

In Collaboration with

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

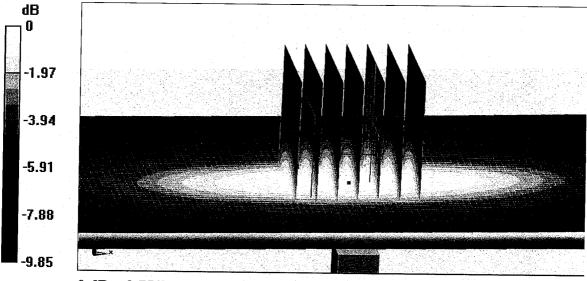
Date: 12.05.2018

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1099

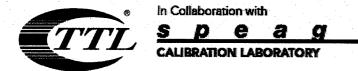
Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.865$ S/m; $\varepsilon_r = 43.13$; $\rho = 1000$ kg/m3 Phantom section: Right Section

DASY5 Configuration:

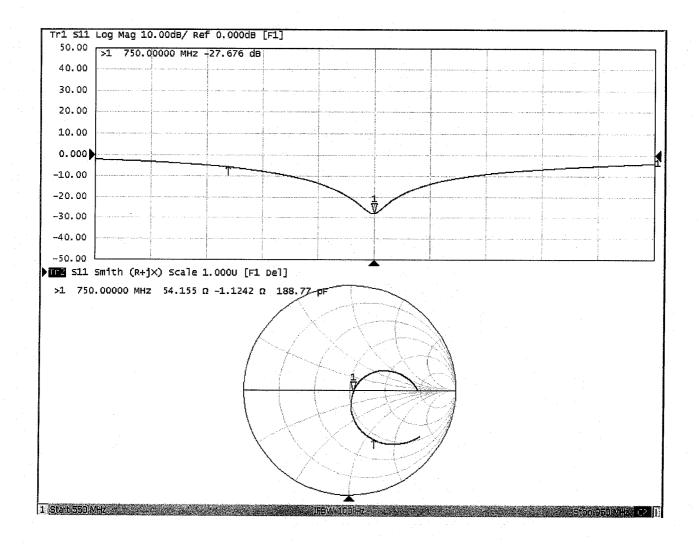
- Probe: EX3DV4 SN7514; ConvF(9.47, 9.47, 9.47) @ 750 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)


Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.37 V/m; Power Drift = 0.00 dB


Peak SAR (extrapolated) = 3.12 W/kg

SAR(1 g) = 2.07 W/kg; SAR(10 g) = 1.38 W/kg


Maximum value of SAR (measured) = 2.75 W/kg

0 dB = 2.75 W/kg = 4.39 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 12.05.2018

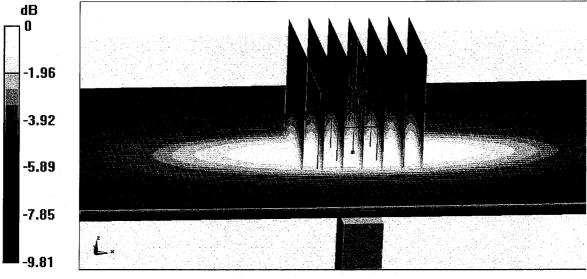
Test Laboratory: CTTL, Beijing, China

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1099

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 750 MHz; $\sigma = 0.951$ S/m; $\varepsilon_r = 54.02$; $\rho = 1000$ kg/m3

BRATION LABORATORY

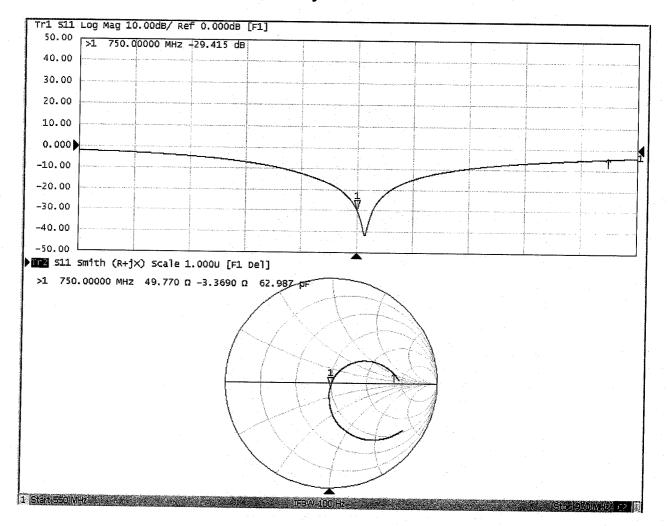

Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(9.68, 9.68, 9.68) @ 750 MHz; Calibrated: • 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 • (7450)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.51 V/m; Power Drift = -0.07 dBPeak SAR (extrapolated) = 3.29 W/kg SAR(1 g) = 2.15 W/kg; SAR(10 g) = 1.44 W/kgMaximum value of SAR (measured) = 2.88 W/kg



0 dB = 2.88 W/kg = 4.59 dBW/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comFax: +86-10-62304633-2504http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

In Collaboration with

http://www.chinattl.cn

Fax: +86-10-62304633-2504

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Z18-60533 **Certificate No:**

ALIBRATION CERTIFICATE

Sporton

Object

D835V2 - SN: 4d162

Calibration Procedure(s)

FF-Z11-003-01 Calibration Procedures for dipole validation kits

Calibration date:

Client

December 5, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRVD	102196	07-Mar-18 (CTTL, No.J18X01510)	Mar-19
Power sensor NRV-Z5	100596	07-Mar-18 (CTTL, No.J18X01510)	Mar-19
Reference Probe EX3DV4	SN 7514	27-Aug-18(SPEAG,No.EX3-7514_Aug18)	Aug-19
DAE4	SN 1555	20-Aug-18(SPEAG, No.DAE4-1555_Aug18)	Aug-19
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-18 (CTTL, No.J18X00560)	Jan-19
NetworkAnalyzer E5071C	MY46110673	24-Jan-18 (CTTL, No.J18X00561)	Jan-19
		and the second	

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	
Reviewed by:	Lin Hao	SAR Test Engineer	A.
Approved by:	Qi Dianyuan	SAR Project Leader	- Andrew -

Issued: December 8, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comFax: +86-10-62304633-2504http://www.chinattl.cn

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

In Collaboration with

e a CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.7 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.35 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.61 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.56 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.35 mW /g ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.7 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	_ Condition	
SAR measured	250 mW input power	2.47 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.70 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.64 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.47 mW /g ± 18.7 % (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comFax: +86-10-62304633-2504http://www.chinattl.cn

In Collaboration with

Appendix (Additional assessments outside the scope of CNAS L0570)

