

 588 West Jindu Road, Xinqiao, Songjiang, 201612 Shanghai, China

 Telephone:
 +86 (0) 21 6191 5666

 Fax:
 +86 (0) 21 6191 5678

 ee.shanghai@sgs.com

Report No.: SHEM181000878202 Page: 1 of 25

TEST REPORT

Test Result:	Pass*
Date of Issue:	2018-10-29
Date of Test:	2018-10-22 to 2018-10-24
Date of Receipt:	2018-10-10
Standard(s) :	47 CFR Part 15, Subpart C 15.249
Model No.:	SW79777-4
EUT Name:	Synchronized Light Set
Equipment Under Test (EU)	Г):
	2, No.1919 Jiashan Dadao, Jiashan, Zhejiang, China China
Address of Manufacturer:	1, No.1, Renhuagong 10th Rd., Dali Dist., Taichuang 41278, Taiwan
	2, JIASHAN SHENGGUANG ELECTROONICS CO., LTD.
Manufacturer:	1, UNI-VICTOR INTERNATIONAL COPR.
Address of Applicant:	4902 Hammersley Road Madison, WI 53711 USA
Applicant:	Pacific Cycle
FCC ID:	2ABGLSW79777R
Application No.:	SHEM1810008782CR

* In the configuration tested, the EUT complied with the standards specified above.

E&E Section Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Branch

Report No.: SHEM181000878202 Page: 2 of 25

Revision Record			
Version	Description	Date	Remark
00	Original	2018-10-29	/

Authorized for issue by:			
	Bhil Wu	-	
	Bill Wu / Project Engineer		
	Parlam zhan	_	
	Parlam Zhan / Reviewer		

Branch

Report No.: SHEM181000878202 Page: 3 of 25

2 Test Summary

Radio Spectrum Technical Requirement				
Item	Standard	Method	Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C 15.249	N/A	47 CFR Part 15, Subpart C 15.203	Pass

Radio Spectrum Matter Part				
ltem	Standard	Method	Requirement	Result
20dB Bandwidth	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.9	47 CFR Part 15, Subpart C 15.215	Pass
Field Strength of the Fundamental Signal (15.249(a))	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.5&6.6	47 CFR Part 15, Subpart C 15.249(a)	Pass
Restricted Band Around Fundamental Frequency	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.4&6.5&6.6	47 CFR Part 15, Subpart C 15.205 & 15.249(d) & 15.209	Pass
Radiated Emissions	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.4&6.5&6.6	47 CFR Part 15, Subpart C 15.209 & 15.249 (a),(d)	Pass

Branch

Report No.: SHEM181000878202 Page: 4 of 25

3 Contents

			Page
1	1 COVER PAGE		1
2	2 TEST SUMMARY		3
-			
3	3 CONTENTS		4
4	4 GENERAL INFORMATION		5
	4.1 DETAILS OF E.U.T		5
	4.2 DESCRIPTION OF SUPPO	RT UNITS	5
	4.3 MEASUREMENT UNCERT	AINTY	5
	4.4 TEST LOCATION		6
	4.5 TEST FACILITY		6
	4.6 DEVIATION FROM STAND	ARDS	6
	4.7 ABNORMALITIES FROM S	TANDARD CONDITIONS	6
5	5 EQUIPMENT LIST		7
6			8
Ŭ			
	6.1 ANTENNA REQUIREMENT	Γ	8
	6.1.1 Test Requirement:		8
	6.1.2 Conclusion		8
7	7 RADIO SPECTRUM MATTE	ER TEST RESULTS	9
	7.1 20dB BANDWIDTH		9
	7.1.1 E.U.T. Operation		9
	7.1.2 Measurement Proc	edure and Data	9
	7.2 FIELD STRENGTH OF THE	E FUNDAMENTAL SIGNAL (15.249(A))	12
	7.2.1 E.U.T. Operation		
	7.2.2 Test Setup Diagram	1	
	7.2.3 Measurement Proc	edure and Data	
	7.3 RESTRICTED BAND ARO	UND FUNDAMENTAL FREQUENCY	14
	7.3.1 E.U.T. Operation	1	14
	7.3.2 Test Setup Diagram	i odure and Data	14 15
	7.4 RADIATED EMISSIONS		
	7.4.1 E.U.T Operation		20
	7.4.2 Test Setup Diagram		20
	7.4.3 Measurement Proc	edure and Data	21
8	8 TEST SETUP PHOTOGRA	PHS	25
9	9 EUT CONSTRUCTIONAL D	DETAILS	
-			

