

TEST REPORT No. I17Z61374-WMD05

for

Reliance Communications, LLC.

GSM/CDMA/WCDMA/LTE

Model Name: RC555L

FCC ID: 2AGBH-RC555L

with

Hardware Version: V1.1

Software Version: ORBIC-RC555L_V1.6.3

Issued Date: 2017-9-26

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government..

Test Laboratory:

Test Firm Designation Number:CN5017

CTTL, Telecommunication Technology Labs, CAICT

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504

Email: <u>cttl_terminals@caict.ac.cn</u>, website: <u>www.caict.ac.cn</u>

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I17Z61374-WMD05	Rev.0	1st edition	2017-9-26

CONTENTS

1.	TEST LABORATORY
1.1.	TESTING LOCATION 4
1.2.	TESTING ENVIRONMENT 4
1.3.	PROJECT DATA4
1.4.	SIGNATURE
2.	CLIENT INFORMATION
2.1.	APPLICANT INFORMATION 5
2.2.	MANUFACTURER INFORMATION5
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)
3.1.	ABOUT EUT
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST
3.4.	NORMAL ACCESSORY SETTING7
3.5.	GENERAL DESCRIPTION7
4.	REFERENCE DOCUMENTS
4.1.	REFERENCE DOCUMENTS FOR TESTING 7
5.	LABORATORY ENVIRONMENT
6.	SUMMARY OF TEST RESULTS
7.	TEST EQUIPMENTS UTILIZED
ANI	NEX A: MEASUREMENT RESULTS11
А	.1 OUTPUT POWER
	.2 FREQUENCY STABILITY
	.3 OCCUPIED BANDWIDTH
	.4 EMISSION BANDWIDTH
ANI	NEX B: ACCREDITATION CERTIFICATE

1. Test Laboratory

1.1. Testing Location

Location 1: CTTL(huayuan North Road)

Address:

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191

Location 2: CTTL(Shouxiang)

Address: No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District, Beijing, P. R. China 100191

1.2. <u>Testing Environment</u>

Normal Temperature:	15-35 ℃
Relative Humidity:	20-80%

1.3. Project data

Testing Start Date:	2017-9-6
Testing End Date:	2017-9-26

1.4. Signature

沈忆

Shen Yi (Prepared this test report)

Zhou Yu (Reviewed this test report)

赵慧麟

Zhao Hui Lin Deputy Director of the laboratory (Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name:	Reliance Communications, LLC.
Address /Post:	555 Wireless BLVD, Hauppauge NY 11788
City:	New York
Postal Code:	/
Country:	U.S.A
Contact Person:	Saqib Ghouri
Contact Email:	saqib.ghouri@reliance.us
Telephone:	+92 317 512 6111
Fax:	/

2.2. Manufacturer Information

Company Name:	Unimaxcomm.	
Address (Dest	Room 602, Building-B, Shenzhen Software Park T3, Hi-Tech Park	
Address /Post:	South, Nan Shan District, Shenzhen, China	
City:	Shenzhen	
Postal Code:	518000	
Country:	China	
Contact Person:	Chunli.He	
Contact Email:	hchunli@unimaxcomm.com	
Telephone:	+86 130 7785 5257	
Fax:	0755-86638991	

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT	
Description	GSM/CDMA/WCDMA/LTE
Model	RC555L
FCC ID	2AGBH-RC555L
Frequency	CDMA800MHz(BC0);CDMA1900MHz(BC1);CDMA2ND800MHz(BC10)
Antenna	Embedded
Power supply	Battery or Charger (AC Adaptor)
Extreme vol. Limits	3.6VDC to 4.3VDC (nominal: 3.8 VDC)
Extreme temp. Tolerance	-10°C to +40°C

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of Telecommunication Metrology Center of MIIT of People's Republic of China.

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
UT24a	358924080002020	V1.1	ORBIC-RC555L_V1.6.3	2017-9-6
*EUT ID: is	used to identify the te	st sample in the la	ab internally.	

3.3. Internal Identification of AE used during the test

AE ID*	Description	SN
AE1	Battery	/
AE2	Normal Charger	/

AE1

Model	RC555L
Manufacturer	Veken
Capacitance	3000mAh
Nominal Voltage	3.8V
AE2	
Model	RC555L
Manufacturer	BLJ

*AE ID: is used to identify the test sample in the lab internally.

3.4. Normal Accessory setting

Fully charged battery was used during the test.

3.5. General Description

The Equipment Under Test (EUT) is a model of GSM/CDMA/WCDMA/LTE with integrated antenna. It consists of normal options: lithium battery, charger. Manual and specifications of the EUT were provided to fulfil the test.

4. <u>Reference Documents</u>

4.1. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 90	PRIVATE LAND MOBILE RADIO SERVICES	10-1-16
		Edition
FCC Part 2	FREQUENCY ALLOCATIONS AND RADIO TREATY	10-1-16
	MATTERS; GENERAL RULES AND REGULATIONS	Edition
ANSI/TIA-603-D	Land Mobile FM or PM Communications Equipment	2010
	Measurement and Performance Standards	
KDB971168 D01	Measurement Guidance for Certification of Licensed Digital	v02r02
	Transmitters	

5. LABORATORY ENVIRONMENT

Shielding chamber did not exceed following limits along the RF testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. =20 %, Max. = 80 %

6. SUMMARY OF TEST RESULTS

Items	List	Clause in FCC rules	Verdict
1	Output Power	90.635	Pass
2	Frequency Stability	2.1055/90.213	Pass
3	Occupied Bandwidth	2.1049	Pass
4	Emission Bandwidth	90.1215	Pass
5	Conducted Spurious Emission	90.691	Pass

7. Test Equipments Utilized

		ТУРГ	SERIES	PRODUCER	CALIBRATION	CAL DUE
NO.	NAME	TYPE	NUMBER	PRODUCER	INTERVAL	DATE
1	Spectrum Analyzer	FSV30	101576	R&S	1 Year	2018-2-1
	Wireless	8960(E5515C)	GB461603			
2	Communications Test		13	Agilent	1 Year	2018-7-22
	Set		15			
3	Climatic chamber	SH-641	92009050	ESPEC	2 Years	2018-2-16

ANNEX A: MEASUREMENT RESULTS

A.1 OUTPUT POWER

A.1.1 Summary

During the process of testing, the EUT was controlled via Agilent Wireless Communications Test Set (8960(E5515C)) to ensure max power transmission and proper modulation.

This result is peak output power conducted measurements for the EUT. In all cases, output power is within the specified limits.

A.1.2 Method of Measurements

The EUT was set up for the max output power with pseudo random data modulation.

The power was measured with Rhode & Schwarz Spectrum Analyzer FSV30 (average).

These measurements were done at 2 frequencies of CDMA BC10 (bottom and top of operational frequency range) for 1x RTT and 1xEVDO.

The measurement method is from KDB 971168 D01 5.2.1:

a) Set span to at least 1.5 times the OBW.

b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz.

c) Set VBW \geq 3 × RBW.

- d) Set number of points in sweep $\ge 2 \times \text{span} / \text{RBW}$.
- e) Sweep time = auto-couple.

f) Detector = RMS (power averaging).

g) If the EUT can be configured to transmit continuously (i.e., burst duty cycle \geq 98%), then set the trigger to free run.

h) If the EUT cannot be configured to transmit continuously (i.e., burst duty cycle < 98 %), then use a sweep trigger with the level set to enable triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each sweep. Ensure that the sweep time is less than or equal to the transmission burst duration.

i) Trace average at least 100 traces in power averaging (i.e., RMS) mode.

j) Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with the band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

A.1.3 Measurement results CDMA BC10

Measurement result

Channel		Channel power(dBm)			
	Frequency(MHz)	1xRTT	1xEVDO		
			Rel0	RevA	
476	817.9	24.32	24.32	24.28	
684	823.1	24.24	24.27	24.21	

A.2 FREQUENCY STABILITY

A.2.1 Method of Measurement

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of Agilent 8960(E5515C) Wireless Communications Test Set.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -10 $^{\circ}$ C.
- 3. With the EUT, powered via nominal voltage, connected to the 8960(E5515C) and in a simulated call on mid channel of CDMA BC10, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10[°]C increments from -10[°]C to +40[°]C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 5. Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing.
- 6. Subject the EUT to overnight soak at +40 $^{\circ}$ C.
- With the EUT, powered via nominal voltage, connected to the 8960(E5515C) and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10 C decrements from +40°C to -10°C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5° during the measurement procedure.

A.2.2 Measurement Limit

A.2.2.1 For Hand carried battery powered equipment

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.6VDC and 4.3VDC, with a nominal voltage of 3.8VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress.

A.2.2.2 For equipment powered by primary supply voltage

For Part 90.213, the frequency stability of the transmitter shall be maintained within \pm 2.5ppm of the center frequency. This requires varying primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

A.2.3 Measurement results

CDMA BC 10

Frequency Error vs Voltage

Voltage(V)	Frequency error(Hz)	Frequency error(ppm)
3.6	2.43	0.003
3.8	2.38	0.003
4.3	2.35	0.003

Frequency Error vs Temperature

temperature(°C)	Frequency error(Hz)	Frequency error(ppm)
-30	/	/
-20	/	/
-10	2.67	0.003
0	-2.29	0.003
10	2.35	0.003
20	2.40	0.003
30	2.47	0.003
40	2.84	0.003
50	/	/

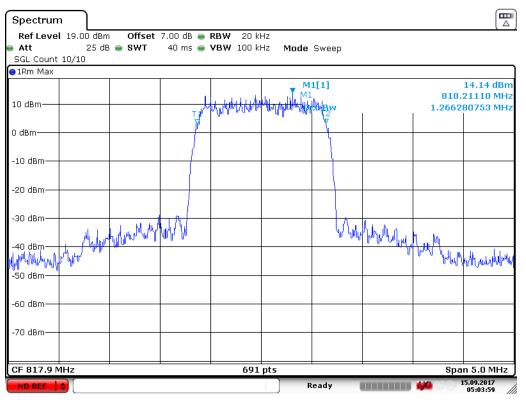
A.3 OCCUPIED BANDWIDTH

A.3.1 Occupied Bandwidth Results

Similar to conducted emissions; occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the CDMA frequency band. The table below lists the measured 99% BW. Spectrum analyzer plots are included on the following pages.

Test Condition

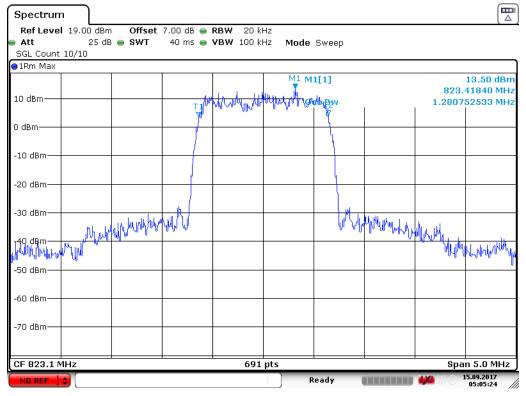
RBW	VBW	Span	Sweeptime	Detector	Trace Mode
20KHz	100KHz	5MHz	40ms	Peak	Max Hold


The EUT was set up for the max output power with pseudo random data modulation. Use the Occupied Bandwidth function of SA to measure the 99% bandwidth.

CDMA BC10 (99% BW)

Channel	Occupied Bandwidth (99% BW)(MHz)		
476	1.266		
684	1.281		

CDMA BC10


Channel 476-Occupied Bandwidth (99% BW)

Date: 15.SEP.2017 05:03:59

Channel 684-Occupied Bandwidth (99% BW)

Date: 15.SEP.2017 05:05:24

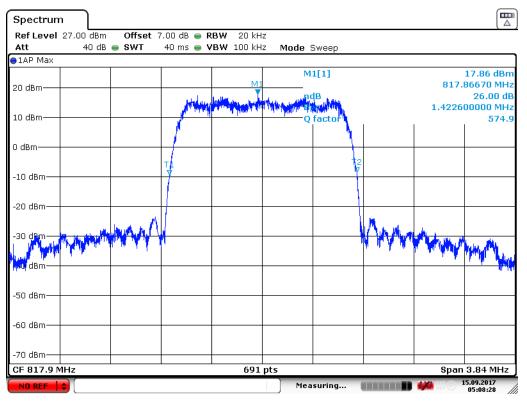
A.4 EMISSION BANDWIDTH

A.4.1Emission Bandwidth Results

Similar to conducted emissions; Emission bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the CDMA frequency band. Table below lists the measured -26dBc BW. Spectrum analyzer plots are included on the following pages.

Test Condition

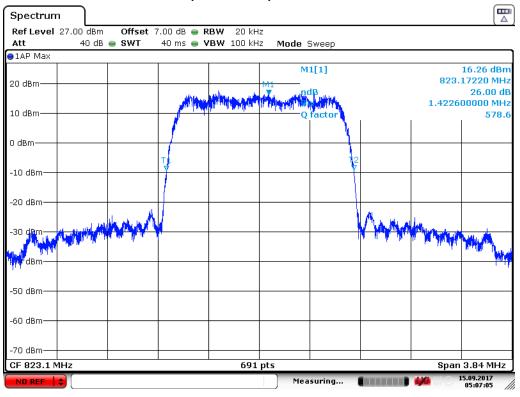
RBW	VBW	Span	Sweeptime	Detector	Trace Mode
20KHz	100KHz	3.84MHz	40ms	Peak	Max Hold


The EUT was set up for the max output power with pseudo random data modulation. Use the Occupied Bandwidth function of SA to measure the 26dBc bandwidth.

CDMA BC10 (-26dBc BW)

Channel	Emission Bandwidth (–26dBc BW) (MHz)
476	1.423
684	1.423

CDMA BC10


Channel 476- Emission Bandwidth (-26dBc BW)

Date: 15.SEP.2017 05:08:29

Channel 684- Emission Bandwidth (-26dBc BW)

Date: 15.SEP.2017 05:07:06

A.5 CONDUCTED SPURIOUS EMISSION

A.5.1 Measurement Method

The spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For CDMA BC10, data taken from 30 MHz to 10GHz.

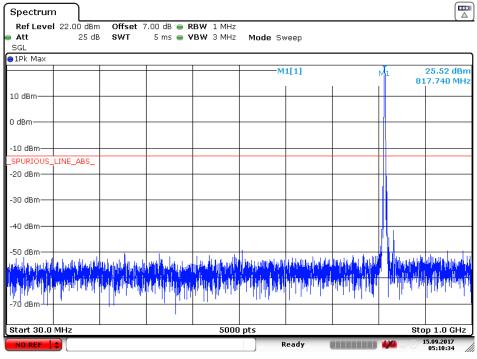
Out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:

For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least $116Log_{10}(f/6.1)$ decibels or $50 + 10 Log_{10}(P)$ decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.

For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least $43 + 10Log_{10}(P)$ decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

CDMA BC10 Transmitter

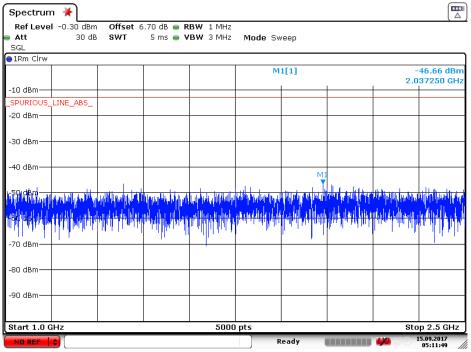
Channel	Frequency (MHz)
476	817.9
684	823.1


A.5.2 Measurement result

CDMA BC10

A. 5.2.1 Channel 476: 30MHz -1GHz

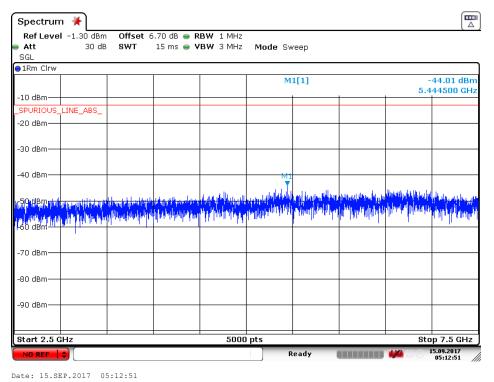
Spurious emission limit –13dBm.


NOTE: peak above the limit line is the carrier frequency.

Date: 15.SEP.2017 05:10:34

A.5.2.2 Channel 476: 1GHz –2.5GHz

Spurious emission limit –13dBm.



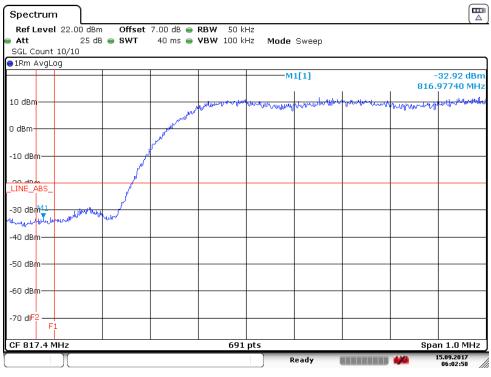
Date: 15.SEP.2017 05:11:50

A.5.2.3 Channel 476: 2.5GHz -7.5GHz

Spurious emission limit –13dBm.

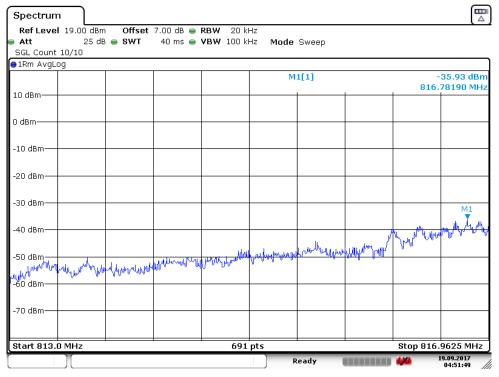
A.5.2.4 Channel 476: 7.5GHz –10GHz

Spurious emission limit –13dBm.


Spectrum	1 💥								
Ref Level Att	2.90 dBm 30 dB		90 dB 👄 RE .5 ms 👄 VE		Mode Swe	зер			
●1Rm Clrw									
0 dBm					M	1[1]			42.63 dBm 55250 GHz
-10 dBm-									
SPURIOUS	LINE_ABS_								
-20 dBm									
-30 dBm									
-40 dBm					M1				
u, And put		laharmin	u hill n., si tai	أمريها لأفليتنا بأعناه	(PAL NUMBER OF	والتقاوية والمتلق	and take had a de	والمعادية والمتلفظ ومرار	
poly () fully		had a data with the late	de de la de lla de	in an	and the second sec	hi da da da da da da	L. I. LANDER	hi na bila ku	enthe discussion
-60 dBm	The state	1 11		The states in	i pir a	n , that i	. 1	- ME 21 - 12 - 12 - 12 - 12 - 12 - 12 - 12	
-70 dBm									
-80 dBm									
-90 dBm									
Start 7.5 G	Hz			5000	lots			Stop	10.0 GHz
	•					teady			5.09.2017 05:14:10

Date: 15.SEP.2017 05:14:10

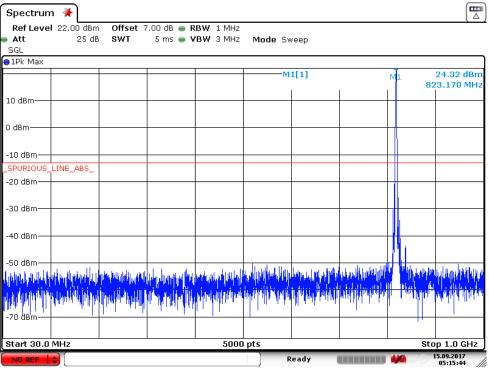
A.5.2.5 Channel 476: Band Edge


Spurious emission limit -20dBm.

Date: 15.SEP.2017 06:02:58

A.5.2.6 Channel 476: Outer Extended Band Edge

Spurious emission limit –13dBm.


Date: 19.SEP.2017 04:51:48

A. 5.2.7 Channel 684: 30MHz -1GHz

Spurious emission limit –13dBm.

NOTE: peak above the limit line is the carrier frequency.

Date: 15.SEP.2017 05:15:45

A.5.2.8 Channel 684: 1GHz –2.5GHz

Spurious emission limit –13dBm.

Spectrun	ו 🗡								
	-0.30 dBm		.70 dB 👄 R						`
Att SGL	30 dB	SWT	5 ms 👄 ۷	BW 3 MHz	Mode Sw	/eep			
olRm Clrw									
					м	1[1]		-	47.08 dBm
								2.0	71450 GHz
-10 dBm									
SPURIOUS	LINE_ABS_								
-20 dBm—									
-30 dBm									
-40 dBm									
							M1		
150 dBm	المراجع المراجع	COLUMN AND A	d and the set of the left of the set of the	hills an able that as	Lilen delle de la la delle	ndadiki, kibbinia	hills, Lord in the local	alia da da da da da da da	ku, a sette att a sind.
a na Lindalda.	log bit bout a	out that a statistic	University of the second s	h in Mhair ann.	a and an	n n n n n n n		te de la cola la	ruu kan
tile hall the same of the life							┉╨╼┉╢		
e contractions.	and the factor	al a can	ու երկրե	a sa tra	harar I a	11.15	ell in	11.1.2	1.11
-70 dBm			1						
-80 dBm									
-90 dBm									
Start 1.0 G	Hz			5000	pts			Sto	p 2.5 GHz
NO REF						eady			5.09.2017
NUKE						cuu,		REF C	05:16:56