S P C A 9 CALIBRATION LABORATORY

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.6Ω- 2.56jΩ	
Return Loss	- 28.9dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.2Ω- 6.92jΩ	
Return Loss	- 22.3dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.306 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

			ODEAC
- I.,	a second a second last		SPEAG
	Manufactured by		

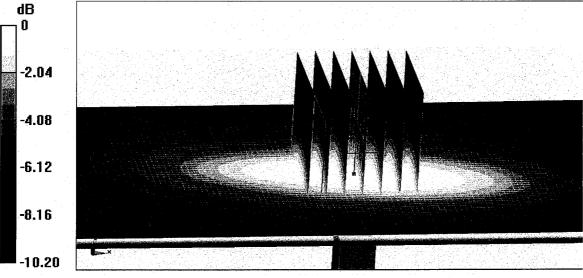
In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

BRATION LABORATORY

DASY5 Validation Report for Head TSL

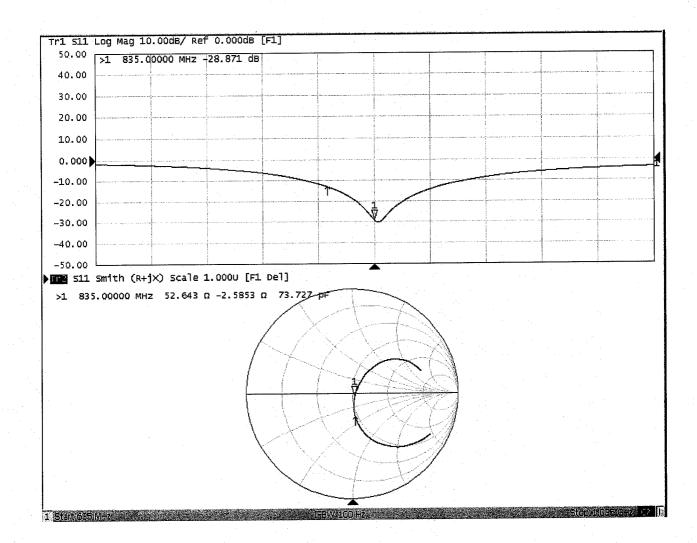

Date: 12.04.2018

Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d162 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.881$ S/m; $\varepsilon_r = 42.71$; $\rho = 1000$ kg/m3 Phantom section: Right Section **DASY5** Configuration:

- Probe: EX3DV4 SN7514; ConvF(9.09, 9.09, 9.09) @ 835 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP V5.1C; Type: QD 000 P51CA; Serial: 1062 ٠
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 ٠ (7450)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.75 V/m; Power Drift = 0.03 dBPeak SAR (extrapolated) = 3.50 W/kgSAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.56 W/kg Maximum value of SAR (measured) = 3.11 W/kg


0 dB = 3.11 W/kg = 4.93 dBW/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

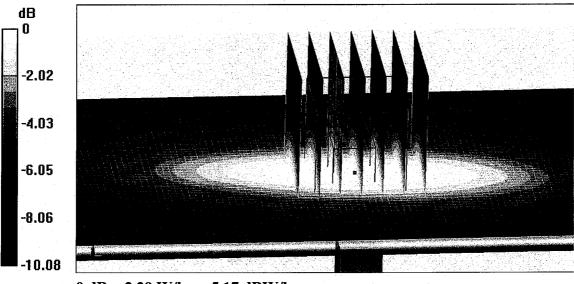
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China **DUT: Dipole 835 MHz: Type: D835V2: Seria**

Date: 12.04.2018

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d162 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; σ = 0.986 S/m; ϵ_r = 53.72; ρ = 1000 kg/m3

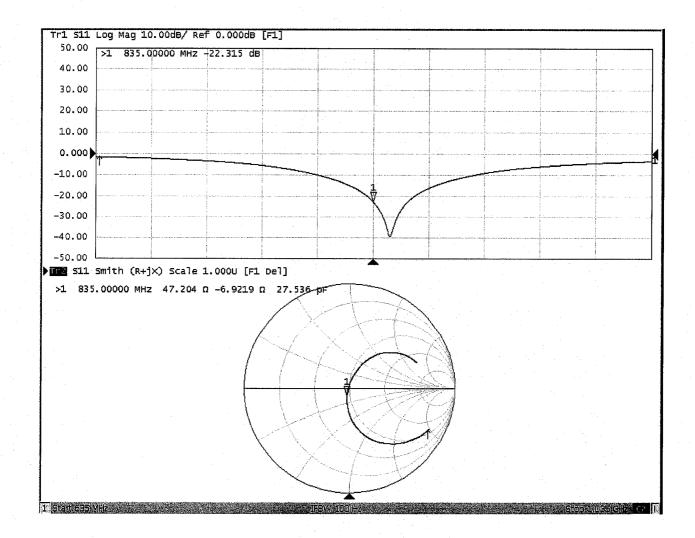

Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(9.47, 9.47, 9.47) @ 835 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.24 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.72 W/kg

SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.64 W/kg Maximum value of SAR (measured) = 3.29 W/kg


0 dB = 3.29 W/kg = 5.17 dBW/kg

In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

TTI	in Collaboration	on with C A G N LABORATORY		中国认可 国际互认 校准 CALIBRATION
Add: No.51 Xueyuan Ro Tel: +86-10-62304633-2 E-mail: cttl@chinattl.co	2079 Fax: +80-	, Beijing, 100191, China 10-62304633-2504 w.chinattl.cn		CNAS L0570
O		Ce	rtificate No: Z18-60)258
Client Sporton	RIFICATE			
Object	D1750V2	- SN: 1137		
Calibration Procedure(s)	FF-Z11-0 Calibratic	03-01 In Procedures for di	pole validation kits	
Calibration date: This calibration Certificate do	July 30, 2	The product of the second s		
This calibration Certificate do measurements(SI). The meas pages and are part of the cert All calibrations have been humidity<70%. Calibration Equipment used (ificate. conducted in th	ne closed laborator		
Calibration Equipment used (d by Cortificate No.)	Scheduled Calibration
Primary Standards	<u>ID #</u>	Cal Date(Calibrate	ed by, Certificate No.)	Oct-18
Power Meter NRVD	102083	01-Nov-17 (CTTL, 01-Nov-17 (CTTL,	No. (17X08756)	Oct-18
Power sensor NRV-Z5	100542	12 Son 17(SPEA(G,No.EX3-7464_Sep17)	Sep-18
Reference Probe EX3DV4 DAE4	SN 7464 SN 1524	13-Sep-17(SPEAG	G,No.DAE4-1524_Sep17)	Sep-18
o dan Standards	ID#	Cal Date(Calibrate	ed by, Certificate No.)	Scheduled Calibration
Secondary Standards Signal Generator E4438C	MY49071430	23-Jan-18 (CTTL,	No.J18X00560)	Jan-19
NetworkAnalyzer E5071C	MY46110673	24-Jan-18 (CTTL,	No.J18X00561)	Jan-19
	Name	Function		Signature
Calibrated by:	Zhao Jing	SAR Test El	ngineer	A CAL
Reviewed by:	Lin Hao	SAR Test E	ngineer	S-INATO SE
Approved by:	Qi Dianyuan	SAR Projec	York was strategies.	
			Issued: Augu	ıst 3, 2018
This calibration certificate s	hall not be repro	oduced except in ful	I without written approval	of the laboratory.