Branch

Report No.: SHEM181000878202 Page: 5 of 25

4 General Information

4.1 Details of E.U.T.

Power supply:	DC 3V By 2*AAA size alkaline batteries
Test voltage:	DC 3V
Modulation Type	GFSK
Number of Channels	3
Channel List:	2403MHz, 2440MHz, 2478MHz
Antenna Type	PCB Antenna
Antenna Gain	0dBi

4.2 Description of Support Units

The EUT has been tested as an independent unit.

4.3 Measurement Uncertainty

No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.25 x 10-8
2	Timeout	2s
3	Duty cycle	0.37%
4	Occupied Bandwidth	3%
5	RF conducted power	0.75dB
6	RF power density	2.84dB
7	Conducted Spurious emissions	0.75dB
0	DE Dedicted power	4.5dB (Below 1GHz)
0	RF Radiated power	4.8dB (Above 1GHz)
		4.2dB (Below 30MHz)
0	Dedicted Sourious emission test	4.4dB (30MHz-1GHz)
9	Radiated Spurious emission test	4.6dB (1GHz-18GHz)
		5.2dB (Above 18GHz)
10	Temperature test	1°C
11	Humidity test	3%
12	Supply voltages	1.5%
13	Time	3%

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: SHEM181000878202 Page: 6 of 25

4.4 Test Location

All tests were performed at: SGS-CSTC Standards Technical Services Co., Ltd. Shanghai Branch 588 West Jindu Road, Xinqiao, Songjiang, 201612 Shanghai, China Tel: +86 21 6191 5666 Fax: +86 21 6191 5678 No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L0599)

CNAS has accredited SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• NVLAP (Certificate No. 201034-0)

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. is accredited by the National Voluntary Laboratory Accreditation Program(NVLAP). Certificate No. 201034-0.

• FCC – Designation Number: CN5033

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been recognized as an accredited testing laboratory.

Designation Number: CN5033. Test Firm Registration Number: 479755.

• Industry Canada (IC) – IC Assigned Code: 8617A

The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 8617A-1.

• VCCI (Member No.: 3061)

The 3m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-13868, C-14336, T-12221, G-10830 respectively.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Branch

