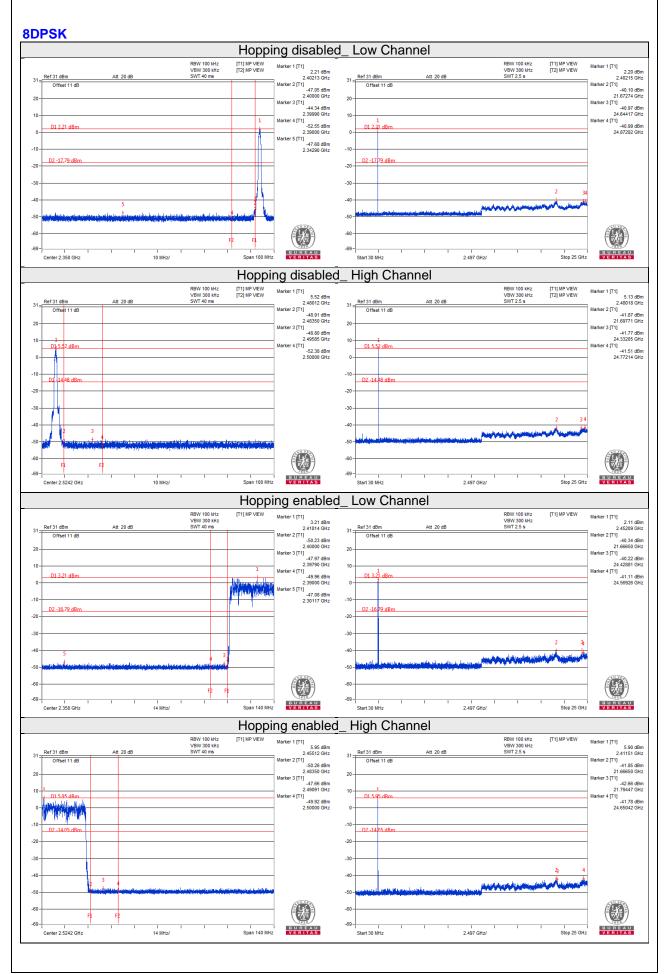
The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

4.8.4 Deviation from Test Standard

No deviation.


4.8.5 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest and highest channel frequencies individually.


4.8.6 Test Results

The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linkou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---