

RF EXPOSURE EVALUATION REPORT

No. I21Z61571-SEM01

For

Reliance Communications LLC

Orbic Myra

R678L5

With

Hardware Version: V2.2

Software Version: ORB678L5_v1.0.42_BVZ

FCC ID: 2ABGH-R678L5

Issued Date: 2021-8-23

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT No. 51, Xueyuan Road, Haidian District, Beijing, P. R. China 100191. Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504 Email: <u>cttl_terminals@caict.ac.cn</u>, website: <u>www.caict.ac.cn</u>

©Copyright. All rights reserved by CTTL.

REPORT HISTORY

Report Number	Revision	Issue Date	Description
I21Z61571-SEM01	Rev.0	2021-8-23	Initial creation of test report

TABLE OF CONTENT

1 TEST LABORATORY	4
1.1 Testing Location	4
1.2 TESTING ENVIRONMENT	4
1.3 Project Data	4
1.4 Signature	4
2 SUMMARY	5
3 CLIENT INFORMATION	5
3.1 APPLICANT INFORMATION	5
3.2 MANUFACTURER INFORMATION	5
4 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (A	٤)6
4.1 About EUT	
4.2 INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	6
4.3 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	
5 GUIDANCE APPLIED	7
6 RF EXPOSURE LIMITS	8
6.1 Uncontrolled Environment	
6.2 CONTROLLED ENVIRONMENT	
7 SYSTEM VERIFICATION SOURCE	9
8 POWER DENSITY SYSTEM VERIFICATION	10
9 SYSTEM VERIFICATION RESULTS	11
10 POWER DENSITY ASSESSMENT	12
10.1 General Description	
10.2 MMWAVE EN-DC COMBINATION	
10.3 COMPUTATION OF THE ELECTRIC FIELD POLARIZATION ELLIPSE	14
10.4 TOTAL FIELD AND POWER FLUX DENSITY RECONSTRUCTION	
11 RF EXPOSURE EVALUATION RESULTS	16
12 SIMULTANEOUS TRANSMISSION ASSESSMENT	17
12.1 SIMULTANEOUS TRANSMISSION CONSIDERATION	17
12.2 TOTAL EXPOSURE RADIO ANALYSIS	17
13 MEASUREMENT UNCERTAINTY	18
14 MAIN TEST INSTRUMENTS	18
ANNEX A GRAPH RESULTS	19
ANNEX B SYSTEM VERIFICATION RESULTS	21
ANNEX C SYSTEM DESCRIPTION AND SETUP	24
ANNEX D PROBE CALIBRATION CERTIFICATE	27
ANNEX E 5G VERIFICATION SOURCE	46
ANNEX F ACCREDITATION CERTIFICATE	51

1 Test Laboratory

1.1 Testing Location

Company Name:	CTTL(Shouxiang)
Address:	No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District,
	Beijing, P. R. China100191

1.2 Testing Environment

Temperature:	18°C~25°C,
Relative humidity:	30%~ 70%
Air Pressure:	980-1020 hPa

1.3 Project Data

Project Leader:	Qi Dianyuan
Test Engineer:	Lin Xiaojun
Testing Start Date:	August 18, 2021
Testing End Date:	August 20, 2021

1.4 Signature

Lin Xiaojun (Prepared this test report)

Qi Dianyuan (Reviewed this test report)

Lu Bingsong Deputy Director of the laboratory (Approved this test report)

2 Summary

The maximum results of Specific Absorption Rate (SAR) found during testing for Reliance Communications LLC Orbic Myra R678L5 is as follows:

Standalone transmission					
RF Transmitter		Measured PD (mW/cm2)	Limt (FCC Part 1.310) (mW/cm²)		
	n260	0.398	1.0		
JGFRZ	n261	0.304	1.0		
Result			PASS		

3 Client Information

3.1 Applicant Information

Company Name:	Reliance Communications LLC		
Address/Post:	91 Colin Drive, Unit 1, HOLBROOK, New York 11741, United States		
Contact Person:	1		
Contact Email:	1		
Telephone:	1		
Fax:	1		

3.2 Manufacturer Information

Company Name:	ZJY RIGHT SOURCE INDIA PRIVATE LIMITED
Address/Post:	MIDC industrial Area, Shiravane, Nerul, India
Contact Person:	1
Contact Email:	1
Telephone:	1
Fax:	1

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT

Description:	Orbic Myra
Model name:	R678L5
Tested Ty Frequency:	5G NR n260(120kHz): 37 GHz ~ 40 GHz
rested ix Frequency.	5G NR n261(120kHz): 27.5 GHz ~ 28.35 GHz
Test device Production information:	Production unit
Device type:	Portable device
Antenna type:	Integrated antenna

4.2 Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version
EUT1	357758890011069	V2.2	ORB678L5_v1.0.42_BVZ

*EUT ID: is used to identify the test sample in the lab internally.

4.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Battery	BLE-5001	/	HUIZHOU DXDRAGON INC

*AE ID: is used to identify the test sample in the lab internally.

5 Guidance Applied

[1] ANSI C95.1–1992:IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

[2] IEC TR 63170:2018, Measurement Procedure for the Evaluation of Power Density Related to Human Exposure to Radiofrequency Fields from Wireless Communication Devices Operating between 6 GHz and 100 GHz.

[3] R. W. Gerchberg and W. 0. Saxton. A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures. Optik 35(2): 237 - 246, 1972

[4] FCC KDB 865664 002 v01r04: SAR Measurement Requirements FOR 100 MHz to 6 GHz. Federal Communications Commission – Office of Engineering and Technology, Laboratory Division.

[5] FCC KDB447498 D01: General RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

- [6] November 2017 Telecommunications Certification Body Council (TCBC) Workshop Notes
- [7] October 2018 Telecommunications Certification Body Council (TCBC) Workshop Notes
- [8] April 2019 Telecommunications Certification Body Council (TCBC) Workshop Notes
- [9] November 2019 Telecommunications Certification Body Council (TCBC) Workshop Notes

6 RF Exposure Limits

6.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

6.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposure by leaving the area or by some other appropriate means.

The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure above 6GHz to radio frequency (RF) radiation as specified in §1.1310.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
	(A) Limits for O	ccupational/Controlled Expo	sures	
0.3-3.0	61	4 1.63	3 *(100)	6
3.0-30	1842	f 4.89/	f *(900/f2)	6
30-300	61	4 0.163	3 1.0	6
300-1500			f/300	6
1500-100,000			- 5	6
	(B) Limits for Gene	ral Population/Uncontrolled	Exposure	2 /
0.3-1.34	61	4 1.63	3 *(100)	30
1.34-30	824/	f 2.19/	f *(180/f2)	30
30-300	273	5 0.073	3 0.2	30
300-1500			f/1500	- 30
1500-100,000			1.0	30

General Population Basic restriction for power density for frequencies between 1.5GHz and 100 GHz is 1.0 mW/cm2 = 10 W/m2.

7 System Verification Source

The System Verification sources at 30 GHz and above comprise horn-antennas and very stable signal generators.

Model	Ka-band horn antenna			
Calibrated frequency:	30 GHz at 10mm from the case surface			
Frequency accuracy	± 100 MHz			
E-field polarization	linear			
Harmonics	-20 dBc			
Total radiated power	14 dBm			
Power stability	0.05 dB			
Power consumption	5 W			
Size	100 x 100 x 100 mm			
Weight	1 kg			

8 Power Density System Verification

The system performance check verifies that the system operates within its specifications.

The EUT is replaced by a calibrated source, the same spatial resolution, measurement region and the test separation used in the calibration was applied to system check. Through visual inspection into the measured power density distribution, both spatially (shape) and numerically (level) have no noticeable difference. The measured results should be within 0.66dB of the calibrated targets.

Frequency [GHz]	Grid step	Grid extent X/Y [mm]	Measurement points
10	$0.25 \left(\frac{\lambda}{4}\right)$	120/120	16×16
30	$0.25 \left(\frac{\dot{\lambda}}{4}\right)$	60/60	24×24
60	$0.25 \left(\frac{\dot{\lambda}}{4}\right)$	32.5/32.5	26×26
90	$0.25 \left(\frac{\lambda}{4}\right)$	30/30	36×36

Settings for measurement of verification sources

Verification Setup photo

9 System Verification Results

Date	Frequency (GHz)	5G Verification Source	Probe S/N	Distance (mm)	Measured 4cm^2 (W/m^2)	Targeted 4cm^2 (W/m^2)	Deviation (db)
2021/8/18	30G	30GHz_1076	9492	5.5	76	75.2	0.011
2021/8/19	30G	30GHz_1076	9492	5.5	73.7	75.2	-0.02
2021/8/20	30G	30GHz_1076	9492	5.5	76.1	75.2	0.012

10 Power Density Assessment

10.1 General Description

1. The 5G NR mmWave signal under testing was configured by the test tool of Qualcomm Software, and it is only limited to operate at EN-DC for 5G NR implementation according to the character of the device.