Report No.: SHEM181000878202 Page: 7 of 25

5 Equipment List

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Conducted Test					
Spectrum Analyzer	R&S	FSP-30	SHEM002-1	2017-12-20	2018-12-19
Spectrum Analyzer	Agilent	N9020A	SHEM181-1	2018-08-13	2019-08-12
Signal Generator	R&S	SMR20	SHEM006-1	2018-08-13	2019-08-12
Signal Generator	Agilent	N5182A	SHEM182-1	2018-08-13	2019-08-12
Communication Tester	R&S	CMW270	SHEM183-1	2018-08-13	2019-08-12
Switcher	Tonscend	JS0806	SHEM184-1	2018-08-13	2019-08-12
Power Sensor	Keysight	U2021XA * 4	SHEM184-1	2018-08-13	2019-08-12
Splitter	Anritsu	MA1612A	SHEM185-1	/	/
Coupler	e-meca	803-S-1	SHEM186-1	/	/
High-low Temp Cabinet	Suzhou Zhihe	TL-40	SHEM087-1	2017-09-25	2020-09-24
AC Power Stabilizer	WOCEN	6100	SHEM045-1	2017-12-26	2018-12-25
DC Power Supply	QJE	QJ30003SII	SHEM046-1	2017-12-26	2018-12-25
Conducted test Cable	/	RF01~RF04	/	2017-12-26	2018-12-25
Radiated Test					
EMI test Receiver	R&S	ESU40	SHEM051-1	2017-12-20	2018-12-19
Spectrum Analyzer	R&S	FSP-30	SHEM002-1	2017-12-20	2018-12-19
Loop Antenna (9kHz-30MHz)	Schwarzbeck	FMZB1519	SHEM135-1	2017-04-10	2020-04-09
Antenna (25MHz-2GHz)	Schwarzbeck	VULB9168	SHEM048-1	2017-02-28	2020-02-27
Antenna (25MHz-3GHz)	Schwarzbeck	HL562	SHEM010-1	2017-02-28	2020-02-27
Horn Antenna (1-8GHz)	Schwarzbeck	HF906	SHEM009-1	2017-10-24	2020-10-23
Horn Antenna (1-18GHz)	Schwarzbeck	BBHA9120D	SHEM050-1	2017-01-14	2020-01-13
Horn Antenna (14-40GHz)	Schwarzbeck	BBHA 9170	SHEM049-1	2017-12-03	2020-12-02
Pre-amplifier (9KHz-2GHz)	CLAVIIO	BDLNA-0001	SHEM164-1	2018-08-13	2019-08-12
Pre-amplifier (1-18GHz)	CLAVIIO	BDLNA-0118	SHEM050-2	2018-08-13	2019-08-12
High-amplifier (14-40GHz)	Schwarzbeck	10001	SHEM049-2	2017-12-20	2018-12-19
Signal Generator	R&S	SMR40	SHEM058-1	2018-08-13	2019-08-12
Band Filter	LORCH	9BRX-875/X150	SHEM156-1	/	/
Band Filter	LORCH	13BRX-1950/X500	SHEM083-2	/	/
Band Filter	LORCH	5BRX-2400/X200	SHEM155-1	/	/
Band Filter	LORCH	5BRX-5500/X1000	SHEM157-2	/	/
High pass Filter	Wainwright	WHK3.0/18G	SHEM157-1	/	/
High pass Filter	Wainwright	WHKS1700	SHEM157-3	/	/
Semi/Fully Anechoic	ST	11*6*6M	SHEM078-2	2017-07-22	2020-07-21
RE test Cable	/	RE01, RE02, RE06	/	2017-12-26	2018-12-25

Report No.: SHEM181000878202 Page: 8 of 25

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 Limit:

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently

attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is PCB antenna and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No.: SHEM181000878202 Page: 9 of 25

7 Radio Spectrum Matter Test Results

7.1 20dB Bandwidth

Test Requirement	47 CFR Part 15, Subpart C 15.215
Test Method:	ANSI C63.10 (2013) Section 6.9
Limit:	N/A

7.1.1 E.U.T. Operation

Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modeb:TX mode_Keep the EUT in transmitting with modulation mode.

7.1.2 Measurement Procedure and Data

СН	Frequency (MHz)	Bandwidth (MHz)	Result
Low	2403	0.55	PASS
Mid	2440	0.52	PASS
High	2478	0.56	PASS

Report No.: SHEM181000878202 Page: 10 of 25

Report No.: SHEM181000878202 Page: 11 of 25

Report No.: SHEM181000878202 Page: 12 of 25

7.2 Field Strength of the Fundamental Signal (15.249(a))

Test Requirement	47 CFR Part 15, Subpart C 15.249(a)
Test Method:	ANSI C63.10 (2013) Section 6.5&6.6
Limit:	

Fundamental frequency(MHz)	Field strength of fundamental(microvolts/meter)	Field strength of harmonics(microvolts/meter)
902-928	50	500
2400-2483.5	50	500
5725-5875	50	500
24000-24250	250	2500

Remark: The frequencies above 1000MHz are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

7.2.1 E.U.T. Operation

Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modeb:TX mode_Keep the EUT in transmitting with modulation mode.

7.2.2 Test Setup Diagram

Report No.: SHEM181000878202 Page: 13 of 25

7.2.3 Measurement Procedure and Data

Branch

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Channel	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
Lowoot	78.54	-3.92	74.62	94	-19.38	Horizontal
Lowest	82.85	-3.92	78.93	94	-15.07	Vertical
Middle	75.71	-3.96	71.75	94	-22.25	Horizontal
widdle	79.77	-3.96	75.81	94	-18.19	Vertical
Highest	76.38	-4.00	72.38	94	-21.62	Horizontal
	79.60	-4.00	75.60	94	-18.40	Vertical

Peak value:

Remark:

 The basic equation with a sample calculation is as follows: Level = Read Level + Factor. (The Factor is calculated by adding the Antenna Factor, Cable Loss and Preamp Factor)

2) If the Peak value below the AV Limit, the AV test doesn't perform for this submission.

Report No.: SHEM181000878202 Page: 14 of 25

7.3 Restricted Band Around Fundamental Frequency

Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.249(d) & 15.209
Test Method:	ANSI C63.10 (2013) Section 6.4&6.5&6.6
Limit:	

Frequency	Limit (dBuV/m @3m)	Remark					
30MHz-88MHz	40.0	Quasi-peak Value					
88MHz-216MHz	43.5	Quasi-peak Value					
216MHz-960MHz	46.0	Quasi-peak Value					
960MHz-1GHz	54.0	Quasi-peak Value					
Above 1GHz	54.0	Average Value					
Above 1GHz	74.0	Peak Value					
Emission radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.							

7.3.1 E.U.T. Operation

Operating Environment:

Temperature:	22	°C	Humidity:	50	% RH	Atmospheric Pressure:	1002	mbar
Test mode	b:T)	X mode_K	eep the EUT	in tra	nsmitting w	vith modulation mode.		

7.3.2 Test Setup Diagram

Report No.: SHEM181000878202 Page: 15 of 25

7.3.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Report No.: SHEM181000878202 Page: 16 of 25

Mode:b; Polarization:Horizontal; Modulation:GFSK; ; Channel:Low

Antenna Polarity :HORIZONTAL

Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limit Line	Over Limit	Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2366.18	45.96	26.00	0.00	37.36	34.60	74.00	-39.40	Peak
2390.00	44.20	26.03	0.00	37.36	32.87	74.00	-41.13	Peak
2403.07	74.75	26.05	0.00	37.35	63.45	74.00	-10.55	Peak

Report No.: SHEM181000878202 Page: 17 of 25

Mode:b; Polarization:Vertical; Modulation:GFSK; ; Channel:Low

Antenna Polarity :VERTICAL

Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limit Line	Over Limit	Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2377.64	46.33	26.02	0.00	37.36	34.99	74.00	-39.01	Peak
2390.00	44.77	26.03	0.00	37.36	33.44	74.00	-40.56	Peak
2403.17	82.55	26.05	0.00	37.35	71.25	74.00	-2.75	Peak

Report No.: SHEM181000878202 Page: 18 of 25

Mode:b; Polarization:Horizontal; Modulation:GFSK; ; Channel:High

Antenna Polarity :HORIZONTAL

Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limit Line	Over Limit	Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	Peak
2478.11	75.11	26.17	0.00	37.49	63.79	74.00	-10.21	
2483.50	44.10	26.18	0.00	37.51	32.77	74.00	-41.23	Peak
2492.05	45.74	26.19	0.00	37.52	34.41	74.00	-39.59	Peak

Note:Emission Level=Read Level+Antenna Factor+Cable loss-Preamp Factor

Report No.: SHEM181000878202 Page: 19 of 25

Mode:b; Polarization:Vertical; Modulation:GFSK; ; Channel:High

Antenna Polarity :VERTICAL

Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limit Line	Over Limit	Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2478.11	81.00	26.17	0.00	37.49	69.68	74.00	-4.32	Peak
2483.50	39.49	26.18	0.00	37.51	28.16	74.00	-45.84	Peak
2485.29	40.58	26.18	0.00	37.51	29.25	74.00	-44.75	Peak

Report No.: SHEM181000878202 Page: 20 of 25

7.4 Radiated Emissions

Test Requirement	47 CFR Part 15, Subpart C 15.209 & 15.249 (a),(d)
Test Method:	ANSI C63.10 (2013) Section 6.4&6.5&6.6
Limit:	

Frequency(MHz)	Field strength (microvolts/meter)	Limit (dBuV/m)	Detector	Measurement Distance (meters)
0.009-0.490	2400/F(kHz)	-	-	300
0.490-1.705	24000/F(kHz)	-	-	30
1.705-30	30	-	-	30
30-88	100	40.0	QP	3
88-216	150	43.5	QP	3
216-960	200	46.0	QP	3
960-1000	500	54.0	QP	3
Above 1000	500	54.0	AV	3

7.4.1 E.U.T. Operation

Operating Environment:

Humidity: 50 % RH Temperature: 22 °C Atmospheric Pressure: 1002 mbar Test mode b:TX mode_Keep the EUT in transmitting with modulation mode.

