

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinatil.cn

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization 0	$\boldsymbol{\theta}$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i
	0=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z14-97077

Page 2 of 11

Probe ES3DV3

SN: 3151

Calibrated: September 01, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: Z14-97077

Page 3 of 11

DASY – Parameters of Probe: ES3DV3 - SN: 3151

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)2) ^A	1.11	1.20	1.14	±10.8%
DCP(mV) ^B	103.4	103.3	102.9	

Modulation Calibration Parameters

UID	Communication		A	в	С	D	VR	UncE
	System Name		dB	dBõV		dB	mV	(k=2)
0 CW	X	0.0	0.0	1.0	0.00	264.1	±2.3%	
		Y	0.0	0.0	1.0		275.7	
		z	0.0	0.0	1.0		268.7	1

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: Z14-97077

Page 4 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Hitp://www.chinattl.cn

DASY – Parameters of Probe: ES3DV3 - SN: 3151

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
850	41.5	0.92	6.04	6.04	6.04	0.41	1.49	±12%
900	41.5	0.97	6.17	6.17	6.17	0.38	1.55	±12%
1810	40.0	1.40	5.44	5.44	5.44	0.57	1.49	±12%
1900	40.0	1.40	5.16	5.16	5.16	0.74	1.25	±12%
2000	40.0	1.40	5.23	5.23	5.23	0.50	1.57	±12%
2100	39.8	1.49	5.25	5.25	5.25	0.74	1.24	±12%
2300	39.5	1.67	4.91	4.91	4.91	0.73	1.21	±12%
2450	39.2	1.80	4.71	4.71	4.71	0.82	1.16	±12%
2600	39.0	1.96	4.57	4.57	4.57	0.89	1.14	±12%

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^FAt frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation

formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary

effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z14-97077

Page 5 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Hitp://www.chinattl.cn

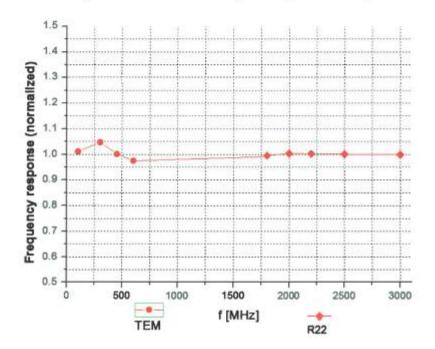
DASY – Parameters of Probe: ES3DV3 - SN: 3151

Calibration Parameter Determined in Body Tissue Simulating Media

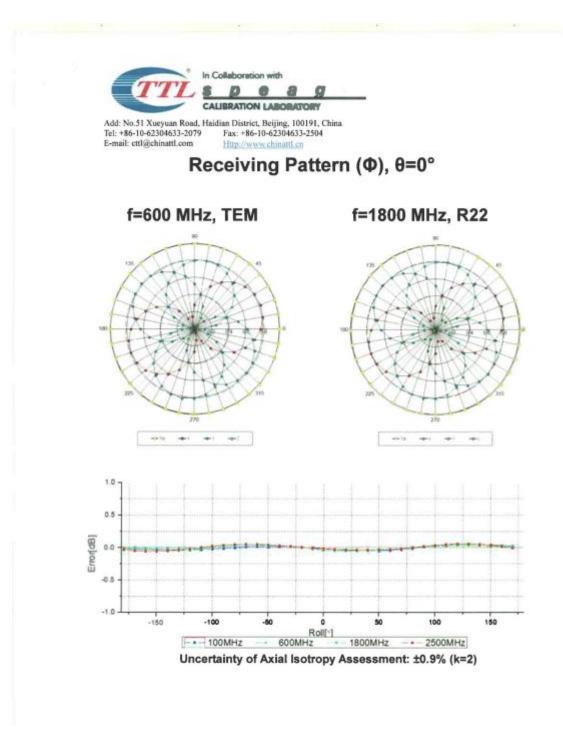
f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
850	55.2	0.99	6.14	6.14	6.14	0.34	1.78	±12%
900	55.0	1.05	6.08	6.08	6.08	0.51	1.43	±12%
1810	53.3	1.52	5.03	5.03	5.03	0.52	1.54	±12%
1900	53.3	1.52	4.77	4.77	4.77	0.48	1.66	±12%
2000	53.3	1.52	5.00	5.00	5.00	0.68	1.33	±12%
2100	53.2	1.62	5.04	5.04	5.04	0.73	1.32	±12%
2300	52.9	1.81	4.56	4.56	4.56	0.58	1.57	±12%
2450	52.7	1.95	4.42	4.42	4.42	0.67	1.39	±12%
2600	52.5	2.16	4.26	4.26	4.26	0.69	1.37	±12%