Date: 15.SEP.2017 05:16:57

A.5.2.9 Channel 684: 2.5GHz -7.5GHz

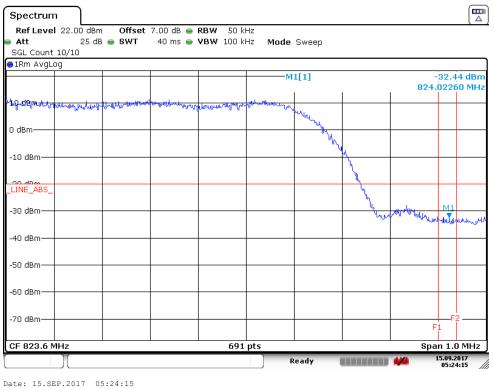
Spurious emission limit –13dBm.

Spectrum	ı 🗡								
Ref Level Att SGL	5.70 dBm 30 dB		.70 dB 👄 RE 15 ms 👄 VE		Mode Sw	вер			
∣o1Rm Clrw									
0 dBm					M1[1] -44.35 dBm 5.728500 GHz				
-10 dBm									
SPURIOUS	LINE_ABS_								
-20 dBm									
-30 dBm									
-40 dBm							It It.		a ta sat
-50 d8m+++		a na a dda ddaadd				الاللولية فالمستقيرات		and a barran	a na thuirde a
-po dam	allad all the	and the sound of the		n l na mana la		a di mangangan ng kanang ng ka Ng kanang ng	to be desident to	n ni di Annual di Ann	au in Velendek
-70 dBm									
-80 dBm									
-90 dBm									
Start 2.5 GHz 5000 pts Stop 7.5 GHz									
NO REF	•				F	leady		🚧 110 - 1	5.09.2017 05:18:10

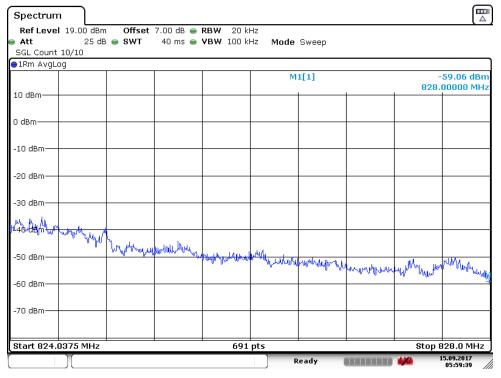
Date: 15.SEP.2017 05:18:10

A.5.2.10 Channel 684: 7.5GHz -10GHz

Spurious emission limit –13dBm.


Spectrum	i 🗡								
Ref Level	1.90 dBm	Offset 7.	90 dB 👄 RE	W 1 MHz					
Att	30 dB	SWT 7	.5 ms 👄 ۷	3W 3 MHz	Mode Swe	зер			
SGL									
						1[1]			42.49 dBm
					M1[1] -42.49 dB 8.872250 GI				
-10 dBm—									
SPURIOUS	LINE_ABS_								
-20 dBm—									
-30 dBm									
					M1				
-40 dBm—									
والمراجع اللغا الروا والمراجع	والمترادية والتلافية	الطيلا الارين ارويه	للا برور والقال	la sultar <mark>da</mark> tadhi	1 Martine Ma	يس بانغا والبان يرفع	المارية الملية الرار	nata, bibilia natak sa.	double and a second
at Malan Lad	a data da .	a se datata	ti dhata b	n a state bass and	illia di talana	ratio dalla	Hills al. tars	territe de la c	n in hain lin ta a
udu ya kurula	a di di da	Reference (1961), 1.	. Challed A studio	li de la contrata de	an Thanaha	the state of the s	and the first of the second	AND ALL A. D. MARK	a sur a s
-60 dBm						1			
-70 dBm									
-70 ubiii									
-80 dBm									
-90 dBm									
Start 7.5 G	Hz	I	I	5000	pts	I	I	Stop	10.0 GHz
NO REF	•					teady			5.09.2017 05:20:03

Date: 15.SEP.2017 05:20:03


A.5.2.11 Channel 684: Band Edge

Spurious emission limit -20dBm.

A.5.2.12 Channel 684: Outer Extended Band Edge


Spurious emission limit –13dBm.

Date: 15.SEP.2017 05:59:39

ANNEX B: Accreditation Certificate

END OF REPORT