2. This device would be configured to maximum power when transmitting and tested at 100% duty cycle for each RB configuration, modulation, bandwidth, and channel.

3. According to the manufacturer that summation for different antenna modules and exposure planes, the worst case would be selected for power density measurement.

4. According to TCBC workshop in October 2018 that 4cm² averaging area may now be considered.

EN-DC Combination	mmWave (FR2) 4G DL 4x4 MIMO	4G UL	5G-NR UL	2x2 UL MIMO
DC_2A_n261A	2A	2A	n261A	n261A
DC_2A_n2611	2A	2A	n261I	n261G
DC_2A_n261(A-H)	2A	2A	n261A, n261H	n261A, n261G
DC_5A_n261A	-	5A	n261A	n261A
DC_5A_n261I	-	5A	n261I	n261G
DC_5A_n261(A-H)	-	5A	n261A, n261H	n261A, n261G
DC_13A_n261A	-	13A	n261A	n261A
DC_13A_n261I	-	13A	n261I	n261G
DC_13A_n261(A-H)	-	13A	n261A, n261H	n261A, n261G
DC_66A_n261A	66A	66A	n261A	n261A
DC_66A_n261I	66A	66A	n261I	n261G
DC_66A_n261(A-H)	66A	66A	n261A, n261H	n261A, n261G
DC_2A-5A_n261A	-	2A, 5A	n261A	n261A
DC_2A-5A_n261I	-	2A, 5A	n261I	n261G
DC_2A-5A_n261(A-H)	-	2A, 5A	n261A, n261H	n261A, n261G
DC_2A-13A_n261A	-	2A, 13A	n261A	n261A
DC_2A-13A_n2611	-	2A, 13A	n261I	n261G
DC_2A-13A_n261(A-H)	-	2A, 13A	n261A, n261H	n261A, n261G
DC_2A-66A_n261A	-	2A, 66A	n261A	n261A
DC_2A-66A_n2611	-	2A, 66A	n2611	n261G
DC_2A-66A_n261(A-H)	-	2A, 66A	n261A, n261H	n261A, n261G
DC_5A-66A_n261A	-	5A, 66A	n261A	n261A

10.2 mmWave EN-DC Combination

CAICT No.I21Z61571-SEM01

DC 5A-66A n2611	-	5A, 66A	n2611	n261G
DC_5A-66A_n261(A-H)	-	5A, 66A	n261A, n261H	n261A, n261G
DC_13A-66A_n261A	-	13A, 66A	n261A	n261A
DC_13A-66A_n261I	-	13A, 66A	n261I	n261G
DC_13A-66A_n261(A-H)	-	13A, 66A	n261A, n261H	n261A, n261G
DC_66A-66A_n261A	-	66A	n261A	n261A
DC_66A-66A_n261I	-	66A	n261I	n261G
DC_66A-66A_n261(A-H)	-	66A	n261A, n261H	n261A, n261G
DC_2A_n260A	2A	2A	n260A	n260A
DC_2A_n260I	2A	2A	n260I	n260G
DC_5A_n260A	-	5A	n260A	n260A
DC_5A_n260I	-	5A	n260I	n260G
DC_13A_n260A	-	13A	n260A	n260A
DC_13A_n260I	-	13A	n2601	n260G
DC_66A_n260A	66A	66A	n260A	n260A
DC_66A_n260I	66A	66A	n260I	n260G
DC_2A-5A_n260A	-	2A, 5A	n260A	n260A
DC_2A-5A_n260I	-	2A, 5A	n260I	n260G
DC_2A-13A_n260A	-	2A, 13A	n260A	n260A
DC_2A-13A_n260I	-	2A, 13A	n2601	n260G
DC_66A_n260A	66A	66A	n260A	n260A
DC_66A_n260I	66A	66A	n2601	n260G
DC_2A-5A_n260A	-	2A, 5A	n260A	n260A
DC_2A-5A_n260I	-	2A, 5A	n2601	n260G
DC_2A-13A_n260A	-	2A, 13A	n260A	n260A
DC_2A-13A_n260I	-	2A, 13A	n2601	n260G
DC_2A-66A_n260A	-	2A, 66A	n260A	n260A
DC_2A-66A_n260I	-	2A, 66A	n2601	n260G
DC_5A-66A_n260A	-	5A, 66A	n260A	n260A
DC_5A-66A_n260I	-	5A, 66A	n2601	n260G
DC_13A-66A_n260A	-	13A, 66A	n260A	n260A
DC_13A-66A_n260I	-	13A, 66A	n2601	n260G
DC_66A-66A_n260A	-	66A	n260A	n260A
DC_66A-66A_n260I	-	66A	n2601	n260G
DC_2A_n261(2G)	2A	2A	n261G	n261G
DC_5A_n261(2G)	-	5A	n261G	n261G
DC_13A_n261(2G)	-	13A	n261G	n261G
DC_66A_n261(2G)	66A	66A	n261G	n261G
DC_13A-66A_n261(2G)	-	13A, 66A	n261G	n261G
DC_2A-66A_n261(2G)	-	2A, 66A	n261G	n261G
DC_2A-13A_n261(2G)	-	2A, 13A	n261G	n261G
DC_5A-66A_n261(2G)	-	5A, 66A	n261G	n261G

10.3 Computation of the Electric Field Polarization Ellipse

For the numerical description of an arbitrarily oriented ellipse in three-dimensional space, five parameters are needed: the semi-major axis (a), the semi-minor axis (b), two angles describing the orientation of the normal vector of the ellipse (\emptyset , θ), and one angle describing the tilt of the semi-major axis (ψ). For the two extreme cases, i.e., circular and linear polarizations, three parameters only (a, \emptyset and θ) are sufficient for the description of the incident field.

Illustration of the angles used for the numerical description of the sensor and the orientation of an ellipse in 3-D space.

For the reconstruction of the ellipse parameters from measured data, the problem can be reformulated as a nonlinear search problem. The semi-major and semi-minor axes of an elliptical field can be expressed as functions of the three angles (\emptyset , θ and ψ). The parameters can be uniquely determined towards minimizing the error based on least-squares for the given set of angles and the measured data. In this way, the number of free parameters is reduced from five to three, which means that at least three sensor readings are necessary to gain sufficient information for the reconstruction of the ellipse parameters. However, to suppress the noise and increase the reconstruction accuracy, it is desirable that the system of equations be over determined. The solution to use a probe consisting of two sensors angled by r1 and r2 toward the probe axis and to perform measurements at three angular positions of the probe, i.e., at β 1, β 2 and β 3, results in over-determinations by a factor of two. If there is a need for more information or increased accuracy, more rotation angles can be added. The reconstruction of the ellipse parameters can be separated into linear and non-linear parts that are best solved by the Givens algorithm combined with a downhill simplex algorithm. To minimize the mutual coupling, sensor angles are set with a shift of 90 degree (r2 = r1 + 90 degree), and to simplify, the first rotation angle of the probe (β 1) can be set to 0 degree

10.4 Total Field and Power Flux Density Reconstruction

Computation of the power density in general requires knowledge of the electric and magnetic field amplitudes and phases in the plane of incidence. Reconstruction of these quantities from pseudo-vector E-field measurements is feasible, as they are constrained by Maxwell's equations. SPEAG have developed a reconstruction approach based on the Gerchberg-Saxton algorithm, which benefits from the availability of the E-field polarization ellipse information obtained with the EUmmWV2 probe.

The average of the reconstructed power density is evaluated over a circular area in each measurement plane. Two average power density values can be computed, the average total power density and the average incident power density, and the average total power density is used to determine compliance.

- $|Re{S}|$ is the total Poynting vector
- $n \cdot Re\{S\}$ is the normal Poything vector

The software post-processing reports to values, "S avg tot" and "S avg inc". "S avg tot" represents average total power density (all three xyz components included), and "S avg inc" represents average normal power density. The average total power density "S avg tot" is reported to determine the device compliance.