7

C

.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 http://www.chinattl.cn E-mail: cttl@chinattl.com

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z not applicable or not measured
N/A	not applicable of not medicate

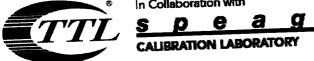
Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless

.

- Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human
- exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:


e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented
- parallel to the body axis. Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. .
- No uncertainty required. SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the
- nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 http://www.chinattl.cn E-mail: cttl@chinattl.com

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY52	52.10.1.1476
Advanced Extrapolation	
Triple Flat Phantom 5.1C	
10 mm	with Spacer
dx, dy, dz = 5 mm	
1750 MHz ± 1 MHz	
	DASY52 Advanced Extrapolation Triple Flat Phantom 5.1C 10 mm dx, dy, dz = 5 mm

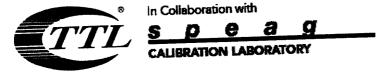
٦

Head TSL parameters

ters and calculations were applied.

The following parameters and calculations we	Temperature	Permittivity	Conductivity
	22.0 °C	40.1	1.37 mho/m
Nominal Head TSL parameters Measured Head TSL parameters	(22.0 ± 0.2) °C	41.2 ± 6 %	1.33 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

sult with Head TSI SA


R result with Head 13L	Condition	
SAR averaged over 1 $-cm^3$ (1 g) of Head TSL		8.91 mW / g
SAR measured	250 mW input power	
SAR for nominal Head TSL parameters	normalized to 1W	36.5 mW /g ± 18.8 % (k=2)
SAR for normal field for parameters SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
	250 mW input power	4.81 mW / g
SAR measured		19.5 mW /g ± 18.7 % (k=2)
SAR for nominal Head TSL parameters	normalized to 1W	10.0 mm rg = 10.0 mm rg

Body TSL parameters

he following parameters and calculations were a	Temperature	Permittivity	Conductivity
TOL seremeters	22.0 °C	53.4	1.49 mho/m
Nominal Body TSL parameters	(22.0 ± 0.2) °C	53.8±6%	1.48 mho/m ± 6 %
Measured Body TSL parameters			
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

(result with body to	Condition	
SAR averaged over 1 cm^3 (1 g) of Body TSL	250 mW input power	9.17 mW / g
SAR measured		
SAR for nominal Body TSL parameters	normalized to 1W	37.0 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
	250 mW input power	5.05 mW / g
SAR measured		20.3 mW /g ± 18.7 % (k=2)
SAR for nominal Body TSL parameters	normalized to 1W	20.3 1111 /g 2 1011 /0 (10 =/

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.3- 0.87 jΩ
	- 40.7 dB
Return Loss	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.8Ω- 2.59 jΩ
Return Loss	- 24.3 dB

General Antenna Parameters and Design

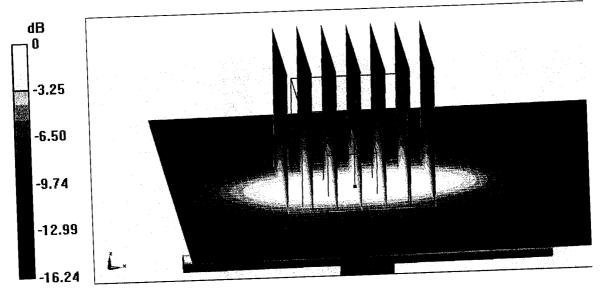
	1.087 ns
Electrical Delay (one direction)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

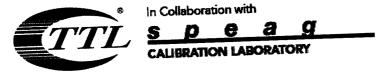
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

	SPEAG
Manufactured by	

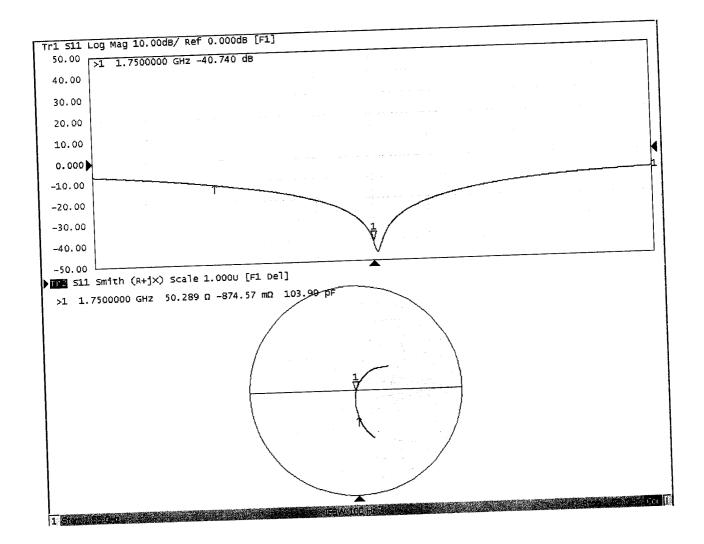


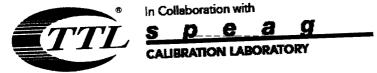
Date: 07.30.2018


DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China **DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1137** Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.332$ S/m; $\epsilon r = 41.17$; $\rho = 1000$ kg/m3 Phantom section: Center Section DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(8.7, 8.7, 8.7) @ 1750 MHz; Calibrated: 9/12/2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1524; Calibrated: 9/13/2017
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Pnanton: MFF_V5.1C, Type: QD 00011101
 Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11
- Measurement Sw: DAS 132, Version 52.10 (1), 4 (7439)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.50 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 16.1 W/kg SAR(1 g) = 8.91 W/kg; SAR(10 g) = 4.81 W/kg Maximum value of SAR (measured) = 13.5 W/kg