7.4.2 Test Setup Diagram

Report No.: SHEM181000878202 Page: 21 of 25

7.4.3 Measurement Procedure and Data

Branch

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown

Branch

Report No.: SHEM181000878202 Page: 22 of 25

Below 1GHz

Mode:b; Polarization:Horizontal

Report No.: SHEM181000878202 Page: 23 of 25

Mode:b; Polarization:Vertical

Antenna Polarity :VERTICAL

		Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
1	38.48	37.86	16.17	0.22	43.69	10.56	40.00	-29.44	QP
2	43.66	38.12	14.07	0.23	43.71	8.71	40.00	-31.29	QP
3	60.70	37.35	12.52	0.30	43.75	6.42	40.00	-33.58	QP
4	129.47	38.06	12.68	0.58	43.74	7.58	43.50	-35.92	QP
5	163.18	37.36	12.60	0.64	43.76	6.84	43.50	-36.66	QP
6	289.00	38.51	12.84	0.83	43.70	8.48	46.00	-37.52	QP

Report No.: SHEM181000878202 Page: 24 of 25

Above 1GHz	arization	Horizontal:	Modulation:	SESK··C	hannel l ow	
Frequency	RX R	Factor	Emission	Limit	Over Limit	Detector
MHz	 dBuV	dB	dBuV/m	dBuV/m	dB	
7838.5	37.16	12.33	49.49	54	-4.51	peak
9894.75	36.95	14.39	51.34	54	-2.66	peak
12068.5	37.81	13.72	51.53	54	-2.47	peak
Madath, Delavisation) (artical, Madulatian OFO) (Observable)						
Mode:D; Pola	arization:	Factor	Gulation:GF	SK; ; Cha	nnel:Low	Dotoctor
MU-			dBu\//m	dBu\//m		Delector
			42.00			naak
1105.75	74.89	-31.8	43.09	54	-10.91	peak
4959.75	69.40	-26.12	43.28	54	-10.72	реак
12127.25	63.36	-24.57	38.79	54	-15.21	реак
Mode:b; Polarization:Horizontal; Modulation:GFSK; ; Channel:middle						
Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
7662.25	38.21	12.07	50.28	54	-3.72	peak
10846.5	37.47	14.5	51.97	54	-2.03	peak
12162.5	38.10	13.77	51.87	54	-2.13	peak
Maderine Delarization: Vartical: Madulation: CESK: Channel middle						
Frequency	RX R	Factor	Emission	I imit	Over Limit	Detector
MH ₇	dBuV	dB	dBuV/m	dBu\//m	dB	Deteotor
1100 75	72.96	-31.81	/1 15	54	-12.85	neak
5800 75	64 27	-27.67	36.6	54	-17 /0	peak
14575	62.00	-27.07	20.0	54	-17.40	peak
11575	62.00	-23.97	30.03	54	-15.97	реак
Mode:b; Polarization:Horizontal; Modulation:GFSK; ; Channel:High						
Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
7732.75	37.45	12.17	49.62	54	-4.38	peak
9918.25	35.67	14.4	50.07	54	-3.93	peak
11610.25	37.71	14.16	51.87	54	-2.13	peak
Mode:b; Polarization:Vertical; Modulation:GFSK; ; Channel:High						
Frequencv	RX R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1246.75	72.46	-31.69	40.77	54	-13.23	peak
5265.25	64.60	-27.58	37.02	54	-16.98	peak
12174.25	61.52	-24.48	37.04	54	-16.96	peak

Report No.: SHEM181000878202 Page: 25 of 25

8 Test Setup Photographs

Refer to the <Test Setup photos FCC>.

9 EUT Constructional Details

Refer to the < External Photos > & < Internal Photos >.

- End of the Report -