11 RF Exposure Evaluation Results

- 1. The PD test was performed of a 2mm separation between sensor and EUT surface (the probe tip is 0.5mm to the EUT surface).
- 2. According to TCBC Workshop in October 2018, 4 cm² averaging area are used.
- 3. The worst beam ID and corresponding input power limit refers to PD simulation report.

Band	Bee		Ante	nna	Frequency	Channel	Input power	Worst	Test	Normal psPD	Total psPD
Danu	Dea	UNID	Moudule	Moudule Type (MHz) Channel		limit (dBm)	Surface	separation	(W/m ²)	(W/m2)	
,	35				27547.56	2070833	0.70	Left	2mm	2.31	2.6
		154	οτνο	DATCU	27547.56	2070833	0.70	Left	2mm	2.5	2.77
	27	155	QIMO	FAIGH	27547.56	2070833(TAV ON)	-2.60	Left	2mm	1.71	1.93
-961	27	155			27547.56	2070833(TAV OFF)	-2.60	Left	2mm	1.64	1.98
11201	20				27547.56	2070833	2.20	Right	2mm	3.08	3.64
		149	0.711	DATCH	27547.56	2070833	2.20	Right	2mm	3.64	3.98
	30	158	QIMI	FAICH	27547.56	2070833(TAV ON)	-1.20	Right	2mm	2.69	3.19
	30	158			27547.56	2070833(TAV OFF)	-1.20	Right	2mm	2.44	3.05
	37				38547.48	2254165	0.80	Left	2mm	1.81	2.03
		165	οτνο	DATCH	38547.48	2254165	0.80	Left	2mm	0.994	1.12
	34	162	QIMO	FAICH	38547.48	2254165(TAV ON)	-2.40	Left	2mm	1.27	1.4
- 260	34	162			38547.48	2254165(TAV OFF)	-2.40	Left	2mm	1.26	1.38
1200	30				38547.48	2254165	2.10	Right	2mm	2.66	3.04
		148	OTV1	DATCH	38547.48	2254165	2.10	Right	2mm	2.36	2.68
	24	152	AIWI	FAICH	38547.48	2254165(TAV ON)	-1.20	Right	2mm	1.04	1.34
	24	152			38547.48	2254165(TAV OFF)	-1.20	Right	2mm	1.24	1.54

12 Simultaneous Transmission Assessment

12.1 Simultaneous Transmission Consideration

No.	Simultaneous Transmission Consideration	Support
1	WWAN LTE Bands+5G NR FR2	Yes
2	WWAN LTE Bands+5G NR FR2+WLAN 2.4GHz/5GHz (MIMO)	Yes

Note:

Both the 2.4GHz & 5GHz WLAN cannot transmit simultaneously at the same time according to the user manual.

The simultaneous transmission evaluation results refer to SZ21010412S01.

12.2 Total Exposure Radio Analysis

The fields generated by the antennas can be correlated or uncorrelated. At different frequencies, fields are always uncorrelated, and the aggregate power density contributions can be summed according to spatially averaged values of corresponding sources at any point in space, r, to determine the total exposure ratio (TER). Assuming I sources, the TER at each point in space is equal to

$$\text{TER}^{\text{uncorr}}(\mathbf{r}) = \sum_{i=1}^{I} \text{ER}_{i} = \sum_{i=1}^{I} \frac{S_{\text{av},i}(\mathbf{r}, \mathbf{f}_{i})}{S_{\text{lim}}(\mathbf{f}_{i})}$$

Where $S_{av,i}$ is the power density for the source I operating at a frequency f_i and S_{lim} is the power density limit as specified by the relevant standard.

Exposure from transmitters operating above and below 6GHz, where 6GHz denotes the transmission frequency where the basic restrictions change from being defined in terms of SAR to being defined in terms of power density, therefore uncorrelated and the TER is determined as

$$\text{TER}^{\text{uncorr}}(\mathbf{r}) = \sum_{i=1}^{I} \text{ER}_{i} = \sum_{i=1}^{I} \frac{S_{\text{av},i}(\mathbf{r}, \mathbf{f}_{i})}{S_{\text{lim}}(\mathbf{f}_{i})}$$

According to the FCC guidance in TCBC workshop and IEC TR 63170, the total exposure ratio calculated by taking ratio of maximum reported SAR divided by SAR limit and adding it to maximum measured power density by its limit. Numerical sum of the ratios should be less or equal to 1. Therefore the simultaneous transmission should be follows:

$$\sum \frac{\text{Max. SAR}}{1.6} + \sum \frac{\text{Max. PD}}{\text{Limit of MPE}} \leq 1$$

13 Measurement Uncertainty

The budget is valid for evaluation distance $>\lambda/2\pi$. For specific tests and configurations, the uncertainty can be considered smaller.

		Unc. Value	Prob.	D:	(\mathbf{C})	Std.Unc.	(V_i)
	Error Description	(±dB)	Dist.	DIV.	(Ci)	(±dB)	V _{eff}
Uncerta							
CAL	Calibration	0.49	Ν	1	1	0.49	8
FRS	Frequency response	0.20	R	$\sqrt{3}$	1	0.12	8
ISO	Isotropy	0.50	R	$\sqrt{3}$	1	0.29	8
LIN	Linearity	0.20	R	$\sqrt{3}$	1	0.12	8
PPO	D Probe positioning offset 0.30 R				1	0.17	8
PPR	Probe positioning repeatability	0.04	R	$\sqrt{3}$	1	0.02	8
APN	Amplitude and phase noise	0.04	R	$\sqrt{3}$	1	0.02	8
DAQ	Data acquisition	0.03	Ν	1	1	0.03	8
REC	Field reconstruction	0.60	R	$\sqrt{3}$	1	0.35	8
SAV	Spatial averaging	0.10	R	$\sqrt{3}$	1	0.06	8
SDL	DL System detection limit 0.04 R $\sqrt{3}$ 1					0.02	8
Uncerta	inty terms dependent on the DUI	and environm	nental fa	ctors			
MOD	Modulation response	0.40	R	$\sqrt{3}$	1	0.23	8
DH	Device holder influence	0.10	R	$\sqrt{3}$	1	0.06	8
AC	RF ambient conditions	0.04	R	$\sqrt{3}$	1	0.02	8
AR	Ambient reflections	0.04	R	$\sqrt{3}$	1	0.02	8
DRI	Drift of the DUT	0.02	R	$\sqrt{3}$	1	0.01	∞
	Combined Standard	Uncertainty				0.76	8
	1.52						

14 MAIN TEST INSTRUMENTS

Table 12.1: List of Main Instrument

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	EummWV Probe	EummWV4	9492	May 20,2021	One year
02	DAE	SPEAG DAE4	777	January 08,2021	One year
03	5G Verification Source	30 GHz	1076	September 11,2020	One year
04	Thermo meter	608-H1	N/A	June 15,2021	One year

END OF REPORT BODY

-0.06

ANNEX A Graph Results

Measurement Report for Device, EDGE RIGHT, Validation band, CW, Channel 28000 (28000.0 MHz)

Device Under Test	Properties						
Model, Manufacturer			Dimensions [mm]		IMEI	DUT 1	Гуре
Device,			180.0 x 82.0 x 10.0			Phone	2
Exposure Conditio	ns						
Phantom Section	Position, Test Distanc	e [mm]	Band	Fre	equency [MHz], Channel Num	ber	Conversion Factor
5G	EDGE RIGHT, 2.00		Validation band	28	000.0, 28000		1.0
Hardware Setup							
Phantom	Medium	Probe, Calibrat	ion Date		DAE,	Calibration Dat	te
mmWave - xxxx	Air -	EUmmWV4 - St	N9492_F1-55GHz, 2021	-05-20	DAE	4 Sn777, 2021-	01-08
Scans Setup				Measureme	ent Results		
Scan Type			5G Scan	Scan Type			5G Scan
Grid Extents [mm]			60.0 x 60.0	Date			2021-08-18, 18:58
Grid Steps [lambda]			0.25 x 0.25	Avg. Area [cr	m²]		4.00
Sensor Surface [mm]			2.0	psPDn+ [W/r	m2]		3.64
MAIA			N/A	psPDtot+ [W	/m ²]		3.98
				psPDmod+ [W/m2]		4.13
				Emax [V/m]			69.1