^c Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is

restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Certificate No: Z14-97077

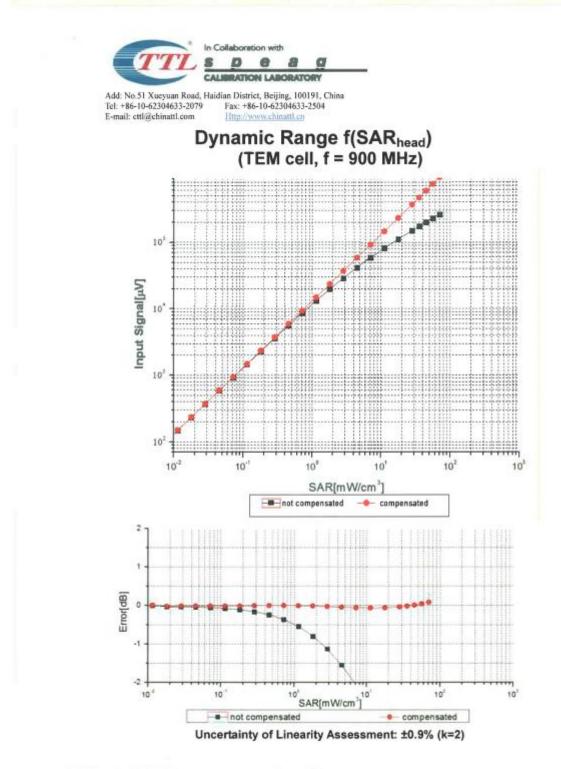
Page 6 of 11



Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

Certificate No: Z14-97077

Page 7 of 11



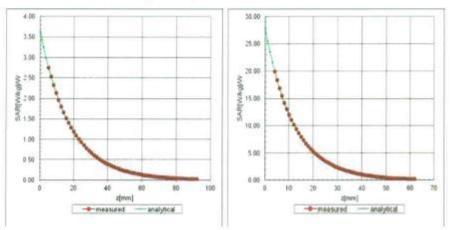
Certificate No: Z14-97077

Page 8 of 11

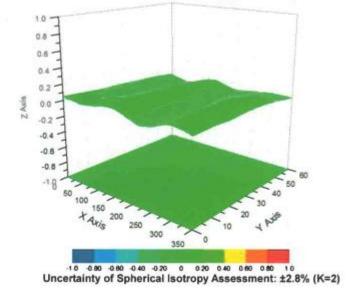
No. I15Z41068-SEM01 Page 92 of 127

Certificate No: Z14-97077

Page 9 of 11



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com <u>Http://www.chinattl.cn</u>


Conversion Factor Assessment

f=900 MHz, WGLS R9(H_convF)

f=1810 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Certificate No: Z14-97077

Page 10 of 11

DASY - Parameters of Probe: ES3DV3 - SN: 3151

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	85.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm

Certificate No: Z14-97077

Page 11 of 11

ANNEX H DIPOLE CALIBRATION CERTIFICATE

850 MHz Dipole Calibration Certificate

Client C CALIBRATION (Object	inattl.com <u>Http://</u> TTL(South Branc		No. L057
CALIBRATION	And the second second		14-97127
	CERTIFICAT	E	
Object		the provide strates in the set	
	D835V2	2 - SN: 4d057	
Calibration Procedure(s)	TMC-O	S-E-02-194 ion Procedures for dipole validation kits	
Calibration date:	Novemb	per 4, 2014	
		,	
Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Primary Standards Power Meter NRP2	ID # 101919	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146)	Jun-15
Primary Standards Power Meter NRP2 Power sensor NRP-Z9	ID # 101919 1 101547	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146)	Jun-15 Jun-15
Primary Standards Power Meter NRP2	ID # 101919 1 101547	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146)	Jun-15 Jun-15
Primary Standards Power Meter NRP2 Power sensor NRP-Z9 Reference Probe EX3DV	ID # 101919 1 101547 /4 SN 3617	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 28-Aug-14(SPEAG,No.EX3-3617_Aug14)	Jun-15 Jun-15 Aug-15
Primary Standards Power Meter NRP2 Power sensor NRP-Z9 Reference Probe EX3DV DAE4	ID # 101919 1 101547 /4 SN 3617 SN 1331 ID #	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14)	Jun-15 Jun-15 Aug-15 Jan-15
Primary Standards Power Meter NRP2 Power sensor NRP-Z9 Reference Probe EX3DV DAE4 Secondary Standards	ID # 101919 1 101547 /4 SN 3617 SN 1331 ID # DA 6201052605	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.)	Jun-15 Jun-15 Aug-15 Jan-15 Scheduled Calibratio
Primary Standards Power Meter NRP2 Power sensor NRP-29 Reference Probe EX3DV DAE4 Secondary Standards SignalGeneratorMG3700	ID # 101919 1 101547 /4 SN 3617 SN 1331 ID # DA 6201052605	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145)	Jun-15 Jun-15 Aug-15 Jan-15 Scheduled Calibration Jun-15
Primary Standards Power Meter NRP2 Power sensor NRP-29 Reference Probe EX3DV DAE4 Secondary Standards SignalGeneratorMG3700 Network Analyzer E5071	ID # 101919 1 101547 /4 SN 3617 SN 1331 ID # DA 6201052605 IC MY4614d0573	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145) 15-Feb-14 (TMC, No.JZ14-781)	Jun-15 Jun-15 Aug-15 Jan-15 Scheduled Calibration Jun-15 Feb-15
Power sensor NRP-Z9 Reference Probe EX3DV DAE4 Secondary Standards SignalGeneratorMG3700	ID # 101919 1 101547 /4 SN 3617 SN 1331 ID # DA 6201052605 IC MY4614d0573 Name	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145) 15-Feb-14 (TMC, No.JZ14-781) Function SAR Test Engineer	Jun-15 Jun-15 Aug-15 Jan-15 Scheduled Calibration Jun-15 Feb-15

Certificate No: Z14-97127

Page 1 of 8

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z14-97127

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.41 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.48 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.57 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.20 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permitti	vity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2		0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.3 ±	6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C			M <u>ade 33</u>
R result with Head TSL				
SAR averaged over 1 cm^3 (1 g) of Body TSL	Cond	ition		
SAR measured	250 mW ir	nput power		2.42 mW / g
SAR for nominal Body TSL parameters	normalize	ed to 1W	9.53	mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body T	SL Condi	tion		
SAR measured	250 mW ir	nput power		1.61 mW / g
SAR for nominal Body TSL parameters	normalize	ed to 1W	6.36	mW /g ± 20.4 % (k=2)

Certificate No: Z14-97127

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.4Ω- 3.05jΩ	
Return Loss	- 30.3dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.3Ω- 4.70jΩ	
Return Loss	- 23.1dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.267 ns

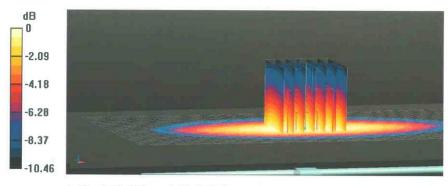
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Certificate No: Z14-97127

