

TEST REPORT

- APPLICANT : Glory Horse Industries Limited
- PRODUCT NAME : BE322
- MODEL NAME : WSR1801*BT*UL
- BRAND NAME : BAUER
- FCC ID : 2ABL5WSR1801-BE322
- STANDARD(S) : 47 CFR Part 15 Subpart C
- **TEST DATE** : 2018-09-25 to 2018-10-22
- **ISSUE DATE** : 2018-11-07

Tested by:

Zhou ZI jiang

Zhou Zijiang (Test Englideer)

Approved by:

Peng Huarui (Supervisor)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

DIRECTORY

1. Technical Information 4
1.1. Applicant and Manufacturer Information 4
1.2. Equipment Under Test (EUT) Description 4
1.3. Test Standards and Results 5
1.4. Environmental Conditions 5
2. 47 CFR Part 15C Requirements 6
2.1. Antenna requirement 6
2.2. Number of Hopping Frequency 6
2.3. Peak Output Power 9
2.4. 20dB Bandwidth ······14
2.5. Carried Frequency Separation19
2.6. Time of Occupancy (Dwell time)22
2.7. Conducted Spurious Emissions27
2.8. Conducted Emission36
2.9. Restricted Frequency Bands
2.10. Radiated Emission45
Annex A Test Uncertainty55
Annex B Testing Laboratory Information

Change History				
Issue	Date	Reason for change		
1.0 2018-11-07		First edition		

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	Glory Horse Industries Limited			
Applicant Address:	No.8,4/F, World-Wide IND Centre, 43-47 Shan Mei ST., Fotan			
	Shatin, NT, HKG, Hong Kong			
Manufacturer:	Glory Horse Industries Limited			
Manufacturer Address:	No 11, Jin Yu Ling Road, Sang Yuan District, Dongcheng,			
	Dongguan, Guangdong, China			

1.2. Equipment Under Test (EUT) Description

Product Name:	BE322
Serial No:	(N/A, marked #1 by test site)
Hardware Version:	V01
Software Version:	VER10_21080903
Modulation Type:	FHSS (GFSK(1Mbps), π/4-DQPSK(EDR 2Mbps))
Operating Frequency Panger	The frequency range used is 2402MHz – 2480MHz
Operating Frequency Range:	(79 channels, at intervals of 1MHz);
Bluetooth Version:	Bluetooth classic
Antenna Type:	PCB Antenna
Antenna Gain:	2.0 dBi

Note 1: The EUT contains Bluetooth Module operating at 2.4GHz ISM band; the frequencies is F(MHz)=2402+1*n (0<=n<=78). The lowest, middle, highest channel numbers of the Bluetooth Module used and tested in this report are separately 0 (2402MHz), 39 (2441MHz) and 78 (2480MHz).

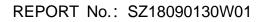
Note 2: The EUT connected to the serial port of the computer with a serial communication cable, we use the dedicated software to control the EUT into the test mode, and then use MT8852B base station to control the EUT continuous transmission.

Note 3: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.3. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C for the EUT FCC ID Certification:

No	Identity		Document Title				
1	47 CFR Part 15		Radio Frequency Devices				
Test detailed items/section required by FCC rules and results are as below:							
No	Section in		Description	Toot Doto		Booult	
No.	CFR 47		Description	Test Date	Test Engineer	Result	
1	15.203	Antenna	Requirement	N/A	N/A	PASS	
2	15.247(a)	Number of	of Hopping Frequency	Sep 25, 2018	Zhou Zijiang	PASS	
3	15.247(b)	Peak Out	put Power	Sep 25, 2018	Zhou Zijiang	PASS	
4	15.247(a)	20dB Bandwidth		Sep 25, 2018	Zhou Zijiang	PASS	
5	15.247(a)	Carrier Frequency Separation		Sep 25, 2018	Zhou Zijiang	PASS	
6	15.247(a)	Time of C	Occupancy (Dwell time)	Sep 25, 2018	Zhou Zijiang	PASS	
7	15.247(d)	Conducte	ed Spurious Emission	Sep 25, 2018	Zhou Zijiang	PASS	
8	15.207	Conducte	ed Emission	N/A	N/A	N/A	
9	15.247(d)	Restricte	d Frequency Bands	Oct 22, 2018	Wu Zhongwen	PASS	
10	15.209,	Dedicted	Emission	Oct 22, 2019	Mu Zhangwan	DAGG	
10	10 Radiated Emission			Oct 22, 2018	Wu Zhongwen	PASS	
Note 1: Measurements to demonstrate compliance with the conducted limits are not required for							
devices which only employ battery power for operation and which do not operate from the AC							
powe	er lines or co	ntain provi	sions for operation while	e connected to the	e AC power lines.		
devic	ces which on	ly employ l	pattery power for operat	ion and which do	not operate from th		


Note 2: The tests were performed according to the method of measurements prescribed in ANSI C63.10-2013.

1.4. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR Part 15C Requirements

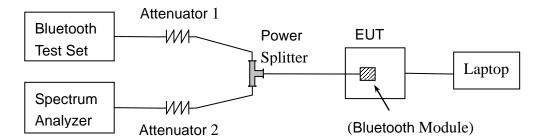
2.1. Antenna requirement

2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2. Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.


2.2. Number of Hopping Frequency

2.2.1. Requirement

According to FCC §15.247(a)(1)(iii), frequency hopping systems operating in the 2400MHz to 2483.5MHz bands shall use at least 15 hopping frequencies.

2.2.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

B. Equipments List:

Please reference ANNEX B(4).

2.2.3. Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW \geq 1% of the span VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize

2.2.4. Test Result

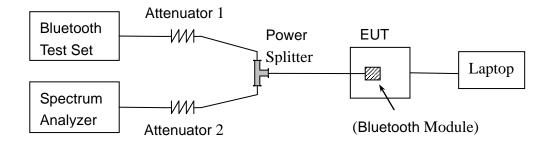
The Bluetooth Module operates at hopping-on test mode; the frequencies number employed is counted to verify the Module's using the number of hopping frequency.

A. Test Verdic	t:			
Test Mode	Frequency Block (MHz)	Measured Channel Numbers	Min. Limit	Verdict
GFSK	2400 - 2483.5	79	15	PASS
π/4-DQPSK	2400 - 2483.5	79	15	PASS

B. Test Plots:

(GFSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 E-mail: service@morlab.cn Http://www.morlab.cn


2.3. Peak Output Power

2.3.1. Requirement

According to FCC §15.247(b)(1), for frequency hopping systems that operates in the 2400MHz to 2483.5MHz band employing at least 75 hopping channels, the maximum peak output power of the intentional radiator shall not exceed 1Watt. For all other frequency hopping systems in the 2400MHz to 2483.5MHz band, it is 0.125Watts.