E_{max} [V/m] Power Drift [dB]

Page 19 of 51

Measurement Report for Device, EDGE RIGHT, Validation band, CW, Channel 38500 (38500.0 MHz)

Device Under Test Properties

Device officer rest	rioperties					
Model, Manufacturer		Dimensions [m	ım]		IMEI	DUT Type
Device,		180.0 x 82.0 x	10.0			Phone
Exposure Conditio	ns					
Phantom Section	Position, Test Distance	e [mm] Band		Frequency [MHz],	Channel Number	Conversion Factor
5G	EDGE RIGHT, 2.00	Validation band	d	38500.0, 38500		1.0
Hardware Setup						
Phantom	Medium	Probe, Calibration Date			DAE, Calibi	ration Date
mmWave - xxxx	Air -	EUmmWV4 - SN9492_F1-55G	Hz, 2021-05-2	20	DAE4 Sn77	7, 2021-01-08
Scans Setup				Measurement Results		
Scan Type		5G S	Scan	Scan Type		5G Scan
Grid Extents [mm]		60.0 x 6	50.0	Date		2021-08-18, 20:54
Grid Steps [lambda]		0.25 x 0	0.25	Avg. Area [cm ²]		4.00
Sensor Surface [mm]			2.0	psPDn+ [W/m2]		2.66
MAIA			N/A			

nsPDmod+ [W/m2]	
P31 D 1100 - [11/111-]	
E _{max} [V/m]	
Power Drift [dB]	

Page 20 of 51

ANNEX B System Verification Results

Measurement Report for Device, FRONT, Validation band, CW, Channel 30000 (30000.0 MHz)

Device Under Test	Properties					
Model, Manufacturer		Dimensions [mm]		IN	MEI	DUT Type
Device,		100.0 x 100.0 x 100.0				Phone
Exposure Conditio	ns					
Phantom Section	Position, Test Distance [r	mm] Band	Group, UID	Frequency [MHz], Channel	Number	Conversion Factor
5G	FRONT, 5.55	Validation band	CW, 0	30000.0, 30000		1.0
Hardware Setup						
Phantom	Medium	Probe, Calibration Date			DAE, Calibrati	on Date
mmWave - xxxx	Air -	EUmmWV4 - SN9492_F1-55GHz, 20	21-05-20		DAE4 Sn777, 2	2021-01-08
Scans Setup			Measu	rement Results		
Scan Type		5G Scan	Scan T	ype		5G Scan
Grid Extents [mm]		60.0 x 60.0	Date			2021-08-18, 09:50
Grid Steps [lambda]		0.25 x 0.25	Avg. Ar	rea [cm²]		4.00
Sensor Surface [mm]		5.55	psPDn-	+ [W/m2]		74.9
MAIA		N/A	psPDto	t+ [W/m ²]		76.0
			psPDm	od+ [W/m2]		76.3
			E _{max} [\	//m]		210

Page 21 of 51

203

-0.03

Measurement Report for Device, FRONT, Validation band, CW, Channel 30000 (30000.0 MHz)

Device Under Test Properties

Model, Manufacturer			Dimensions [mm]		I	MEI	DUT Type
Device,			100.0 x 100.0 x 100.0				Phone
Exposure Conditio	ns						
Phantom Section	Position, Test Distan	ice [mm]	Band	Group, UID	Frequency [MHz], Channe	l Number	Conversion Factor
5G	FRONT, 5.55		Validation band	CW, 0	30000.0, 30000		1.0
Hardware Setup							
Phantom	Medium	Probe, Calib	ration Date			DAE, Calibratio	on Date
mmWave - xxxx	Air -	EUmmWV4	- SN9492_F1-55GHz, 20	21-05-20		DAE4 Sn777, 2	021-01-08
Scans Setup				Measu	rement Results		
Scan Type			5G Scan	Scan T	уре		5G Scan
Grid Extents [mm]			60.0 x 60.0	Date			2021-08-19, 09:50
Grid Steps [lambda]			0.25 x 0.25	Avg. A	rea [cm²]		4.00
Sensor Surface [mm]			5.55	psPDn	+ [W/m2]		72.5
MAIA			N/A	psPDto	ot+ [W/m ²]		73.7
				psPDm	nod+ [W/m2]		74.0

E_{max} [V/m]

Power Drift [dB]

Measurement Report for Device, FRONT, Validation band, CW, Channel 30000 (30000.0 MHz)

Device Under Test Properties

	-				
Model, Manufacturer		Dimensions [mm]		IMEI	DUT Type
Device,		100.0 x 100.0 x 100.0			Phone
Exposure Condition	ns				
Phantom Section	Position, Test Distance	e [mm] Band	Group, UID	Frequency [MHz], Channel Numbe	r Conversion Factor
5G	FRONT, 5.55	Validation band	CW, 0	30000.0, 30000	1.0
Hardware Setup					
Phantom	Medium	Probe, Calibration Date		DAE, C	alibration Date
mmWave - xxxx	Air -	EUmmWV4 - SN9492_F1-55GHz, 20	21-05-20	DAE4 S	n777, 2021-01-08
Scans Setup			Measu	rement Results	
Scan Type		5G Scan	Scan T	ype	5G Scan
Grid Extents [mm]		60.0 x 60.0	Date		2021-08-20, 11:08
Grid Steps [lambda]		0.25 x 0.25	Avg. A	rea [cm²]	4.00
Sensor Surface [mm]		5.55	psPDn	+ [W/m2]	74.7
MAIA		N/A	psPDto	ot+ [W/m ²]	76.1
			psPDm	od+ [W/m2]	76.3

 psPDtot+ [W/m²]
 76.1

 psPDmod+ [W/m²]
 76.3

 Emax [V/m]
 210

 Power Drift [dB]
 -0.07

Page 23 of 51

ANNEX C System Description and Setup

The system to be used for the near field power density measurement

- SPEAG DASY6 system
- SPEAG cDASY6 5G module software
- EUmmWVx probe
- 5G Phantom cover

C.1 EUmmWave Probe / E-Field 5G Probe

The probe design allows measurements at distances as small as 2 mm from the sensors to the surface of the device under test (DUT). The typical sensor to probe tip distance is 1.5 mm.

Frequency	750 MHz – 110 GHz		
Probe Overall Length	320 mm		
Probe Body Diameter	8.0 mm		
Tip Length	23.0 mm		
Tip Diameter	8.0 mm		
Probe's two dipoles length	0.9 mm – Diode loaded		
Dynamic Range	< 20 V/m - 10000 V/m with PRE-10 (min < 50 V/m - 3000 V/m)		
Position Precision	< 0.2 mm		
Distance between diode	1.5 mm		
Minimum Mechanical	0.5 mm		
Applications	E-field measurements of 5G devices and other mm-wave transmitters operating above 10GHz in < 2 mm distance from device (free-space) Power density, H-field and far-field analysis using total field reconstruction.		
Compatibility	cDASY6 + 5G-Module SW1.0 and higher		
	sensor 1,5mm calibrated		

C.2 Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Picture C.4: DAE

C.3 Scan configuration

Fine-resolution scans on 2 different planes are performed to reconstruct the E- and H-fields as well as the power density; the z-distance between the 2 planes is set to $\lambda/4$.

The (x, y) grid step is also set $\lambda/4$, the grid extent is set to sufficiently large to identify the field pattern and the peak.

ANNEX D Probe Calibration Certificate

e Swiss Accreditation Service Itilateral Agreement for the re	e is one of the signatories to	11 A FA	
	ecognition of calibration cer	tificates	
ent CTTL-BJ (Aude	en)	Certificate No: E	UmmWV4-9492_May21
AL IDDATION (COTICICATE		
ALIBRATION	JERTIFICATE		
bject	EUmmWV4 - SN:9	492	
alibration procedure(s)	QA CAL-02.v9, QA Calibration procedu	CAL-25.v7, QA CAL-42.v2 ure for E-field probes optimized fo	r close near field
	evaluations in air		
	11		
alibration date:	May 20, 2021		
	ante the traceability to pation	al standards, which realize the physical units of	f measurements (SI).
his calibration certificate docum	ents the traceability to hauon	bability are given on the following pages and a	re part of the certificate.
ne measurements and the uno	Entainines with contractive pro-		
	in the sloeed laboratory	facility: environment temperature (22 ± 3)°C ar	nd humidity < 70%.
Il calibrations have been condu	ucted in the closed laboratory	facility, environment temperature (22 2 0) 0 2	
Calibration Equipment used (M&	TE critical for calibration)		
		Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards	SN: 104778	09-Apr-21 (No. 217-03291/0292)	Apr-22
Power meter NRP	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-291	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Power sensor NRP-291	SN: CC2552 (20x)	09-Apr-21 (No. 217-03343)	Apr-22
Reference 20 dB Allendalor	SN: 2328	05-Oct-20 (No. ER3-2328_Oct20)	Oct-21
Reference Probe ERSDV0	SN: 789	23-Dec-20 (No. DAE4-789_Dec20)	Dec-21
DAE4	514.705		
Recorden Standards	ID	Check Date (in house)	Scheduled Check
Bower motor E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power meter E44190	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor L4412A	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21
Hermon Analyzor Cobourt			Classifier
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	Alh
	tion in the second s	Technical Manager	alles
Approved by:	Katja Pokovic		
Approved by:	Katja Pokovic		~ ~ ~
Approved by:	Katja Pokovic		Issued: May 21, 2021
Approved by: This calibration certificate shal	Katja Pokovic	full without written approval of the laboratory.	Issued: May 21, 2021

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

S

С

S

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

Glossaly.	and the first second and the second sec
NORMx,y,z	sensitivity in free space
DCP	diode compression point
CE	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization o	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e. $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system
Sensor Angles k	is the wave propagation direction

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 for XY sensors and 9 = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). For frequencies > 6 GHz, the far field in front of waveguide horn antennas is measured for a set of frequencies in various waveguide bands up to 110 GHz.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- The frequency sensor model parameters are determined prior to calibration based on a frequency sweep (sensor model involving resistors R, R_p, inductance L and capacitors C, C_p).
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Sensor Offset: The sensor offset corresponds to the mechanical from the probe tip (on probe axis). No
 tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).
- Equivalent Sensor Angle: The two probe sensors are mounted in the same plane at different angles. The
 angles are assessed using the information gained by determining the NORMx (no uncertainty required).
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide / horn setup.

Certificate No: EUmmWV4-9492_May21

Page 2 of 19

May 20, 2021

DASY - Parameters of Probe: EUmmWV4 - SN:9492

Basic Calibration Parameters

Sasic Calibration r aramet	Sensor X	Sensor Y	Unc (k=2)
$\lambda = \frac{1}{2} \left(\lambda \left(\frac{1}{2} \right)^2 \right)$	0.02050	0.02323	± 10.1 %
Norm $(\mu V (V/\Pi))$	104.0	104.0	
Equivalent Sensor Angle	-60.7	35.7	

Frequency	Target E-Field	Deviation Sensor X dB	Deviation Sensor Y dB	Unc (k=2) dB
GHz	77.0	-0.16	-0.07	± 0.43 dB
0.75	11.2	0.06	0.07	± 0.43 dB
1.8	140.4	0.06	0.07	± 0.43 dB
2	133.0	0.03	0.06	± 0.43 dB
2.2	124.0	-0.03	0.00	± 0.43 dB
2.5	123.0	0.20	0.24	± 0.43 dB
3.5	250.2	0.19	0.21	± 0.43 dB
3.7	249.0	0.13		
	44.0	0.22	0.19	± 0.98 dB
6.6	41.0	-0.01	-0.22	± 0.98 dB
8	48.4	-0.01	0.02	± 0.98 dB
10	54.4	0.02	-0.26	± 0.98 dB
15	/1.5	0.04	0.18	± 0.98 dB
18	85.3	-0.02		
00.0	06.0	0.12	-0.02	± 0.98 dB
26.6	90.9	-0.01	0.00	± 0.98 dB
30	92.0	0.07	0.13	± 0.98 dB
35	93.7	-0.07	-0.05	± 0.98 dB
40	91.5	-0.07		
50	10.6	0.03	-0.05	± 0.98 dB
55	22.4	0.68	0.41	± 0.98 dB
60	22.4	-0.03	-0.03	± 0.98 dB
65	27.4	-0.40	-0.13	± 0.98 dB
70	23.0	-0.07	-0.18	± 0.98 dB
75	20.0	-0.13	-0.01	± 0.98 dB
15	20.0			
75	14.8	-0.15	-0.13	± 0.98 dB
80	22.5	0.14	0.29	± 0.98 dB
85	22.8	0.15	0.02	± 0.98 dB
90	23.8	0.06	0.06	± 0.98 dB
92	23.9	-0.04	-0.18	± 0.98 dB
95	20.5	-0.27	-0.24	± 0.98 dB
97	24.4	-0.14	-0.15	± 0.98 dB
100	22.6	-0.09	-0.05	± 0.98 dB
105	22.7	0.02	0.12	± 0.98 dB
110	19.7	0.23	0.13	± 0.98 dB

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EUmmWV4-9492_May21

Page 3 of 19

May 20, 2021

DASY - Parameters of Probe: EUmmWV4 - SN:9492

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
-	CIN	X	0.00	0.00	1.00	0.00	123.3	± 3.5 %	± 4.7 %
0	CVV	Y	0.00	0.00	1.00		108.1		
10050	Dules Wayoform (200Hz 10%)	X	2.23	60.00	13.75	10.00	6.0	± 1.3 %	± 9.6 %
10352-	Pulse waveloini (20012, 1070)	Y	2.23	60.00	14.64		6.0		
AAA	Dulas Wayoform (200Hz 20%)	X	1.50	60.00	12.67	6.99	12.0	± 1.0 %	± 9.6 %
10353-	Pulse waveloini (20012, 2070)	Y	1.51	60.00	13.60		12.0		
AAA	Dulas Mausform (200Hz 40%)	X	0.88	60.00	11.52	3.98	23.0	± 1.3 %	± 9.6 %
10354-	Pulse wavelonn (20012, 4078)	Y	0.89	60.00	12.45		23.0		
AAA	D. I Maustern (200Hz 60%)	X	0.54	60.00	10.87	2.22	27.0	±0.8%	± 9.6 %
10355-	Pulse waveform (200H2, 00 %)	Ŷ	0.54	60.00	11.88		27.0		
AAA	ODCK Waysform 1 MHz	X	1.08	60.00	11.77	1.00	22.0	± 1.5 %	± 9.6 %
10387-	QPSK Wavelonn, 1 Minz	Y	1.13	60.00	12.33		22.0		
AAA	OBSK Wayeform 10 MHz	X	1.28	60.00	11.86	0.00	22.0	± 0.9 %	± 9.6 %
10388-	QPSK Waveloini, To Wilz	Y	1.25	60.00	12.25	1	22.0		
AAA	64 OAM Wayeform 100 kHz	X	2.01	60.77	14.03	3.01	17.0	± 0.6 %	± 9.6 %
10390-	64-QAW Wavelonn, 100 Kinz	Y	2.75	63.65	15.33		17.0		
AAA	64 OAM Wayeform 40 MHz	X	2.10	60.00	12.36	0.00	19.0	± 0.7 %	± 9.6 %
10399-	04-02-101 VV av Biolini, 40 mile	Y	2.05	60.00	12.67		19.0		
40414	WI AN CODE 64-OAM 40MHz	X	3.19	60.00	12.79	0.00	12.0	± 0.9 %	± 9.6 %
10414-	WEAR CODE, 54-CAW, 40WI 12	Y	3.15	60.00	13.06		12.0		

Note: For details on all calibrated UID parameters see Appendix

Calibration Results for Linearity Response

Target E-Field V/m	Deviation Sensor X dB	Deviation Sensor Y dB	Unc (k=2) dB
50.0	-0.12	-0.11	± 0.2 dB
100.0	-0.13	0.15	± 0.2 dB
500.0	-0.02	0.04	± 0.2 dB
1000.0	0.01	0.07	± 0.2 dB
1500.0	0.00	0.04	± 0.2 dB
2000.0	-0.02	0.03	± 0.2 dB
	Target E-Field V/m 50.0 100.0 500.0 1000.0 1500.0 1500.0 2000.0	Target E-Field V/m Deviation Sensor X dB 50.0 -0.12 100.0 -0.13 500.0 -0.02 1000.0 0.01 1500.0 0.02 2000.0 0.00	Target E-Field V/m Deviation Sensor X dB Deviation Sensor Y dB 50.0 -0.12 -0.11 100.0 -0.13 0.15 500.0 -0.02 0.04 1000.0 0.01 0.07 1500.0 0.00 0.04 2000.0 -0.02 0.03