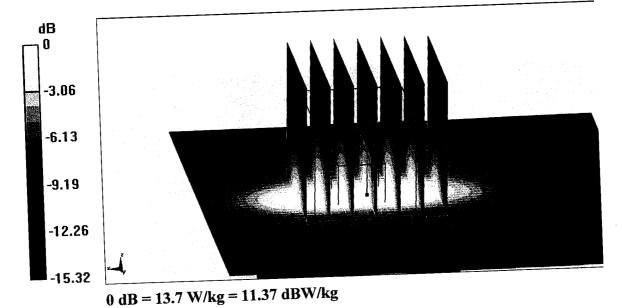



0 dB = 13.5 W/kg = 11.30 dBW/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

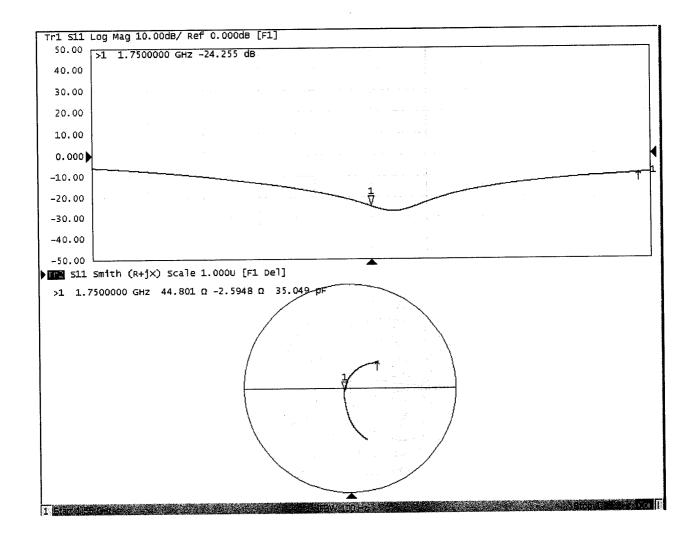
Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

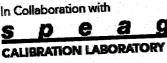

DASY5 Validation Report for Body TSL

Date: 07.30.2018

Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1137 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; σ = 1.477 S/m; ϵ r = 53.84; ρ = 1000 kg/m3 Phantom section: Left Section DASY5 Configuration:


- Probe: EX3DV4 SN7464; ConvF(8.6, 8.6, 8.6) @ 1750 MHz; Calibrated: • 9/12/2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1524; Calibrated: 9/13/2017
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 ٠ • (7439)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 77.55 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 16.0 W/kg SAR(1 g) = 9.17 W/kg; SAR(10 g) = 5.05 W/kg Maximum value of SAR (measured) = 13.7 W/kg



Impedance Measurement Plot for Body TSL

CALIBRATION GERTIFICATE

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Client

Sporton

Z18-60536 **Certificate No:**

FF-Z11-003-01 Calibration Procedures for dipole validation kits

December 7, 2018

D1900V2 - SN: 5d182

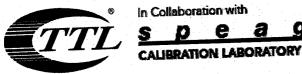
Calibration date:

Calibration Procedure(s)

Object

This calibration Certificate documents the traceability to national standards, which realize the physical units of

measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.


All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

		Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4	100596	Car Date(Cambrated 3), 220 07-Mar-18 (CTTL, No.J18X01510) 07-Mar-18 (CTTL, No.J18X01510) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18)	Mar-19 Mar-19 Aug-19 Aug-19
Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	ID # MY49071430 MY46110673		Scheduled Calibration Jan-19 Jan-19

	Name	Function	Signature
Calibrated by:	Zhao Jing S	SAR Test Engineer	Con To Use
Reviewed by:	Lin Hao	SAR Test Engineer	Min Victor
Approved by:	Qi Dianyuan	SAR Project Leader	
			ssued: December 10, 2018
	inete shall not be reproduced e	except in full without writte	en approval of the laboratory.

This calibration certificate shall not be repro-

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 http://www.chinattl.cn E-mail: cttl@chinattl.com

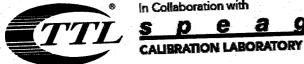
lossary:

TSL ConvF N/A

tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless
- communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz


Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the • measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- . SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the
- nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

In Collaboration with p 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 http://www.chinattl.cn E-mail: cttl@chinattl.com

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

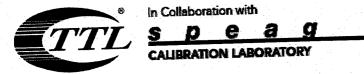
Head TSL parameters

neters and calculations were applied.

The following parameters and calculations mere	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.6 ± 6 %	1.44 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

P result with Head TSL SA

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
	250 mW input power	10.1 mW / g
SAR measured SAR for nominal Head TSL parameters	normalized to 1W	39.6 mW /g ± 18.8 % (k=2)
	Condition	
SAR averaged over 10 cm^3 (10 g) of Head TSL	250 mW input power	5.25 mW / g
SAR measured	normalized to 1W	20.7 mW /g ± 18.7 % (k=2)
SAR for nominal Head TSL parameters		


Body TSL parameters

he following parameters and calculations were a	Temperature	Permittivity	Conductivity
	22.0 °C	53.3	1.52 mho/m
Nominal Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	1.56 mho/m ± 6 %
Measured Body TSL parameters			
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
	250 mW input power	10.2 mW / g
SAR measured		39.9 mW /g ± 18.8 % (k=2)
SAR for nominal Body TSL parameters	normalized to 1W	39.9 mw /g ± 10.0 // (* =/
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
	250 mW input power	5.31 mW / g
SAR measured		20.9 mW /g ± 18.7 % (k=2)
SAR for nominal Body TSL parameters	normalized to 1W	20.9 MW/g 1 10.7 / (K 2)

Certificate No: Z18-60536

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1Ω+ 5.35jΩ
Return Loss	- 25.0dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.9Ω+ 6.19jΩ
Return Loss	- 24.0dB

General Antenna Parameters and Design

	1.067 ns
Electrical Delay (one direction)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

		SPEAG
Manufactured by	· · · · · · · · · · · · · · · · · · ·	

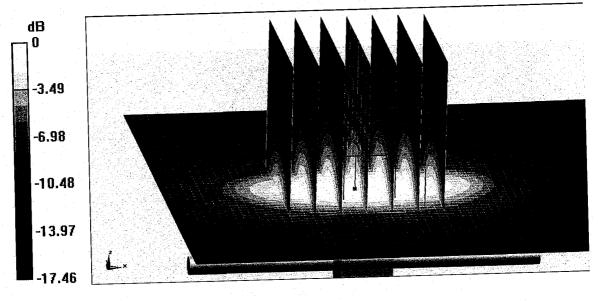
CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

