

RF EXPOSURE EVALUATION REPORT

APPLICANT

GLORY HORSE INDUSTRIES LTD.

PRODUCT NAME

M18 Radio Charger

MODEL NAME

WSR 201VE/M18 Radio Charger

TRADE NAME

N/A

BRAND NAME

Milwaukee

FCC ID

2ABL5WSR201VE-M18

47CFR 2.1091

STANDARD(S)

KDB 447498 D01 General RF Exposure

Guidance v05r02

ISSUE DATE

2015-06-17

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.com Fax: 86-755-36698525 E-mail: service@morlab.cn

DIRECTORY

TEST REPORT DECLARATION	3
1. TECHNICAL INFORMATION	4
1.1. IDENTIFICATION OF APPLICANT	4
1.2. IDENTIFICATION OF MANUFACTURER	4
1.3. EQUIPMENT UNDER TEST (EUT)	4
1.3.1. PHOTOGRAPHS OF THE EUT······	5
1.3.2. IDENTIFICATION OF ALL USED EUT	6
1.4. APPLIED REFERENCE DOCUMENTS	6
2. DEVICE CATEGORY AND RF EXPOSURE LIMIT	7
3. MEASUREMENT OF CONDUCTED PEAK OUTPUT POWER	8
4. RF EXPOSURE EVALUATION	8
ANNEX C GENERAL INFORMATION	9

Change History				
Issue Date Reason for change				
1.0	2015-06-09	First edition		
2.0	2015-06-17	Second edition		

TEST REPORT DECLARATION

Applicant	GLORY HORSE INDUSTRIES LTD.		
Applicant Address	workshop 8, 4/f., World-Wide Industrial Centre, 43-47 Shan Mei street, Fotan, Shatin, N.T., Hong Kong.		
Manufacturer	Glory Horse Digitech Ltd. Dongguan		
Manufacturer Address	No. 11, Jin YuLing Road, Sang Yuan Industrial District, Dongcheng, Dongguan, Guangdong, China.		
Product Name	M18 Radio Charger		
Model Name	WSR 201VE/M18 Radio Charger		
Brand Name	Milwaukee		
HW Version	V1.0		
SW Version	V1.0		
Test Standards	47CFR 2.1091; KDB 447498 D01 General RF Exposure Guidance v05r02		
Issue Date	2015-06-17		
SAR Evaluation	Not Required		

Tested by :	Liu Jun
PROBLET B. MOTH	Liu Jun
Reviewed by :	Zhu zhan
Market Market St. St. St.	Zhu Zhan
Approved by :	Hao Yanjun
	Hao Yaniun

1. TECHNICAL INFORMATION

Note: the following data is based on the information by the applicant.

1.1. Identification of Applicant

Company Name:	GLORY HORSE INDUSTRIES LTD.	LAR		
Address:	workshop 8, 4/f., World-Wide Industrial Centre, 43-47 Shan Mei			
IN MORLE MO.	street, Fotan, Shatin, N.T., Hong Kong.	MORL		

1.2. Identification of Manufacturer

Company Name:	Glory Horse Digitech Ltd. Dongguan		
Address:	No. 11, Jin YuLing Road, Sang Yuan Industrial District, Dongcheng,		
E OFLAT MOFT	Dongguan, Guangdong, China.		

1.3. Equipment Under Test (EUT)

Model Name:	WSR 201VE/M18 Radio Charger		
Trade Name:	N/A		
Brand Name:	Milwaukee		
Hardware Version:	V1.0		
Software Version:	V1.0		
Frequency Bands:	Bluetooth;Bluetooth4.0		
Modulation Mode:	Bluetooth: GFSK/π/4-DQPSK/8-DPSK; Bluetooth 4.0: GFSK;		
Antenna type:	Fixed Internal Antenna		
Development Stage:	Identical prototype		

1.3.1. Photographs of the EUT

EUT front view

2. EUT rear view

1.3.2. Identification of all used EUT

The EUT identity consists of numerical and letter characters, the letter character indicates the test sample, and the following two numerical characters indicate the software version of the test sample.

EUT Identity	Hardware Version	Software Version	
1#	V1.0	V1.0	

1.4. Applied Reference Documents

Leading reference documents for testing:

No.	Identity	Document Title
1 OPLAS	47 CFR§2.1091	Radiofrequency Radiation Exposure Evaluation: mobile devices
2	KDB 447498 D01v05r02	General RF Exposure Guidance

2. DEVICE CATEGORY AND RF EXPOSURE LIMIT

Per user manual, this device is a Radio Charger. Based on 47CFR 2.1091, this device belongs to mobile device category with General Population/Uncontrolled exposure.

Mobile Devices:

47CFR 2.1091(b)

For purposes of this section, a mobile device is defined as a transmitting device designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimeters is normally maintained between the transmitter's radiating structure(s) and the body of the user or nearby persons. In this context, the term "fixed location" means that the device is physically secured at one location and is not able to be easily moved to another location. Transmitting devices designed to be used by consumers or workers that can be easily re-located, such as wireless devices associated with a personal computer, are considered to be mobile devices if they meet the 20 centimeter separation requirement.

GENERAL POPULATION / UNCONTROLLED EXPOSURE

The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Warning labels placed on low-power consumer devices such as cellular telephones are not considered sufficient to allow the device to be considered under the occupational/controlled category, and the general population/uncontrolled exposure limits apply to these devices.

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(i	B) Limits for General	Population/Uncontro	lled Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	-	-	f/1500	30
1500-100,000	-	-	1.0	30

f = frequency in MHz

^{* =} Plane-wave equivalent power density

3. MEASUREMENT OF CONDUCTED PEAK OUTPUT POWER

1. Bluetooth Average output power

Dond	Channel Frequency		Output Power(dBm)		
Band	Channel	(MHz)	GFSK	π/4-DQPSK	8-DPSK
ORL	410, 0 °	2402	4.73	1.97	2.15
BT	39	2441	6.36	3.86	4.33
MOLE	78	2480	5.68	3.13	3.49

			Output
Band	Channel	Channel Frequency (MHz)	Power(dBm)
			GFSK
The state of the s	0	2402	6.91
ВТ	19	2440	7.73
MO. AB	39	2480	7.05

4. RF EXPOSURE EVALUATION

Standalone transmission MPE evaluation

Bands	Frequency (MHz)	Antenna Gain	Conducted Average Power	Time-averaging EIRP (mW)	Power density (mW/cm²)	Limit for MPE (mW/cm²)
OR I	1	(dBi)	(dBm)	(IIIVV)	(IIIVV/CIII-)	(IIIVV/CIII-)
Bluetooth	2440	3	7.73	11.83	0.002	1.0

Note:

1. MPE calculation method

Power Density = EIRP/ 4π R²

Where: EIRP = P·G

P = Peak out power G = Antenna gain

R = Separation distance (20cm)

ANNEX C GENERAL INFORMATION

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.		
Department:	Morlab Laboratory		
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. China		
Responsible Test Lab Manager:	Mr. Su Feng		
Telephone:	+86 755 36698555		
Facsimile:	+86 755 36698525		

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang
	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