Sensor Frequency Model Parameters (750 MHz – 55 GHz)

	Sensor X	Sensor Y
R(0)	73.94	72.79
$R_{n}(\Omega)$	95.25	96.50
L (nH)	0.11656	0.09919
C (pF)	0.2302	0.2957
C, (pF)	0.0677	0.0774

Sensor Frequency Model Parameters (55 GHz - 110 GHz)

	Sensor X	Sensor Y
R (Q)	34.89	34.38
$R_{n}(\Omega)$	95.03	95.29
L (nH)	0.03165	0.02922
C (pF)	0.2279	0.2703
C _n (pF)	0.1315	0.1366

Certificate No: EUmmWV4-9492_May21

Page 4 of 19

May 20, 2021

DASY - Parameters of Probe: EUmmWV4 - SN:9492

Sensor Model Parameters

Selisori	nouci i a	difference		1		T 2	TA	T5	T6
	C1	C2 fF	α V-1	T1 ms.V ⁻²	12 ms.V ⁻¹	ms	V ⁻²	V-1	10
	11	000.00	22.79	0.02	4.38	4.97	0.00	1.01	1.01
X	38.9	282.63	33.70	0.92	4.00	1.00	0.00	1.50	1.01
Y	47.5	348.31	34.40	0.92	5.22	4.99	0.00	1.52	1.01

Other Probe Parameters

Sensor Arrangement	Rectangular
	29.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	320 mm
Probe Body Diameter	8 mm
Tip Length	23 mm
Tip Diameter	8.0 mm
Probe Tip to Sensor X Calibration Point	1.5 mm
Probe Tip to Sensor Y Calibration Point	1.5 mm

Certificate No: EUmmWV4-9492_May21

Page 5 of 19

May 20, 2021

Deviation from Isotropy in Air f = 30, 60 GHz

Certificate No: EUmmWV4-9492_May21

Page 6 of 19

EUmmWV4 - SN: 9492

Appendix: Modulation Calibration Parameters

	Rev	Communication System Name	Group	PAR	Unc
			0141	(dB)	(K=2)
		CW	CW	10.00	+96%
0010	CAA	SAR Validation (Square, 100ms, 10ms)	Iest	2.01	+96%
0011	CAB	UMTS-FDD (WCDMA)	WCDMA	1.91	+96%
0012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	VVLAIN	1.07	+06%
0013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.40	19.0 /0
0021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	19.0%
0023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	± 9.0 %
0024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	19.0%
0025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	± 9.0 %
0026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	± 9.6 %
0027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	± 9.0 %
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	± 9.6 %
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	± 9.6 %
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	± 9.6 %
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	± 9.6 %
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	± 9.6 %
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	± 9.6 %
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	± 9.6 %
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	± 9.6 %
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	± 9.6 %
10037	CAA	IEEE 802,15,1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	± 9.6 %
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	± 9.6 °
10039	CAR	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	± 9.6 °
10042	CAD	IS-54 / IS-136 EDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	± 9.6 °
10042	CAB	IS-91/FIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	± 9.6
10044	CAA	DECT (TDD, TDMA/EDM, GESK, Full Slot, 24)	DECT	13.80	± 9.6
10040	CAA	DECT (TDD, TDMA/FDM, GESK, Double Slot, 12)	DECT	10.79	± 9.6
10049	CAA	LIMTS-TOD (TD-SCDMA 128 Mcps)	TD-SCDMA	11.01	± 9.6
10050	CAA	EDGE-EDD (TDMA 8PSK TN 0-1-2-3)	GSM	6.52	± 9.6
10050	DAC	IEEE 802 11b WIEL 2 4 GHz (DSSS, 2 Mbps)	WLAN	2.12	± 9.6
10059	CAB	IEEE 802.11b WIFI 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	± 9.6
10060	CAB	IEEE 802 11b WIFE 2.4 GHz (DSSS 11 Mbps)	WLAN	3.60	± 9.6
10061	CAB	LEEE 802.11a/b WiFi 5 GHz (OEDM, 6 Mbps)	WLAN	8.68	± 9.6
10062	CAD	IEEE 802 11a/h WiFi 5 GHz (OFDM 9 Mbps)	WLAN	8.63	± 9.6
10063	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	± 9.6
10064	CAD	1555 802 11a/h WiFi 5 CHz (OFDM, 12 Mbps)	WLAN	9.00	± 9.6
10065	CAD	IEEE 802 11a/h WIEI 5 GHz (OFDM, 18 Mbps)	WLAN	9.38	± 9.6
10066	CAD	IEEE 802.11a/h WIEI 5 GHz (OFDM, 24 Mbps)	WLAN	10.12	± 9.6
10067	CAD	IEEE 802.11a/h Will 5 GHz (OFDM, 66 Mbps)	WLAN	10.24	± 9.6
10068	CAD	IEEE 802.11a/II WIFIS GHZ (OFDM, 40 Mbps)	WLAN	10.56	± 9.6
10069	CAD	IEEE 802.11a/I WIEI 2 4 GHz (DSSS/OEDM 9 Mbps)	WLAN	9.83	± 9.6
10071	CAB	IEEE 002.11g WIFI 2.4 GHz (DSSS/OFDM, 5 Mbps)	WLAN	9.62	± 9.6
10072	CAB	IEEE 002.11g WIFI 2.4 GHz (DSSSIOF DW, 12 Mbps)	WLAN	9.94	± 9.6
10073	CAB	IEEE 002.11g WIFI 2.4 GHz (DSSS/OFDM, 10 Mbps)	WLAN	10.30	± 9.6
10074	CAB	IEEE 002.11g WIFI 2.4 GHz (DSSS/OFDW, 24 W005)	WLAN	10.77	+9.6
10075	CAB	IEEE 002.11g WIFI 2.4 GHz (DSSS/OFDM, 30 Mbps)	WLAN	10.94	+9.6
10076	CAB	IEEE 002.11g WIFI 2.4 GHz (DSSS/OFDM, 40 W0b3)	WLAN	11.00	+ 9.6
10077	CAB	EEE 002.11g WIFI 2.4 GHZ (D355/OFDW), 54 W005)	CDMA2000	3.97	+96
10081	CAB	CDMA2000 (TXRTT, RC3)	AMPS	4.77	+96
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, FI/4-DQFSK, Fullrate)	CSM	6.56	+96
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	WCDMA	2.00	+0.6
10097	CAC	UMTS-FDD (HSDPA)	WCDWA	3.96	1 9.0
10098	DAC	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	±

Certificate No: EUmmWV4-9492_May21

Page 7 of 19

0000	CAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	± 9.6 %
0099	CAC	LTE-EDD (SC-EDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	± 9.6 %
0100	CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
0101	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
0102	CAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
0103	DAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.97	± 9.6 %
0104	CAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TDD	10.01	± 9.6 %
10108	CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-FDD	5.80	± 9.6 %
10100	CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10110	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	± 9.6 %
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	± 9.6 %
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6 %
10114	CAG	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10115	CAG	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	± 9.6 %
10116	CAG	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8,15	± 9.6 %
10117	CAG	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	± 9.6 %
10118	CAD	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	± 9.6 %
10119	CAD	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	± 9.6 %
10140	CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10141	CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	± 9.6 %
10142	CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 °
10143	CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	± 9.6 °
10144	CAC	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	± 9.6
10145	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	± 9.6 °
10146	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	± 9.6
10147	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	± 9.6
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6
10151	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	± 9.6
10152	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6
10153	CAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	± 9.6
10154	CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	± 9.6
10155	CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6
10156	CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	± 9.6
10157	CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6
10158	CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	± 9.6
10160	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	± 9.6
10161	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6
10162	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	± 9.6
10166	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	± 9.6
10167	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	± 9.6
10168	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6,79	± 9.6
10169	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	± 9.6
10170	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6
10171	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	± 9.6
10172	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	± 9.6
10173	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6
10174	CAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6
10175	CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	± 9.6
10176	CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6
10177	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	± 9.6
10178	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6
10179	AAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6
10180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6