2.3.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please refer ANNEX B(4).

2.3.3. Test Result

The Bluetooth Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the module. The lowest, middle and highest channel were tested by USB Wideband Power Sensor.

GFSK Mode

A. Test Verdict:

Channel	Frequency	Measured Output Peak Power		Limit		Verdict
Channel	(MHz)	dBm	W	dBm	W	verdict
0	2402	-3.19	0.001			PASS
39	2441	-3.24	0.001	20.97	0.125	PASS
78	2480	-3.98	0.001			PASS

B. Test Plots:

(GFSK, Channel 0, 2402MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

(GFSK, Channel 39, 2441MHz)

(GFSK, Channel 78, 2480MHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

π/4-DQPSK Mode

A. Test Verdict:

Channel		Measured Output Peak Power		Limit		Verdict
Channel	(MHz)	dBm	W	dBm	W	verdict
0	2402	-2.17	0.001			PASS
39	2441	-2.16	0.001	20.97	0.125	PASS
78	2480	-2.89	0.001			PASS

B. Test Plots:

(π/4-DQPSK, Channel 0, 2402MHz)

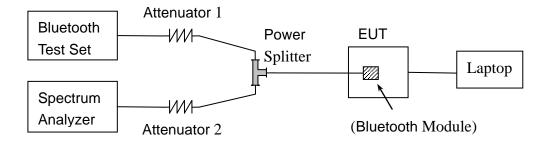
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(π/4-DQPSK, Channel 39, 2441MHz)

(π/4-DQPSK, Channel 78, 2480MHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



2.4.1. Definition

According to FCC 15.247(a)(1), the 20dB bandwidth is known as the 99% emission bandwidth, or 20dB bandwidth (10*log1% = 20dB) taking the total RF output power.

2.4.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please refer ANNEX B(4).

2.4.3. Test Procedure

Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

2.4.4. Test Result

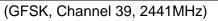
The Bluetooth Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to record the 20dB bandwidth of the Module.

GFSK Mode

A. Test Verdict:

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Result
0	2402	0.858	PASS
39	2441	0.911	PASS
78	2480	0.857	PASS

B. Test Plots:


(GFSK, Channel 0, 2402MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(GFSK, Channel 78, 2480MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

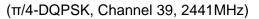
E-mail: service@morlab.cn

π/4-DQPSK Mode

A. Test Verdict:

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Result
0	2402	1.222	PASS
39	2441	1.225	PASS
78	2480	1.224	PASS

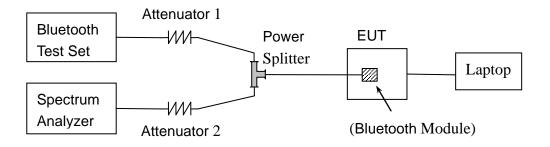
B. Test Plots:


(π/4-DQPSK, Channel 0, 2402MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(π/4-DQPSK, Channel 78, 2480MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn


2.5. Carried Frequency Separation

2.5.1. Definition

According to FCC §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

2.5.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please refer ANNEX B(4).

2.5.3. Test Procedure

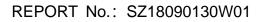
The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Span = wide enough to capture the peaks of two adjacent channels

Resolution (or IF) Bandwidth (RBW) \geq 1% of the span

Video (or Average) Bandwidth (VBW) \geq RBW

Sweep = auto


Detector function = peak

Trace = max hold

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.5.4. Test Result

The Bluetooth Module operates at hopping-on test mode. For any adjacent channels (e.g. the channel 39 and 40 as showed below), the Module does have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel (refer to section 2.4.4), whichever is greater. So, the verdict is PASSING.

Test Mode	Measured Channel Numbers	Carried Frequency Separation	20dB bandwidth (MHz)	Min. Limit	Verdict
GFSK	39 and 40	1.002	0.857	two-thirds of the	PASS
π/4-DQPSK	39 and 40	1.005	1.222	20dB bandwidth	PASS

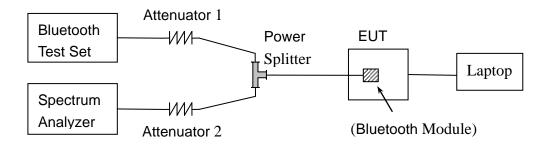
(GFSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

larker 1	RF 50 Ω Δ 1.005000	F	NO: Fast 🔾	Trig: Free			ALIGN AUTO :: Log-Pwr >100/100	TRAC	I Sep 25, 2018 E 1 2 3 4 5 6 E M WWWWWW T P N N N N N	Marker
0 dB/div	Ref Offset 1.8 Ref 10.00	5 dB	Gain:Low	Atten: 20	dB		ΔN	1kr1 1.0	05 MHz 010 dB	Select Marker 1
								1∆2_		Norm
10.0			And a state of the		K2	ور کالاحراط راز رو م	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
										Del
20.0										_
30.0										Fixed
40.0										_
50.0										c
60.0										
70.0										Properties
80.0										
	111000 011-							A		Mo 1 of
	441000 GHz 300 kHz		#VBV	V 1.0 MHz			Sweep 1	Span 3 .000 ms (.000 MHz 1001 pts)	

(π/4-DQPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.6. Time of Occupancy (Dwell time)

2.6.1. Requirement

According to FCC §15.247(a) (1) (iii), frequency hopping systems in the 2400 - 2483.5MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

2.6.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please refer ANNEX B(4).

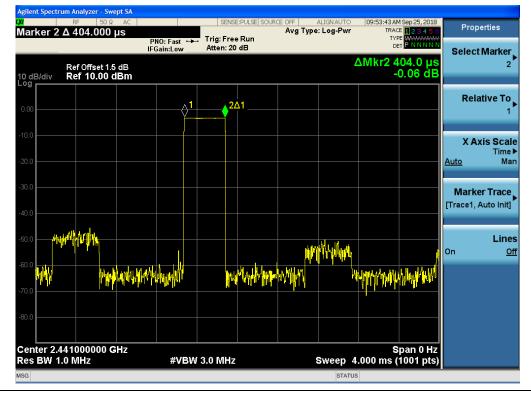
2.6.3. Test Procedure

Option 1:

DH1: Dwell time equal to Pulse time (ms) *(1600 / 2 /79)*31.6 Millisecond DH3: Dwell time equal to Pulse time (ms) * (1600 /4 /79) *31.6 Millisecond DH5: Dwell time equal to Pulse Time (ms)* (1600 / 6 /79) *31.6 Millisecond

AFH Mode:

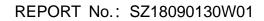
DH1: Dwell time equal to Pulse time (ms) (800 / 2 / 20)(0.4 + 20) Millisecond DH3: Dwell time equal to Pulse time (ms) (800 / 4 / 20)(0.4 + 20) Millisecond DH5: Dwell time equal to Pulse Time (ms) (800 / 6 / 20)(0.4 + 20) Millisecond

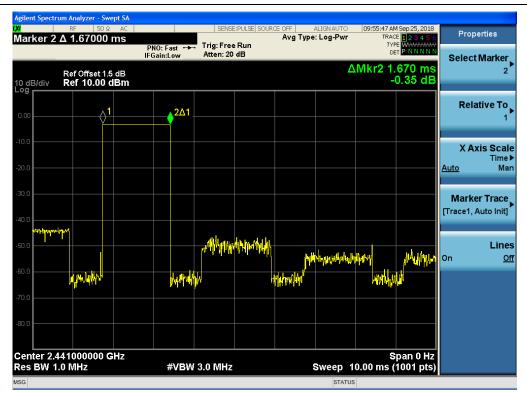

2.6.4. Test Result

GFSK Mode

A. Test Verdict:

DH	Pulse Width	Dwell T	Limit (sec)	Verdict	
Packet	(ms)	Normal Mode	AFH Mode		Verdici
DH1	0.40	128.00	64.00		PASS
DH3	1.67	267.20	133.60	0.4	PASS
DH5	2.90	309.33	154.67		PASS


B. Test Plots:


(DH1, GFSK)

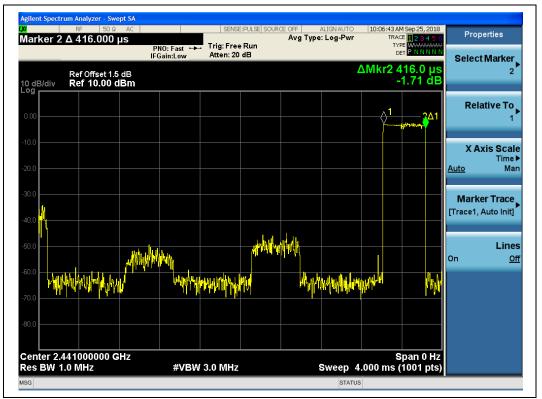
MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(DH3, GFSK)

(DH5, GFSK)

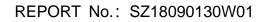
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

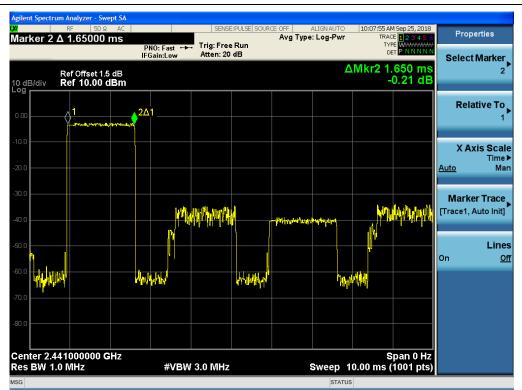


π/4-DQPSK Mode

A. Test Verdict:

DH	Pulse Width	Dwell Time (ms)		Limit (sec)	Verdict
Packet	(ms)	Normal Mode	AFH Mode	Limit (Sec)	verdict
DH1	0.42	134.40	67.20		PASS
DH3	1.65	264.00	132.00	0.4	PASS
DH5	2.92	311.47	155.73		PASS


B. Test Plots:

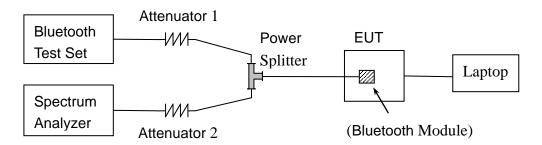

(DH1, π/4-DQPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(DH3, π/4-DQPSK)

(DH5, *π*/4-DQPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.7. Conducted Spurious Emissions

2.7.1. Requirement

According to FCC §15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

2.7.2. Test Description

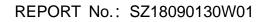
A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please refer ANNEX B(4).

2.7.3. Test Procedure


Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

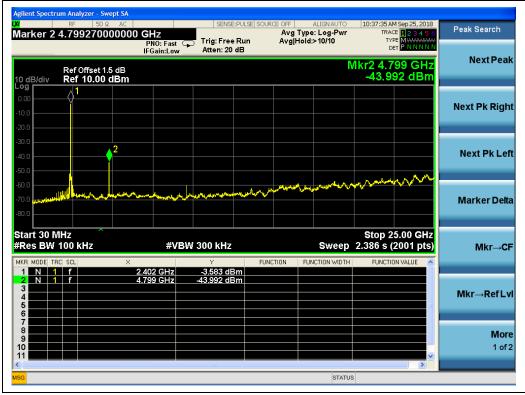
RBW = 100 kHz ∨BW ≥ RBW Sweep = auto Detector function = peak

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Trace = max hold Allow the trace to stabilize.

2.7.4. Test Result

The Bluetooth Module operates at hopping-off test mode. The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions.

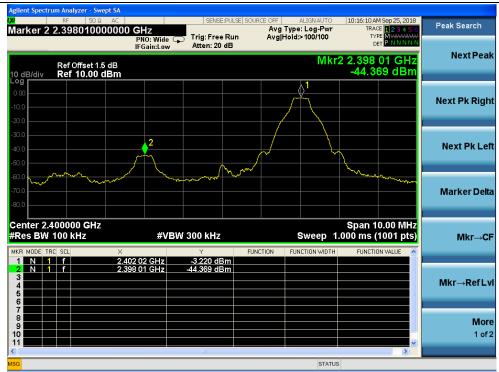

GFSK Mode

A. Test Verdict:

	Froquency	Measured Max. Out of Band	Limit			
Channel	Frequency (MHz)	Emission (dBm)	Carrier Level	Calculated	Verdict	
			Camer Lever	-20dBc Limit		
0	2402	-43.99	-3.58	-23.58	PASS	
39	2441	-44.87	-3.98	-23.98	PASS	
78	2480	-45.31	-4.61	-24.61	PASS	

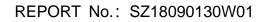
B. Test Plots:

Note: The power of the Module transmitting frequency should be ignored.