18

In Collaboration with

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

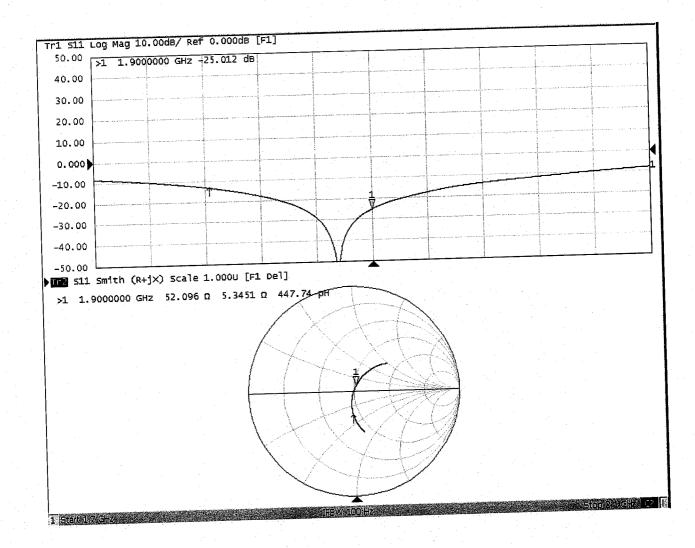

Date: 12.06.2018

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d182 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.441 S/m; ϵ_r = 39.59; ρ = 1000 kg/m3 Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(7.73, 7.73, 7.73) @ 1900 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection) •
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.91 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 19.3 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.25 W/kg Maximum value of SAR (measured) = 15.8 W/kg


0 dB = 15.8 W/kg = 11.99 dBW/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

a

Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Body TSL

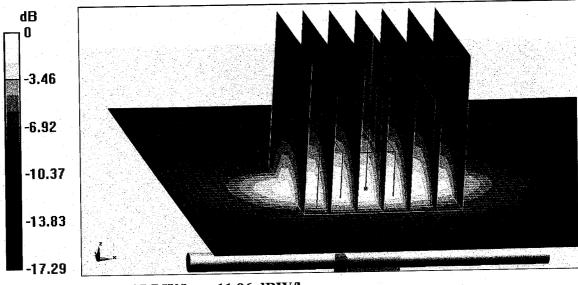
Date: 12.05.2018

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d182

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; σ = 1.564 S/m; ϵ_r = 51.82; ρ = 1000 kg/m3

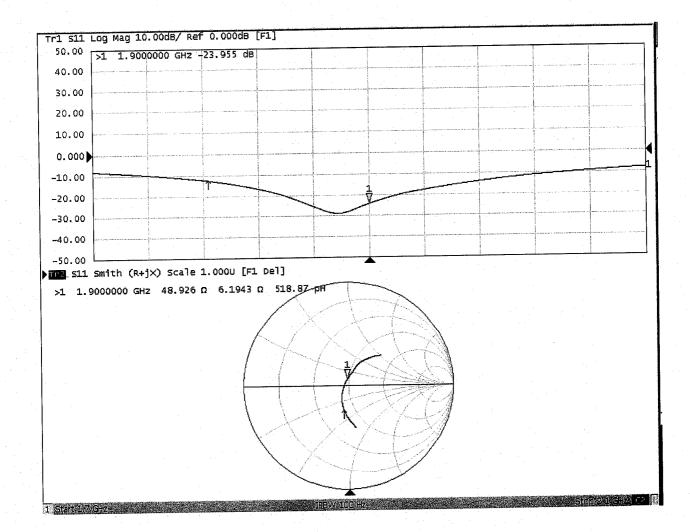

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(7.53, 7.53, 7.53) @ 1900 MHz; Calibrated: • 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018 •
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062 • •
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 ٠ (7450)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 84.07 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.31 W/kg

Maximum value of SAR (measured) = 15.7 W/kg



0 dB = 15.7 W/kg = 11.96 dBW/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comFax: +86-10-62304633-2504http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

		C A G ON LABORATORY		NAS	中国认可 国际互认 校准 CALIBRATION
Add: No.51 Xueyuan Tel: +86-10-62304633	-2079 Fax: +8	ct, Beijing, 100191, China 6-10-62304633-2504	The Anduluture		CNAS L0570
E-mail: cttl@chinattl.c		ww.chinattl.cn	ertificate No: Z	18-60051	
Client Sporto	<u>)n</u>				
CALIBRATION CE	RTIFICATI	E			
Object	D2450V	2 - SN: 924			
Calibration Procedure(s)	FF-Z11- Calibrati	003-01 on Procedures for di	pole validation kits		
Calibration date:	March 2	2, 2018			
This calibration Certificate d measurements(SI). The mean pages and are part of the cer	surements and t	raceability to nationa he uncertainties with	al standards, which re a confidence probabilit	ealize the phys ary are given on	sical units of the following
All calibrations have been humidity<70%.	conducted in t	he closed laborator	y facility: environme	nt temperature	e(22±3)℃ and
Calibration Equipment used	(M&TE critical fo	or calibration)			
Primary Standards	ID#	Cal Date(Calibrate	d by, Certificate No.)		Calibration
Power Meter NRVD	102083	01-Nov-17 (CTTL, I			:t-18
Power sensor NRV-Z5	100542	01-Nov-17 (CTTL, I			xt-18
Reference Probe EX3DV4	SN 7464	•	No.EX3-7464_Sep17	,	ep-18
DAE4	SN 1525	02-Oct-17(SPEAG,	No.DAE4-1525_Oct17	7) O	ct-18
Secondary Standards	ID#	Cal Date(Calibrated	d by, Certificate No.)		d Calibration
Signal Generator E4438C	MY49071430	23-Jan-18 (CTTL, N	No.J18X00560)		an-19
NetworkAnalyzer E5239A	MY55491241	29-Jun-17 (CTTL, I	No.J18X00561)	Ju	ın-18
	Name	Function		Sign	ature
Calibrated by:	Zhao Jing	SAR Test En	gineer	~ 32	
Reviewed by:	Lin Hao	SAR Test En	gineer	States	6
Approved by:	Qi Dianyuan	SAR Project	Leader	ČĦ	Z
			issued: Ma	arch 25, 2018	
This calibration certificate sh	nall not be repro	duced except in full v			tory.