Certificate No: EUmmWV4-9492_May21

Page 8 of 19

CAICT
No.I21Z61571-SEM01

0404		LTE-EDD (SC-EDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
0181	CAG	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
0182	CAG	LTE-FDD (SC FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
0183	CAG	TE EDD (SC EDMA 1 BB 3 MHz OPSK)	LTE-FDD	5.73	± 9.6 %
0184	CAG	TE EDD (SC EDMA 1 RB 3 MHz 16-QAM)	LTE-FDD	6.51	± 9.6 %
0185	CAI	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 10 G MM)	LTE-FDD	6.50	±9.6 %
0186	CAG	LTE-FDD (SC-FDMA, 1 RB, 1 4 MHz, OPSK)	LTE-FDD	5.73	±9.6 %
10187	CAG	LTE FDD (SC FDMA, 1 RB, 14 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10188	CAG	LTE EDD (SC-EDMA, 1 RB, 14 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10189	CAE	IFFF 802 110 (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	± 9.6 %
10193	CAE	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	± 9.6 %
10194	AAD	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	± 9.6 %
10195	CAE	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	±9.6 %
10196	CAE	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	±9.6 %
10197	AAE	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	± 9.6 %
10198	CAF	IEEE 802.11n (HT Mixed, 32 Mbps, BPSK)	WLAN	8.03	± 9.6 %
10219	CAF	IEEE 802.11n (HT Mixed, 43.3 Mbps, 01 01.9)	WLAN	8.13	± 9.6 %
10220	AAF	IEEE 002.110 (HT Mixed, 72.2 Mbps, 10 cmm)	WLAN	8.27	± 9.6 %
10221	CAC	LEEE 002.1111 (HT Mixed, 12.2 Mops, 01 db m)	WLAN	8.06	±9.6 %
10222	CAC	IEEE 002.11n (HT Mixed 90 Mbps, brok)	WLAN	8.48	± 9.6 %
10223	CAD	IEEE 002.110 (HT Mixed, 50 Mbps, 10-00 M)	WLAN	8.08	± 9.6 %
10224	CAD	IEEE 802.1111 (H1 Mixed, 100 Mibps, 01 about	WCDMA	5.97	± 9.6 %
10225	CAD	UMTS-FDD (RC FDMA 1 PB 14 MHz 16-QAM)	LTE-TDD	9.49	± 9.6 %
10226	CAD	LTE-TOD (SC-FDMA, 1 RB, 14 MHz, 64-QAM)	LTE-TDD	10.26	± 9.6 %
10227	CAD	LTE TOD (SC-FDMA, 1 RB, 14 MHz, QPSK)	LTE-TDD	9.22	± 9.6 %
10228	CAD	LTE-TOD (SC-FDMA, 1 RB, 3 MHz, 16-OAM)	LTE-TDD	9.48	± 9.6 %
10229	DAC	LTE TOD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10230	CAC	LTE TOD (SC-FDMA, 1 RB, 3 MHz, OPSK)	LTE-TDD	9.19	± 9.6 %
10231	CAC	LTE TOD (SC EDMA 1 RB 5 MHz 16-QAM)	LTE-TDD	9.48	± 9.6 %
10232	CAD	LTE TOD (SC-EDMA 1 BB 5 MHz 64-QAM)	LTE-TDD	10.25	± 9.6 %
10233	CAD	LTE TOD (SC EDMA 1 BB 5 MHz, OPSK)	LTE-TDD	9.21	± 9.6 %
10234	CAD	LTE TOD (SC EDMA 1 BB 10 MHz 16-QAM)	LTE-TDD	9.48	± 9.6 %
10235	CAD	LTE-TOD (SC-EDMA 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10236	CAD	LITE-TOD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10237	CAD	LITE TOD (SC-EDMA 1 BB 15 MHz 16-QAM)	LTE-TDD	9.48	± 9.6 %
10238	CAB	LTE-TOD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10239	CAB	LTE TOD (SC-EDMA 1 BB 15 MHz OPSK)	LTE-TDD	9.21	± 9.6 %
10240	CAB	LITE TOD (SC-EDMA 50% RB 14 MHz, 16-QAM)	LTE-TDD	9.82	± 9.6 %
10241	CAB	LTE-TOD (SC-FDMA 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	± 9.6 %
10242	CAD	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	± 9.6 %
10243	CAD	LTE-TOD (SC-EDMA 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10244	CAD	LTE-TDD (SC-EDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	± 9.6 %
10245	CAG	LTE-TDD (SC-EDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	± 9.6 %
10240	CAG	LTE-TDD (SC-EDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	± 9.6 %
10247	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	± 9.6 %
10240	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
10248	CAG	LTE-TDD (SC-EDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	± 9.6 %
10250	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	± 9.6 %
10251	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	± 9.6 °
10252	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	± 9.6 °
10253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	± 9.6 °
10254	CAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	± 9.6 °
10200	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	± 9.6
10250	CAB	LTE-TDD (SC-EDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	± 9.6
10257	CAD	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	± 9.6 °
10250	CAD	1 TE TER (00 FOMA 4000/ DB 2 MHz 16 OAM)	I TE-TDD	9.98	+9.6

Certificate No: EUmmWV4-9492_May21

Page 9 of 19

CAICT
No.I21Z61571-SEM01

0260	CAG	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	± 9.6 %
0261	CAG	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
0262	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	± 9.6 %
0263	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	± 9.6 %
0264	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	± 9.6 %
0265	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
0266	CAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	± 9.6 %
0267	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	± 9.6 %
0268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
0269	CAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	± 9.6 %
0270	CAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	± 9.6 %
0274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	± 9.6 %
0275	CAD	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	± 9.6 %
10277	CAD	PHS (QPSK)	PHS	11.81	± 9.6 %
10278	CAD	PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS	11.81	± 9.6 %
10279	CAG	PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	12.18	± 9.6 %
10290	CAG	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	±9.6 %
10291	CAG	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	± 9.6 %
10292	CAG	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	±9.6 %
10293	CAG	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	± 9.6 %
10295	CAG	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	19.07
10297	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	± 9.0 7
10298	CAF	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	± 9.6
10299	CAF	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	± 9.0
10300	CAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	19.0
10301	CAC	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	WIMAX	12.03	19.0
10302	CAB	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL)	WIMAX	12.57	± 9.0
10303	CAB	IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	12.52	19.0
10304	CAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	11.00	± 9.0
10305	CAA	IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC)	VVIMAX	13.24	+06
10306	CAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC)	VVIIVIAA	14.07	+06
10307	AAB	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC)	VVIIVIAA	14.45	+0.6
10308	AAB	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	VVIIVIAA	14.40	+ 9.6
10309	AAB	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM,AMC 2X3)	VVIIVIAA	14.50	+ 9.6
10310	AAB	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3	VVIIVIAA	6.06	19.0
10311	AAB	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LIE-FUU	10.51	19.0
10313	AAD	iDEN 1:3	IDEN	13.48	+ 9.6
10314	AAD	iDEN 1:6	IDEN	1 71	+96
10315	AAD	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc)		836	+96
10316	AAD	IEEE 802.11g WIFI 2.4 GHz (ERP-OFDM, 6 Mbps, 90pc dc)	WLAN	8.36	+96
10317	AAA	IEEE 802.11a WIFI 5 GHz (OFDM, 6 Mbps, 96pc dc)	Generic	10.00	+96
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	6.99	+96
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	3.98	+96
10354	AAA	Pulse Waveform (200Hz, 40%)	Generic	2.22	+ 9.6
10355	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	+ 9.6
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	5.10	+96
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.22	+96
10388	AAA	QPSK Waveform, 10 MHz	Generic	6.27	+96
10396	AAA	64-QAM Waveform, 100 KHz	Generic	6.27	+96
10399	AAA	64-QAM Waveform, 40 MHz	WIAN	8 37	+96
10400	AAD	IEEE 802.11ac WIFI (20MHz, 64-QAM, 99pc dc)	WLAN	8.60	+9.6
10401	AAA	IEEE 002.11ac WIFI (40MHz, 64-QAM, 99pc dc)	WLAN	8.53	+96
10402	AAA	IEEE 802.118C WIFI (80MHZ, 64-QAM, 99PC 0C)	CDMA2000	3.76	+96
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.77	+96
10404	AAB	CDWA2000 (TREV-DO, Rev. A)	CDMA2000	5.22	+96

