

TEST REPORT

APPLICANT	: Reliance Communications LL	С
PRODUCT NAME	: Orbic TAB8 4G	
MODEL NAME	: RC8L1T	
BRAND NAME	: Orbic	
FCC ID	: 2ABGH-RC8L1T	
STANDARD(S)	47 CFR Part 2 47 CFR Part 22 Subpart H 47 CFR Part 24 Subpart E 47 CFR Part 27 Subpart L	
RECEIPT DATE	: 2022-04-13	
TEST DATE	: 2022-05-07 to 2022-07-24	
ISSUE DATE	: 2022-11-17	

Edited by:

Yong Nii

Peng Mi (Rapporteur)

Approved by:

Shen Junsheng (Supervisor)

NOTE: This document is issued by Shenzhen Morlab Communications Technology Co., Ltd., the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

DIRECTORY

1. Technical Information 3
1.1. Applicant and Manufacturer Information 3
1.2. Equipment Under Test (EUT) Description 3
1.3. Maximum E.R.P./E.I.R.P. and Emission Designator5
1.4. Test Standards and Results ······ 6
1.5. Environmental Conditions ······7
2. 47 CFR Part 2, Part 22H , 24E&27L Requirements ······ 8
2.1. Conducted RF Output Power 8
2.2. Peak to Average Ratio12
2.3. Occupied Bandwidth ······16
2.4. Frequency Stability ······21
2.5. Conducted Out of Band Emissions ······24
2.6. Band Edge ·······28
2.7. Determining E.R.P. and/or E.I.R.P. from conducted RF output power measurements
2.8. Radiated Out of Band Emissions35
Annex A Test Uncertainty47
Annex B Testing Laboratory Information48

Change History			
Version Date Reason for change			
1.0 2022-11-17		First edition	

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	Reliance Communications LLC	
Applicant Address:	1560 Fifth Ave BayShore, NY 11706	
Manufacturer:	Unimaxcomm	
Manufacturer Address:	35F, HBC HuiLong Center Building-II Minzhi Street, Longhua,	
Manufacturer Address:	Shenzhen, P.R. China 518110	

1.2. Equipment Under Test (EUT) Description

Product Name:	Orbic TAB8 4G		
Sample No.:	3#		
Hardware Version:	V1.0		
Software Version:	ORB8L1T_v1.0.1_	BVT-NA	
	WCDMA Mode with	n QPSK Modulation	
Modulation Type:	HSDPA/DC- HSDP	A Mode with QPSK Modulation	
Modulation Type:	HSUPA Mode with	QPSK Modulation	
	HSPA+ Mode with 16QAM Modulation		
	WCDMA Band V	Tx: 824MHz-849MHz	
		Rx: 869MHz-894MHz	
Onersting Frequency Dense	WCDMA Band IV	Tx: 1710MHz-1755MHz	
Operating Frequency Range:		Rx: 2110MHz-2155MHz	
		Tx: 1850MHz-1910MHz	
	WCDMA Band II	Rx: 1930MHz-1990MHz	
Antenna Type:	Fixed Internal Antenna		
	WCDMA Band V:	-1.12dBi	
Antenna Gain:	WCDMA Band IV:	0.35dBi	
	WCDMA Band II:	2.25dBi	

	Battery		
	Brand Name:	N/A	
	Model No.:	BTE-4301	
	Serial No.:	N/A	
	Capacity:	4300mAh	
	Rated Voltage:	3.80V	
	Charge Limit:	4.35V	
Accessory Information:	Manufacturer:	Guangdong Fenghua New Energy	
Accessory mornation.		Co.,Ltd.	
	AC Adapter		
	Brand Name:	N/A	
	Model No.:	TPA-23A050200UU01	
	Serial No.:	N/A	
	Rated Output:	5V==2A	
	Rated Input:	100-240V~50/60Hz, 0.3A	
	Manufacturer:	Shenzhen Tianyin Electronics Co.,Ltd.	

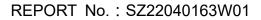
Note 1: The transmitter (Tx) frequency arrangement of the WCDMA Band V used by the EUT can be represented with the formula F(n)=826.4+0.2*(n-4132), 4132<=n<=4233; the lowest, middle and highest channel numbers (ARFCHs) used and tested in this report are separately 4132 (826.4MHz), 4182(836.4MHz) and 4233 (846.6MHz).

Note 2: The transmitter (Tx) frequency arrangement of the WCDMA IV band used by the EUT can be represented with the formula F(n)=1712.4+0.2*(n-1312), 1312<=n<=1513; the lowest, middle and highest channel numbers (ARFCHs) used and tested in this report are separately 1312 (1712.4MHz), 1413 (1732.6MHz) and 1513 (1752.6MHz).

Note 3: The transmitter (Tx) frequency arrangement of the WCDMA Band II used by the EUT can be represented with the formula F(n)=1852.4+0.2*(n-9262), 9262<=n<=9538; the lowest, middle and highest channel numbers (ARFCHs) used and tested in this report are separately 9262 (1852.4MHz), 9400 (1880MHz) and 9538 (1907.6MHz).

Note 4: All test modes and data rates were considered and evaluated respectively by performing full test. Test modes are chosen to be reported as the worst case below:

WCDMA mode for WCDMA band V;


WCDMA mode for WCDMA band IV;

WCDMA mode for WCDMA band II;

Note 5: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.3. Maximum E.R.P./E.I.R.P. and Emission Designator

Test Mode	Maximum E.R.P./E.I.R.P. (W)	Emission Designator
WCDMA Band V	0.089	4M15F9W
WCDMA Band IV	0.230	4M15F9W
WCDMA Band II	0.307	4M16F9W

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn

1.4. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 2, Part 22, Part 24 and Part 27 for the EUT FCC ID Certification:

entity Document Title		
47 CEP Dort 2 (10.1.12 Edition)	Frequency Allocations and Radio Treaty Matters;	
47 CFR Fall 2 (10-1-12 Edition)	General Rules and Regulations	
47 CFR Part 22 (10-1-12 Edition)	Public Mobile Services	
47 CFR Part 24 (10-1-12 Edition)	Personal Communications Services	
47 CFR Part 27 (10-1-12 Edition)) Miscellaneous Wireless Communications Services	
	47 CFR Part 24 (10-1-12 Edition)	

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Test Date	Test Engineer	Result	Method determination/ Remark
1	2.1046	Conducted RF Output Power	May 11, 2022	Chen Hao	PASS	No deviation
2	24.232(d)	Peak -Average Ratio	May 11, 2022	Li Huaijie	PASS	No deviation
3	2.1049	Occupied Bandwidth	May 11, 2022	Li Huaijie	PASS	No deviation
4	2.1055, 22.355, 24.235, 27.54	Frequency Stability	May 11, 2022	Li Huaijie	PASS	No deviation
5	2.1051, 22.917(a), 24.238(a), 27.53(h)	Conducted Out of Band Emissions	May 11, 2022	Li Huaijie	PASS	No deviation
6	2.1051, 22.917(a), 24.238(a), 27.53(h)	Band Edge	May 07, 2022	Li Huaijie	PASS	No deviation
7	22.913(a), 24.232(c) 27.50(d)	Transmitter Radiated Power (EIPR/E.R.P.)	May 11, 2022	Li Huaijie	PASS	No deviation
8	2.1053, 22.917(a),	Radiated Out of Band	Jul. 24, 2022	Gao Jianrou	PASS	No deviation

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

24.238(a),	Emissions		
27.53(h)			

Note 1: The tests were performed according to the method of measurements prescribed in KDB971168 D01 v03r01 and ANSI/TIA-603-E-2016.

