

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057

 Telephone:
 +86 (0) 755 2601 2053

 Fax:
 +86 (0) 755 2671 0594

 Email:
 ee.shenzhen@sgs.com

Report No.: SZEM131200676701 Page: 1 of 89

FCC REPORT

Application No:	SZEM1312006767RF
Applicant:	Glory Horse Industries Ltd.
Manufacturer/Supplier:	Glory Horse Digitech Ltd. Dongguan
Product Name:	M18 Radio Charger
Model No.(EUT):	WSR201*US
Add Model No.:	M18 Radio Charger Milwaukee Cat.No.2792-20
FCC ID:	2ABL5WSR201-M18
Standards:	47 CFR Part 15, Subpart C (2012)
Date of Receipt:	2013-12-18
Date of Test:	2013-12-19 to 2014-01-07
Date of Issue:	2014-01-14
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEM131200676701 Page: 2 of 89

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 (2009)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2009)	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10 (2009)	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2009)	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2009)	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (b)	ANSI C63.10 (2009)	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2009)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10 (2009)	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2009)	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2009)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2009)	PASS
Band Edge (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2009)	PASS

Remark:

Model No.: WSR201*US, M18 Radio Charger Milwaukee Cat.No.2792-20

Only the model WSR201*US was tested, since the circuit design, PCB layout, electrical components used, internal wiring and functions were identical for the above models, with difference on model number.

Report No.: SZEM131200676701 Page: 3 of 89

3 Contents

Page

1 2
4
11

Report No.: SZEM131200676701 Page: 4 of 89

4 General Information

4.1 Client Information

Applicant:	Glory Horse Industries Ltd.
Address of Applicant:	Workshop 8, 4/F., World-Wide Industrial Centre, 43-47 Shan Mei Street, Fotan, Shatin, N.T., HongKong.
Manufacturer/Supplier:	Glory Horse Digitech Ltd. Dongguan

4.2 General Description of EUT

Product Name:	M18 Radio Charger
Model No.:	WSR201*US, M18 Radio Charger Milwaukee Cat.No.2792-20
EUT Function:	AM/FM Radio with Battery Charger, BT, USB Charger and Aux Input
Country of Origin:	China
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	V2.1+EDR
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Sample Type:	Fixed production
Test Power Grade:	255,33(manufacturer declare)
Test Software of EUT:	CSR Blue Suite (manufacturer declare)
Antenna Type :	Dedicated
Antenna Gain:	3dBi
AC cable:	180cm(shielded)
AUX cable:	40cm(shielded)
Power Supply:	DC 18V/AC 120V 60Hz 2.1A
Test Voltage:	AC 120V 60Hz

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM131200676701 Page: 5 of 89

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM131200676701 Page: 6 of 89

4.3 Test Environment

Operating Environment	Operating Environment:	
Temperature:	24.0 °C	
Humidity:	50 % RH	
Atmospheric Pressure:	1015mbar	

4.4 Description of Support Units

The EUT has been tested independent unit.

4.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594 No tests were sub-contracted.

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM131200676701 Page: 7 of 89

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• VCCI

The 3m Semi-anechoic chamber, Full-anechoic Chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2197, G-416, T-1153 and C-2383 respectively.

• FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers of SGS-CSTC Standards Technical Services Co., Ltd. have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1 & 4620C-2.

4.7 Deviation from Standards

None.

4.8 Abnormalities from Standard Conditions

None.

4.9 Other Information Requested by the Customer

None.

Report No.: SZEM131200676701 Page: 8 of 89

4.10 Equipment List

	Conducted Emission				
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	2014-06-10
2	LISN	Rohde & Schwarz	ENV216	SEL0152	2014-10-24
3	LISN	ETS-LINDGREN	3816/2	SEL0021	2014-05-16
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	SEL0162	2014-11-10
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	SEL0163	2014-11-10
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	SEL0164	2014-11-10
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2014-05-16
8	Coaxial Cable	SGS	N/A	SEL0025	2014-05-29
9	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2014-10-24
10	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2014-10-24
11	Barometer	Chang Chun	DYM3	SEL0088	2014-05-24

Report No.: SZEM131200676701 Page: 9 of 89

	RE in Chamber				
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2014-06-10
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEL0023	2014-05-16
3	EMI Test software	AUDIX	E3	SEL0050	N/A
4	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2014-10-24
5	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2014-10-24
6	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2014-10-24
7	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2014-05-16
8	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2014-10-24
9	Coaxial cable	SGS	N/A	SEL0027	2014-05-29
10	Coaxial cable	SGS	N/A	SEL0189	2014-05-29
11	Coaxial cable	SGS	N/A	SEL0121	2014-05-29
12	Coaxial cable	SGS	N/A	SEL0178	2014-05-29
13	Band filter	Amindeon	82346	SEL0094	2014-05-16
14	Barometer	Chang Chun	DYM3	SEL0088	2014-05-24
15	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2014-10-24
16	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2014-10-24
17	Signal Generator (10M-27GHz)	Rohde & Schwarz	SMR27	SEL0067	2014-05-16
18	Signal Generator	Rohde & Schwarz	SMY01	SEL0155	2014-10-24
19	Loop Antenna	Beijing Daze	ZN30401	SEL0203	2014-06-04

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM131200676701 Page: 10 of 89

	RF connected test				
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2014-10-24
2	Humidity/ Temperature Indicator	HYGRO	ZJ1-2B	SEL0033	2014-10-24
3	Spectrum Analyzer	Rohde & Schwarz	FSP	SEL0154	2014-10-24
4	Coaxial cable	SGS	N/A	SEL0178	2014-05-29
5	Coaxial cable	SGS	N/A	SEL0179	2014-05-29
6	Barometer	ChangChun	DYM3	SEL0088	2014-05-24
7	Signal Generator	Rohde & Schwarz	SML03	SEL0068	2014-05-16
8	Band filter	amideon	82346	SEL0094	2014-05-16
9	POWER METER	R & S	NRVS	SEL0144	2014-10-24
10	Attenuator	Beijin feihang taida	TST-2-6dB	SEL0205	2014-05-16
11	Power Divider(splitter)	Agilent Technologies	11636B	SEL0130	2014-10-24

Note: The calibration interval is one year, all the instruments are valid.

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

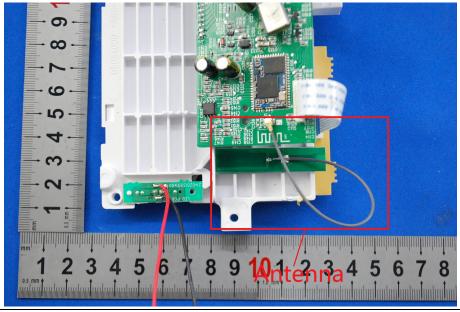
Report No.: SZEM131200676701 Page: 11 of 89

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
-----------------------	--

15.203 requirement:

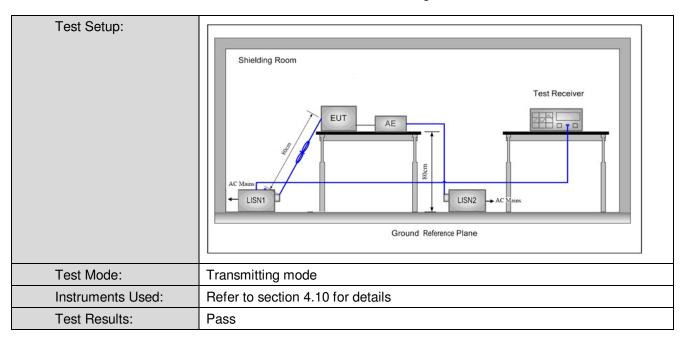

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3dBi.

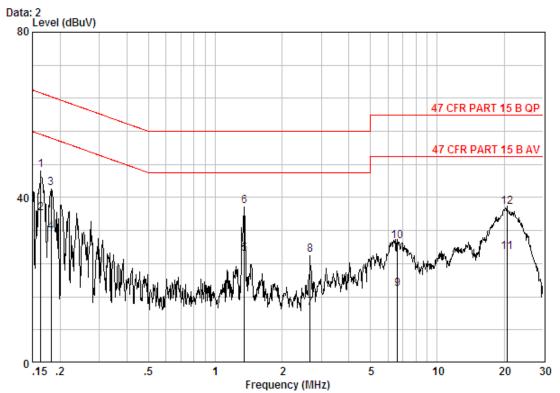

Report No.: SZEM131200676701 Page: 12 of 89

Test Requirement:	47 CFR Part 15C Section 15.207			
Test Method:	ANSI C63.10: 2009			
Test Frequency Range	150kHz to 30MHz			
Limit:		Limit (c	BuV)	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithr	n of the frequency.		_
Test Procedure:	 room. 2) The EUT was connected to Impedance Stabilization N impedance. The power calconnected to a second LIS reference plane in the same measured. A multiple sock power cables to a single L exceeded. 3) The tabletop EUT was placed on the horizontal g 4) The test was performed with of the EUT shall be 0.4 m vertical ground reference plane. The LISN unit under test and bonded mounted on top of the ground state of the ground the state of the ground the state of the ground the state of the ground test and bonded mounted on top of the ground the ground the state of the ground the state of the ground test and bonded mounted on top of the ground test points the EUT and associated end to the state of the state of the state of the ground test points the EUT and associated end the state of the ground test points the EUT and associated end the state of the state o	 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was conducted in a shi room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50µH + 5Ω I impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was no exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above for ground reference plane. And for floor-standing arrangement, the EUT placed on the horizontal ground reference plane. The reference plane. The LISN 1 was placed 0.8 m from the boundary of unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units the EUT and associated equipment was at least 0.8 m from the LISN 5) In order to find the maximum emission, the relative positions of 		inear t he was he the 2.

5.2 Conducted Emissions

Report No.: SZEM131200676701 Page: 13 of 89

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

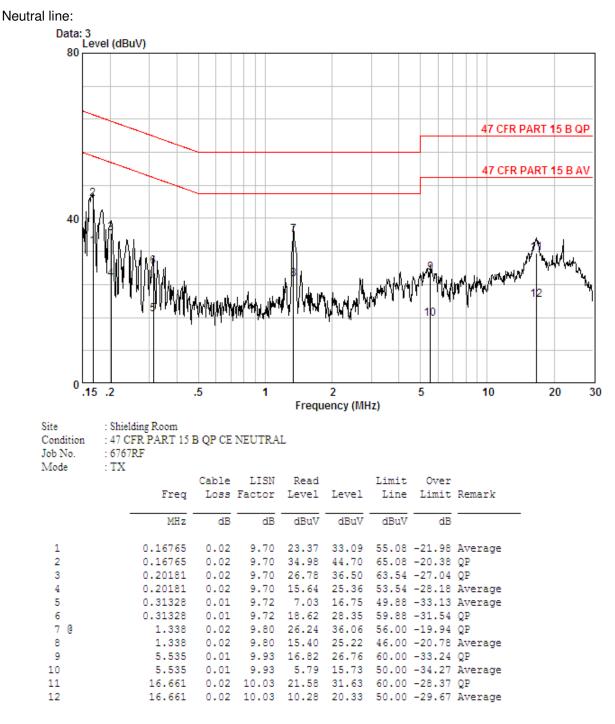

Report No.: SZEM131200676701 Page: 14 of 89

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:



Site : Shielding Room Condition : 47 CFR PART 15 B QP CE LINE Job No. : 6767RF Mode : TX

VIOU		Freq	Cable Loss dB	LISN Factor dB	Read Level dBuV		Limit Line dBuV	Over Limit 	Remark
1	ß	0.16327	0.02	9.70	37.02	46.74	65.30	-18.56	OP
2	-	0.16327	0.02						Average
3	-	0.18249	0.02	9.70		42.28			-
4		0.18249	0.02	9.70	21.99	31.71	54.37	-22.66	Average
5	G	1.352	0.02	9.80	16.50	26.32	46.00	-19.68	Average
6	0	1.352	0.02	9.80	28.12	37.94	56.00	-18.06	QP
7		2.678	0.02	9.83	3.35	13.21	46.00	-32.79	Average
8		2.678	0.02	9.83	16.28	26.13	56.00	-29.87	QP
9		6.627	0.01	9.90	7.87	17.78	50.00	-32.22	Average
10		6.627	0.01	9.90	19.62	29.53	60.00	-30.47	QP
11		20.594	0.02	10.10	16.74	26.86	50.00	-23.14	Average
12		20.594	0.02	10.10	27.58	37.70	60.00	-22.30	QP

Report No.: SZEM131200676701 Page: 15 of 89

Notes:

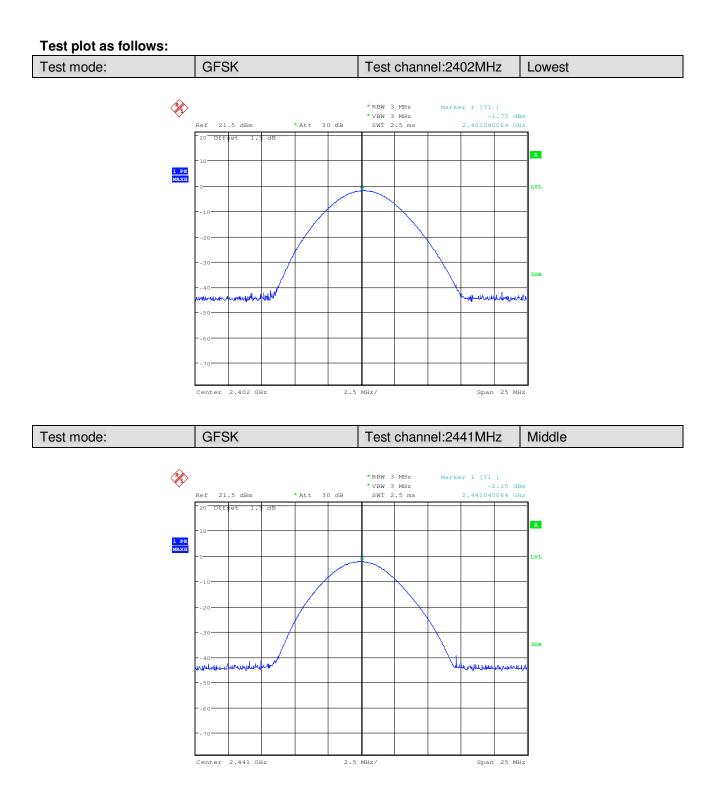
1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM131200676701 Page: 16 of 89

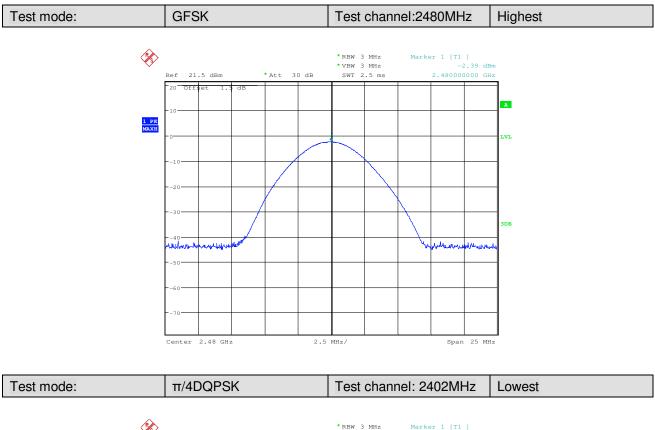
5.3 Conducted Peak Output Power

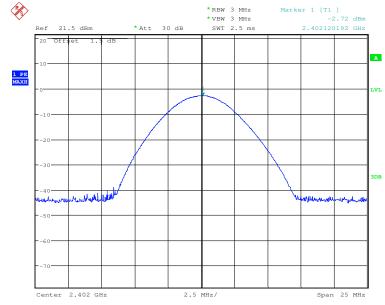
Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)		
Test Method:	ANSI C63.10:2009		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.		
Limit:	20dBm		
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type		
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worse case of GFSK modulation type, 2-DH1 of data type is worse case of π /4DQPSK modulation type, 3-DH1 of data type is worse case of 8DPSK modulation type.		
Instruments Used:	Refer to section 4.10 for details		
Test Results:	Pass		

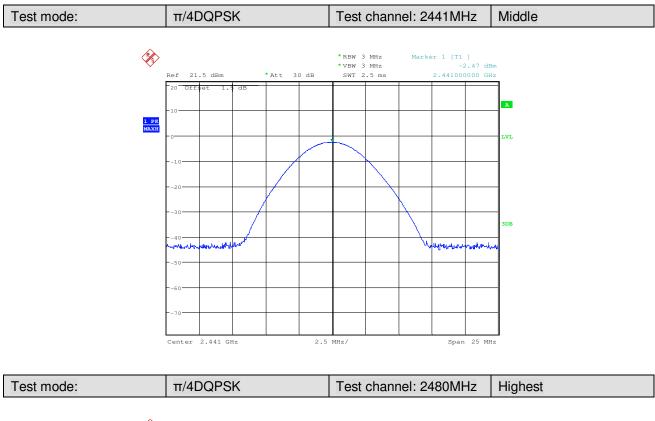

Report No.: SZEM131200676701 Page: 17 of 89

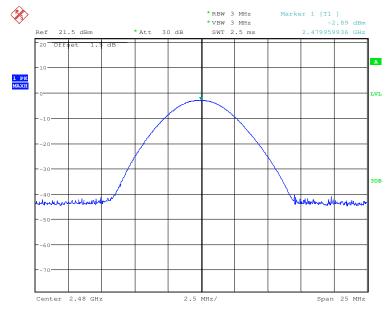
Measurement Data					
GFSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	-1.75	20.00	Pass		
Middle	-2.15	20.00	Pass		
Highest	-2.39	20.00	Pass		
	π/4DQPSK m	ode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	-2.72	20.00	Pass		
Middle	-2.47	20.00	Pass		
Highest	-2.89	20.00	Pass		
	8DPSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	-2.33	20.00	Pass		
Middle	-2.31	20.00	Pass		
Highest	-2.75	20.00	Pass		

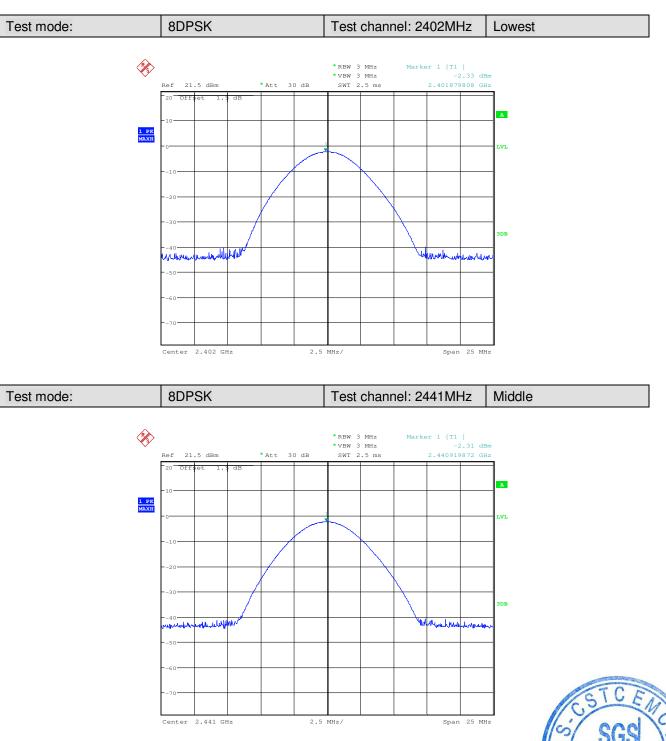
Measurement Data

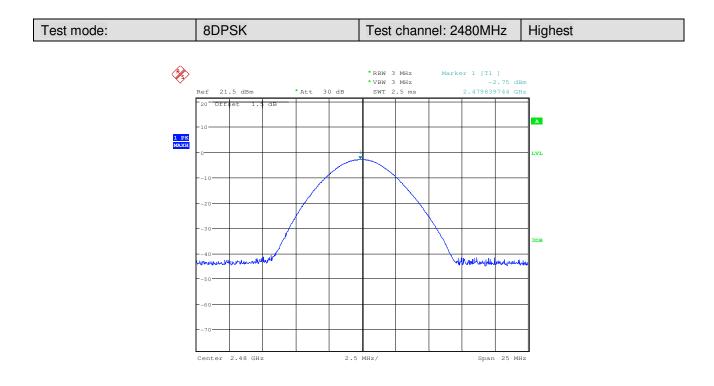



Report No.: SZEM131200676701 Page: 18 of 89


Report No.: SZEM131200676701 Page: 19 of 89




Report No.: SZEM131200676701 Page: 20 of 89

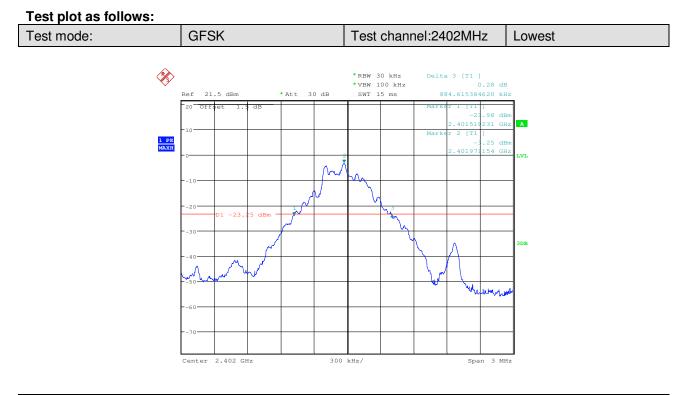


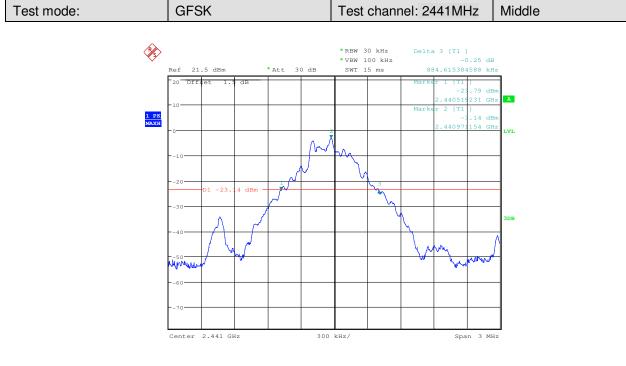
Report No.: SZEM131200676701 Page: 21 of 89

Report No.: SZEM131200676701 Page: 22 of 89

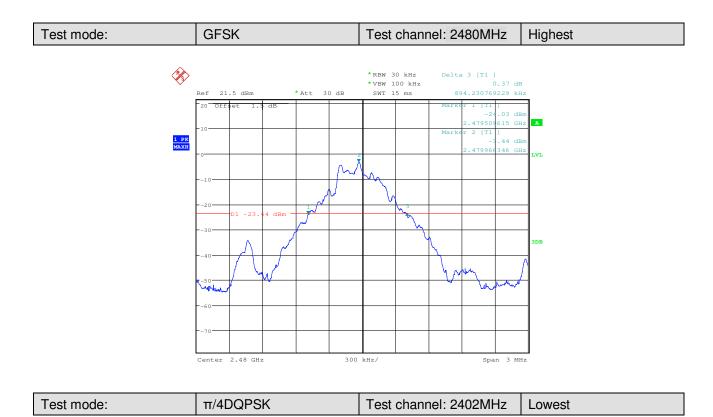
Report No.: SZEM131200676701 Page: 23 of 89

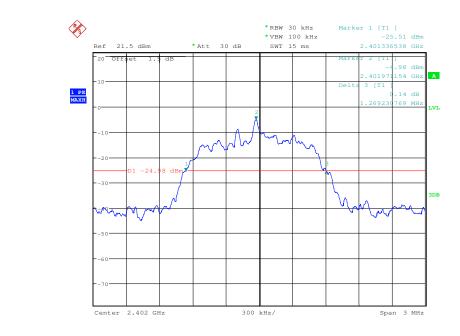
5.4 20dB Occupy Bandwidth

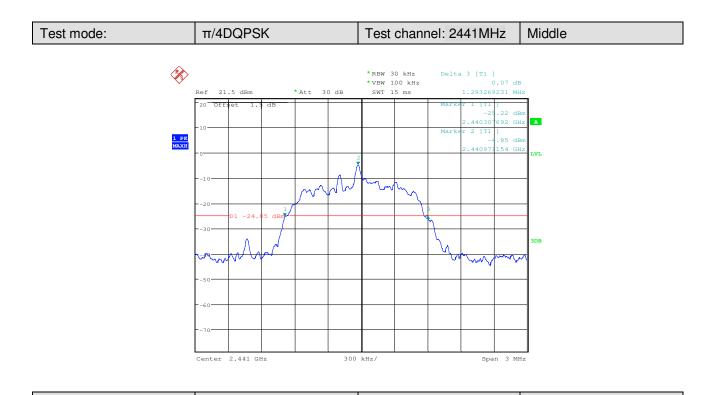

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2009		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Limit:	NA		
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type		
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worse case of GFSK modulation type, 2-DH1 of data type is worse case of π /4DQPSK modulation type, 3-DH1 of data type is worse case of 8DPSK modulation type		
Instruments Used:	Refer to section 4.10 for details		
Test Results:	Pass		

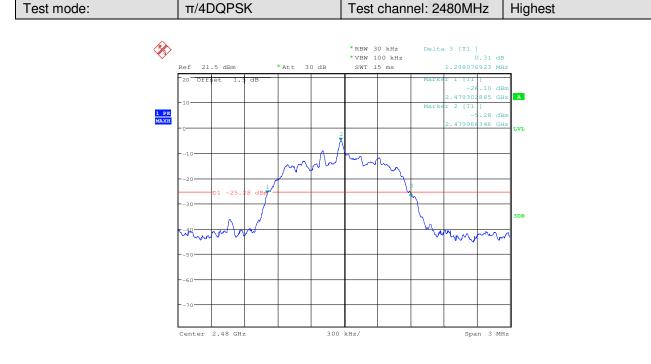

Measurement Data

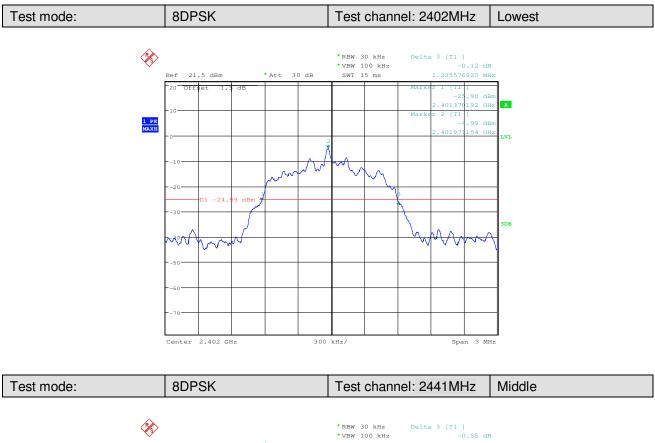
Test shannel	20dB Occupy Bandwidth (kHz)		
Test channel	GFSK	π/4DQPSK	8DPSK
Lowest	884.615384620	1269.230769	1235.576923
Middle	884.615384588	1293.269231	1230.769231
Highest	894.230769229	1298.076923	1235.576923

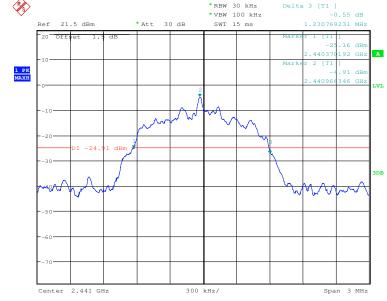

Report No.: SZEM131200676701 Page: 24 of 89

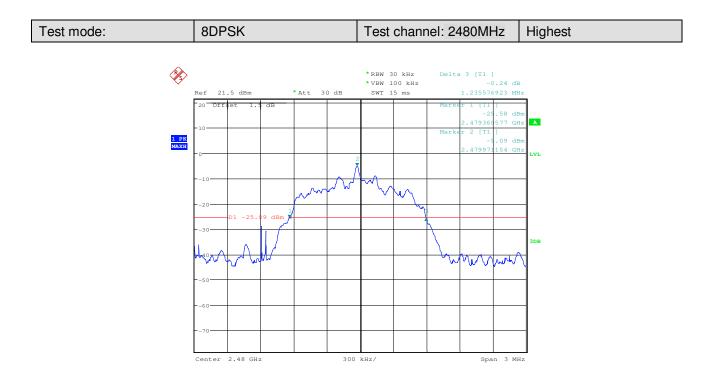



Report No.: SZEM131200676701 Page: 25 of 89




Report No.: SZEM131200676701 Page: 26 of 89




Report No.: SZEM131200676701 Page: 27 of 89

Report No.: SZEM131200676701 Page: 28 of 89

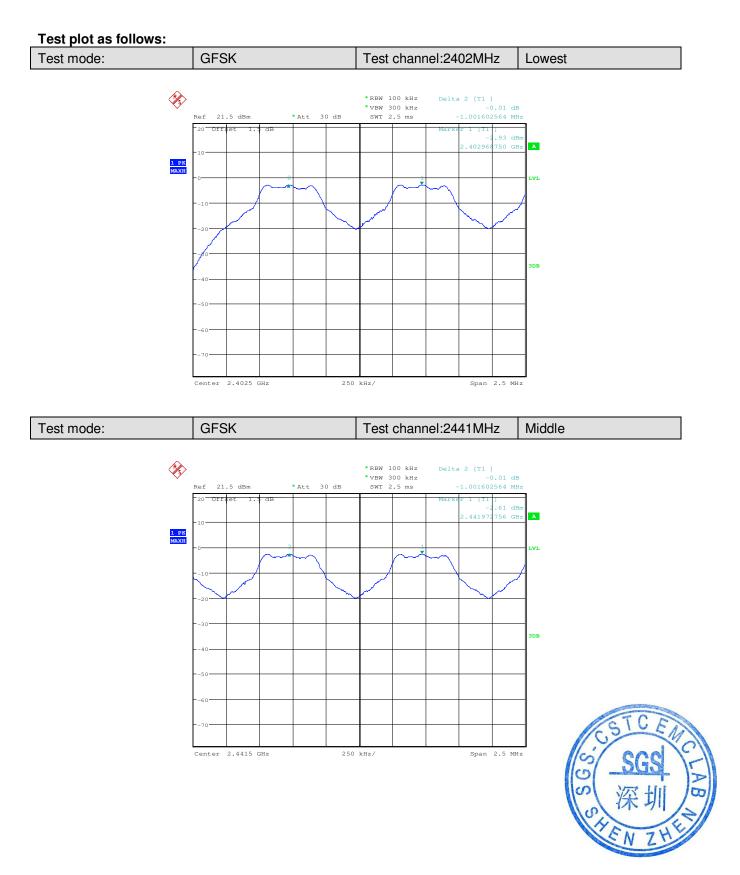
Report No.: SZEM131200676701 Page: 29 of 89