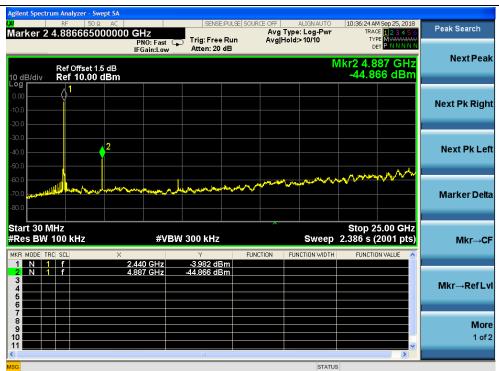


(Channel = 0, 30MHz to 25GHz, GFSK Mode)

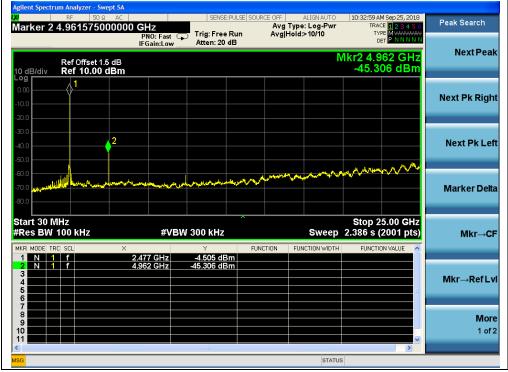
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



(Channel = 0, Band edge, GFSK Mode)



(Channel = 0, Band edge with hopping on, GFSK Mode)



(Channel = 39,	, 30MHz to 25GHz, GFSK Mode)
----------------	------------------------------

(Channel = 78, 30MHz to 25GHz, GFSK Mode)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Agilent Spectrum Analyzer - Swept SA				
04 RF 50 Ω AC Marker 2 2.487950000000 GHz PN0: Wide ♀	SENSE:PULSE SOURCE Trig: Free Run Atten: 20 dB	Avg Type: Log-Pwr Avg Hold:>100/100	10:20:08 AM Sep 25, 2018 TRACE 1 2 3 4 5 6 TYPE M	Peak Search
IFGain:Low Ref Offset 1.5 dB 10 dB/div Ref 10.00 dBm	Atten. 20 dB	Mkr	2 2.487 95 GHz -54.456 dBm	Next Peak
Log 0.00 -10.0 -20.0				Next Pk Right
-30.0 -40.0 -50.0			2	Next Pk Left
-60.0 -70.0 			www.www.hurd have	Marker Delta
Center 2.483500 GHz #Res BW 100 kHz #VBW	300 KHz Y FUNCT		Span 10.00 MHz 000 ms (1001 pts)	Mkr→CF
1 N 1 f 2.479 86 GHz 2 N 1 f 2.487 95 GHz 3	-3.792 dBm -54.456 dBm			Mkr→RefLvl
7 8 9 10 11			>	More 1 of 2
MSG		STATUS		

(Channel = 78, Band edge, GFSK Mode)

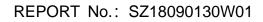
(Channel = 78, Band edge with hopping on, GFSK Mode)

π/4-DQPSK Mode

A. Test Verdict:

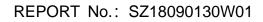
Channel	Frequency (MHz)	Measured Max. Out of Band Emission (dBm)	Limit		
			Carrier	Calculated	Verdict
			Level	-20dBc Limit	
0	2402	-43.49	-3.25	-23.25	PASS
39	2441	-43.66	-7.57	-27.57	PASS
78	2480	-48.99	-8.25	-28.25	PASS

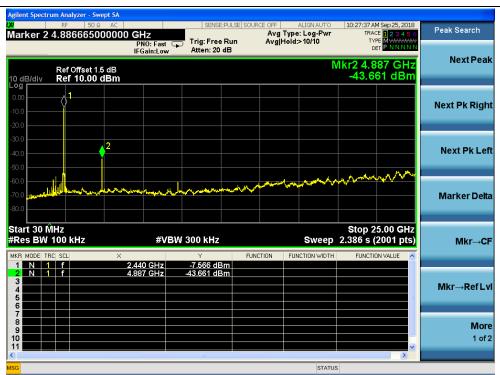
B. Test Plots:


Note: the power of the Module transmitting frequency should be ignored.

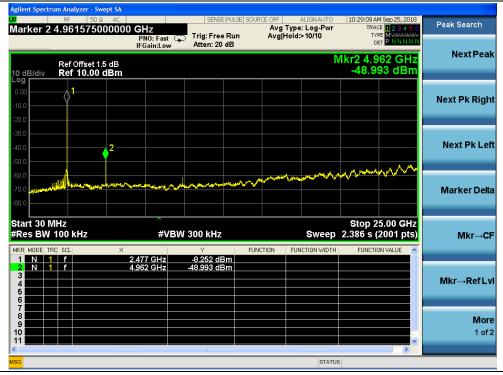
(Channel = 0, 30MHz to 25GHz, $\pi/4$ -DQPSK)

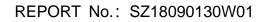
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


(Channel = 0, Band edge, $\pi/4$ -DQPSK)


(Channel = 0, Band edge with hopping on, $\pi/4$ -DQPSK)

MORLAB

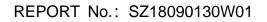

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


(Channel = 39, 30MHz to 25GHz, $\pi/4$ -DQPSK)

(Channel = 78, 30MHz to 25GHz, $\pi/4$ -DQPSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


(Channel = 78, Band edge, $\pi/4$ -DQPSK)

(Channel = 78, Band edge with hopping on, $\pi/4$ -DQPSK)

MORLAB

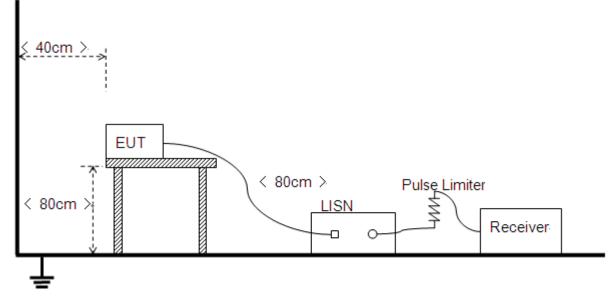
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.8. Conducted Emission

2.8.1. Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/50 Ω line impedance stabilization network (LISN).

Frequency rang	e Conducted Limit (dBµV)	
(MHz)	Quai-peak	Average
0.15 - 0.50	66 to 56	56 to 46
0.50 - 5	56	46
5- 30	60	50


NOTE:

(a) The lower limit shall apply at the band edges.

(b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.

2.8.2. Test Description

A. Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10: 2013.

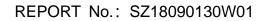
The factors of the site are calibrated to correct the reading. During the measurement, the Bluetooth

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

EUT is activated and controlled by the Bluetooth Service Supplier (SS) via a Common Antenna, and is set to operate under hopping-on test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

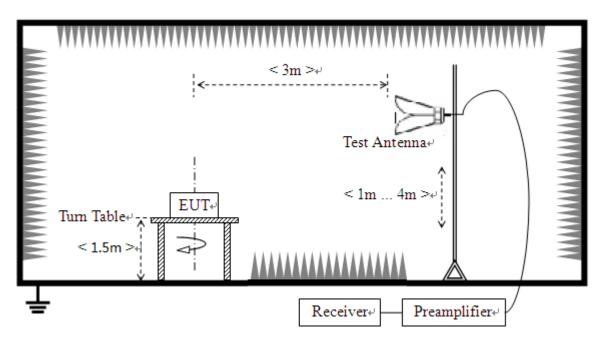
Please reference ANNEX B(4).