In Collaboration with

е

D

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comhttp://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Ø

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

e

CALIBRATION LABORATORY

a

10

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.0.1446
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

ne following parameters and sales and sales	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

A result with risks in the	Qanditian	
SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	51.8 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.98 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.9 mW /g ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.3 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.9 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	50.7 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.88 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.3 mW /g ± 18.7 % (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.9Ω+ 4.08jΩ	
Return Loss	- 27.7dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.8Ω+ 4.69jΩ	
Return Loss	- 26.5dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.060 ns
Liectrical Delay (one an estion)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

1		00540
	Manufactured by	SPEAG
	Manufactured by	

In Collaboration with e

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

ALIBRATION LABORATORY

DASY5 Validation Report for Head TSL

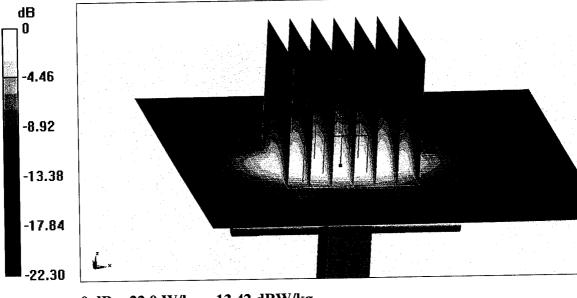
Test Laboratory: CTTL, Beijing, China

Date: 03.22.2018

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 924 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.841$ S/m; $\epsilon r = 40.32$; $\rho = 1000$ kg/m3 Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

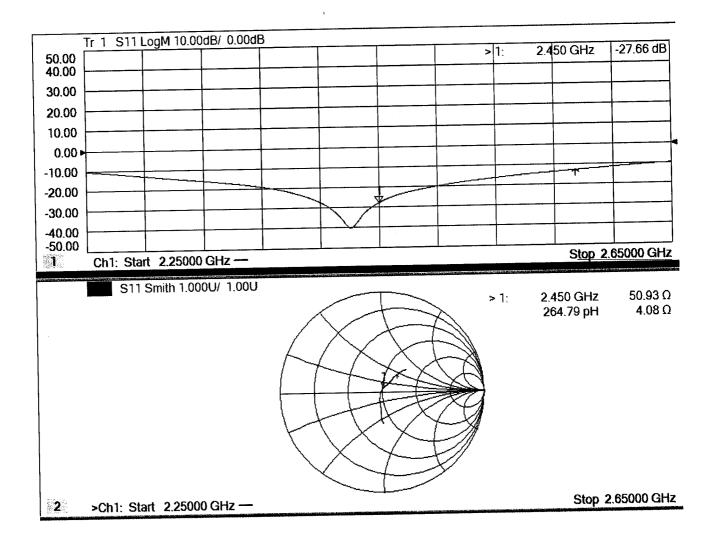
- Probe: EX3DV4 SN7464; ConvF(7.89, 7.89, 7.89); Calibrated: 9/12/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection) .
- Electronics: DAE4 Sn1525; Calibrated: 10/2/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 •
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)


Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.2 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 27.2 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 5.98 W/kg


Maximum value of SAR (measured) = 22.0 W/kg

0 dB = 22.0 W/kg = 13.42 dBW/kg

Impedance Measurement Plot for Head TSL

In Collaboration with e a

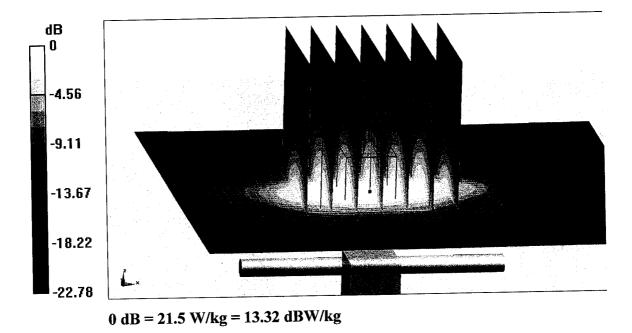
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

LIBRATION LABORATORY

DASY5 Validation Report for Body TSL

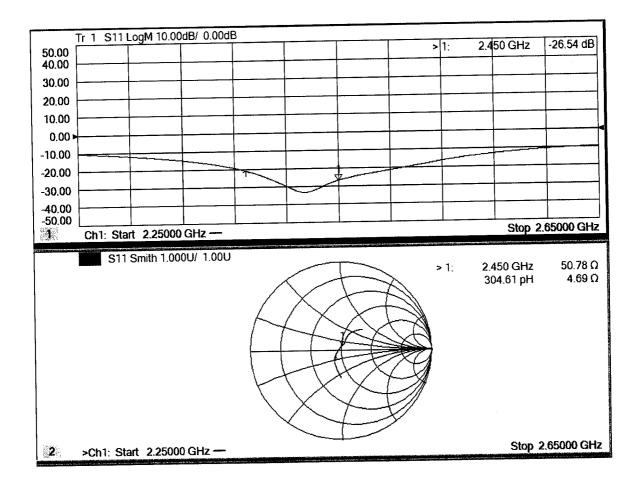
Date: 03.22.2018


Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 924 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.998 S/m; ϵ_r = 51.28; ρ = 1000 kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(8.09, 8.09, 8.09); Calibrated: 9/12/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1525; Calibrated: 10/2/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 98.09 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.88 W/kg Maximum value of SAR (measured) = 21.5 W/kg

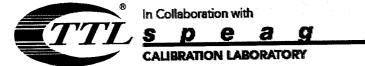
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Add: No.51 Xucyuan Road, Haidian District, Baijing, 100191, China Tex: +86-10-02304633-2304 Tex: +86-10-02304633-2304 Fix: +86-10-02304633-2304 Client : Sporton Calibratic on procedure (s) CF-Z11-002-01 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure(s) FF-Z11-002-01 Calibration Certificate documents the traceability to national standards, which realize the physical units o measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°c and humidity Primary Standards ID # Calibrated by: Yu Zongying SAR Test Engineer Acquisitor Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader		in Collabor	etion with C A G ION LABORATORY		CNAS	中国认可 国际互认 校准 CALIBRATION
Client : Option CALIBRATION CERTIFICATE Object DAE4 - SN: 715 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: January 23, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units o measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)*C and humidity<70%.	Tel: +86-10-6230	4633-2512 Fax: +	-86-10-62304633-2504	Fill Andulution		CNAS L0570
Object DAE4 - SN: 715 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: January 23, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units o measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Process Calibrator 753 1971018 20-Jun-18 (CTTL, No.J18X05034) June-19 Calibrated by: Yu Zongying Reviewed by: Lin Hao Approved by: Qi Dianyuan	C			Certificate N	lo: Z19-60029	
Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: January 23, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units or measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)*C and humidity<70%.	CALIBRATION	BERTIFICAT				
Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: January 23, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units o measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.	Object	DAE4	- SN: 715			
This calibration Certificate documents the traceability to national standards, which realize the physical units or measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.	Calibration Procedure(s)	Calibra	ation Procedure for the	e Data Acquisit	ion Electronics	
measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.	Calibration date:	Janua	ry 23, 2019		an an an Araba an Araba an Araba. An Araba An Araba an Araba an Araba an Araba	
Primary Standards ID # Cal Date (Calibrated b), Columnation (Calibrated b), Colum	measurements(SI). The n pages and are part of the All calibrations have be humidity<70%.	neasurements and certificate. en conducted in	I the uncertainties with on the closed laboratory	onfidence proba	bility are given on t	he following
Process Calibrator 753 1971018 20-suil-ito (CTTE, No.5 to Noscolity) Name Function Signature Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader	Primary Standards	ID# Ca	al Date(Calibrated by, C	ertificate No.)	Scheduled Calib	ration
Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader	Process Calibrator 753	1971018	20-Jun-18 (CTTL, No.	J18X05034)	June-19)
Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader						
Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader		Name	Function		Signature	
Approved by: Qi Dianyuan SAR Project Leader	Calibrated by:	Yu Zongying	SAR Test Engine	er	A start of	\geq
	Reviewed by:	Lin Hao	SAR Test Engine	er	= AFAB	
·	Approved by:	Qi Dianyuan	SAR Project Lea	ıder	- And	
Issued: January 24, 2019						
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.	This calibration certificat	e shall not be repr	oduced except in full wi	thout written app		.or y.