5.5 Carrier Frequencies Separation

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2009		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
	Ground Reference Plane		
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type		
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worse case of GFSK modulation type, 2-DH1 of data type is worse case of π /4DQPSK modulation type, 3-DH1 of data type is worse case of 8DPSK modulation type.		
Instruments Used:	Refer to section 4.10 for details		
Test Results:	Pass		

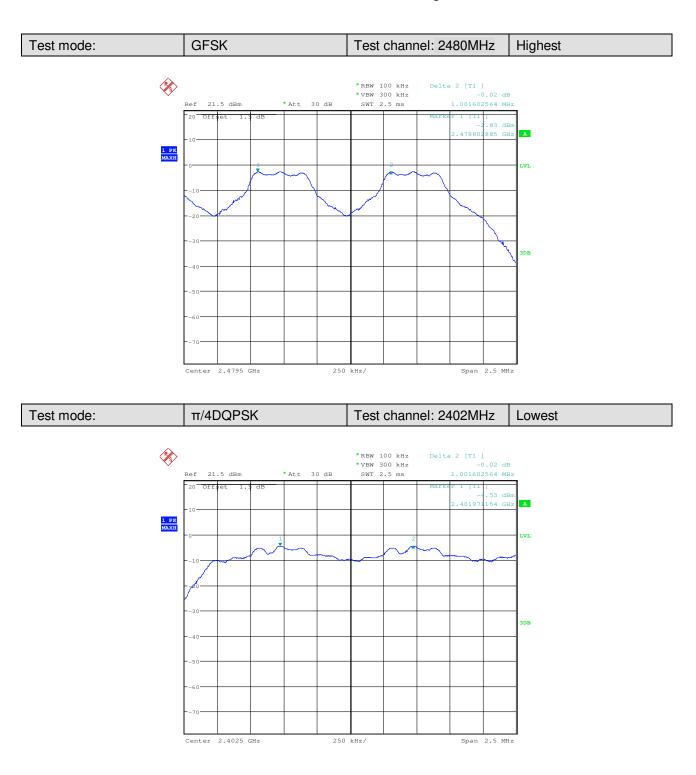
Report No.: SZEM131200676701 Page: 30 of 89

Measurement Data

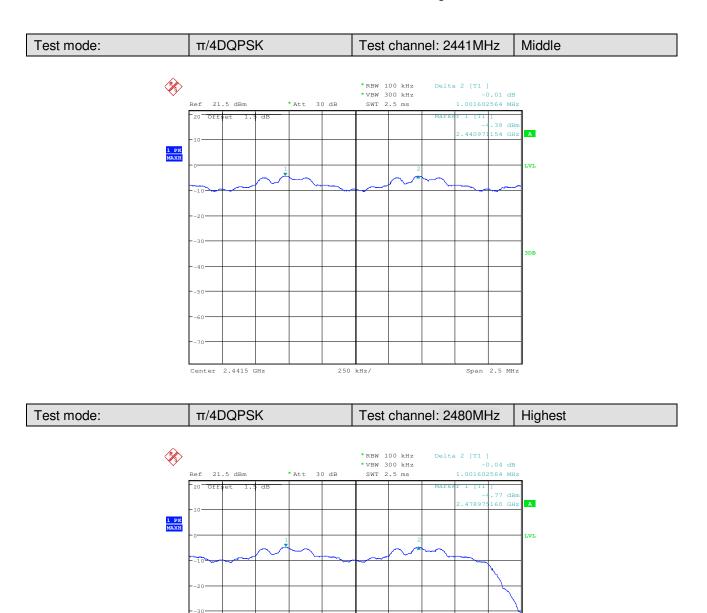

GFSK mode					
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result		
Lowest	1002	≥865	Pass		
Middle	1002	≥865	Pass		
Highest	1002	≥865	Pass		
	π/4DQPSK m	node			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result		
Lowest	1002	≥865	Pass		
Middle	1002	≥865	Pass		
Highest	1002	≥865	Pass		
	8DPSK mode				
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result		
Lowest	1002	≥865	Pass		
Middle	1002	≥865	Pass		
Highest	1002	≥865	Pass		

Note: According to section 5.4,

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	894.230769229	596
π/4DQPSK	1298.076923	865
8DPSK	1235.576923	824



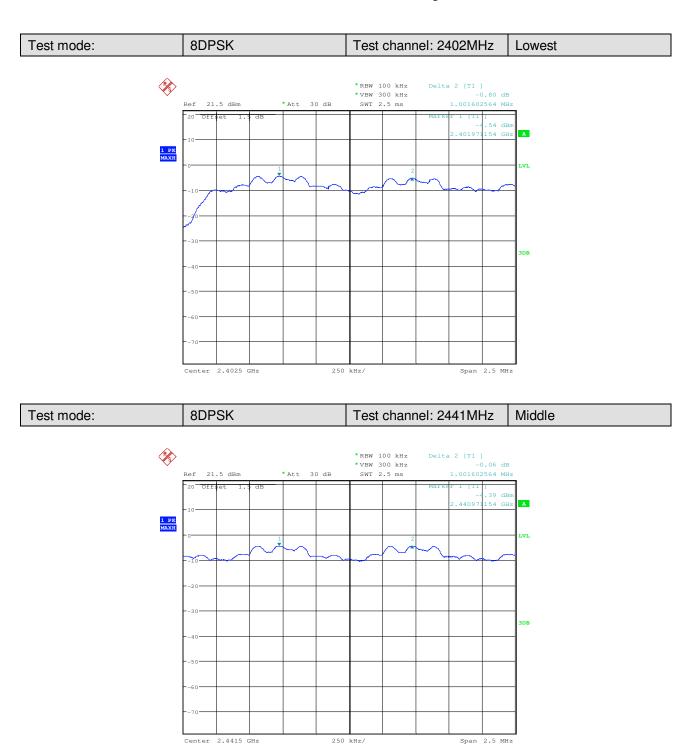
Report No.: SZEM131200676701 Page: 31 of 89



Report No.: SZEM131200676701 Page: 32 of 89

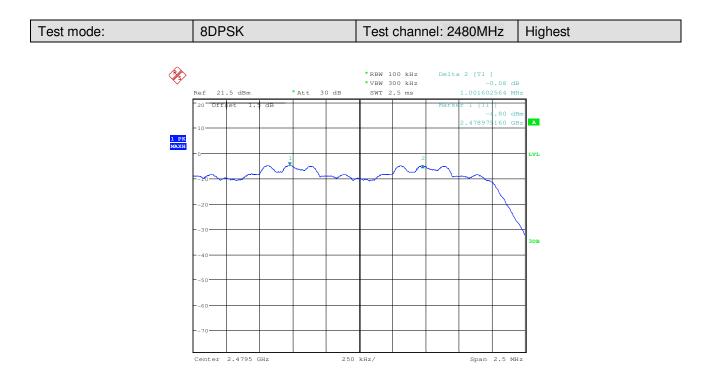
Report No.: SZEM131200676701 Page: 33 of 89

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."


250 kHz/

Span 2.5 MHz

Center 2.4795 GHz



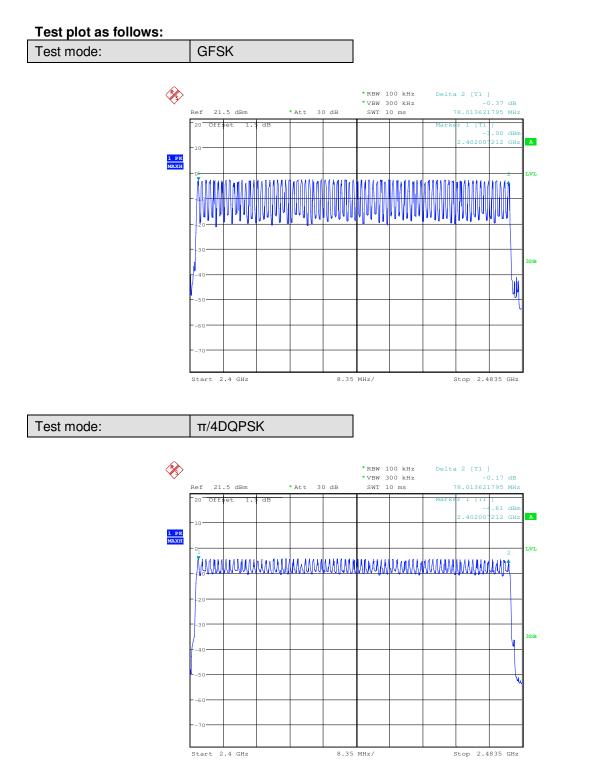
Report No.: SZEM131200676701 Page: 34 of 89

Report No.: SZEM131200676701 Page: 35 of 89

Report No.: SZEM131200676701 Page: 36 of 89

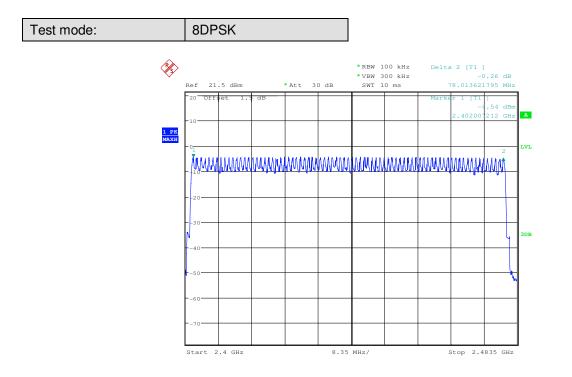
5.6 Hopping Channel Number

Test Requirement:	47 CFR Part 15C Section 15.247 (b)	
Test Method:	ANSI C63.10:2009	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Limit:	At least 15 channels	
Test Mode:	Hopping transmitting with all kind of modulation	
Instruments Used:	Refer to section 4.10 for details	
Test Results:	Pass	


Measurement Data

Mode	Hopping channel numbers	Limit
GFSK	79	≥15
π/4DQPSK	79	≥15
8DPSK	79	≥15

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."



Report No.: SZEM131200676701 Page: 37 of 89

Report No.: SZEM131200676701 Page: 38 of 89

Report No.: SZEM131200676701 Page: 39 of 89

5.7 Dwell Time

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)			
Test Method:	ANSI C63.10:2009			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table			
	Ground Reference Plane			
Instruments Used:	Refer to section 4.10 for details			
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.			
Limit:	0.4 Second			
Test Results:	Pass			

Measurement Data

Mode	Packet	Dwell time (second)	Limit (second)	
GFSK	DH1	0.16160	0.4	
	DH3	0.28272	0.4	
	DH5	0.32267	0.4	
π/4DQPSK	2-DH1	0.16544	0.4	
	2-DH3	0.28400	0.4	
	2-DH5	0.19616	0.4	
8DPSK	3-DH1	0.16544	0.4	
	3-DH3	0.28400	0.4	
	3-DH5	0.32437	0.4	

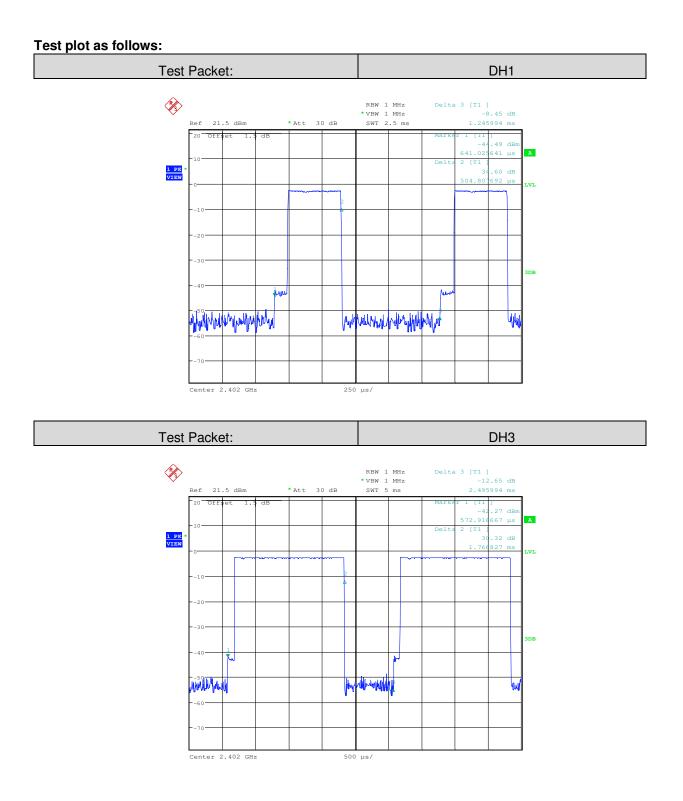
1

Remark:

Test Result:

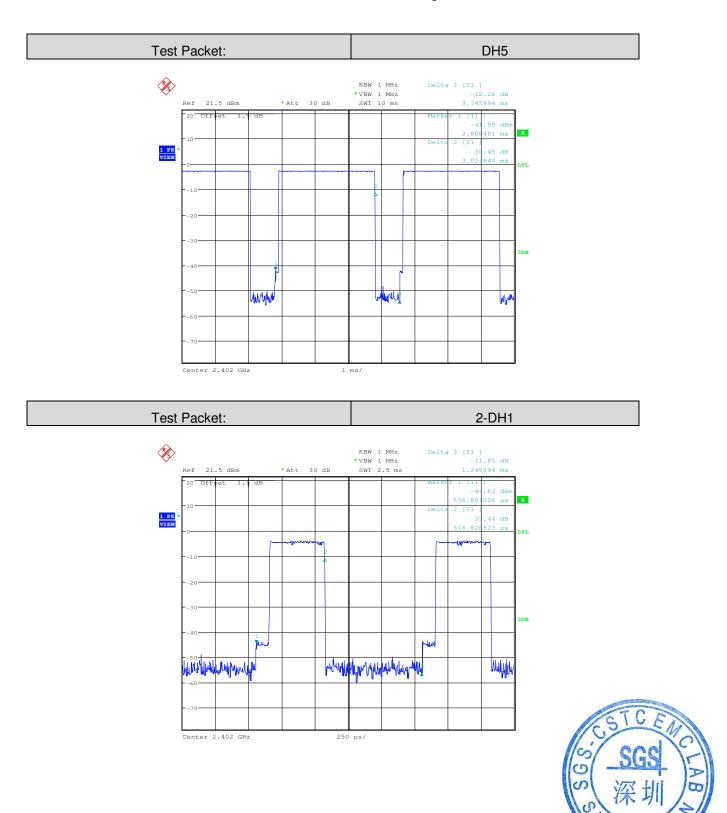
The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

The lowest channel (2402MHz), middle channel (2441MHz), highest channel (2480MHz) as below

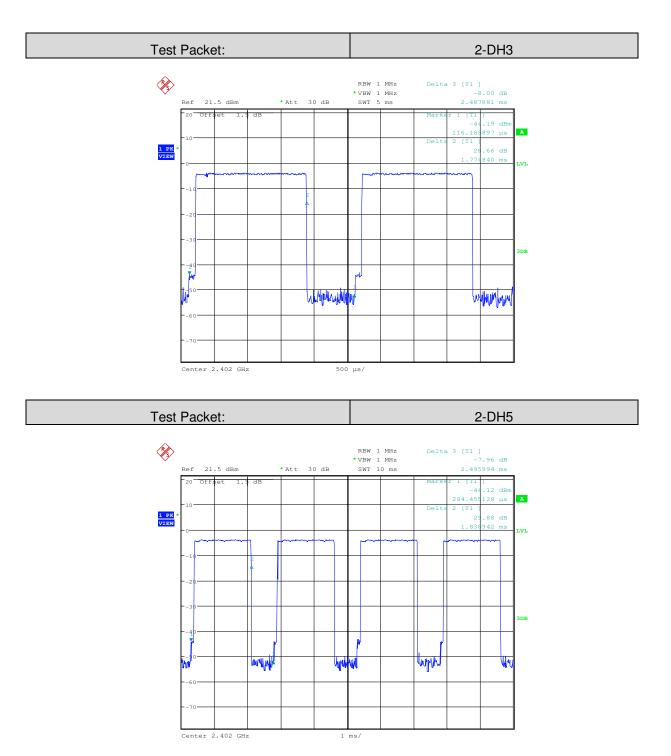

DH1 time slot=0.505(ms)*(1600/ (2*79))*31.6=161.60ms

DH3 time slot=1.767(ms)*(1600/ (4*79))*31.6=282.72ms

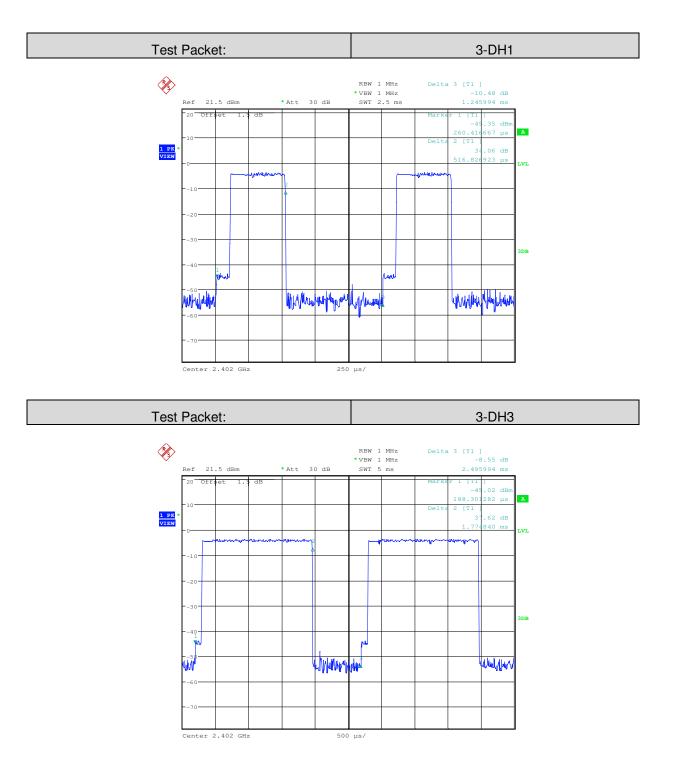
DH5 time slot=3.025(ms)*(1600/ (6*79))*31.6=322.67ms



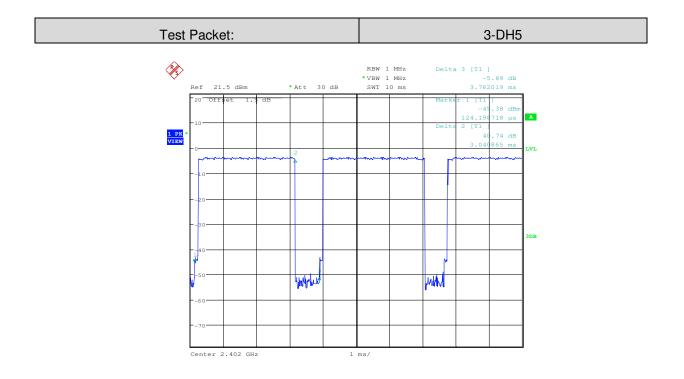
Report No.: SZEM131200676701 Page: 40 of 89



Report No.: SZEM131200676701 Page: 41 of 89



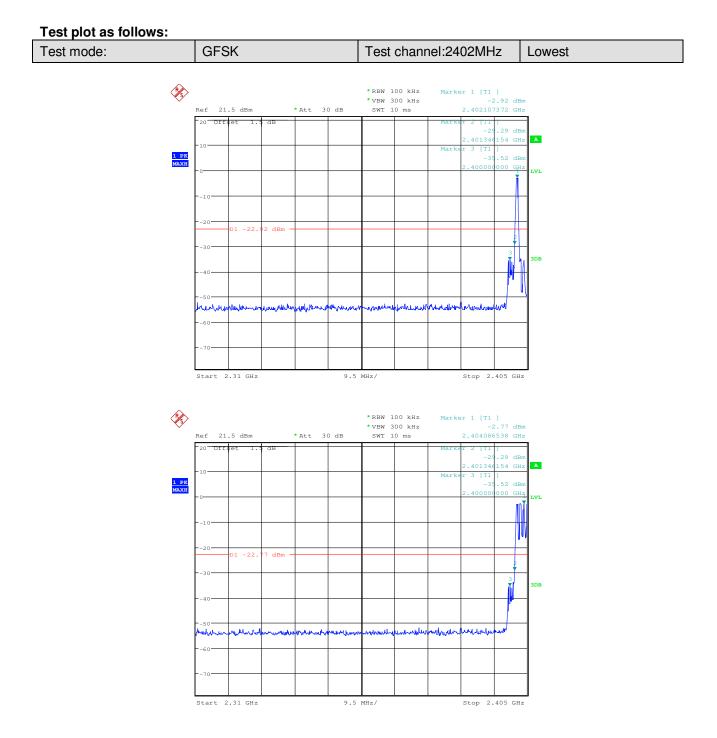
Report No.: SZEM131200676701 Page: 42 of 89



Report No.: SZEM131200676701 Page: 43 of 89

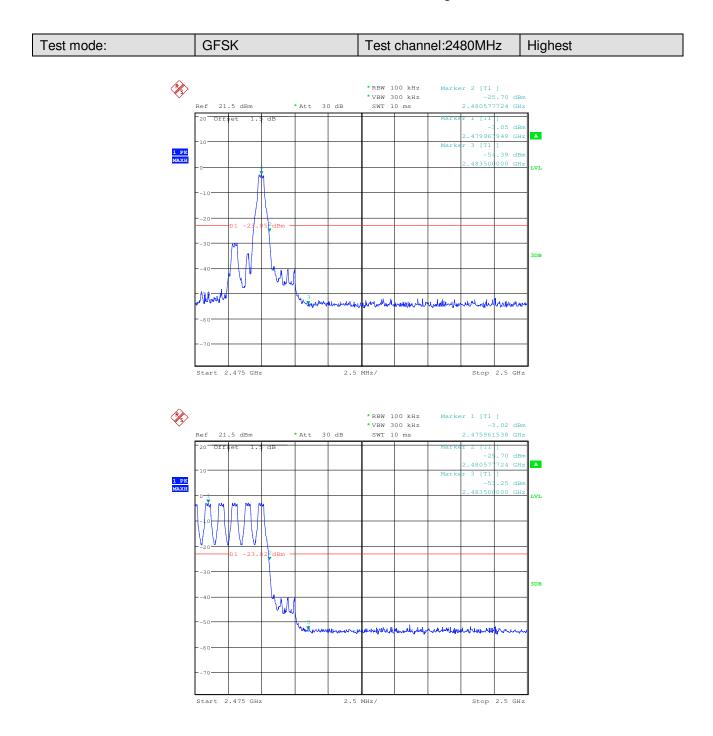
Report No.: SZEM131200676701 Page: 44 of 89

Report No.: SZEM131200676701 Page: 45 of 89

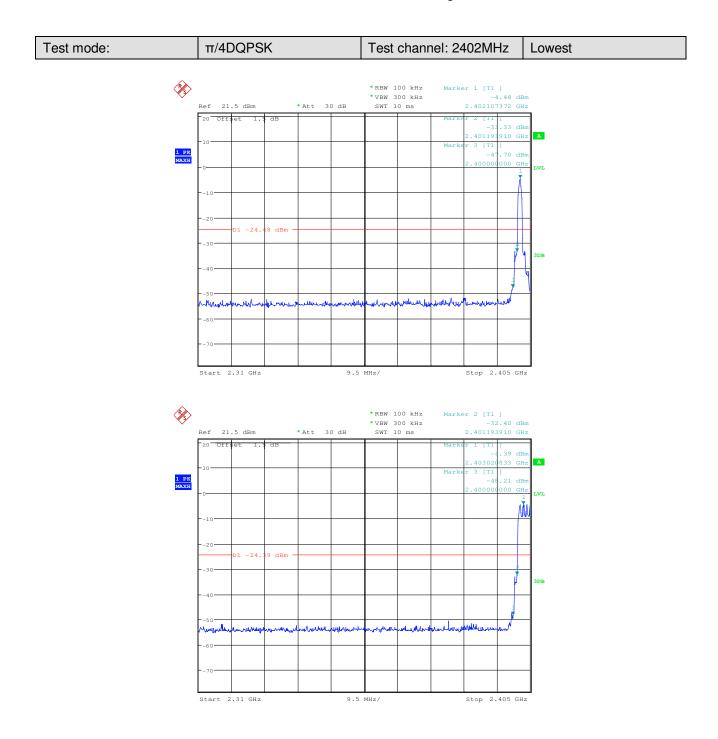

5.8 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)			
Test Method:	ANSI C63.10:2009			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
	Remark:			
	Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type			
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worse case of GFSK modulation type, 2-DH1 of data type is worse case of $\pi/4DQPSK$ modulation type, 3-DH1 of data type is worse case of 8DPSK modulation type.			
Instruments Used:	Refer to section 4.10 for details			
Test Results:	Pass			

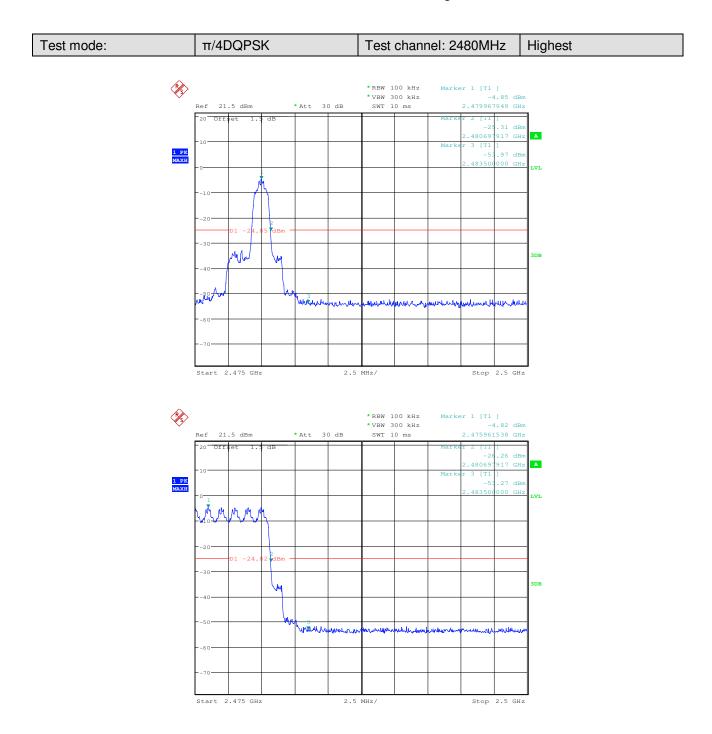
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."