2.8.3. Test Result

This test case does not apply this kind of EUT.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn


2.9. Restricted Frequency Bands

2.9.1. Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

2.9.2. Test Description

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the Bluetooth Service Supplier (SS) via a Common Antenna, and is set to operate under non hopping-on test mode transmitting 339 bytes DH5, 679 bytes 2DH5 and 1021 bytes 3DH5 packages at maximum power. For the Test Antenna:

Horn Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

B. Equipments List:

Please refer ANNEX B(4).

2.9.3. Test Procedure

Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 KHz for f < 1GHz VBW = 3 MHz for peak and 10Hz for average Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize.

2.9.4. Test Result

The lowest and highest channels are tested to verify Restricted Frequency Bands.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; AT = L_{Cable loss} [dB] - G_{preamp} [dB]$

AT: Total correction Factor except Antenna

UR: Receiver Reading

Gpreamp: Preamplifier Gain

AFactor: Antenna Factor at 3m

Note: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

GFSK Mode

A. Test Verdict:

Channel	Frequency (MHz)	Detector PK/ AV	Receiver Reading U _R (dBuV)	A⊤ (dB)	A _{Factor} (dB@3m)	Max. Emission E (dBµV/m)	Limit (dBµV/m)	Verdict
0	2370.72	PK	49.74	-29.67	32.56	52.63	74	PASS
0	2386.01	AV	37.50	-29.67	32.56	40.39	54	PASS
78	2488.62	PK	48.52	-29.67	32.56	51.41	74	PASS
78	2487.80	AV	36.86	-29.67	32.56	39.75	54	PASS

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

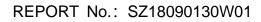
Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

B. Test Plots:

📕 Keysight Spectrum Analyzer - Swept S ALIGN OFF Avg Type: Voltage Avg|Hold:>100/100 06:41:35 PM Oct 22, 2018 TRACE 12 3 4 5 TYPE MWWWW DET P P N N N D Marker Marker 1 2.370720000000 GHz Trig: Free Run Atten: 10 dB PNO: Fast IFGain:Low Select Marker Mkr1 2.370 720 GHz 49.740 dBµV Ref 106.99 dBµV I0 dB/div οd Normal Delta 2^{2} ۵ **Fixed** Start 2.30000 GHz Res BW (CISPR) 1 MHz Stop 2.40400 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz Off FUNCTION EUI 2.370 720 GHz 2.390 000 GHz 49.740 dBµV 47.789 dBµV **Properties**► More 1 of 2


(Channel = 0, PEAK, GFSK)

(Channel = 0, AVERAGE, GFSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

	1 Oct 22, 2018	06-55-24 DA	ALIGN OFF		TNT	SENS			nalyzer - Swej SEL 50 Ω			Keys RL
Marker Select Marker	E 123456 E MWWWW	TRAC	e: Voltage :>100/100	Avg Ty	lun	Trig: Free I Atten: 10 d	HZ NO:Fast ⊂ Gain:Low	0000 GI				
	18 GHz 2 dBµV	2.488 6 48.52	Mkr2					dBµV	106.99	Ref	div) dB
Norm												og 97.0 - 97.0 -
Del						2		1				7.0 - 7.0 - 7.0 -
Fixed				alm ⁱⁿ tetra _e ule ⁻ tra	<u>. A </u>			La <u>b</u> enna (Marat - Part				7.0 7.0 7.0
C	0000 GHz 1001 pts)	Stop 2.50 .000 ms (Sweep 1			3.0 MHz	#VBV	z	GHz R) 1 MH		2.478 3W (C	
	ON VALUE	FUNCTIO	ICTION WIDTH	ION F	FUN	Y 47.095 dBµ 48.522 dBu	0 GHz	× 2.483 50 2.488 61		f		-
Properties	E					40.522 UDµ		2.400 01				3 4 5 6
Мо 1 о												7 -
	.											1

(Channel = 78, PEAK, GFSK)

(Channel = 78, AVERAGE, GFSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

π/4-DQPSK Mode

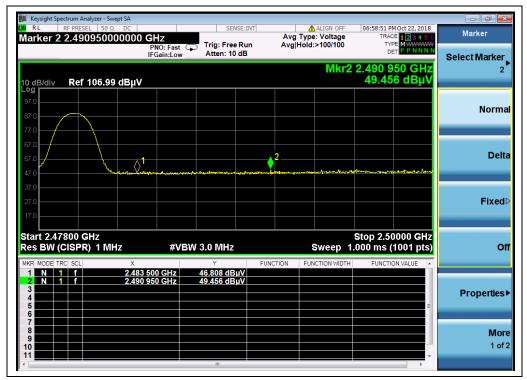
A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
Chamler	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	, or allot
0	2382.68	PK	49.40	-29.67	32.56	52.29	74	Pass
0	2375.09	AV	36.67	-29.67	32.56	39.56	54	Pass
78	2490.95	PK	49.46	-29.67	32.56	52.35	74	Pass
78	2487.87	AV	36.40	-29.67	32.56	39.29	54	Pass

B. Test Plots:

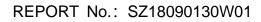
RL REPR	ESEL 50 Ω D 826800000		Trig: Free Run Atten: 10 dB	Avg	ALIGN OFF Type: Voltage Hold:>100/100	06:45:06 PM Oct 22, 20 TRACE 1234 TYPE MWWW DET P P NN	56 W
) dB/div R(ef 106.99 dE	βµV			Mkr1	2.382 680 GH 49.395 dBµ	
97.0							Norm
7.0							
67.0							
57.0					ada	1 - 2	Del
17.0 17.0 	age-12 to March Marco age from a galant	Adada a a a a a a a a a a a a a a a a a	Mariya da ya ku	a de la calenda de			
27.0							Fixe
17.0							
tart 2.30000 es BW (CIS		#VE	W 3.0 MHz			Stop 2.40400 GH .000 ms (1001 pt	
KR MODE TRC SO		X .382 680 GHz	Y 49.395 dBµV	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
2 N 1 f		.390 000 GHz	47.310 dBµV				
4 5							Properties
6							
8 9 0							1 o
1							-

(Channel = 0, PEAK, π /4-DQPSK)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