1

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2512Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comHttp://www.chinattl.cn


Glossary: DAE

Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- *DC Voltage Measurement*: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2512Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comHttp://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Resolution nominal

 $\begin{array}{rll} \mbox{High Range:} & 1LSB = & 6.1 \mu V \ , & \mbox{full range = } & -100...+300 \ mV \\ \mbox{Low Range:} & 1LSB = & 61nV \ , & \mbox{full range = } & -1.....+3mV \\ \mbox{DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec} \end{array}$

Calibration Factors	X	Y	Z
High Range	405.101 ± 0.15% (k=2)	$404.654 \pm 0.15\%$ (k=2)	404.478 \pm 0.15% (k=2)
Low Range	3.99019 ± 0.7% (k=2)	3.97763 ± 0.7% (k=2)	$3.97614 \pm 0.7\%$ (k=2)

Connector Angle

ector Angle to be used in DASY system 33	330.5° ± 1 °
--	--------------

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Sporton

Client

S Schweizerischer Kalibrierdienst
 S Service suisse d'étalonnage
 S Servizio svizzero di taratura
 S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Calibration Equipment used (M&TE critical for calibration)

Certificate No: EX3-3911_Jan19

CALIBRATION (DERTIFICATE
Object	EX3DV4 - SN-39111
Calibration procedure(s)	QA CAL-01 v9, QA CAL-12 v9, QA CAL-23 v5, QA CAL-25 v7 Calibration procedure for dosimetric Efficiel probes
Calibration date:	January 22, 2019
This calibration certificate docun The measurements and the unc	nents the traceability to national standards, which realize the physical units of measurements (SI). ertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been condu	ucted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Scheduled Calibration Cal Date (Certificate No.) ID Primary Standards 04-Apr-18 (No. 217-02672/02673) Apr-19 SN: 104778 Power meter NRP Apr-19 04-Apr-18 (No. 217-02672) SN: 103244 Power sensor NRP-Z91 Apr-19 04-Apr-18 (No. 217-02673) Power sensor NRP-Z91 SN: 103245 04-Apr-18 (No. 217-02682) Apr-19 Reference 20 dB Attenuator SN: S5277 (20x) Dec-19 19-Dec-18 (No. DAE4-660_Dec18) SN: 660 DAE4 Dec-19 31-Dec-18 (No. ES3-3013_Dec18) Reference Probe ES3DV2 SN: 3013 Scheduled Check Check Date (in house) ID Secondary Standards In house check: Jun-20 06-Apr-16 (in house check Jun-18) SN: GB41293874 Power meter E4419B In house check: Jun-20 06-Apr-16 (in house check Jun-18) SN: MY41498087 Power sensor E4412A In house check: Jun-20 06-Apr-16 (in house check Jun-18) SN: 000110210 Power sensor E4412A In house check: Jun-20 04-Aug-99 (in house check Jun-18) SN: US3642U01700 RF generator HP 8648C In house check: Oct-19 31-Mar-14 (in house check Oct-18) SN: US41080477 Network Analyzer E8358A

Calibrated by:	Name Jeton Kastrati	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	Lelle
			Issued: January 26, 2019
This calibration certificate shal	I not be reproduced except	in full without written approval of the lat	poratory.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage С

Servizio svizzero di taratura S

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 0108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization &	notation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Connector Angle

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" d)

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x, y, z = NORMx, y, z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

Basic Calibration Paral			0	Unc (k=2)
	Sensor X	Sensor Y	Sensor Z	
2)A	0.30	0.34	0.49	± 10.1 %
Norm $(\mu V/(V/m)^2)^A$	102.6	104.9	102.2	
DCP (mV) ^B	102.0	10110		

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Unc [∟] (k=2)
0	CW	X	0.0	0.0	1.0	0.00	136.9	+ 2.2 %	± 4.7 %
		Y	0.0	0.0	1.0		136.6		
		Y	0.0	0.0	1.0		138.5		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

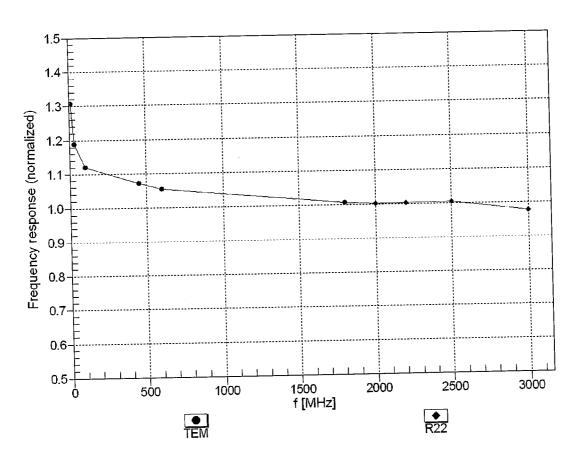
Other Probe Parameters

Other Probe Parameters	Triangular
Sensor Arrangement	-65.8
Connector Angle (°)	
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

f (MHz) ^C	Parameter Do Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.39	10.39	10.39	0.57	0.80	± 12.0 %
835	41.5	0.90	10.14	10.14	10.14	0.30	1.03	± 12.0 %
900	41.5	0.97	9.65	9.65	9.65	0.46	0.80	± 12.0 %
1750	40.1	1.37	8.67	8.67	8.67	0.35	0.87	± 12.0 %
1900	40.0	1.40	8.30	8.30	8.30	0.34	0.85	± 12.0 %
2000	40.0	1.40	8.16	8.16	8.16	0.30	0.84	± 12.0 %
2300	39.5	1.67	7.74	7.74	7.74	0.28	0.90	± 12.0 %
2450	39.2	1.80	7.32	7.32	7.32	0.35	0.85	± 12.0 %
2600	39.0	1.96	7.17	7.17	7.17	0.41	0.85	± 12.0 %
5250	35.9	4.71	5.23	5.23	5.23	0.40	1.80	± 14.0 %
5600	35.5	5.07	4.58	4.58	4.58	0.40	1.80	± 14.0 9
5750	35.4	5.22	4.76	4.76	4.76	0.40	1.80	± 14.0 9