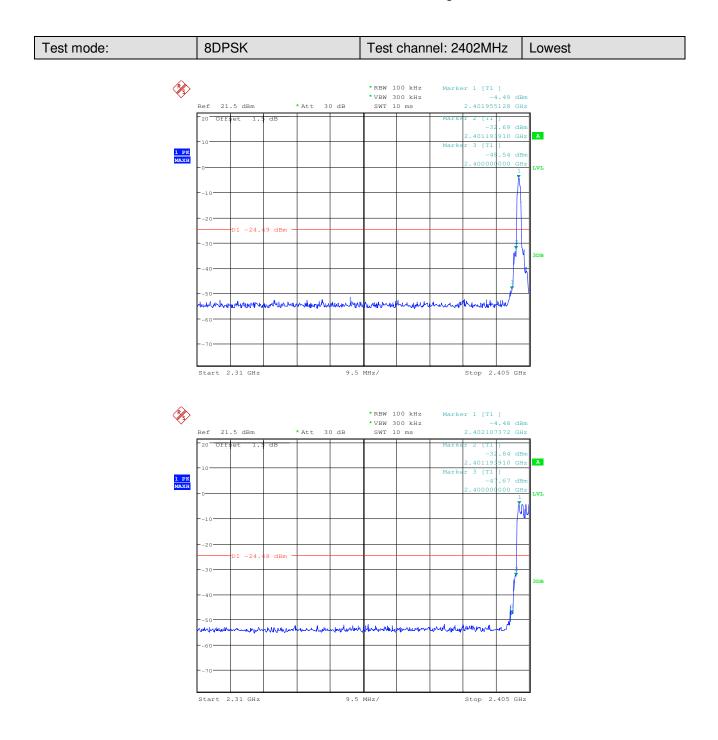
Report No.: SZEM131200676701 Page: 46 of 89



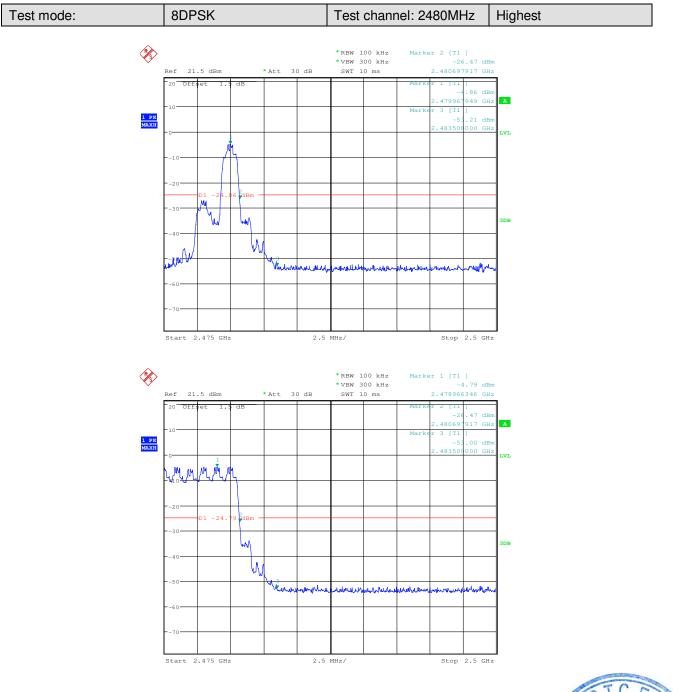
Report No.: SZEM131200676701 Page: 47 of 89



Report No.: SZEM131200676701 Page: 48 of 89

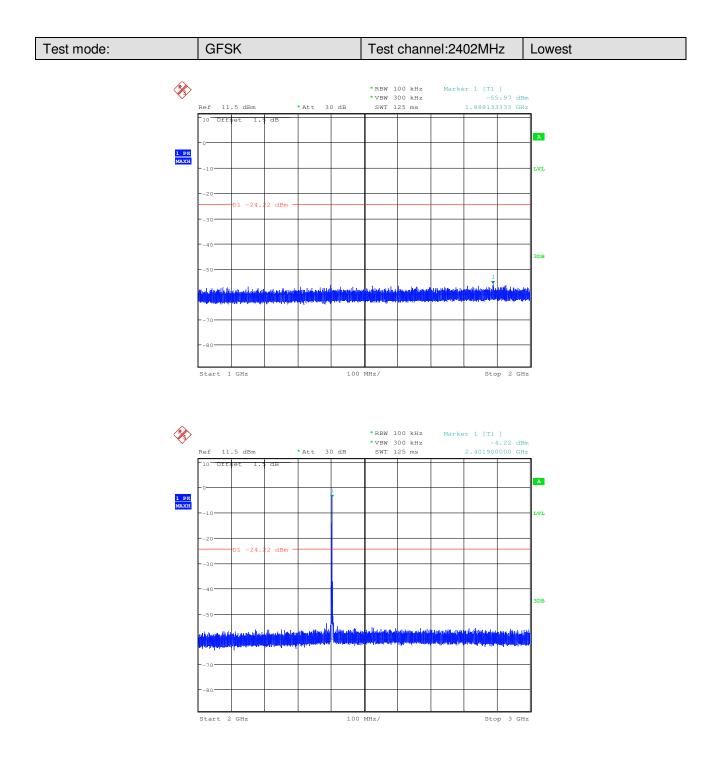


Report No.: SZEM131200676701 Page: 49 of 89



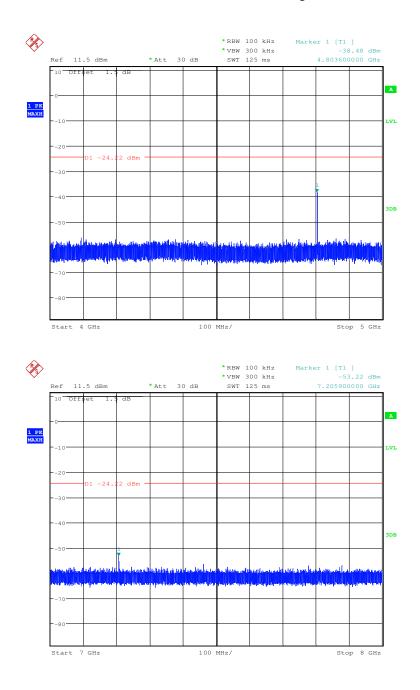
Report No.: SZEM131200676701 Page: 50 of 89

Report No.: SZEM131200676701 Page: 51 of 89

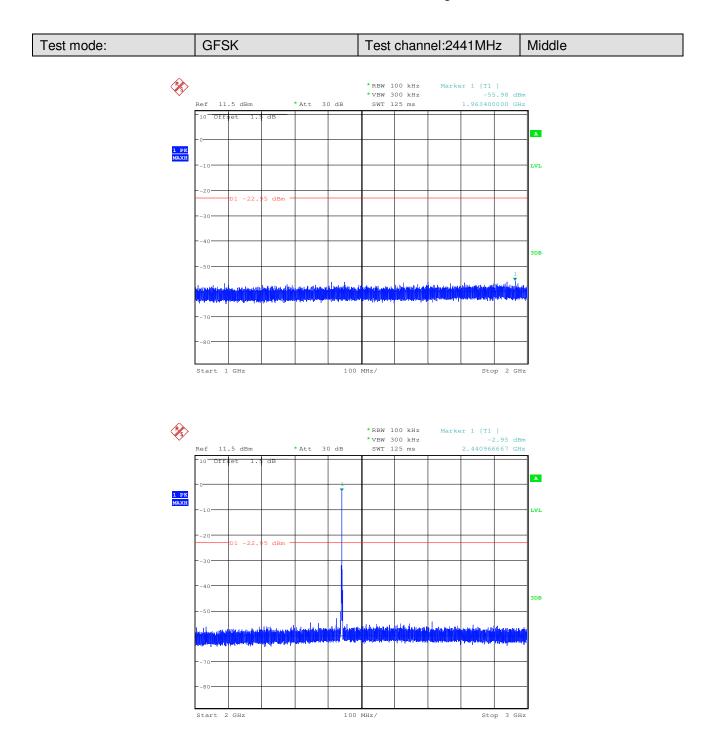

Report No.: SZEM131200676701 Page: 52 of 89

5.9 Spurious RF Conducted Emissions

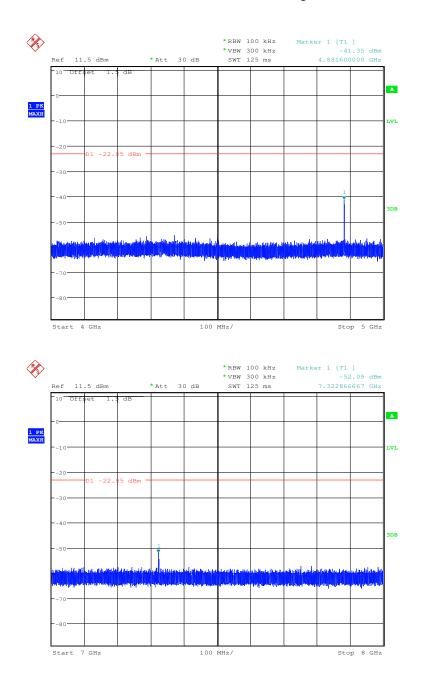
Test Requirement:	47 CFR Part 15C Section 15.247 (d)					
Test Method:	ANSI C63.10:2009					
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark:					
	Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type					
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worse case of GFSK modulation type, 2-DH1 of data type is worse case of π /4DQPSK modulation type, 3-DH1 of data type is worse case of 8DPSK modulation type.					
Instruments Used:	Refer to section 4.10 for details					
Test Results:	Pass					



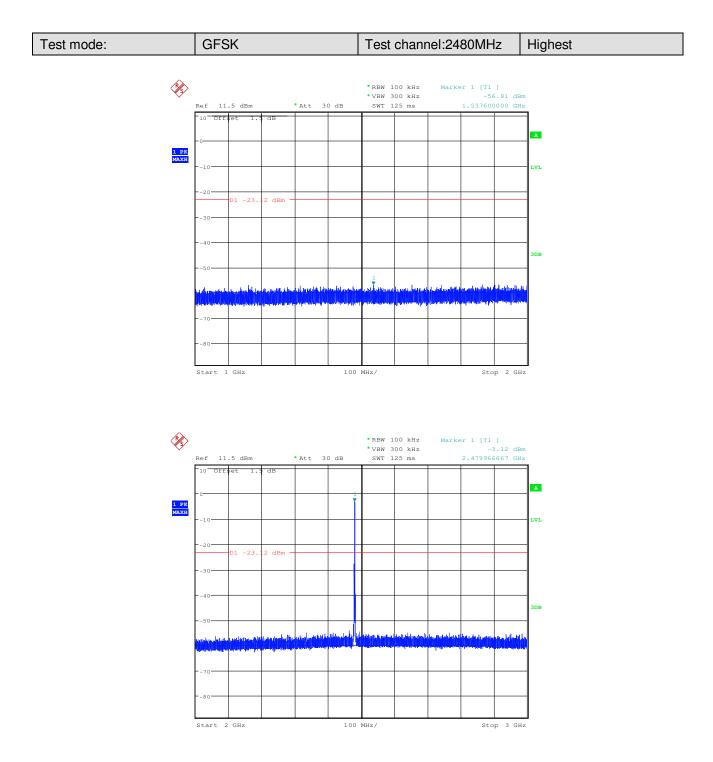
Report No.: SZEM131200676701 Page: 53 of 89



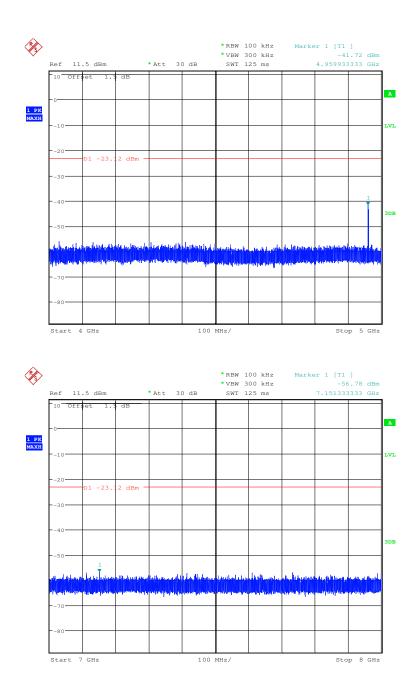
Report No.: SZEM131200676701 Page: 54 of 89



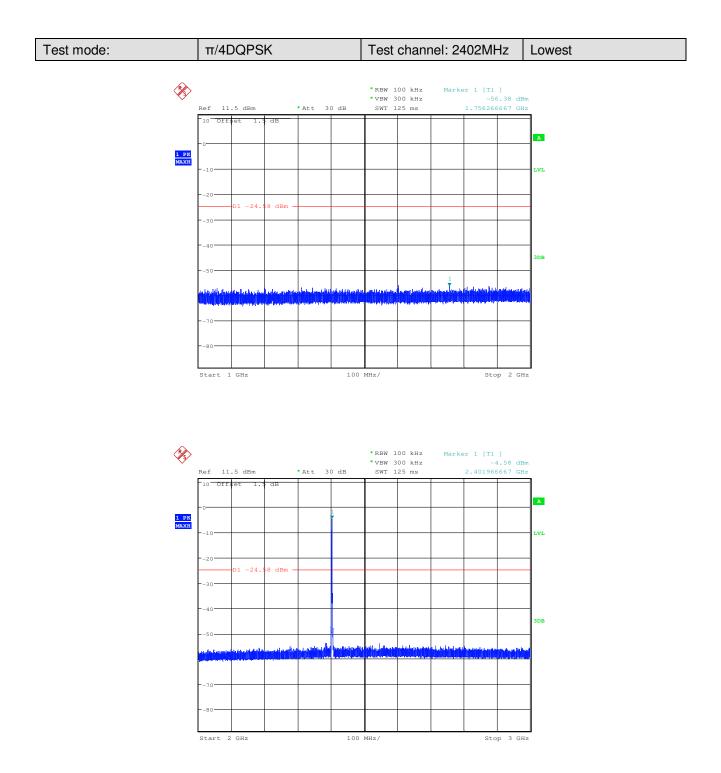
Report No.: SZEM131200676701 Page: 55 of 89



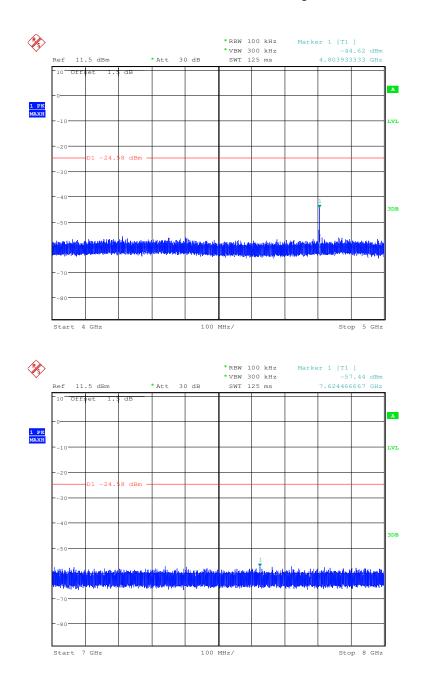
Report No.: SZEM131200676701 Page: 56 of 89