Page 4 of 8

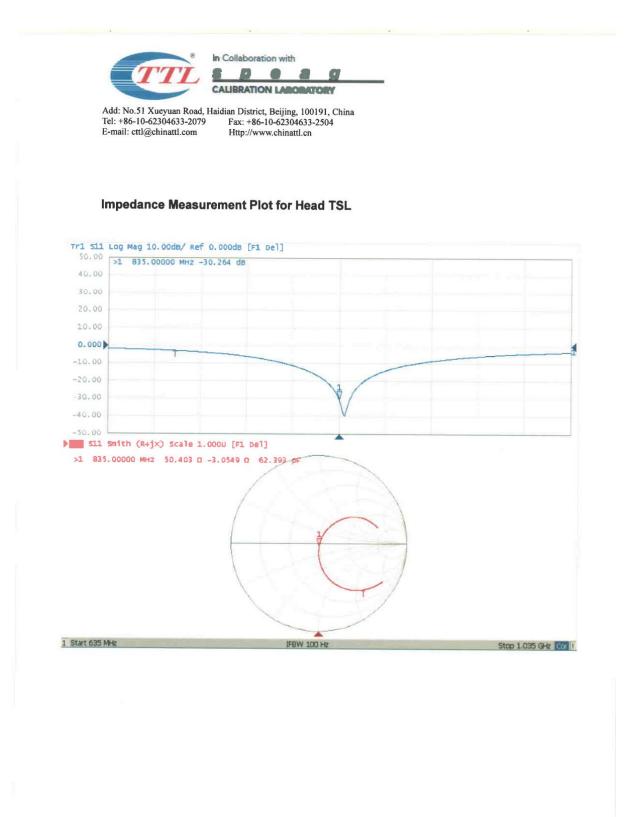

DASY5 Validation Report for Head TSL

Date: 04.11.2014

Test Laboratory: CTTL, Beijing, China **DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d057** Communication System: UID 0, CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.916$ S/m; $\varepsilon_r = 40.82$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

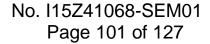
- Probe: EX3DV4 SN3617; ConvF(9.67, 9.67, 9.67); Calibrated: 2014-08-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=15mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.60 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.68 W/kg SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (measured) = 3.08 W/kg


0 dB = 3.08 W/kg = 4.89 dBW/kg

Certificate No: Z14-97127

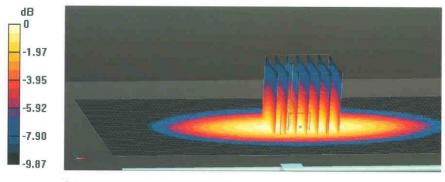
Page 5 of 8



No. I15Z41068-SEM01 Page 100 of 127

Certificate No: Z14-97127

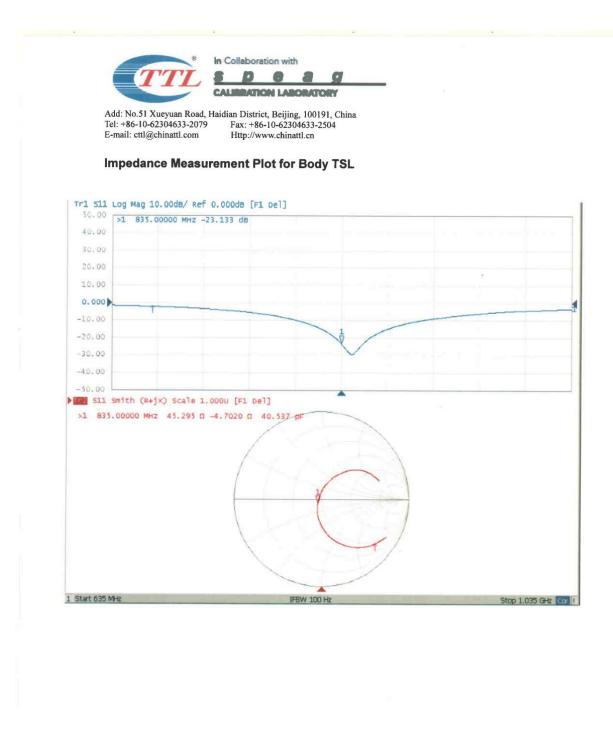
Page 6 of 8



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

- Electronics: DAE4 Sn1331; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=15mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.94 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.60 W/kg SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 3.05 W/kg