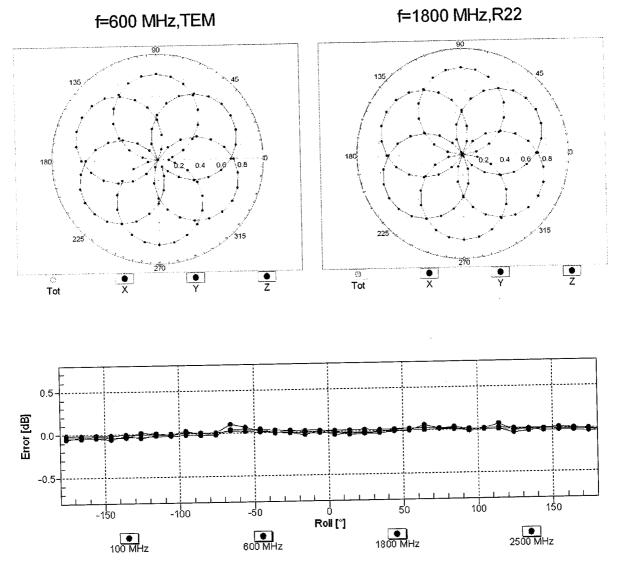
Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity uncertainty is the RSS of the ConvE uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvE assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvE assessed at 6 MHz is 4-9 MHz, and ConvE assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies up to 6 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tin

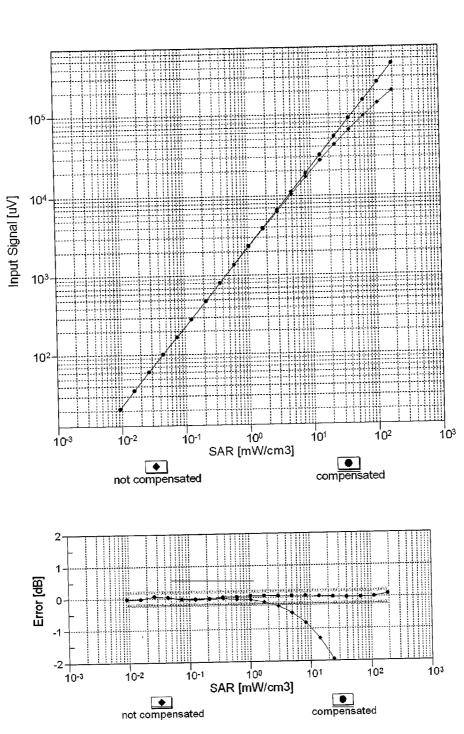

always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

f (MHz) ^c	Parameter De Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	10.22	10.22	10.22	0.40	0.87	± 12.0 %
835	55.2	0.97	10.05	10.05	10.05	0.35	0.85	± 12.0 %
900	55.0	1.05	9.94	9.94	9.94	0.46	0.80	± 12.0 %
1750	53.4	1.49	8.28	8.28	8.28	0.43	0.84	± 12.0 %
1900	53.3	1.52	7.96	7.96	7.96	0.35	0.84	± 12.0 %
2300	52.9	1.81	7.62	7.62	7.62	0.31	0.87	± 12.0 %
2450	52.7	1.95	7.54	7.54	7.54	0.33	0.86	± 12.0 %
2600	52.5	2.16	7.32	7.32	7.32	0.24	0.98	± 12.0 %
5250	48.9	5.36	4.67	4.67	4.67	0.50	1.90	± 14.0 %
5600	48.5	5.77	4.04	4.04	4.04	0.50	1.90	± 14.0 9
5750	48.3	5.94	4.16	4.16	4.16	0.50	1.90	± 14.0 9

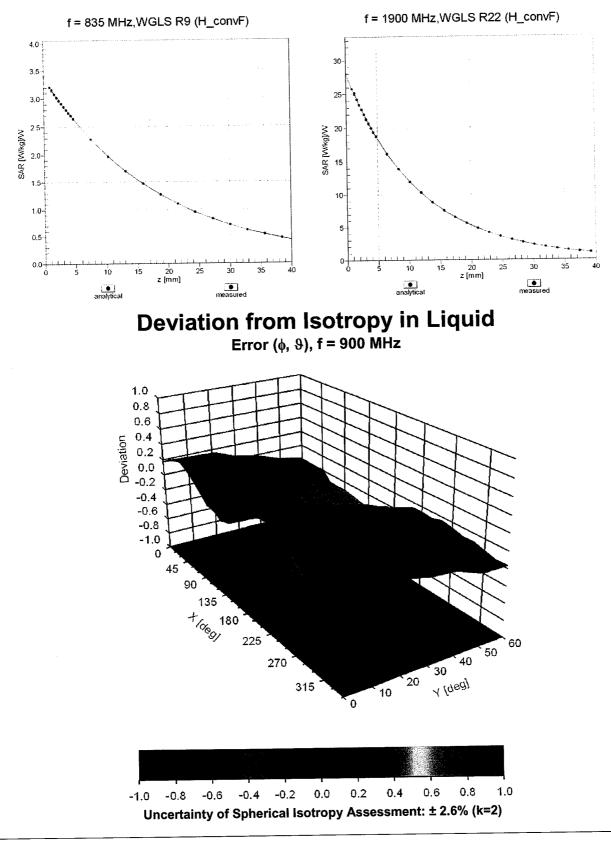
Parameter Determined in Body Tissue Simulating Media С


^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 0.14 for the indicated frequency band. Frequency validity are the validity of ConvF assessments at 30, 64, 128, 150 and 200 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 200 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 200 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 200 MHz is \pm 10, 200 MHz is \pm 200 MHz is \pm 10, 200 MHz i 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ⁶ At frequencies up to 6 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

The quericies up to 0 GHz, the value of usue parameters (s and 0) can be relaxed to \pm 10% in induct compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment