

Report No.: 2006RSU066-U3 Report Version: V01 Issue Date: 08-21-2020

# **RF Exposure Evaluation Declaration**

| FCC ID:             | 2ABLK-BLASTU4X                                       |
|---------------------|------------------------------------------------------|
| Applicant:          | Calix Inc.                                           |
|                     |                                                      |
| Application Type:   | Certification                                        |
| Product:            | GigaSpire BLAST u4, GigaSpire Mesh BLAST u4m         |
| Model No.:          | GigaSpire BLAST u4, GigaSpire Mesh BLAST u4m         |
| Brand Name:         | Colix                                                |
| FCC Classification: | Digital Transmission System (DTS)                    |
|                     | Unlicensed National Information Infrastructure (NII) |
| Test Procedure(s):  | KDB 447498 D01v06                                    |
| Test Date:          | August 21, 2020                                      |
|                     |                                                      |

**Reviewed By:** 

(Kevin Guo) (Kevin Wu

Approved By:

(Robin Wu)



The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standards through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.



## **Revision History**

| Report No.    | Version | Description    | Issue Date | Note  |
|---------------|---------|----------------|------------|-------|
| 2006RSU066-U3 | Rev. 01 | Initial report | 08-21-2020 | Valid |
|               |         |                |            |       |



## CONTENTS

| Des | scription |                                       | Page |
|-----|-----------|---------------------------------------|------|
| 1.  | INTROD    | UCTION                                | 5    |
|     | 1.1.      | Scope                                 | 5    |
|     | 1.2.      | MRT Test Location                     | 5    |
| 2.  | PRODU     | CT INFORMATION                        | 6    |
|     | 2.1.      | Equipment Description                 | 6    |
|     | 2.2.      | Models Difference                     | 6    |
|     | 2.3.      | Description of Available Antennas     | 7    |
|     | 2.4.      | Description of Antenna RF Port        | 7    |
| 3.  | RF Expo   | osure Evaluation                      | 9    |
|     | 3.1.      | Limits                                | 9    |
|     | 3.2.      | Test Result of RF Exposure Evaluation | 10   |
| Арр | endix A · | - EUT Photograph                      | 11   |



#### **General Information**

| Applicant:            | Calix Inc.                                         |  |
|-----------------------|----------------------------------------------------|--|
| Applicant Address:    | 1035 N. McDowell Blvd Petaluma, CA94954 U.S.A      |  |
| Manufacturer:         | Calix Inc.                                         |  |
| Manufacturer Address: | 1035 N. McDowell Blvd Petaluma, CA94954 U.S.A      |  |
| Test Site:            | MRT Technology (Suzhou) Co., Ltd                   |  |
| Test Site Address:    | D8 Building, No.2 Tian'edang Rd., Wuzhong Economic |  |
|                       | Development Zone, Suzhou, China                    |  |

#### **Test Facility / Accreditations**

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is an FCC accredited testing laboratory (MRT Designation No. CN1166) on the FCC website.
- MRT facility is an ISED recognized testing laboratory (MRT Reg. No. CN0001) on the ISED website.
- MRT facility is a VCCI registered (R-20025, G-20034, C-20020, T-20020) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the A2LA under the A2LA Program (Cert. No. 3628.01) and CNAS under the CNAS Program (Cert. No. L10551) in EMC, Safety, Radio, Telecommunications and SAR testing.



### 1. INTRODUCTION

#### 1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada and Certification and Engineering Bureau.

#### 1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The measurement facility compliant with the test site requirements specified in ANSI C63.4-2014.





### 2. PRODUCT INFORMATION

#### 2.1. Equipment Description

| Product Name:        | GigaSpire BLAST u4, GigaSpire Mesh BLAST u4m                  |  |
|----------------------|---------------------------------------------------------------|--|
| Model No.:           | GigaSpire BLAST u4, GigaSpire Mesh BLAST u4m                  |  |
| Brand Name:          | C Calix                                                       |  |
| Wi-Fi Specification: | 802.11a/b/g/n/ac/ax/VHT                                       |  |
| Serial No.:          | 262007039756 (Radiated Emission & AC Line Conducted Emission) |  |
|                      | 262007039695 (Conducted)                                      |  |
| Accessary            |                                                               |  |
| Switching Mode Power | MODEL: F24L9-120200SPAU                                       |  |
| Adapter:             | INPUT: 100-240V~50/60Hz 0.6A                                  |  |
|                      | OUTPUT: 12V-2A                                                |  |

Note: Between the models, there are the same schematics design, same PCB layout and the same RF parameters except the difference as below (Section 2.2), and GigaSpire BLAST u4 was selected for all RF test.