0 dB = 3.05 W/kg = 4.84 dBW/kg

Certificate No: Z14-97127

Page 7 of 8

No. I15Z41068-SEM01 Page 102 of 127

Certificate No: Z14-97127

Page 8 of 8

1800 MHz Dipole Calibration Certificate

Add: NO.51 Adeyt		strict Beijing 100191 China	
Tel: +86-10-62304 E-mail: cttl@china		+86-10-62304633-2504 //www.chinattl.cn	CALIBRATION No. L0570
Client CT	FL(South Bran	ch) Certificate No: Z	14-97129
CALIBRATION C	ERTIFICAT	TE	
Object	D1800	V2 - SN: 2d147	THE REAL
Calibration Procedure(s) TMC-C		DS-E-02-194	
	Calibra	ation Procedures for dipole validation kits	
Calibration date:	Novem	nber 6, 2014	
All calibrations have been humidity<70%.		the closed laboratory facility: environment	t temperature(22±3)℃ and
All calibrations have been humidity<70%. Calibration Equipment used	o conducted in		t temperature(22±3)℃ and
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards	I (M&TE critical f	or calibration) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	I Conducted in (M&TE critical f ID # 101919	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146)	Scheduled Calibration Jun-15
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards	 conducted in (M&TE critical f ID # 101919 101547 	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146)	Scheduled Calibration Jun-15 Jun-15
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	I Conducted in (M&TE critical f ID # 101919 101547	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146)	Scheduled Calibration Jun-15
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4	ID # 101547 SN 3617	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 28-Aug-14(SPEAG,No.EX3-3617_Aug14)	Scheduled Calibration Jun-15 Jun-15 Aug-15
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A	 conducted in (M&TE critical f ID # 101919 101547 SN 3617 SN 1331 ID # 6201052605 	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14)	Scheduled Calibration Jun-15 Jun-15 Aug-15 Jan-15
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards	 conducted in (M&TE critical f ID # 101919 101547 SN 3617 SN 1331 ID # 6201052605 	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Jun-15 Jun-15 Aug-15 Jan-15 Scheduled Calibration
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A	 conducted in (M&TE critical f ID # 101919 101547 SN 3617 SN 1331 ID # 6201052605 	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145)	Scheduled Calibration Jun-15 Jun-15 Aug-15 Jan-15 Scheduled Calibration Jun-15
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A	Conducted in (M&TE critical f 101919 101547 SN 3617 SN 1331 ID # 6201052605 MY46110673	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145) 15-Feb-14 (TMC, No.JZ14-781) Function	Scheduled Calibration Jun-15 Jun-15 Aug-15 Jan-15 Scheduled Calibration Jun-15 Feb-15 Signature
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	n conducted in (M&TE critical fr 10 # 101919 101547 SN 3617 SN 1331 1D # 6201052605 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145) 15-Feb-14 (TMC, No.JZ14-781) Function	Scheduled Calibration Jun-15 Jun-15 Aug-15 Jan-15 Scheduled Calibration Jun-15 Feb-15

Certificate No: Z14-97129

Page 1 of 8

No. I15Z41068-SEM01 Page 104 of 127

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z14-97129

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1800 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR for nominal Head TSL parameters	normalized to 1W	20.4 mW /g ± 20.4 % (k=2)
SAR measured	250 mW input power	5.06 mW / g
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	38.4 mW /g ± 20.8 % (k=2)
SAR measured	250 mW input power	9.49 mW / g
SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	1.49 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.96 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.3 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.24 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.1 mW /g ± 20.4 % (k=2)

Certificate No: Z14-97129

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.7Ω- 3.73jΩ
Return Loss	- 27.9dB

Antenna Parameters with Body TSL

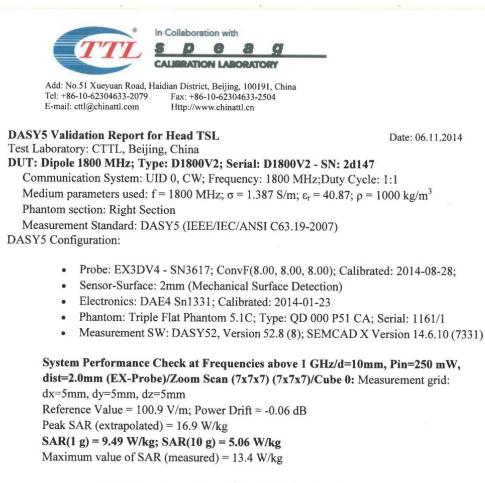
Impedance, transformed to feed point	43.0Ω- 3.95jΩ	
Return Loss	- 21.3dB	