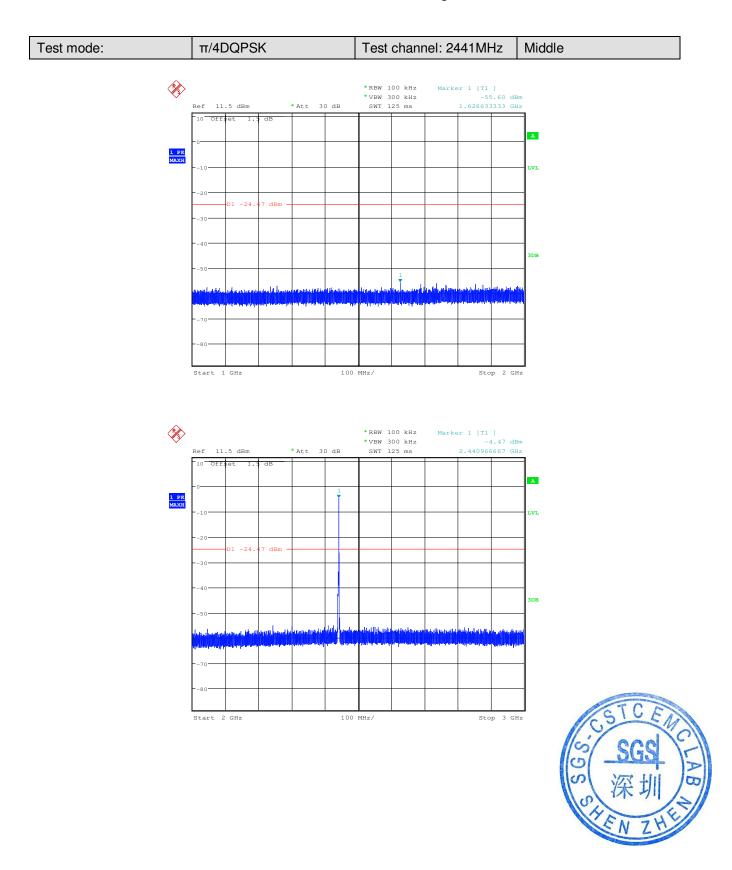
Report No.: SZEM131200676701 Page: 57 of 89



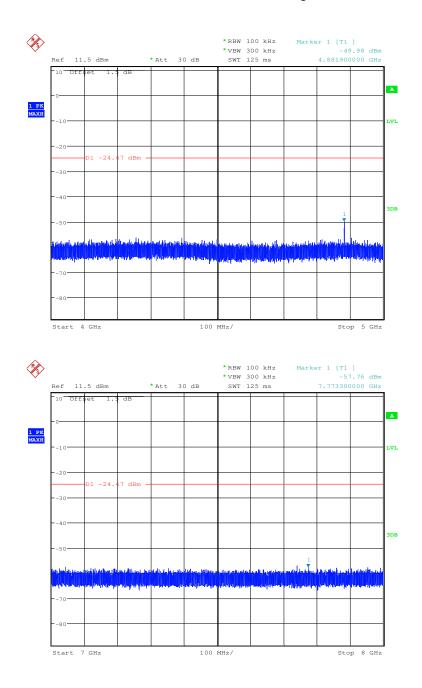
Report No.: SZEM131200676701 Page: 58 of 89



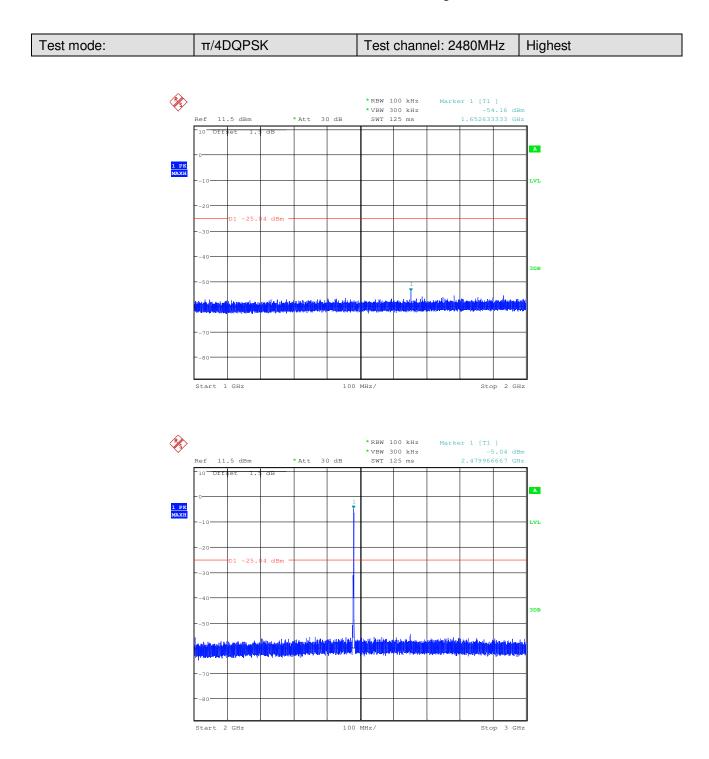
Report No.: SZEM131200676701 Page: 59 of 89



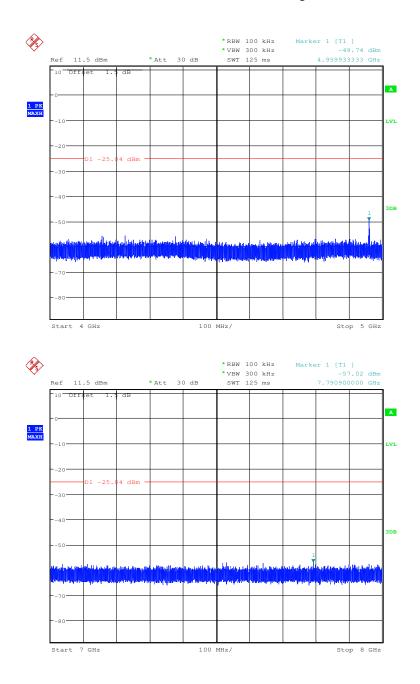
Report No.: SZEM131200676701 Page: 60 of 89



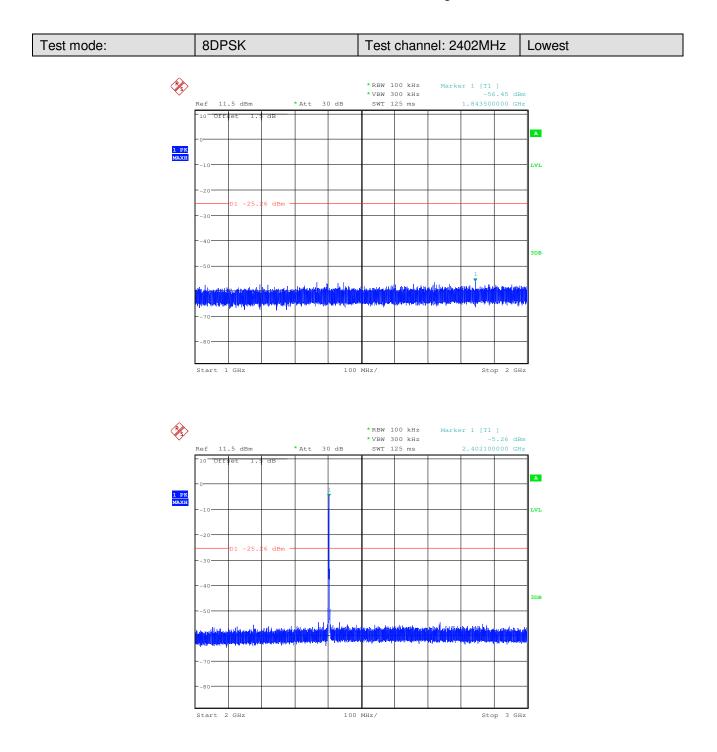
Report No.: SZEM131200676701 Page: 61 of 89



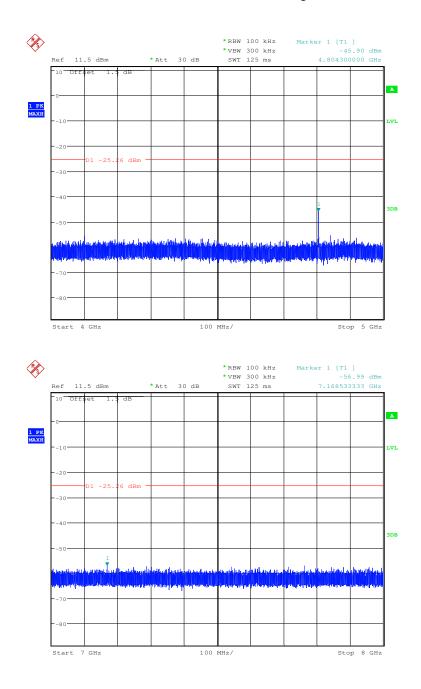
Report No.: SZEM131200676701 Page: 62 of 89



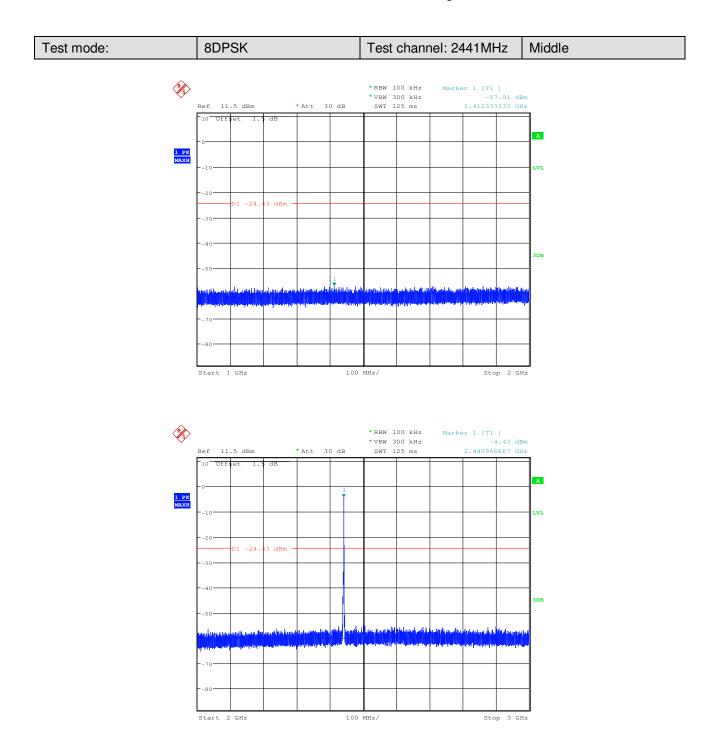
Report No.: SZEM131200676701 Page: 63 of 89



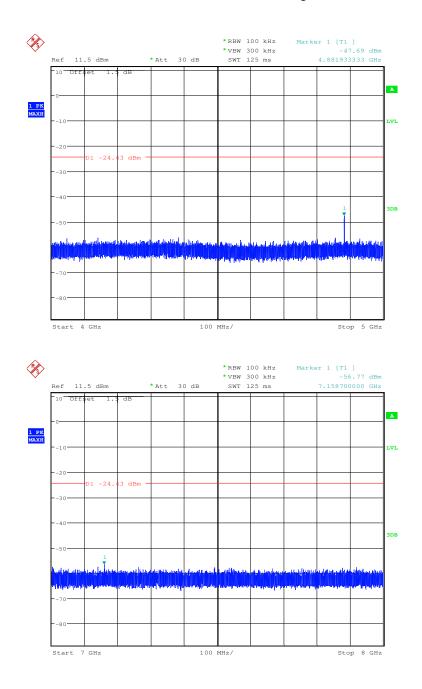
Report No.: SZEM131200676701 Page: 64 of 89



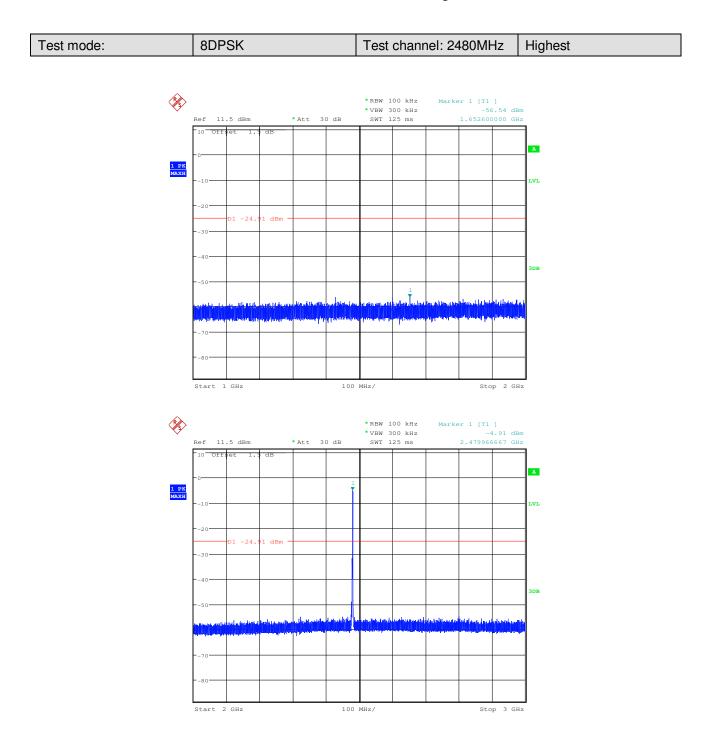
Report No.: SZEM131200676701 Page: 65 of 89



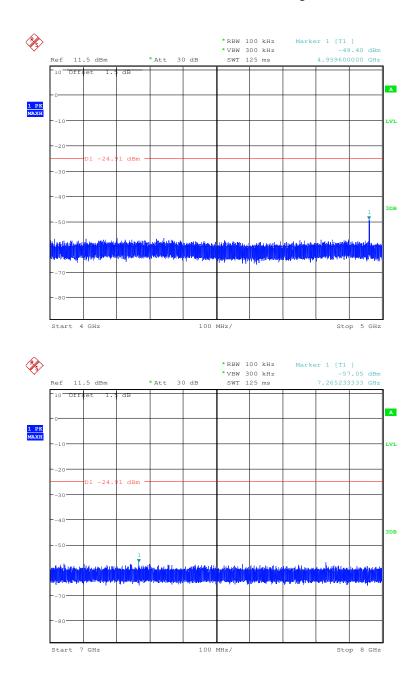
Report No.: SZEM131200676701 Page: 66 of 89



Report No.: SZEM131200676701 Page: 67 of 89



Report No.: SZEM131200676701 Page: 68 of 89



Report No.: SZEM131200676701 Page: 69 of 89

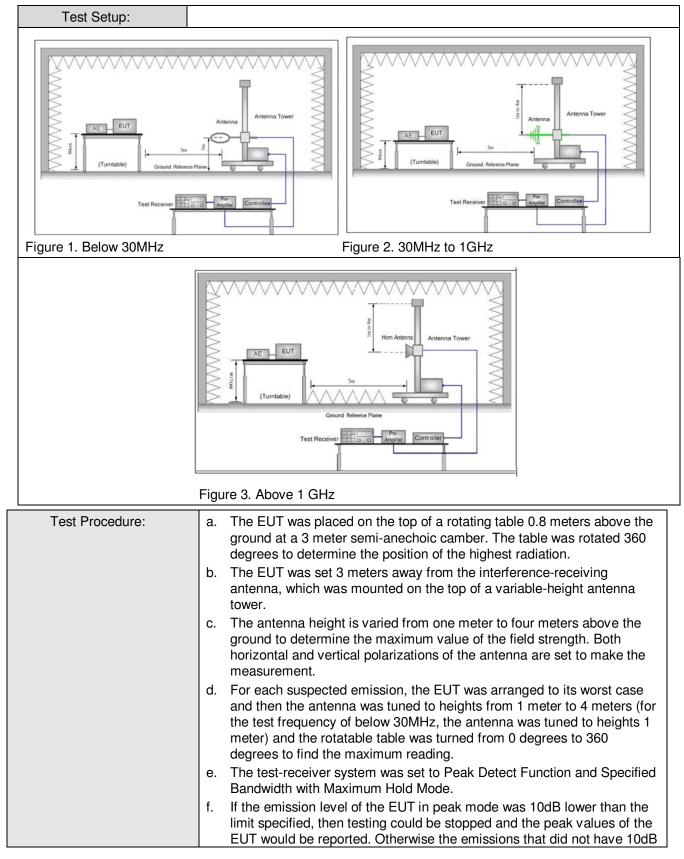
Report No.: SZEM131200676701 Page: 70 of 89

Report No.: SZEM131200676701 Page: 71 of 89

5.10Pseudorandom Frequency Hopping Sequence

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1) requirement:
of 25 kHz or the 20 dB bandw Alternatively. Frequency hop channel carrier frequencies t hopping channel, whichever than 125 mW. The system sh rate from a Pseudorandom o on the average by each trans	shall have hopping channel carrier frequencies separated by a minimum width of the hopping channel, whichever is greater. ping systems operating in the 2400-2483.5 MHz band may have hopping hat are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the is greater, provided the systems operate with an output power no greater hall hop to channel frequencies that are selected at the system hopping ordered list of hopping frequencies. Each frequency must be used equally smitter. The system receivers shall have input bandwidths that match the of their corresponding transmitters and shall shift frequencies in smitted signals.
EUT Pseudorandom Freque	ency Hopping Sequence
outputs are added in a modu	sequence: 29 -1 = 511 bits
An example of Pseudorando 20 62 46 77 Each frequency used equally	hift Register for Generation of the PRBS sequence m Frequency Hopping Sequence as follow: 7 64 8 73 16 75 1 16 75 1 1 10 10 10 10 10 10 10 10 10 10 10 10 10
-	nput bandwidths that match the hopping channel bandwidths of their and shift frequencies in synchronization with the transmitted signals.

Report No.: SZEM131200676701 Page: 72 of 89

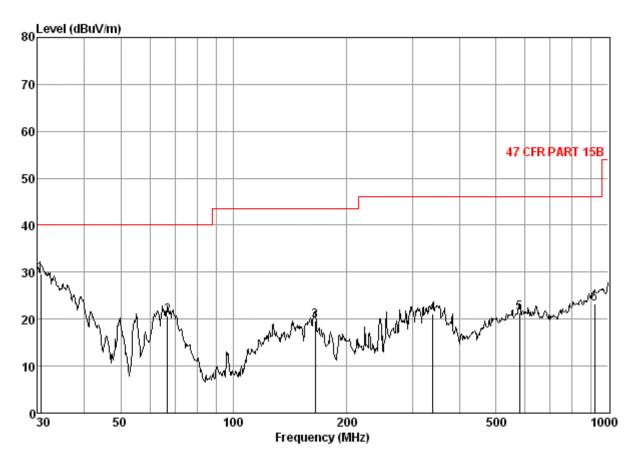

5.11 Radiated Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2009						
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)						
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz		Peak	10kHz	z 30kHz	Peak	
	0.009MHz-0.090MHz		Average	10kHz	z 30kHz	Average	
	0.090MHz-0.110MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak	
	0.110MHz-0.490MHz		Peak	10kHz	z 30kHz	Peak	
	0.110MHz-0.490MHz		Average	10kHz	z 30kHz	Average	
	0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak	
	30MHz-1GHz		Quasi-peak	100 kH	lz 300kHz	Quasi-peak	
	Above 1GHz		Peak	1MHz	z 3MHz	Peak	
			Peak	1MHz	z 10Hz	Average	
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (m	
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300	
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-	30	
	1.705MHz-30MHz	30		-	-	30	
	30MHz-88MHz	100		40.0	Quasi-peak	3	
	88MHz-216MHz	150		43.5	Quasi-peak	3	
	216MHz-960MHz	200		46.0	Quasi-peak	3	
	960MHz-1GHz	500		54.0	Quasi-peak	3	
	Above 1GHz	500		54.0	Average	3	
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequer emissions is 20dB above the maximum permitted average emission applicable to the equipment under test. This peak limit applies to the peak emission level radiated by the device.					emission limit	

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM131200676701 Page: 73 of 89

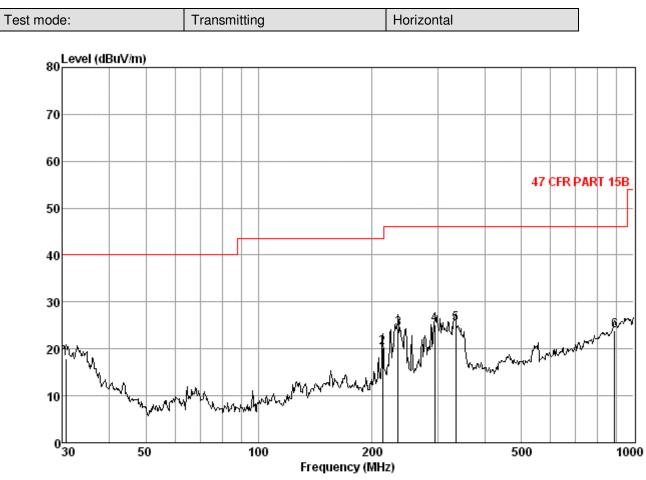
Report No.: SZEM131200676701 Page: 74 of 89


	margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.g. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz)					
	h. Repeat above procedures until all frequencies measured was complete.					
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of					
	data type					
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worse case of GFSK					
	modulation type					
Instruments Used:	Refer to section 4.10 for details					
Test Results:	Pass					

Report No.: SZEM131200676701 Page: 75 of 89

5.11.1 Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Transmitting	Vertical



Condition: 47 CFR PART 15B 3m 3142C VERTICAL Job No. : 6767AV Mode : TX

040	. n Freq			Preamp Factor	Read Level		Limit Line	Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 3 4 5 6	30, 64 66, 73 164, 91 340, 78 578, 67 919, 29	0.60 0.80 1.34 2.03 2.68 3.62	17.40 4.44 9.50 10.50 15.10 20.80	27.35 27.25 26.84 26.73 27.57 26.68	38.94 42.76 35.67 35.25 31.05 25.47	29.59 20.75 19.67 21.05 21.26 23.21	40.00 43.50 46.00 46.00	-10. 41 -19. 25 -23. 83 -24. 95 -24. 74 -22. 79

Report No.: SZEM131200676701 Page: 76 of 89

Condition: 47 CFR PART 15B 3m 3142C HORIZONTAL Job No. : 6767AV Mode : TX

	Freq			Preamp Factor			Limit Line	Over Limit
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 3 4 5 6	30.64 213.76 234.99 294.11 334.86 887.61	0.60 1.48 1.60 1.87 2.01 3.55	17.40 7.42 8.50 9.46 10.39 20.80	27.35 26.65 26.58 26.42 26.68 26.85	27.30 37.98 40.72 40.28 39.74 26.48	17.95 20.23 24.24 25.19 25.46 23.98	43.50 46.00 46.00 46.00	-21.76 -20.81

Report No.: SZEM131200676701 Page: 77 of 89

Worse case r	rse case mode: GFSK(DH1)		Test 2402	channel: MHz	Lowest	Lowest Rema		Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1602.000	3.99	28.84	39.40	55.96	49.39	74	-24.61	Vertical
3216.838	5.37	33.32	40.47	45.79	44.01	74	-29.99	Vertical
4804.000	7.44	34.70	41.63	58.44	58.95	74	-15.05	Vertical
7206.000	8.72	35.88	39.87	43.64	48.37	74	-25.63	Vertical
9608.000	9.68	37.30	37.80	40.15	49.33	74	-24.67	Vertical
12024.960	11.30	38.93	38.28	38.09	50.04	74	-23.96	Vertical
1602.000	3.99	28.84	39.40	54.67	48.10	74	-25.90	Horizontal
3208.660	5.35	33.32	40.45	47.35	45.57	74	-28.43	Horizontal
4804.000	7.44	34.70	41.63	55.71	56.22	74	-17.78	Horizontal
7206.000	8.72	35.88	39.87	41.87	46.60	74	-27.40	Horizontal
9608.000	9.68	37.30	37.80	37.62	46.80	74	-27.20	Horizontal
12011.660	11.29	38.92	38.28	37.02	48.95	74	-25.05	Horizontal

5.11.2 Transmitter Emission above 1GHz

Worse case mode:		GFSK(DH1)		Test channel: 2402MHz		Lowest	Lowest Re		ark:	Average
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Prea fact (dE	tor	Reading Level (dBµV)	Emission Level (dBµV/m)	Lin (dBµ`		Over Limit (dB)	Polarization
1602.000	3.99	28.84	39.4	40	53.24	46.67	54	1	-7.33	Vertical
3216.838	5.37	33.32	40.4	47	37.45	35.67	54	1	-18.33	Vertical
4804.000	7.44	34.70	41.6	63	41.67	42.18	54		-11.82	Vertical
7206.000	8.72	35.88	39.8	87	36.28	41.01	54	1	-12.99	Vertical
9608.000	9.68	37.30	37.8	80	33.83	43.01	54	1	-10.99	Vertical
12024.960	11.30	38.93	38.2	28	32.75	44.70	54	1	-9.30	Vertical
1602.000	3.99	28.84	39.4	40	51.47	44.90	54	1	-9.10	Horizontal
3208.660	5.35	33.32	40.4	45	40.59	38.81	54	1	-15.19	Horizontal
4804.000	7.44	34.70	41.6	63	40.31	40.82	54	1	-13.18	Horizontal
7206.000	8.72	35.88	39.8	87	37.94	42.67	54	1	-11.33	Horizontal
9608.000	9.68	37.30	37.8	80	34.28	43.46	54	1	-10.54	Horizontal
12011.660	11.29	38.92	38.2	28	33.84	45.77	54	1	-8.23	Horizontal

Report No.: SZEM131200676701 Page: 78 of 89

Worse case	Worse case mode: GFSK(DH1)		<i>,</i>	est channel: 441MHz	Middle	Middle		ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Pream Facto (dB)	•	Level (dBuV/m)	Limit (dBu\		Over Limit (dB)	Polarization
1626.550	4.00	29.09	39.41	58.60	52.28	74	1	-21.72	Vertical
3026.195	5.09	33.39	40.33	47.89	46.04	74	1	-27.96	Vertical
4882.000	7.48	34.59	41.68	56.71	57.10	74	1	-16.90	Vertical
7323.000	8.87	35.93	39.77	46.07	51.10	74		-22.90	Vertical
9764.000	9.74	37.48	37.66	41.93	51.49	74		-22.51	Vertical
12366.420	11.43	39.28	38.43	40.64	52.92	74	1	-21.08	Vertical
1626.700	4.00	29.09	39.41	59.96	53.64	74	1	-20.36	Horizontal
3026.195	5.09	33.39	40.33	46.12	44.27	74	1	-29.73	Horizontal
4882.000	7.48	34.59	41.68	55.72	56.11	74	1	-17.89	Horizontal
7323.000	8.87	35.93	39.77	45.00	50.03	74	1	-23.97	Horizontal
9764.000	9.74	37.48	37.66	41.07	50.63	74	1	-23.37	Horizontal
11994.380	11.28	38.90	38.28	40.02	51.92	74	1	-22.08	Horizontal

Worse case	Worse case mode: GFSK(DH1)		<i>,</i>	Test channel: 2441MHz		Middle	Middle Re		ark:	Average
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Pream factor (dB)	r	Reading Level (dBµV)	Emission Level (dBµV/m)	Lin (dBµ`		Over Limit (dB)	Polarization
1626.550	4.00	29.09	39.41	1	56.78	50.46	54	1	-3.54	Vertical
3026.195	5.09	33.39	40.33	3	40.89	39.04	54	1	-14.96	Vertical
4882.000	7.48	34.59	41.68	3	44.43	44.82	54		-9.18	Vertical
7323.000	8.87	35.93	39.77	7	39.61	44.64	54		-9.36	Vertical
9764.000	9.74	37.48	37.66	6	34.93	44.49	54		-9.51	Vertical
12366.420	11.43	39.28	38.43	3	35.01	47.29	54		-6.71	Vertical
1626.700	4.00	29.09	39.41		58.34	52.02	54	1	-1.98	Horizontal
3026.195	5.09	33.39	40.33	3	38.12	36.27	54	1	-17.73	Horizontal
4882.000	7.48	34.59	41.68	3	40.34	40.73	54	1	-13.27	Horizontal
7323.000	8.87	35.93	39.77	7	38.12	43.15	54	1	-10.85	Horizontal
9764.000	9.74	37.48	37.66	6	35.65	45.21	54	1	-8.79	Horizontal
11994.380	11.28	38.90	38.28	3	36.02	47.92	54	1	-6.08	Horizontal