	5 6		06:45:58 PI TRAC	ALIGN OFF Voltage >100/100	vg Typ		ENSE:I				EL 50 Ω 508800	RF PRES	L ker 1
Select Marke	N N	88 GH	2.375 0		ginoid			Atten: 1	PNO: Fast G				
		ο ασμ	36.66							dBµV	106.99	Ref	B/div
Norn													
	Δ												
De													
				1									
		$\sim \sim$	\$ ² /	•				<u> </u>		_			<u> </u>
Fixe													\vdash
													\vdash
	Hz	0400 GI	Stop 2.40									0000 G	
(ts)		11.93 s (Sweep				10 Hz	#VBV	Z	R) 1 MH		
	Â	ON VALUE	FUNCTION	ICTION WIDTH	FUI	FUNCT	BUV	Y 36.666 dl	088 GHz	× 2.375			MODE TI
								35.943 di	000 GHz			1 f	Ň
Propertie	=												
Ма													
INIC													


(Channel = 0, AVERAGE, $\pi/4$ -DQPSK)

(Channel = 78, PEAK, $\pi/4$ -DQPSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Marker	Oct 22, 2018	TRAC	ALIGN OFF	Avg Typ	SE:INT			DC 0000 G	a Analyzer - Swe RESEL 50 Ω 8787000	RF F
Select Mark	70 GHz	2.487 8		Avg Hold		Trig: Free Atten: 10	NO:Fast G Gain:Low			
	2 dBµV	36.40						dBµV	ef 106.99	3/div
Nor										
									\searrow	-
									$ \rightarrow $	_/
D										
						2			$ \rightarrow $	/
										7
Fix										
	000 GHz	Stop 2.50							CH7	t 2.4780
	001 pts)	2.523 s (Sweep			V 10 Hz	#VB\	z	PR) 1 MH	
	N VALUE	FUNCTIO	CTION WIDTH	ION FU	FUN	Y		х	:L	IODE TRC S
						35.887 dB 36.402 dB		2.483 50		N 1
Properti										
	E									
М										
1										

(Channel = 78, AVERAGE, $\pi/4$ -DQPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

2.10. Radiated Emission

2.10.1. Requirement

According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

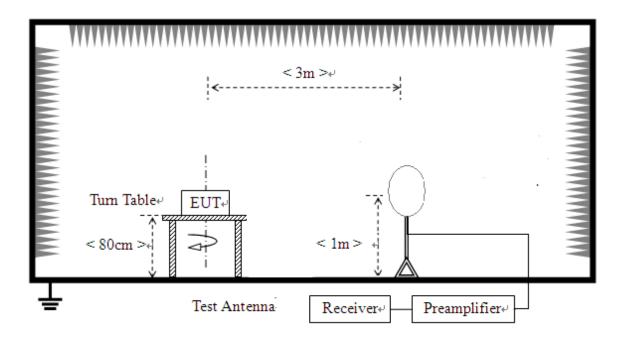
According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

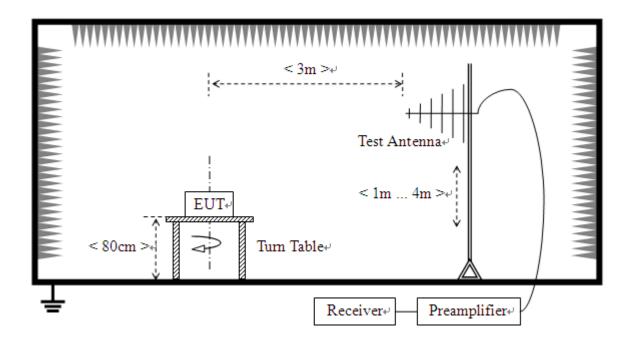
Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note:

- For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

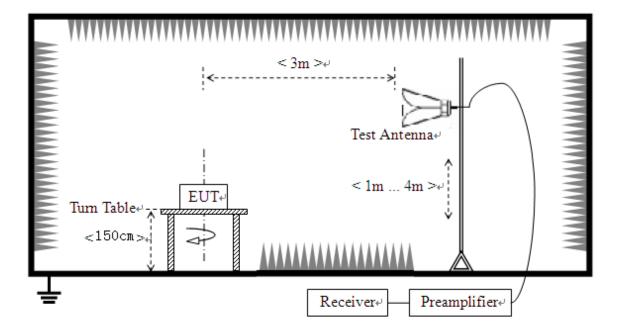



2.10.2. Test Description

A. Test Setup:

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

3) For radiated emissions above 1GHz

The RF absorbing material used on the reference ground plane and on the turntable have a maximum height (thickness) of 30 cm (12 in) and have a minimum-rated attenuation of 20 dB at all frequencies from 1 GHz to 18 GHz.

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10 (2013). For radiated emissions below or equal to 1GHz, the EUT was set-up on insulator 80cm above the Ground Plane, For radiated emissions above 1GHz, The EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10.

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

(a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.

(b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Place the test antenna at 3m away from area of the EUT, while keeping the test antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The test antenna may have to be

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final test antenna elevation shall be that which maximizes the emissions. The test antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. The emission levels at both horizontal and vertical polarizations should be tested.

B. Equipments List:

Please reference ANNEX B(4).

2.10.3. Test Procedure

Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz VBW \ge RBW Sweep = auto Detector function = peak Trace = max hold

2.10.4. Test Result

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

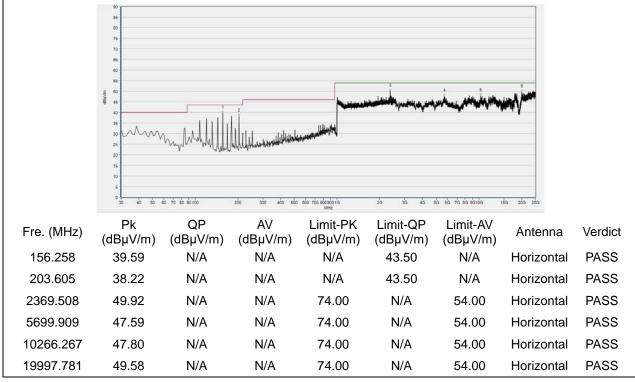
The measurement results are obtained as below:

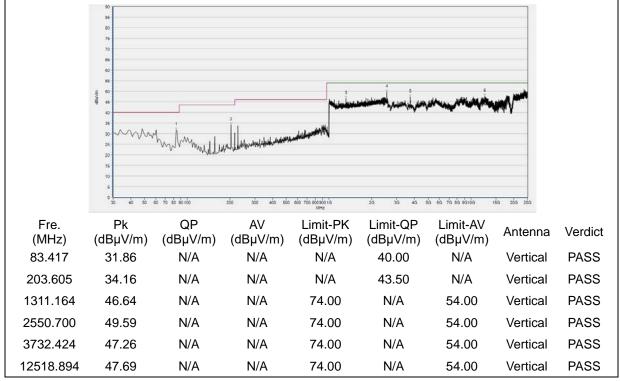
 $\begin{array}{l} \mathsf{E} \; [\mathsf{d}\mathsf{B}\mu\mathsf{V}/\mathsf{m}] = \mathsf{U}_\mathsf{R} + \mathsf{A}_\mathsf{T} + \mathsf{A}_\mathsf{Factor} \; [\mathsf{d}\mathsf{B}]; \; \mathsf{A}_\mathsf{T} = \mathsf{L}_\mathsf{Cable \; loss} \; [\mathsf{d}\mathsf{B}] \text{-} \mathsf{G}_\mathsf{preamp} \; [\mathsf{d}\mathsf{B}] \\ \mathsf{A}_\mathsf{T} \text{: Total correction Factor except Antenna} \\ \mathsf{U}_\mathsf{R} \text{: Receiver Reading} \\ \mathsf{G}_\mathsf{preamp} \text{: Preamplifier Gain} \\ \mathsf{A}_\mathsf{Factor} \text{: Antenna Factor at 3m} \end{array}$

During the test, the total correction Factor AT and A_{Factor} were built in test software.

Note1: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Note2: For the frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit was not recorded.


Note3: For the frequency, which started from 25GHz to 40GHz, was pre-scanned and the result which was 20dB lower than the limit was not recorded.

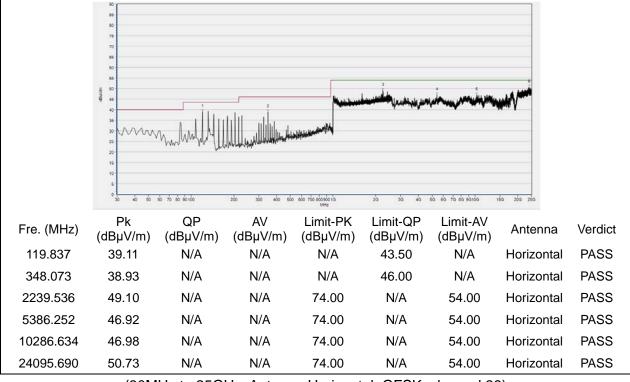


GFSK Mode

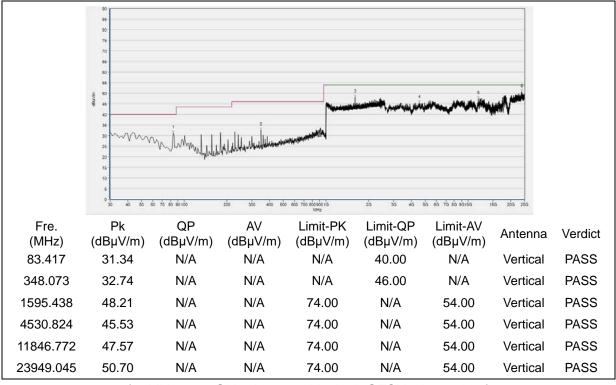
Plots for Channel = 0

(30MHz to 25GHz, Antenna Horizontal, GFSK, channel 0)

(30MHz to 25GHz, Antenna Vertical, GFSK, channel 0)



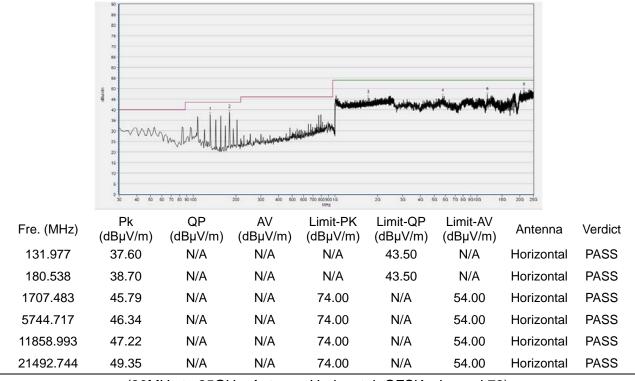
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525 E-mail: service@morlab.cn


_ ...

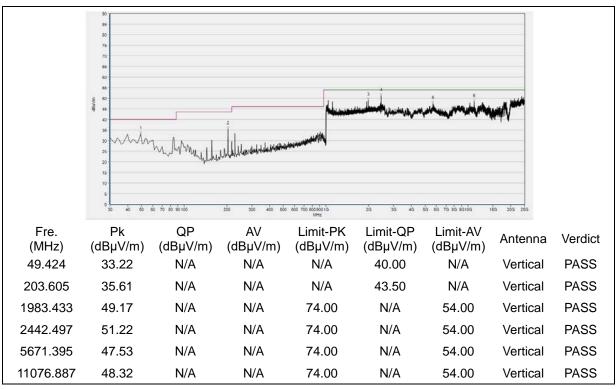
Plot for Channel = 39

(30MHz to 25GHz, Antenna Horizontal, GFSK, channel 39)

(30MHz to 25GHz, Antenna Vertical, GFSK, channel 39)



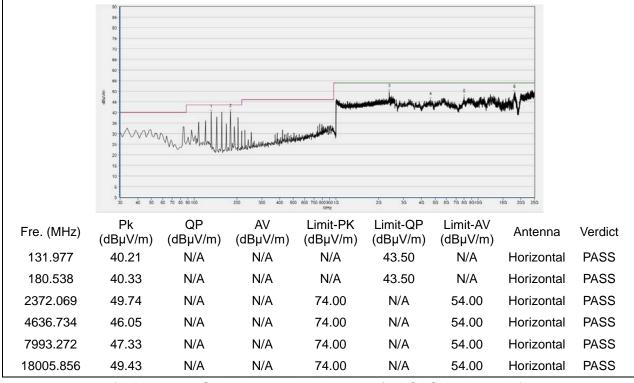
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


Tel: 86-755-36698555 Http://www.morlab.cn

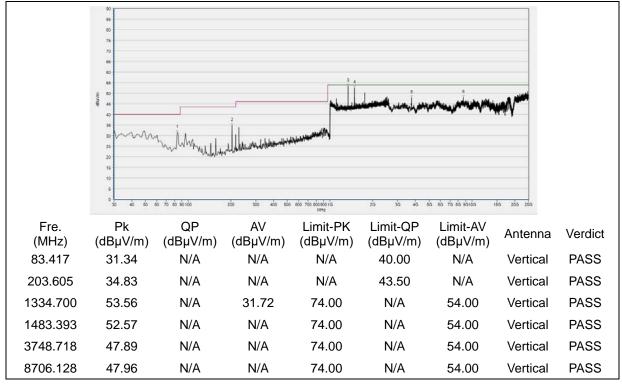
Plot for Channel = 78

(30MHz to 25GHz, Antenna Horizontal, GFSK, channel 78)