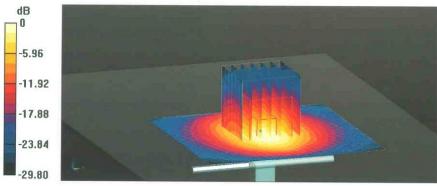
General Antenna Parameters and Design

Electrical Delay (one direction)	1.317 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

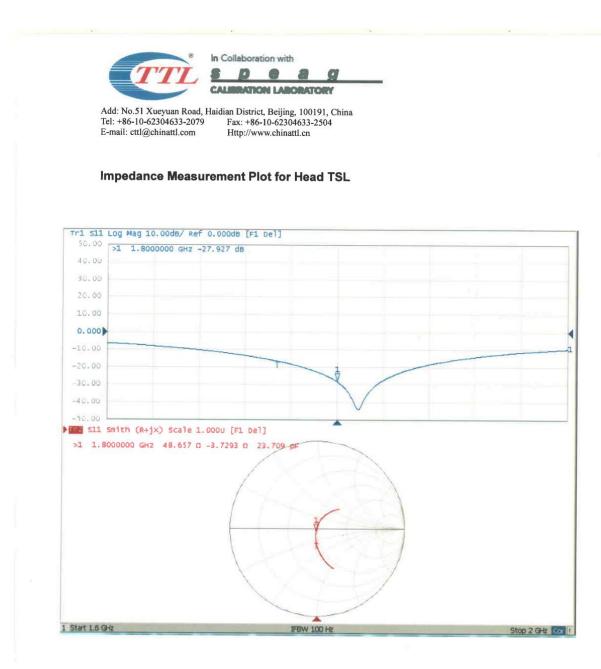
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.


Additional EUT Data


Manufactured by	SPEAG	

Certificate No: Z14-97129

Page 4 of 8



0 dB = 14.2 W/kg = 11.53 dBW/kg

Certificate No: Z14-97129

Page 5 of 8

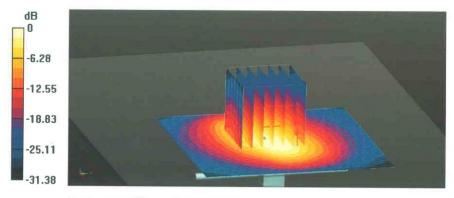
Certificate No: Z14-97129

Page 6 of 8

Date: 06.11.2014

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d147

Communication System: UID 0, CW; Frequency: 1800 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1800 MHz; σ = 1.489 S/m; ϵ_r = 52.85; ρ = 1000 kg/m³ Phantom section: Left Section


Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

.

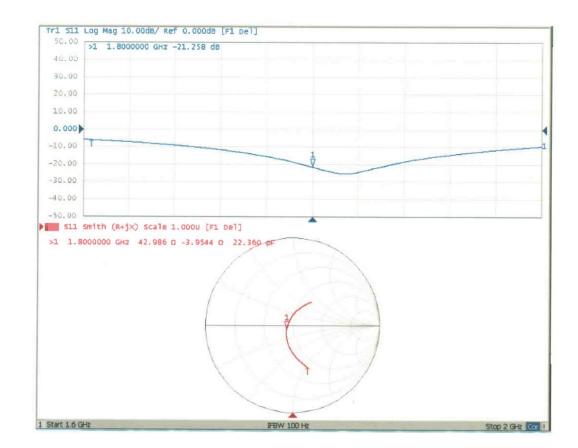
- Probe: EX3DV4 SN3617; ConvF(7.68, 7.68, 7.68); Calibrated: 2014-08-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.99 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 18.1 W/kg SAR(1 g) = 9.96 W/kg; SAR(10 g) = 5.24 W/kg Maximum value of SAR (measured) = 14.1 W/kg

0 dB = 15.3 W/kg = 11.86 dBW/kg

Certificate No: Z14-97129

Page 7 of 8



No. I15Z41068-SEM01 Page 110 of 127

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z14-97129

Page 8 of 8