Note 2: The path loss during the RF test is calibrated to correct the results by the offset setting in the test equipments. The ref offset 24.5dB contains two parts that cable loss 14.5dB and Attenuator 10dB.

Note 3: Additions to, deviation, or exclusions from the method shall be judged in the "method determination" column of add, deviate or exclude from the specific method shall be explained in the "Remark" of the above table.

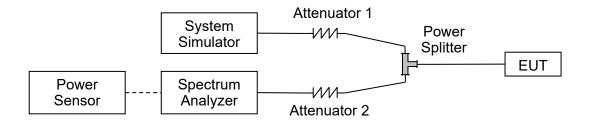
Note 4: When the test result is a critical value, we will use the measurement uncertainty give the judgment result based on the 95% confidence intervals.

1.5. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15-35
Relative Humidity (%):	30-60
Atmospheric Pressure (kPa):	86-106

2.47 CFR Part 2, Part 22H , 24E&27L Requirements


2.1. Conducted RF Output Power

2.1.1.Requirement

According to FCC section 2.1046(a), for transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in FCC section 2.1033(c)(8).

2.1.2.Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

2.1.3.Test Results

WCDMA Band V	Average Power (dBm)		
TX Channel	4132	4182	4233
Frequency (MHz)	826.4	836.4	846.6
RMC 12.2Kbps	22.65	22.75	22.71
HSDPA Subtest-1	21.85	21.68	21.76
HSDPA Subtest-2	21.98	21.80	21.82
HSDPA Subtest-3	21.31	21.29	21.34
HSDPA Subtest-4	21.39	21.21	21.35
DC-HSDPA Subtest-1	21.80	21.46	21.39
DC-HSDPA Subtest-2	21.73	21.40	21.51
DC-HSDPA Subtest-3	21.29	20.92	21.07
DC-HSDPA Subtest-4	21.22	20.91	21.03
HSUPA Subtest-1	21.67	21.64	21.79
HSUPA Subtest-2	21.05	21.04	21.31
HSUPA Subtest-3	21.72	21.68	21.83
HSUPA Subtest-4	21.51	21.62	21.78
HSUPA Subtest-5	21.62	21.77	21.83
HSPA+ (16QAM) Subtest-1	21.34	21.24	21.36

Tel: 86-755-36698555 Http://www.morlab.cn

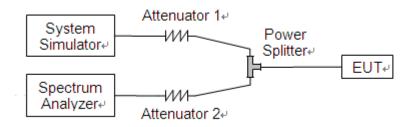
WCDMA Band IV		Average Power (dBm)
TX Channel	1312	1413	1513
Frequency (MHz)	1712.4	1732.6	1752.6
RMC 12.2Kbps	23.15	23.26	23.23
HSDPA Subtest-1	22.28	22.39	22.46
HSDPA Subtest-2	22.52	22.38	22.44
HSDPA Subtest-3	22.13	21.89	22.05
HSDPA Subtest-4	22.01	21.89	21.94
DC-HSDPA Subtest-1	22.13	22.08	22.26
DC-HSDPA Subtest-2	22.09	22.29	22.33
DC-HSDPA Subtest-3	21.71	21.72	21.81
DC-HSDPA Subtest-4	21.61	21.61	21.79
HSUPA Subtest-1	22.13	22.08	22.18
HSUPA Subtest-2	21.56	21.61	21.60
HSUPA Subtest-3	22.21	22.19	22.06
HSUPA Subtest-4	21.95	21.98	22.07
HSUPA Subtest-5	22.20	22.11	22.14
HSPA+ (16QAM) Subtest-1	21.88	21.61	21.69

Tel: 86-755-36698555 Http://www.morlab.cn

WCDMA Band II		Average Power (dBm)
TX Channel	9262	9400	9538
Frequency (MHz)	1852.4	1880.0	1907.6
RMC 12.2Kbps	22.61	22.62	22.58
HSDPA Subtest-1	21.82	21.75	21.77
HSDPA Subtest-2	21.80	21.76	21.74
HSDPA Subtest-3	21.31	21.27	21.24
HSDPA Subtest-4	21.31	21.19	21.24
DC-HSDPA Subtest-1	21.57	21.54	21.50
DC-HSDPA Subtest-2	21.55	21.53	21.59
DC-HSDPA Subtest-3	21.06	21.03	21.00
DC-HSDPA Subtest-4	21.07	21.04	21.00
HSUPA Subtest-1	21.40	21.42	21.57
HSUPA Subtest-2	20.92	20.93	21.08
HSUPA Subtest-3	21.41	21.44	21.46
HSUPA Subtest-4	21.41	21.44	21.48
HSUPA Subtest-5	21.50	21.53	21.47
HSPA+ (16QAM) Subtest-1	20.97	20.89	21.01

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn


2.2. Peak to Average Ratio

2.2.1.Requirement

According to FCC 24.232(d) and 27.50(d), the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

2.2.2.Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

2.2.3.Test procedure

- 1 .For GSM/EDGE operating mode:
- a. Set RBW=1MHz, VBW=3MHz, peak detector in spectrum analyzer.
- b. Set EUT in maximum output power, and triggered the bust signal.
- c. Measured respectively the peak level and mean level, and the deviation was recorded as Peak to Average ratio.
- 2. For UMTS operating mode:
- a. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- b. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1%.

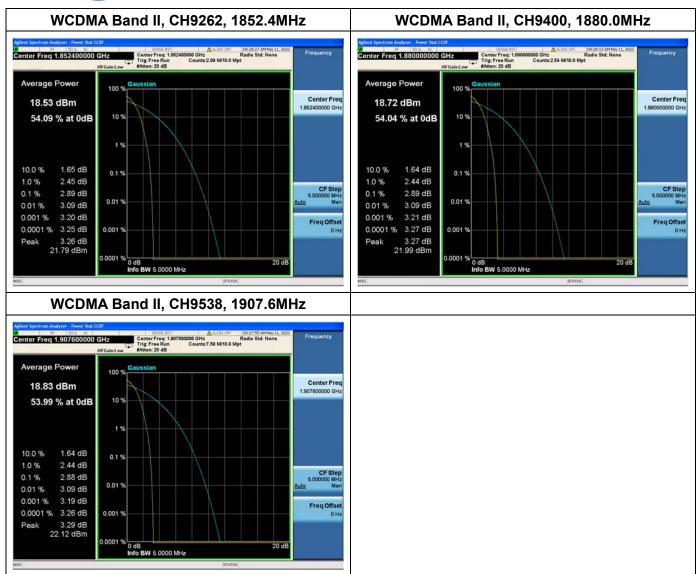
2.2.4.Test Result

The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the Module.

A. Test Verdict:

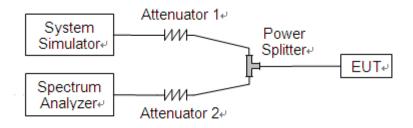
	WCDMA Band IV								
Mode	Mode Channel S		Limit (dB)	Verdict					
	1312	1712.4	2.83		PASS				
WCDMA	1413	1732.6	2.93	13	PASS				
	1513	1752.6	2.89		PASS				

	WCDMA Band II								
Mode	Channel	Frequency (MHz)	Peak to Average ratio (dB)	Limit (dB)	Verdict				
	9262	1852.4	2.89		PASS				
WCDMA	9400	1880.0	2.89	13	PASS				
	9538	1907.6	2.88		PASS				



Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn


2.3. Occupied Bandwidth

2.3.1.Requirement

According to FCC section 2.1049, the occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission. Occupied bandwidth is also known as the 99% emission bandwidth.

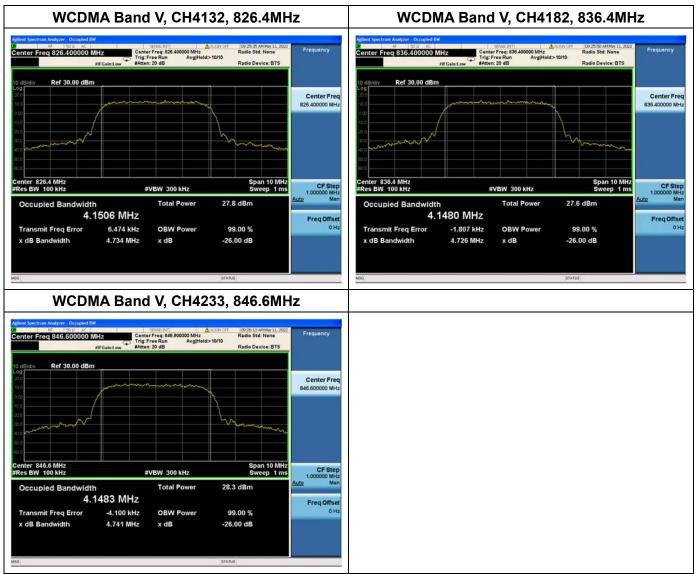
2.3.2.Test Description

Test Setup:

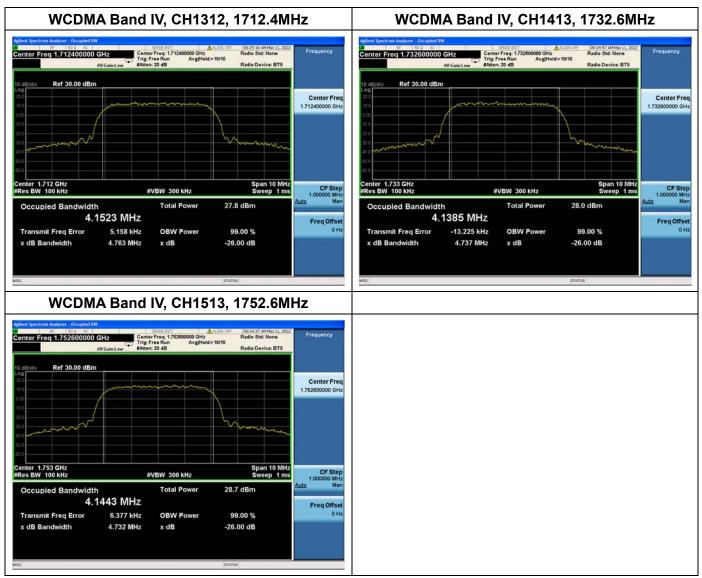
The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

2.3.3.Test Result

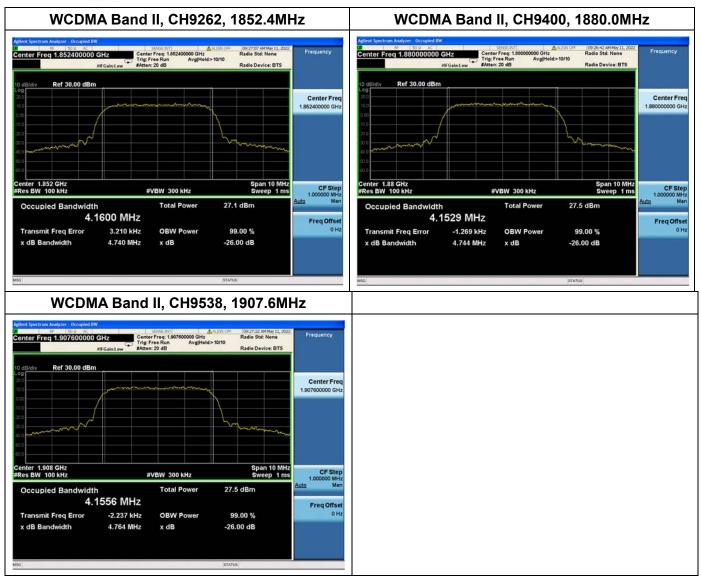
WCDMA Band V								
Mode	Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	26dB Bandwidth (MHz)				
	4132	826.4	4.15	4.73				
WCDMA	4182	836.4	4.15	4.73				
	4233	846.6	4.15	4.74				

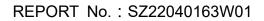

WCDMA Band IV							
Mode	Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	26dB Bandwidth (MHz)			
	1312	1712.4	4.15	4.76			
WCDMA	1413	1732.6	4.14	4.74			
	1513	1752.6	4.14	4.73			

WCDMA Band II								
Mode Channel		Channel Frequency 99% Occupie (MHz) (M		26dB Bandwidth (MHz)				
	9262	1852.4	4.16	4.74				
WCDMA	9400	1880.0	4.15	4.74				
	9538	1907.6	4.16	4.76				



Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn



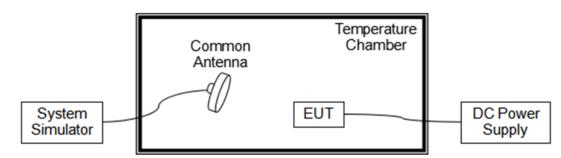

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

2.4. Frequency Stability

2.4.1.Requirement

According to FCC section 22.355, 24.235 and 27.54 the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. According to FCC section 2.1055, the test conditions are:


(a) The temperature is varied from -20°C to +70°C at intervals of not more than 10°C.

(b) For hand carried battery powered equipment, the primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacture. The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

Note: The operating temperature of EUT is from 0°C to 49°C, which are specified by the applicant.

2.4.2.Test Description

Test Setup:

The EUT, which is powered by the DC Power Supply directly, is located in the Temperature Chamber. The EUT is commanded by the System Simulator (SS) to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS via a Common Antenna.

2.4.3.Test Result

The nominal, highest and lowest extreme voltages are separately 3.80V, 4.35V and 3.65V, which are specified by the applicant; the normal temperature here used is 20°C.

	WCDMA Band V, CH4182, 836.4MHz								
	Limit =±2.5ppm								
Voltage (%)	Power (VDC)	Temp (°C)	Fre. Dev. (Hz)	Deviation (ppm)	Result				
Normal		+20(Ref)	55	0.066					
Normal		0	45	0.054					
Normal		+10	-30	-0.036					
Normal	3.80	+20	18	0.022					
Normal		+30	-45	-0.054	PASS				
Normal		+40	25	0.030					
Normal		+49	16	0.019					
High	4.35	+20	56	0.067]				
BATT.ENDPOINT	3.65	+20	37	0.044					

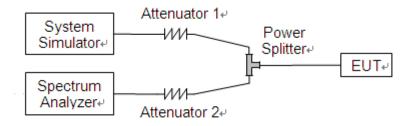
	WCDMA Band IV, CH1413, 1732.6MHz								
	Limit =Within Authorized Band								
Voltage (%)	Power (VDC)	Temp (°C)	Fre. Dev.	Deviation	Result				
voltage (70)	Power (VDC)	Temp (C)	(Hz)	(ppm)	Result				
Normal		+20(Ref)	-22	-0.013					
Normal		0	44	0.025					
Normal		+10	19	0.011					
Normal	3.80	+20	43	0.025					
Normal		+30	20	0.012	PASS				
Normal		+40	-24	-0.014					
Normal		+49	-33	-0.019]				
High	4.35	+20	26	0.015]				
BATT.ENDPOINT	3.65	+20	21	0.012]				

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

	WCDMA Band II, CH9400, 1880.0MHz Limit =Within Authorized Band							
Voltage (%)	Power (VDC)	Temp (°C)	Fre. Dev. (Hz)	Deviation (ppm)	Result			
Normal		+20(Ref)	14	0.007				
Normal		0	51	0.027				
Normal		+10	26	0.014				
Normal	3.80	+20	-56	-0.030				
Normal		+30	-27	-0.014	PASS			
Normal		+40	29	0.015				
Normal		+49	49	0.026				
High	4.35	+20	-32	-0.017				
BATT.ENDPOINT	3.65	+20	41	0.022				

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn

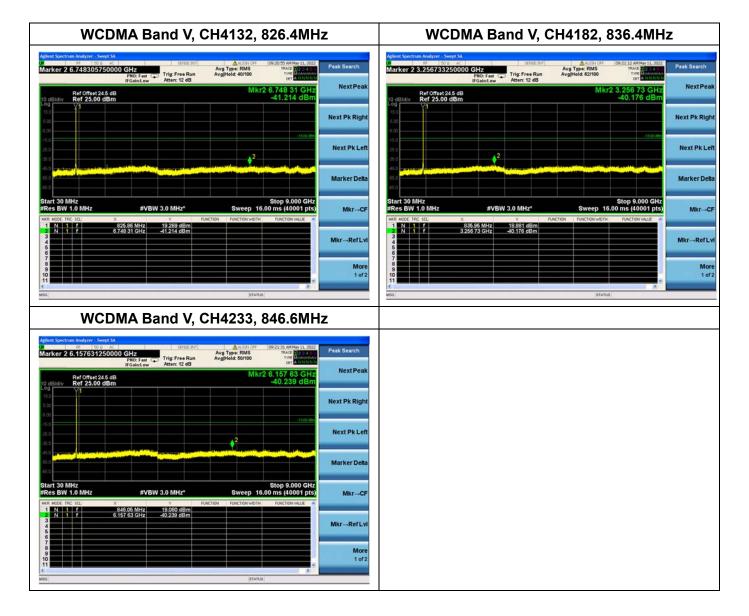

2.5. Conducted Out of Band Emissions

2.5.1.Requirement

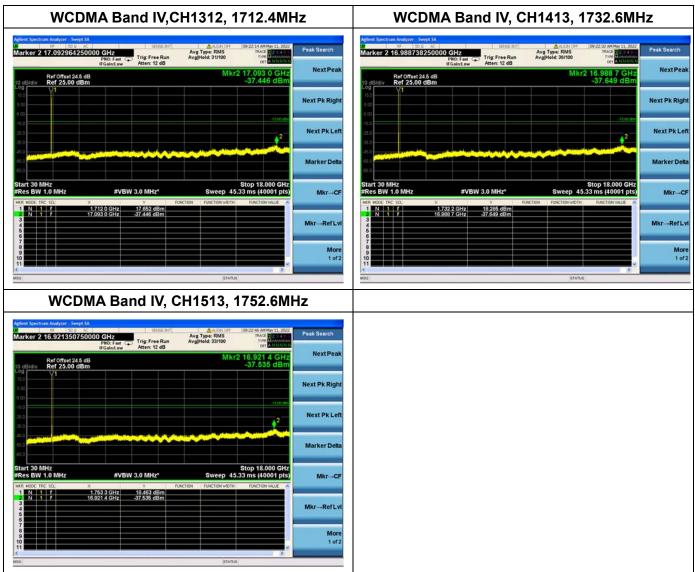
According to FCC section 22.917(a), 24.238(a) and 27.53(h) the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm. The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency.

2.5.2.Test Description

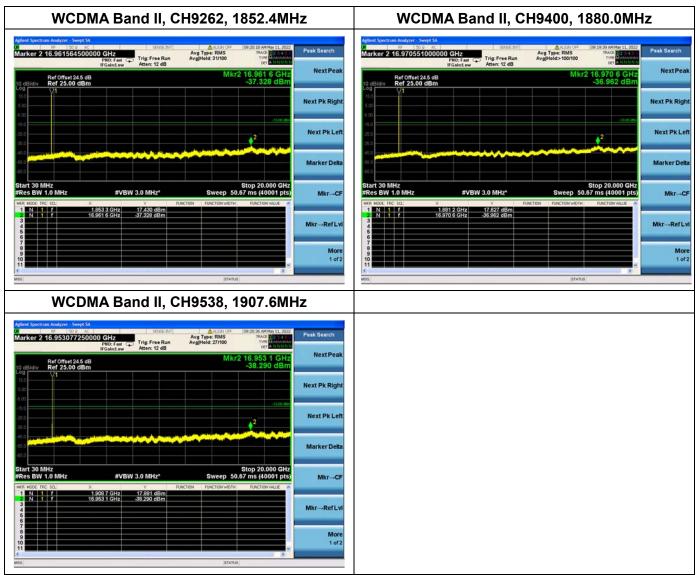
Test Setup:


The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

2.5.3.Test Result

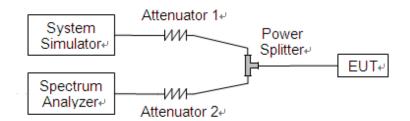


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn



Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn



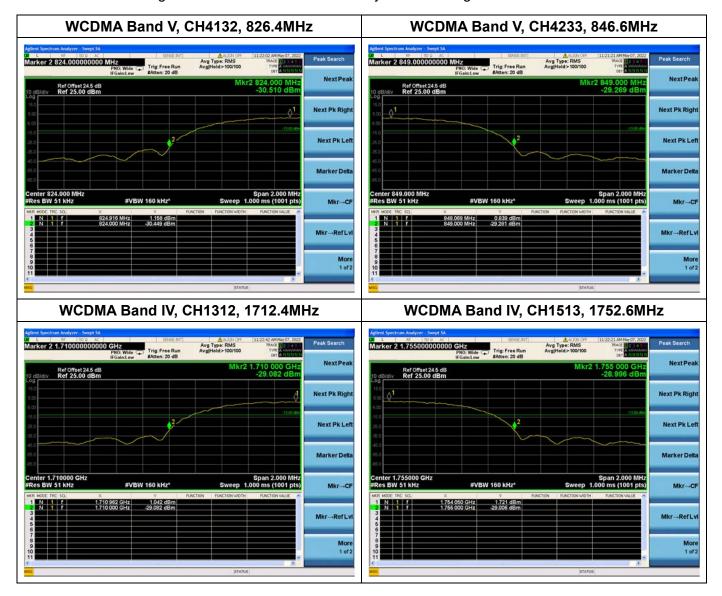
2.6.1.Requirement

According to FCC section 22.917(a), 24.238(a) and 27.53(h) the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB.

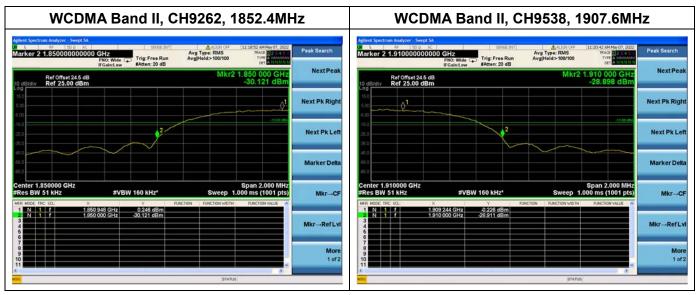
2.6.2.Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.



2.6.3.Test Result


The lowest and highest channels are tested to verify the band edge emissions.

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

2.7. Determining E.R.P. and/or E.I.R.P. from conducted RF output power measurements

2.7.1.Requirement

According to FCC section 22.913, the Effective Radiated Power (E.R.P.) of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

According to FCC section 24.232, the broadband PCS mobile station is limited to 2 Watts e.i.r.p. peak power.

According to FCC section 27.50, mobile, and portable (hand-held) stations is limited to 1 Watts e.i.r.p. peak power.

2.7.2.Test Description

The test setups refer to section 2.1.3

A call is established between the EUT and the SS via a Common Antenna. The EUT is commanded by the SS to operate at the maximum and minimum output power (i.e. GSM850MHz band Power Control Level (PCL) = 5/19 and Power Class = 4, GSM1900MHz band Power Control Level (PCL) = 0/15 and Power Class = 1), and only the test result of the maximum output power was recorded. Please refer to section 2.1.3 of this report.

The relevant equation for determining the maximum E.R.P. or E.I.R.P. from the measured RF output power is given in Equation (1) as follows:

E.R.P. or E.I.R.P. = P_{Meas} + G_T Where:

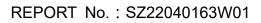
E.R.P. or E.I.R.P. effective radiated power or equivalent isotropically radiated power, respectively

(expressed in the same units as P_{Meas}, e.g., dBm or dBW)

measured transmitter output power or PSD, in dBm or dBW P_{Meas}

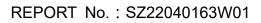
gain of the transmitting antenna, in dBd (E.R.P.) or dBi (E.I.R.P.) Gт

For devices utilizing multiple antennas, see ANSI C63.25-2015 6.4 for guidance with respect to determining the effective array transmit antenna gain term to be used in the above equation. The following equations demonstrate the mathematical relationship between E.R.P. and E.I.R.P.: a) E.R.P. = E.I.R.P. - 2.15, where E.R.P. and E.I.R.P. are expressed in consistent units. b) E.I.R.P. = E.R.P. + 2.15, where E.R.P. and E.I.R.P. are expressed in consistent units.



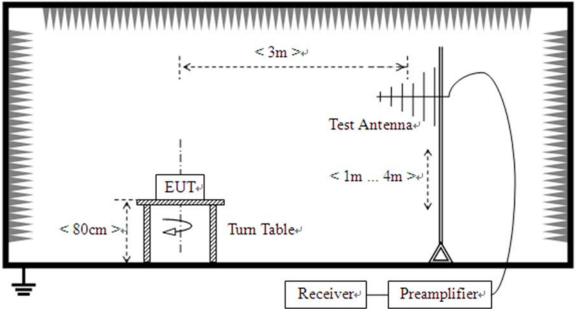
2.7.3.Test Result

WCDMA Band V							
Dand	Channel	Frequency	Measur	ed E.R.P.	Lin	nit	Verdict
Band	Channel	(MHz)	dBm	W	dBm	W	
	4132	826.4	19.38	0.087			PASS
WCDMA	4182	836.4	19.48	0.089	38.5	7	PASS
	4233	846.6	19.44	0.088			PASS
	4132	826.4	18.71	0.074			PASS
HSDPA	4182	836.4	18.53	0.071	38.5	7	PASS
	4233	846.6	18.55	0.072			PASS
50	4132	826.4	18.53	0.071		7	PASS
DC-	4182	836.4	18.19	0.066	38.5		PASS
HSDPA	4233	846.6	18.24	0.067			PASS
	4132	826.4	18.45	0.070			PASS
HSUPA	4182	836.4	18.50	0.071	38.5	7	PASS
	4233	846.6	18.56	0.072			PASS
	4132	826.4	18.07	0.064	20.5	7	PASS
HSPA+	4182	836.4	17.97	0.063	38.5	7	PASS
	4233	846.6	18.09	0.064			PASS
Note 1: Fo	or the HSDF	PA and HSUPA	mode, all the sub	tests were tested	and just th	ne wo	rst data
were reco	rded in this	report.					



WCDMA Band IV							
Dend	Channel	Frequency	Measur	ed E.I.R.P.	Lin	nit	Mandlat
Band	Channel	(MHz)	dBm	W	dBm	W	Verdict
	1312	1712.4	23.50	0.224			PASS
WCDMA	1413	1732.6	23.61	0.230	30	1	PASS
	1513	1752.6	23.58	0.228			PASS
	1312	1712.4	22.87	0.194			PASS
HSDPA	1413	1732.6	22.74	0.188	30	1	PASS
	1513	1752.6	22.81	0.191			PASS
	1312	1712.4	22.48	0.177		1	PASS
DC-HSD PA	1413	1732.6	22.64	0.184	30		PASS
FA	1513	1752.6	22.68	0.185			PASS
	1312	1712.4	22.56	0.180			PASS
HSUPA	1413	1732.6	22.54	0.179	30	1	PASS
	1513	1752.6	22.53	0.179			PASS
	1312	1712.4	22.23	0.167	20	4	PASS
HSPA+	1413	1732.6	21.96	0.157	30	1	PASS
	1513	1752.6	22.04	0.160			PASS
	or the HSDP rded in this r		mode, all the sub	otests were tested	and just t	he wo	rst data

WCDMA Band II							
Band	Channel	Frequency (MHz)	Measured E.I.R.P.		Limit		Vandiat
			dBm	W	dBm	W	Verdict
WCDMA	9262	1852.4	24.86	0.306		2	PASS
	9400	1880.0	24.87	0.307	33		PASS
	9538	1907.6	24.83	0.304			PASS
HSDPA	9262	1852.4	24.07	0.255		2	PASS
	9400	1880.0	24.01	0.252	33		PASS
	9538	1907.6	24.02	0.252			PASS
DC-HSD PA	9262	1852.4	23.82	0.241		2	PASS
	9400	1880.0	23.79	0.239	33		PASS
	9538	1907.6	23.84	0.242			PASS
HSUPA	9262	1852.4	23.75	0.237		2	PASS
	9400	1880.0	23.78	0.239	33		PASS
	9538	1907.6	23.82	0.241			PASS
HSPA+	9262	1852.4	23.22	0.210		2	PASS
	9400	1880.0	23.14	0.206	33		PASS
	9538	1907.6	23.26	0.212			PASS
Note 1: For the HSDPA and HSUPA mode, all the subtests were tested and just the worst data							
were recorded in this report.							



2.8. Radiated Out of Band Emissions

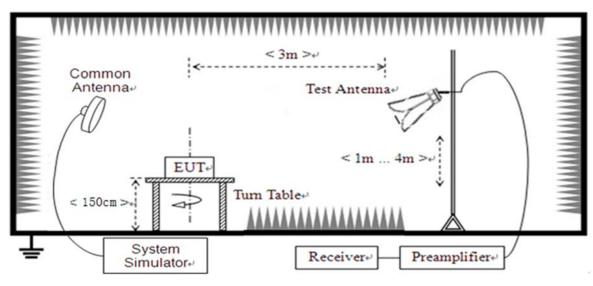
2.8.1.Requirement

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm. The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency.

2.8.2.Test Description

(For the test frequency from 30MHz to1GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

(For the test frequency above 1GHz)

The EUT is located in a 3m Full-Anechoic Chamber, the cable loss, air loss and so on of the site as factors are pre-calibrated using the "Substitution" method, and calculated to correct the reading. A call is established between the EUT and the SS via a Common Antenna. The EUT is commanded by the SS to operate at the maximum and minimum output power and only the test result of the maximum output power was recorded.

In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground and the Turn Table is actuated to turn from 0° to 360° to determine the maximum value of the radiated power. The emission levels at both horizontal and vertical polarizations should be tested. The Filters consists of Notch Filters and High Pass Filter. **Note:** When doing measurements above 1GHz, the EUT has been within the 3dB cone width of the horn antenna during horizontal antenna.

2.8.3.Test Procedure

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements.

For measurements above 1GHz the resolution bandwidth is set to 1MHz, the video band width is set to 3MHz for peak measurements.

2.8.4.Test Result

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. The lowest, middle and highest channels are tested to verify the out of band emissions.

The substitution corrections are obtained as described below:

Asubst = Psubst_tx - Psubst_rx - Lsubst_cables + Gsubst_tx_ant

 $A_{TOT} = L_{CABLES} + A_{SUBST}$

Where A_{SUBST} is the final substitution correction including receive antenna gain.

P_{SUBST_TX} is signal generator level,

P_{SUBST_RX} is receiver level,

 $L_{\text{SUBST_CABLES}}$ is cable losses including TX cable,

G_{SUBST_TX_ANT} is substitution antenna gain.

A_{TOT} is total correction factor including cable loss and substitution correction

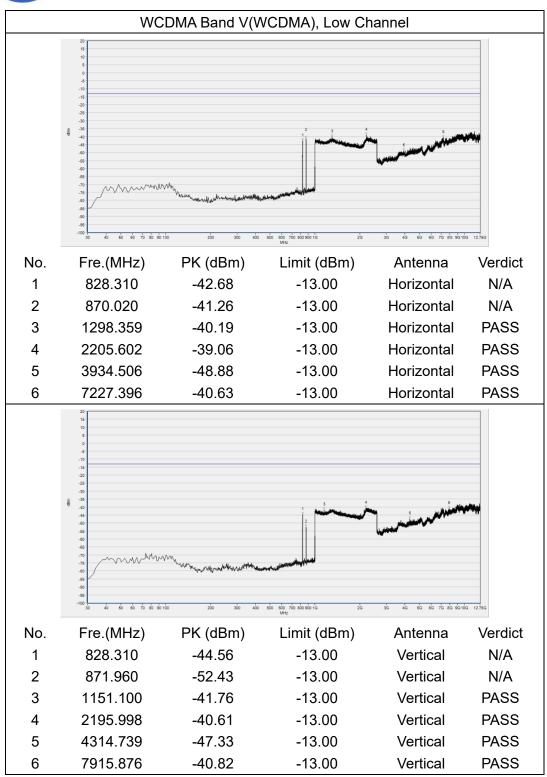
During the test, the data of A_{TOT} was added in the test spectrum analyze, so spectrum analyze reading is the final values which contain the data of A_{TOT} .

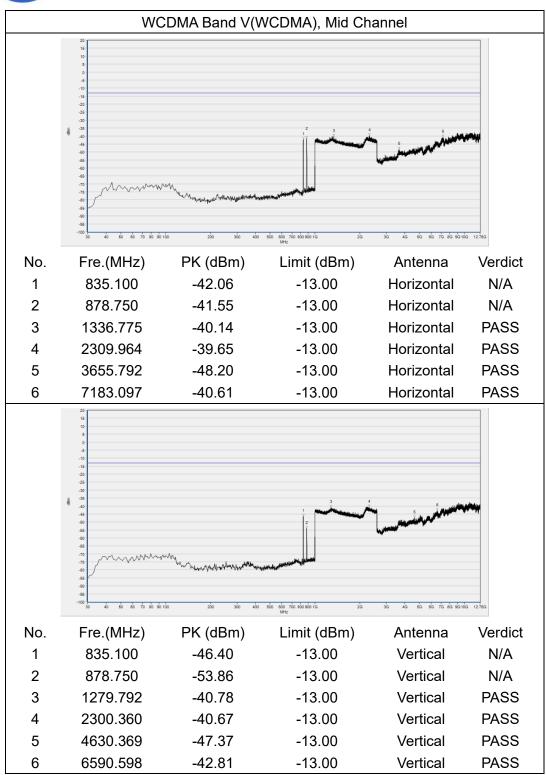
Note1: The power of the EUT transmitting frequency should be ignored.

Note2: All test mode and condition mentioned were considered and evaluated respectively by performing full test, only the worst data were recorded and reported.

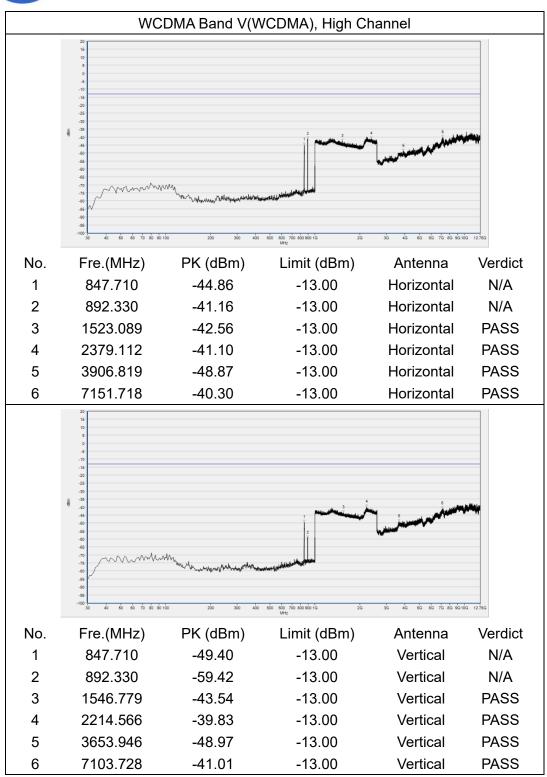

Note3: All spurious emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

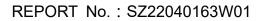
Note4: N/A means the frequency is the basic frequency or the base station frequency, they are no need to verdict.

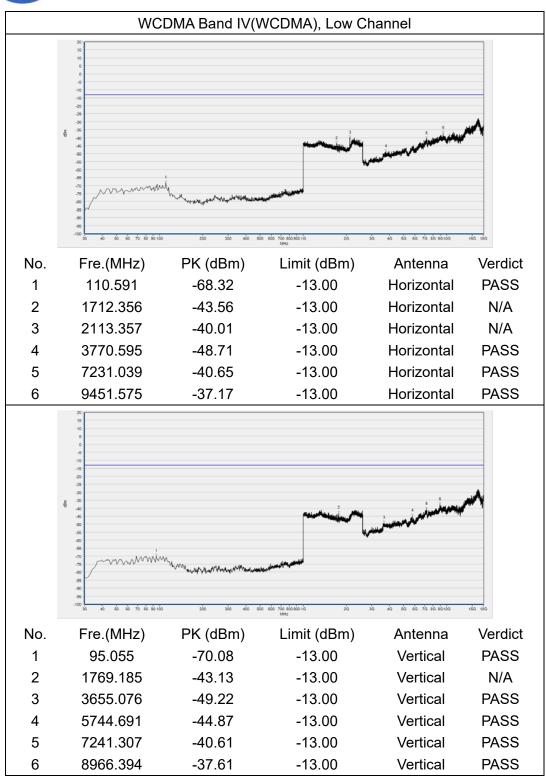

Note5: The amplitude of emissions(18GHz to 10th harmonics) which are attenuated more than 20 dB below the limit are not be reported.