(30MHz to 25GHz, Antenna Vertical, GFSK, channel 78)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

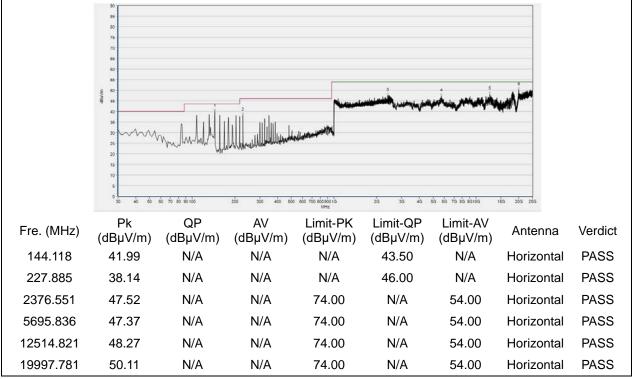
Tel: 86-755-36698555 Http://www.morlab.cn



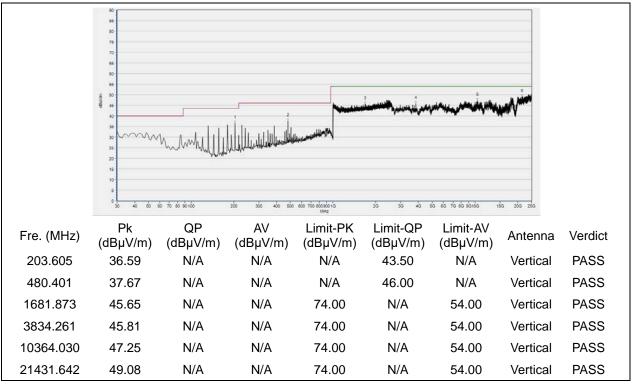
π/4-DQPSK Mode

Plots for Channel = 0

(30MHz to 25GHz, Antenna Horizontal, π /4-DQPSK, channel 0)


(30MHz to 25GHz, Antenna Vertical, π /4-DQPSK, channel 0)

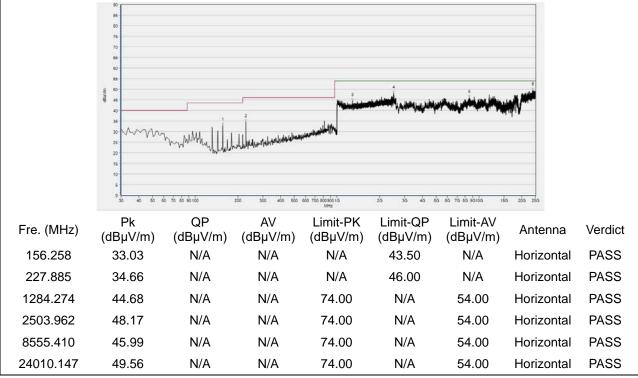
MORLAB


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

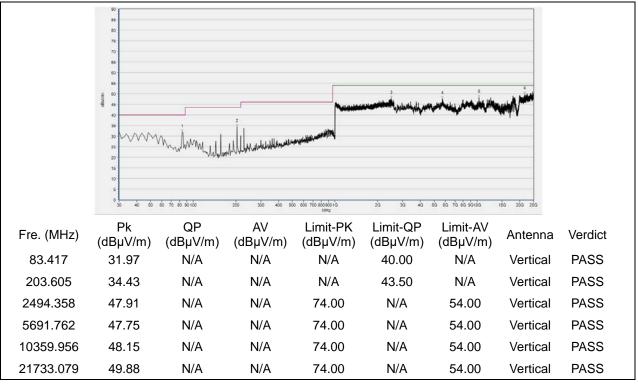
Plot for Channel = 39

(30MHz to 25GHz, Antenna Horizontal, $\pi/4$ -DQPSK, channel 39)

(30MHz to 25GHz, Antenna Vertical, $\pi/4$ -DQPSK, channel 39)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn


Fax: 86-755-36698525

Plot for Channel = 78

(30MHz to 25GHz, Antenna Horizontal, π /4-DQPSK, channel 78)

(30MHz to 25GHz, Antenna Vertical, π/4-DQPSK, channel 78)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Uncertainty
±5%
±2.22dB
±5%
±5%
±5%
±2.77 dB
±5%
±2.95dB
±2.44dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.					
Department:	Morlab Laboratory					
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang					
	Road, Block 67, BaoAn District, ShenZhen, GuangDong					
	Province, P. R. China					
Responsible Test Lab	Mr. Su Feng					
Manager:						
Telephone:	+86 755 36698555					
Facsimile:	+86 755 36698525					

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Name.	Morlab Laboratory
	FL.3, Building A, FeiYang Science Park, No.8 LongChang
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192, the test firm registration number is 226174.

4. Test Equipments Utilized

4.1 Conducted Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Bluetooth Base Station	6K00006210	MT8852B	Anritsu	2018.04.17	2019.04.16
Power Splitter	NW521	1506A	Weinschel	2018.04.17	2019.04.16
Attenuator 1	(N/A.)	10dB	Resnet	2018.04.17	2019.04.16
Attenuator 2	(N/A.)	3dB	Resnet	2018.04.17	2019.04.16
EXA Signal Analzyer	MY53470836	N9010A	Agilent	2017.12.03	2018.12.02
RF cable (30MHz-26GHz)	CB01	RF01	Morlab	N/A	N/A
Coaxial cable	CB02	RF02	Morlab	N/A	N/A
SMA connector	CN01	RF03	HUBER-SUHNER	N/A	N/A
Computer	T430i	Think Pad	Lenovo	N/A	N/A

4.2 List of Software Used

Description	Manufacturer	Software Version
Test system	Tonscend	V2.6
Power Panel	Agilent	V3.8
MORLAB EMCR V1.2	MORLAB	V 1.0

4.3 Radiated Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Receiver	MY54130016	N9038A	Agilent	2018.08.04	2019.08.03
Test Antenna - Bi-Log	9163-519	VULB 9163	Schwarzbeck	2018.05.18	2019.05.17
Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2018.03.03	2019.03.02
Test Antenna – Horn	01774	BBHA 9120D	Schwarzbeck	2018.08.06	2019.08.05
Test Antenna – Horn	BBHA9170 #774	BBHA9170	Schwarzbeck	2018.08.02	2019.08.01
Coaxial cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
1-18GHz pre-Amplifier	MA02	TS-PR18	Rohde& Schwarz	2018.05.08	2019.05.07
18-26.5GHz pre-Amplifier	MA03	TS-PR18	Rohde& Schwarz	2018.05.08	2019.05.07
Anechoic Chamber	N/A	9m*6m*6m	CRT	2017.11.19	2020.11.18

_____ END OF REPORT

_

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China