Report No.: SZEM131200676701 Page: 79 of 89

Worse case mode: GFSK(DH1))		Test channel: 2480MHz		Highest		iark:	Peak	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Prea Fact (dE	tor	Read Level (dBuV)	Level (dBuV/m)	Limit (dBuʻ		Over Limit (dB)	Polarization
1652.600	4.04	29.21	39.4	42	59.33	53.16	74	4	-20.84	Vertical
2995.538	5.05	33.38	40.3	30	48.07	46.20	74	4	-27.80	Vertical
4960.000	7.53	34.46	41.7	74	46.07	46.32	74	4	-27.68	Vertical
7440.000	9.01	35.98	39.6	67	44.56	49.88	74	4	-24.12	Vertical
9920.000	9.81	37.63	37.5	53	41.23	51.14	74	4	-22.86	Vertical
11515.680	10.94	38.42	38.0)7	42.73	54.02	74	4	-19.98	Vertical
1652.600	4.04	29.21	39.4	42	58.96	52.79	74	4	-21.21	Horizontal
3176.155	5.30	33.33	40.4	44	47.47	45.66	74	4	-28.34	Horizontal
4960.000	7.53	34.46	41.7	74	50.88	51.13	74	4	-22.87	Horizontal
7440.000	9.01	35.98	39.67		45.35	50.67	74	4	-23.33	Horizontal
9920.000	9.81	37.63	37.53		42.87	52.78	74	4	-21.22	Horizontal
12241.140	11.38	39.14	38.38		40.67	52.81	74	4	-21.19	Horizontal
Worse case	mode:	GFSK(DH1)		channel: MHz	Highest		Remark:		Average
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Prear factor (dB)	•	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµ\	//m)	Over Limit (dB)	Polarization
1652.600	4.04	29.21	39.4	42	57.50	51.33	54	4	-2.67	Vertical
2995.538	5.05	33.38	40.3	30	40.29	38.42	54	4	-15.58	Vertical
4960.000	7.53	34.46	41.7	74	39.57	39.82	54	4	-14.18	Vertical
7440.000	9.01	35.98	39.6	67	39.48	44.80	54	4	-9.20	Vertical
9920.000	9.81	37.63	37.5	53	36.85	46.76	54	4	-7.24	Vertical
11515.680	10.94	38.42	38.0)7	36.30	47.59	54	4	-6.41	Vertical
1652.600	4.04	29.21	39.4	42	57.19	51.02	54	4	-2.98	Horizontal
3176.155	5.30	33.33	40.4	44	40.82	39.01	54	4	-14.99	Horizontal
4960.000	7.53	34.46	41.7	74	40.98	41.23	54	4	-12.77	Horizontal
7440.000	9.01	35.98	39.6	67	40.05	45.37	54	4	-8.63	Horizontal
9920.000	9.81	37.63	37.5	53	38.20	48.11	54	4	-5.89	Horizontal
12241.140	11.38	39.14	38.3	38	36.67	48.81	54	4	-5.19	Horizontal

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

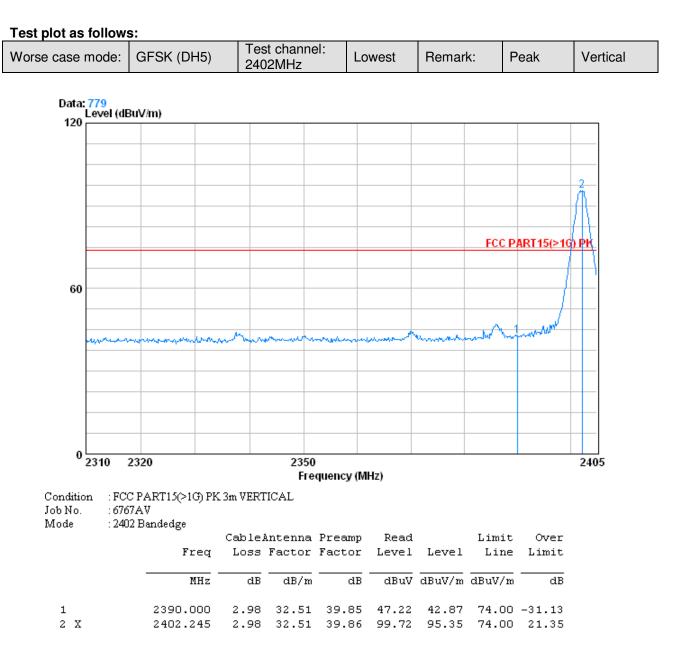
Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

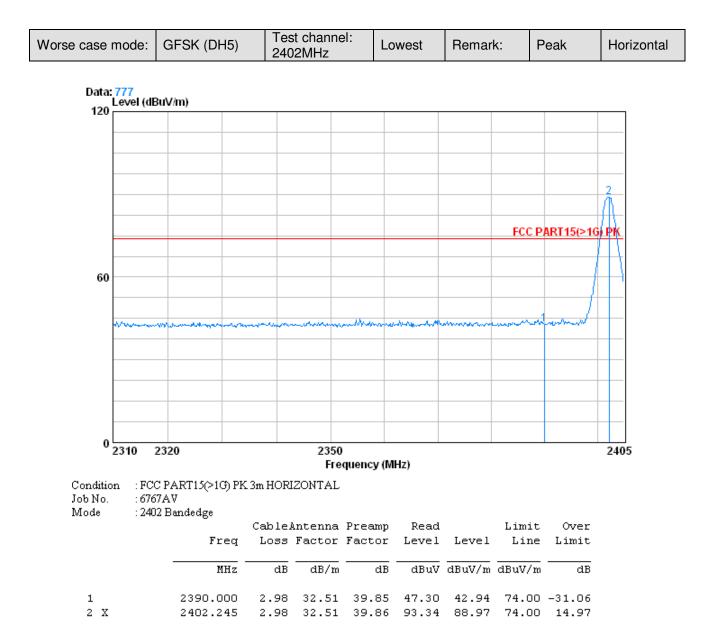
Report No.: SZEM131200676701 Page: 80 of 89

5.12Band edge (Radiated Emission)

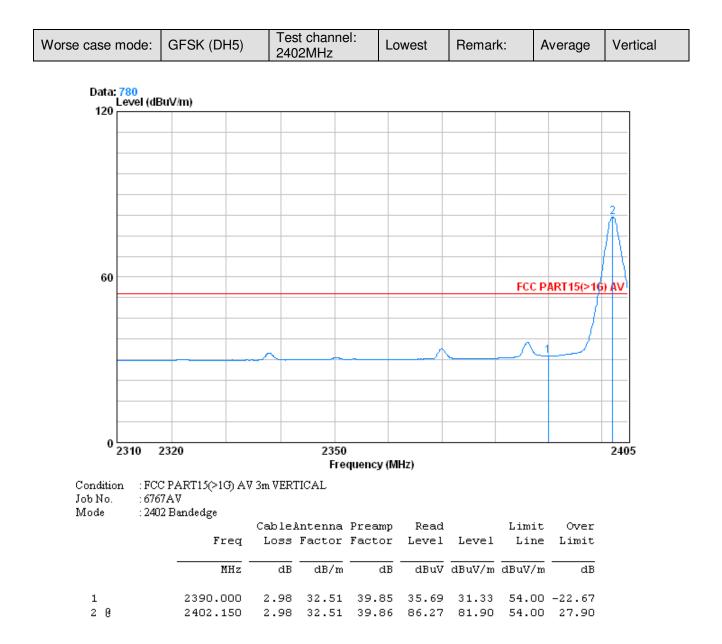
Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2009							
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Limit:	Frequency	Limit (dBuV/m @3m)	Remark					
	30MHz-88MHz	40.0	Quasi-peak Value					
	88MHz-216MHz	43.5	Quasi-peak Value					
	216MHz-960MHz	46.0	Quasi-peak Value					
	960MHz-1GHz	54.0	Quasi-peak Value					
	Above 1GHz	54.0	Average Value					
		74.0	Peak Value					
Test Setup:								
AE EUT (Turntable) Ground Reference Pic Test Receiver		AE EUT Monore Contraction of the second sec	Pre-					
Figure 1. 30MHz to 1GHz	Fig	gure 2. Above 1 GHz						


Report No.: SZEM131200676701 Page: 81 of 89

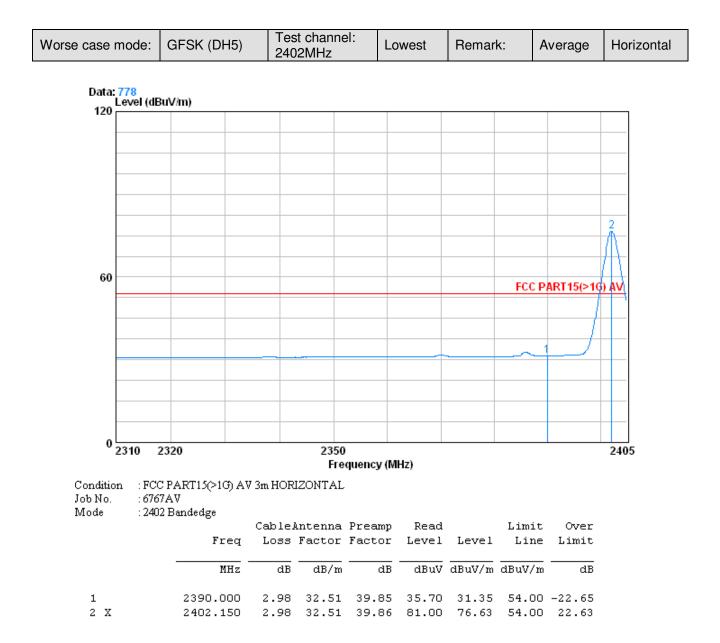
Test Procedure:	 a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel g. Test the EUT in the lowest channel , the Highest channel h. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worse case of GFSK modulation type
Instruments Used:	Refer to section 4.10 for details
Test Results:	



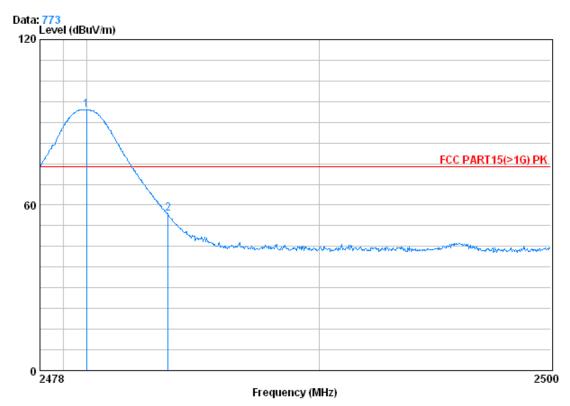
Report No.: SZEM131200676701 Page: 82 of 89



Report No.: SZEM131200676701 Page: 83 of 89

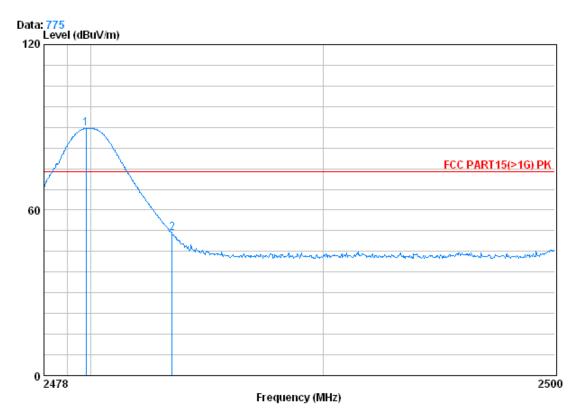


Report No.: SZEM131200676701 Page: 84 of 89


Report No.: SZEM131200676701 Page: 85 of 89

Report No.: SZEM131200676701 Page: 86 of 89

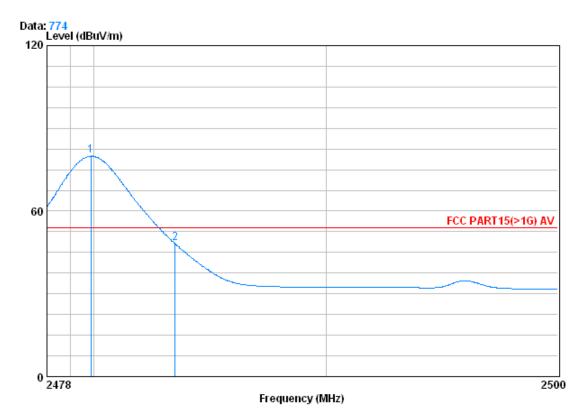
Worse case mode: GFSK (DH5) Test channel: 2480MHz H	Highest F	Remark:	Peak	Vertical
---	-----------	---------	------	----------


Condition : FCC PART15(>1G) PK 3m VERTICAL Job No. : 6767AV Mode : 2480 Bandedge

	Freq			Preamp Factor				
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 X 2	2480.002 2483.500			39.92 39.92				

Report No.: SZEM131200676701 Page: 87 of 89

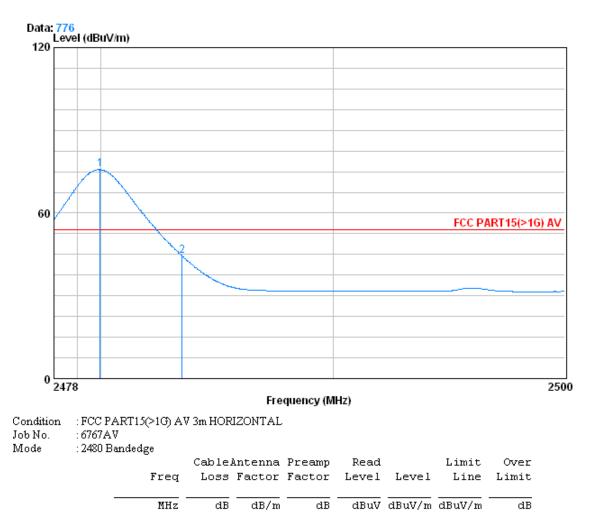
Worse case mode: GFSK (DH5) Test of 2480	hannel: /Hz Highest	Remark:	Peak	Horizontal
--	------------------------	---------	------	------------


Condition : FCC PART15(>1G) PK 3m HORIZONTAL Job No. : 6767AV Mode : 2480 Bandedge

		Cablei	Antenna	Preamp	Read		Limit	Over
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 X	2479.804	3.03	32.67	39.92	93.74	89.52	74.00	15.52
2	2483.500	3.03	32.67	39.92	56.01	51.79	74.00	-22.21

Report No.: SZEM131200676701 Page: 88 of 89

Worse case mode:	GFSK (DH5)	Test channel: 2480MHz	Highest	Remark:	Average	Vertical
------------------	------------	--------------------------	---------	---------	---------	----------


Condition : FCC PART15(>1G) AV 3m VERTICAL Job No. : 6767AV Mode : 2480 Bandedge

	Freq			Preamp Factor			Limit Line	Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 X 2	2479.892 2483.500						54.00 54.00	

Report No.: SZEM131200676701 Page: 89 of 89

Worse case mode: GFSK (DH5) Test cha 2480MH	- Highest	Remark: A	Average	Horizontal
--	-----------	-----------	---------	------------

Note:	

1 X

2

2479.980

2483.500

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

39.92

39.92

80.09

48.78

75.87

44.56

54.00

54.00

21.87

-9.44

32.67

32.67

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

3.03

3.03