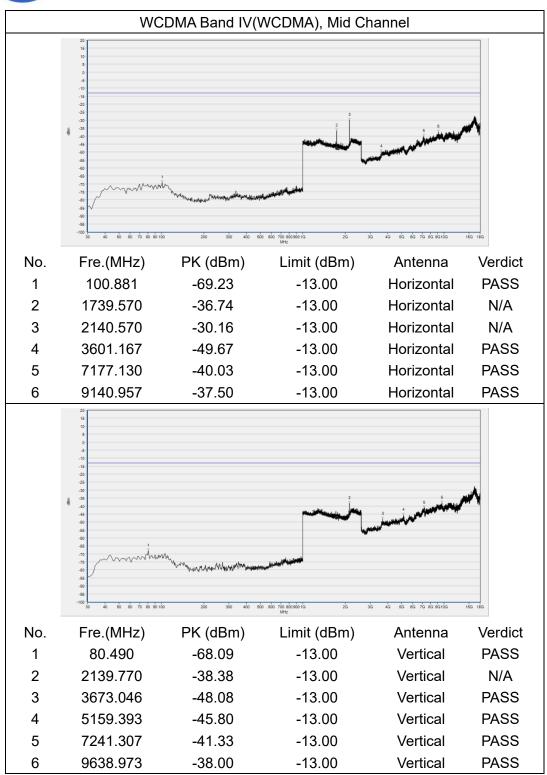


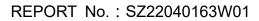


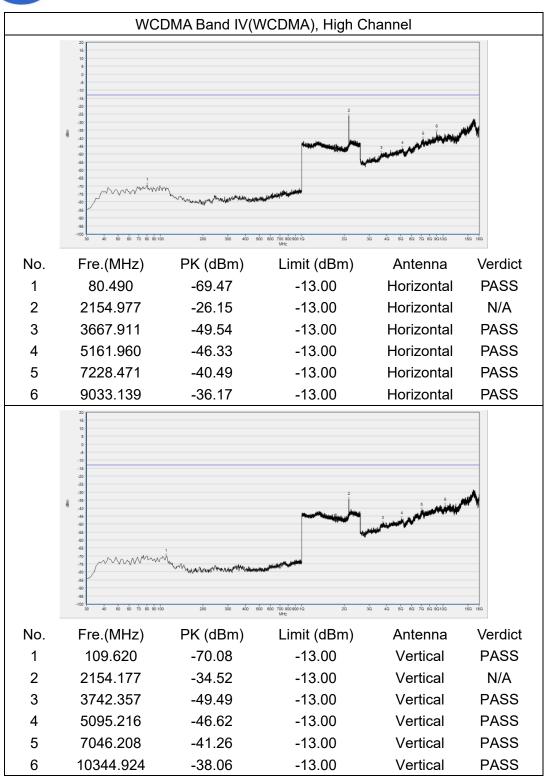




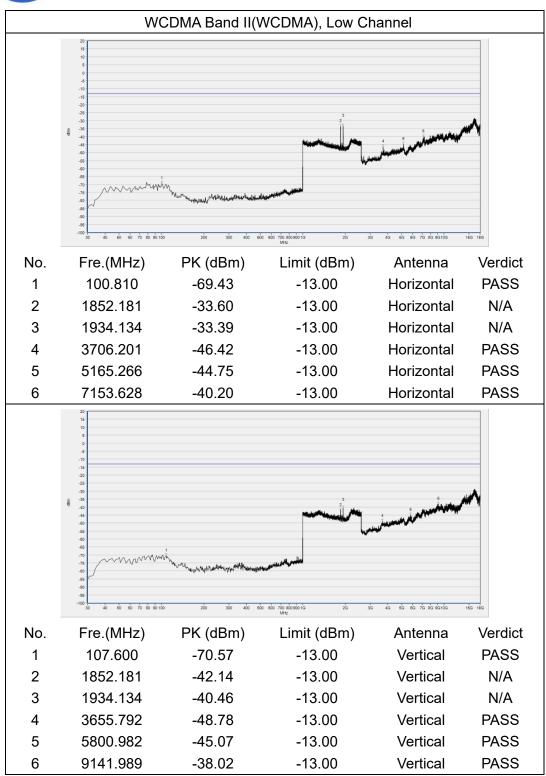




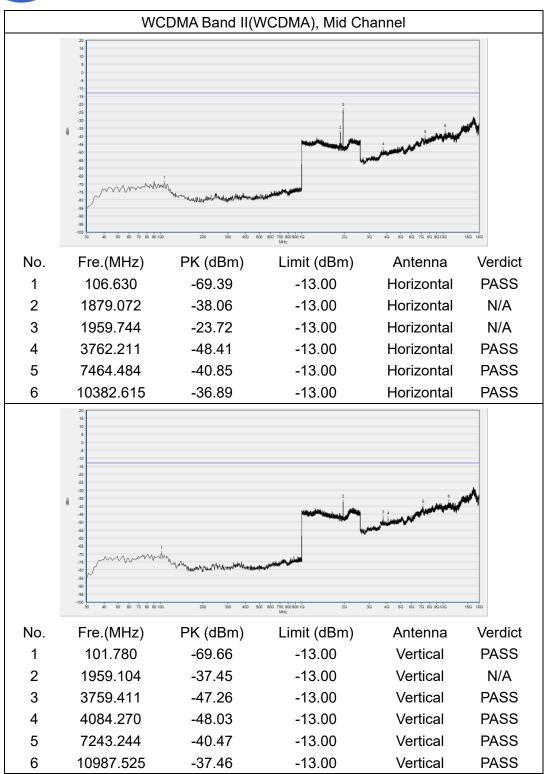




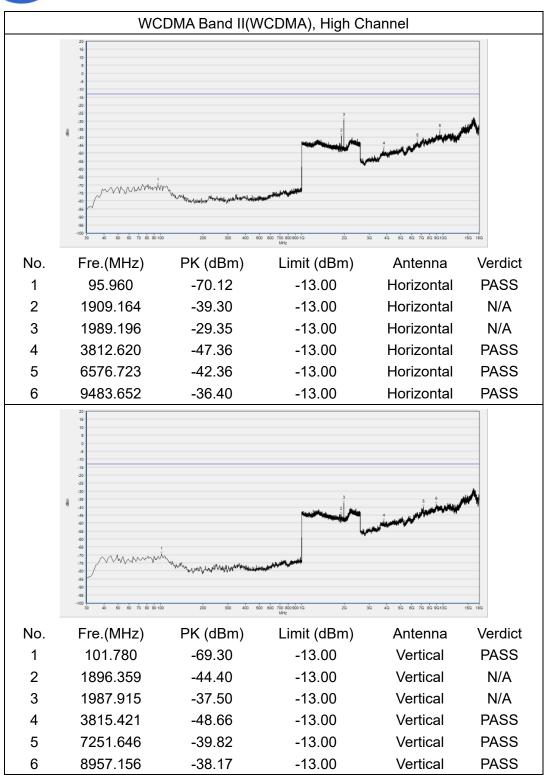












Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test Items	Uncertainty
Output Power	±2.22dB
Bandwidth	±5%
Conducted Spurious Emission	±2.77dB
Radiated Emission	±2.95dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Laboratory Name:	Shenzhen Morlab Communications Technology Co., Ltd.			
	FL.3, Building A, FeiYang Science Park, No.8 LongChang			
Laboratory Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong			
	Province, P. R. China			
Telephone:	+86 755 36698555			
Facsimile:	+86 755 36698525			

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.	
	FL.3, Building A, FeiYang Science Park, No.8 LongChang	
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong	
	Province, P. R. China	

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192, the test firm registration number is 226174.

REPORT No. : SZ22040163W01

4. Test Equipments Utilized

4.1 Conducted Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
EXA Signal Analyzer	MY51511149	N9020A	Agilent	2021.07.26	2022.07.25
System Simulator	6200995016	MT8820C	Anritsu	2021.10.21	2022.10.20
Temperature Chamber	20171112102	HZ-2019	Dongguan Lixian Instrument Technology Co., Ltd	2021.10.20	2022.10.19

4.2 List of Software Used

Description	Manufacturer	Software Version
MORLAB EMCR V1.2	MORLAB	V1.0

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525 E-mail: service@morlab.cn

4.3 Radiated Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
System Simulator	450020		540	2021.10.21	2022.10.20
System Simulator	152038	CMW500	R&S	2022.10.11	2023.10.10
Receiver	ND/54400040	NOODOA	Agilopt	2021.07.16	2022.07.15
Receiver	MY54130016	N9038A	Agilent	2022.07.07	2023.07.06
Test Antenna -	0162 510	VULB 9163	Cobuyor=book	2019.07.26	2022.07.25
Bi-Log	9163-519	VULD 9103	Schwarzbeck	2022.05.23	2025.05.24
Test Antenna - Horn	9120D-963	BBHA 9120D	Schwarzbeck	2019.07.26 2022.05.23	2022.07.25 2025.05.24
Coaxial cable (N male) (9kHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-40GHz)	CB05	EMC05	Morlab	N/A	N/A
1-18GHz	61171/61172	S020180L32	Tonscend	2021.07.16	2022.07.15
pre-Amplifier	01171/01172	03	Tonscend	2022.07.08	2023.07.07
18-26.5GHz	46732	S10M100L38	Topoond	2021.07.16	2022.07.15
pre-Amplifier	40732	02 Tonscend	Tonscend	2022.07.08	2023.07.07
26-40GHz	66774	S40M400L40	Tanaaand	2021.07.16	2022.07.15
pre-Amplifier	56774	02 Tonscend	Tonscend	2022.07.08	2023.07.07
Nedela F ildera	N/A	WRCGV-W	Wainwright	2021.07.16	2022.07.15
Notch Filter		Band V		2022.07.08	2023.07.07
Notob Filtor	N/A	WRCGV-W	Wainwright	2021.07.16	2022.07.15
Notch Filter		Band II		2022.07.08	2023.07.07
Notob Filtor	NI/A	WRCGV-W	\A/aiay mintet	2021.07.16	2022.07.15
Notch Filter	N/A	Band IV	Wainwright	2022.07.08	2023.07.07

REPORT No. : SZ22040163W01

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
Anechoic Chamber	N/A	9m*6m*6m	CRT	2020.01.06	2023.01.05

_____ END OF REPORT ____

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn

E-mail: service@morlab.cn