#### 2.2. Models Difference

| Model name                  | Difference                                                  |
|-----------------------------|-------------------------------------------------------------|
| GigaSpire BLAST u4          | 2 LAN ports, 1 WAN port, 1 USB, 2.4G/5G Wi-Fi, external PSU |
| GigaSpire Mesh<br>BLAST u4m | 1 WAN port, 2.4G/5G Wi-Fi, external PSU                     |



| Model name          | Manufacturer         | Tx Port    | Frequency Band<br>(MHz) | Cable length<br>(mm) |
|---------------------|----------------------|------------|-------------------------|----------------------|
| 2.4G-2_PCB-LY70FC1  | CHANGSHU HONGBO      | 2.4G Ant 0 | 2412~2462               | 70                   |
| 2.4G-1_PCB-LE160FC3 | TELECOMMUNICATION    | 2.4G Ant 1 | 2412~2462               | 160                  |
|                     | TECHNOLOGY CO., LTD. |            |                         |                      |
| RFPCA252302IM5B301  | WALSIN TECHNOLOGY    | 5G Ant 0   | 5150~5850               | 30                   |
| RFPCA252312IM5B301  | CORPORATION          | 5G Ant 1   | 5150~5850               | 125                  |

#### 2.3. Description of Available Antennas

| Antenna Type | Frequency Band (MHz) | Tx Paths | Directional Gain (dBi) |
|--------------|----------------------|----------|------------------------|
|              |                      |          | CDD & Beamforming      |
|              | 2412 ~ 2462          | 2        | 5.84                   |
|              | 5150 ~ 5350          | 2        | 5.81                   |
| PCB Antenna  | 5470 ~ 5725          | 2        | 5.93                   |
|              | 5725 ~ 5850          | 2        | 5.95                   |

Note 1: The EUT supports Cyclic Delay Diversity (CDD) and Beamforming technology, and the Beamforming mode support 802.11ac/ax, not include 802.11a/b/g. It transmits signals that are correlated, then Directional gain =  $10 \log [(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2/N_{ANT}] dBi [Note the "20"s in the denominator of each exponent and the square of the sum of terms; the object is to combine the signal levels coherently. Note 2: All the messages as above are provided by manufacturer.$ 

#### 2.4. Description of Antenna RF Port

|                  |                             | Antenna RF Port |       |         |
|------------------|-----------------------------|-----------------|-------|---------|
| Software Control | 2.4GHz RF Port 5GHz RF Port |                 |       | RF Port |
| Port             | Ant 0                       | Ant 1           | Ant 0 | Ant 1   |



|    | 5G Ant 0 ← 🙀 |  |
|----|--------------|--|
|    | 5G Ant 1 - 2 |  |
|    | 2.4G Ant 0   |  |
| 40 |              |  |



### 3. **RF Exposure Evaluation**

#### 3.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

| Frequency Range<br>(MHz) | Electric Field<br>Strength (V/m)                          | Magnetic Field<br>Strength (A/m) | Power Density<br>(mW/cm²) | Average Time<br>(Minutes) |
|--------------------------|-----------------------------------------------------------|----------------------------------|---------------------------|---------------------------|
|                          | (A) Limits for Occupational/ Control Exposures            |                                  |                           |                           |
| 300-1500                 |                                                           |                                  | f/300                     | 6                         |
| 1500-100,000             |                                                           |                                  | 5                         | 6                         |
|                          | (B) Limits for General Population/ Uncontrolled Exposures |                                  |                           |                           |
| 300-1500                 |                                                           |                                  | f/1500                    | 6                         |
| 1500-100,000             |                                                           |                                  | 1                         | 30                        |

#### LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

f= Frequency in MHz

Calculation Formula:  $Pd = (Pout^{*}G)/(4^{*}pi^{*}r^{2})$ 

Where

 $Pd = power density in mW/cm^2$ 

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

r = distance between observation point and center of the radiator in cm

Pd is the limit of MPE, 1mW/cm<sup>2</sup>. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.



#### 3.2. Test Result of RF Exposure Evaluation

| Product   | GigaSpire BLAST u4     |
|-----------|------------------------|
| Test Item | RF Exposure Evaluation |

Antenna Gain: Refer to clause 2.3.

| Test Mode          | Frequency   | Maximum | Safety   | Power Density         | Limit of Power        |
|--------------------|-------------|---------|----------|-----------------------|-----------------------|
|                    | Band        | EIRP    | Distance | (mW/cm <sup>2</sup> ) | Density               |
|                    | (MHz)       | (dBm)   | (cm)     |                       | (mW/cm <sup>2</sup> ) |
| 802.11b/g/n/ax/VHT | 2412 ~ 2462 | 35.73   | 27       | 0.4084                | 1                     |
| 802.11 a/n/ac/ax   | 5180 ~ 5240 | 34.35   | 27       | 0.2972                | 1                     |
|                    | 5745 ~ 5825 |         |          |                       |                       |

#### CONCLUSION:

Both of the WLAN 2.4GHz Band and WLAN 5GHz Band can transmit simultaneously.

The max Power Density at R (27 cm) = 0.4084mW/cm<sup>2</sup> + 0.2972mW/cm<sup>2</sup> = 0.7056mW/cm<sup>2</sup> < 1mW/cm<sup>2</sup>.

So the safety distance is 27cm for device installed without any other radio equipment.

The End



## Appendix A - EUT Photograph

Refer to "2006RSU066-UE" file.