Certificate No: EUmmWV4-9492_May21

Page 10 of 19

CAICT No.I21Z61571-SEM01

		TE TOD (SC EDMA 1 RB 10 MHz OPSK, UL Sub=2.3,4,7,8,9)	LTE-TDD	7.82	± 9.6 %
0410	AAA	WI AN CODE 64-OAM 40MHZ	Generic	8.54	±9.6 %
0414	AAA	IEEE 902 11b WiEi 2 4 GHz (DSSS, 1 Mbps, 99pc dc)	WLAN	1.54	± 9.6 %
0415	AAA	IEEE 802.110 WIFI 2.4 GHz (ERP-OEDM. 6 Mbps, 99pc dc)	WLAN	8.23	± 9.6 %
10416	AAA	1555 802 11c/b W/i5 5 GHz (OEDM 6 Mbps, 99pc dc)	WLAN	8.23	± 9.6 %
10417	AAA	IEEE 802.11a/II WIFI 3 GHz (OSSS-OFDM, 6 Mbps, 99pc, Long)	WLAN	8.14	± 9.6 %
10418	AAA	IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short)	WLAN	8.19	± 9.6 %
10419	AAA	IEEE 802.11g WIFI 2.4 GHz (DSSS-OF BIR, O HEPO, COPAL DAY)	WLAN	8.32	± 9.6 %
10422	AAA	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	±9.6%
10423	AAA	IEEE 802 11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	± 9.6 %
10424	AAE	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	± 9.6 %
10425	AAE	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	± 9.6 %
10426	AAE	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	± 9.6 %
10427	AAB	LTE EDD (OEDMA 5 MHz E-TM 3.1)	LTE-FDD	8.28	± 9.6 %
10430	AAB	LTE-FDD (OFDMA, 3 MHZ, E-TM 3.1)	LTE-FDD	8.38	± 9.6 %
10431	AAC	LTE-FDD (OFDMA, 16 MHz, E-TM 3.1)	LTE-FDD	8.34	± 9.6 %
10432	AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	± 9.6 %
10433	AAC	LTE-FDD (OFDMA, 20 MHz, E-TW 3.1)	WCDMA	8.60	± 9.6 %
10434	AAG	W-CDMA (BS Test Model 1, 64 DPCH)	LTE-TDD	7.82	± 9.6 %
10435	AAA	LTE-TOD (SC-FDMA, TRB, 20 MH2, GFSR, 02 000)	LTE-FDD	7.56	± 9.6 %
10447	AAA	LTE-FDD (OFDMA, 5 MHZ, E-1M 3.1, Clipping 44%)	LTE-EDD	7.53	± 9.6 %
10448	AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.51	± 9.6 %
10449	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7,48	± 9.6 %
10450	AAA	LTE-FDD (OFDMA, 20 MHZ, E-TM 3.1, Clipping 44%)	WCDMA	7.59	± 9.6 %
10451	AAA	W-CDMA (BS Test Model 1, 64 DFCH, Clipping 4476)	Test	10.00	± 9.6 %
10453	AAC	Validation (Square, 10ms, 1ms)	WLAN	8.63	±9.6%
10456	AAC	IEEE 802.11ac WIFI (160MHz, 64-QAW, 55pc 6c)	WCDMA	6.62	± 9.6 %
10457	AAC	UMTS-FDD (DC-HSDPA)	CDMA2000	6.55	± 9.6 %
10458	AAC	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	8.25	± 9.6 %
10459	AAC	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	WCDMA	2.39	+ 9.6 %
10460	AAC	UMTS-FDD (WCDMA, AMR)	I TE-TDD	7.82	± 9.6 %
10461	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, 0L Sub)	LTE-TOD	8.30	+ 9.6 %
10462	AAC	LTE-TOD (SC-FDMA, TRB, 1.4 MHz, 16-QAM, OC SUD)	LTE-TDD	8.56	+ 9.6 %
10463	AAD	LTE-TDD (SC-FDMA, TRB, 1.4 MHz, 04-QAM, 02 SUD)	LTE-TOD	7.82	+96%
10464	AAD	LIE-IDD (SC-FDMA, TRB, 3 MHz, 4F OAM, UL Sub)	LTE-TDD	8.32	+96%
10465	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-CAM, 0E 300)	LTE-TDD	8.57	+96%
10466	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHZ, 04-0AM, 0E 300)	I TE-TOD	7.82	+9.6%
10467	AAA	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QFSR, 0C 500)	LTE-TOD	8 32	+96%
10468	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.56	+96%
10469	AAD	LTE-TOD (SC-FDMA, 1 RB, 5 MHZ, 64-QAM, 0L Sub)	LTE-TOD	7.82	+96%
10470	AAD	LIE-TOD (SC-FDMA, TRB, TO MHZ, QFSK, OC SUB)	LTE-TOD	8.32	+96%
10471	AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL SUD)	LTE-TOD	8.57	+96%
10472	AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, 0L SUD)	LTE-TOD	7.82	+96%
10473	AAA	LTE-TDD (SC-FDMA, 1 RB, 15 MHZ, QPSK, 0L Sub)	LTE-TOD	8.32	+96%
10474	AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL SUB)	LITE TOD	8.57	+96%
10475	AAD	LTE-TOD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, 0L Sub)	LTE-TOD	8.32	+96%
10477	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, 0L SUB)		8.57	+96%
10478	AAC	LTE-TOD (SC-FDMA, TRB, 20 MHZ, 64-QAM, OL SUB)	LTE-TOD	7.74	+96%
10479	AAC	LTE-TOD (SC-FDMA, 50% RB, 1.4 MHz, 0F3K, 0E SUD)	LTE-TOD	8 18	+96%
10480	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 10-QAM, UL SUB)	LTE-TOD	8.45	+96%
10481	AAA	LTE-TOD (SC-FDMA, 50% RB, 1.4 MHz, 04-04M, 0L Sub)	LTE-TOD	7.71	+96%
10482	AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHZ, QPSK, 0L S00)	LITE-TOD	8 39	+96%
10483	AAA	LTE-TOD (SC-FDMA, 50% RB, 3 MHZ, 10-QAM, 500)	LITE-TOD	8.47	+ 9.6 %
10484	AAB	LTE-TOD (SC-FDMA, 50% RB, 3 MHZ, 64-QAM, 0L SUD)	LITE-TOD	7.50	+ 0 6 %
10485	AAB	LIE-TOD (SC-FDMA, 50% RB, 5 MHZ, QPSK, 0L SUD)	I TE-TOD	9.39	+ 9 6 %
10486	AAB	LIE-IDD (SC-FDMA, 50% KB, 5 MHZ, TO-QAM, UL SUD)	LIL-IDD	0.30	1 3.0 70

Certificate No: EUmmWV4-9492_May21 Page 11 of 19

J

May 20, 2021

		TT TT CO TOMA FOR DE 10 MHZ OPSK UI Sub)	LTE-TDD	7.70	± 9.6 %
0488	AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, GFSR, 5L Sub)	LTE-TDD	8.31	±9.6%
0489	AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 10-QAM, 0L Sub)	LTE-TDD	8.54	± 9.6 %
0490	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, 6E Sub)	LTE-TDD	7.74	± 9.6 %
0491	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, 0L Sub)	LTE-TDD	8.41	± 9.6 %
10492	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, 0L Sub)	LTE-TDD	8.55	±9.6 %
10493	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, 0L Sub)	LTE-TDD	7.74	± 9.6 %
10494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, 0L Sub)	I TE-TOD	8.37	±9.6 %
10495	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, 0L Sub)	LTE-TDD	8.54	±9.6 %
10496	AAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHZ, 64-QAM, 6E Sub)	LTE-TOD	7.67	± 9.6 %
10497	AAE	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSN, OL SUD)	LTE-TDD	8.40	± 9.6 %
10498	AAE	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, 0L Sub)	LTE-TDD	8.68	± 9.6 %
10499	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHZ, 64-QAW, OL Sub)	LTE-TDD	7.67	± 9.6 %
10500	AAF	LTE-TDD (SC-FDMA, 100% RB, 3 MHZ, QPSK, 0L Sub)	I TE-TOD	8.44	± 9.6 %
10501	AAF	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub)	LTE-TOD	8.52	+9.6 %
10502	AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, OL Sub)	LTE-TOD	7.72	± 9.6 %
10503	AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub)	LTE-TOD	8.31	± 9.6 %
10504	AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL SUB)	LITE TOD	8.54	+96%
10505	AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub)	LTE TOD	7.74	+96%
10506	AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub)	LTE-TOD	9.36	+96%
10507	AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub)	LIE-TOD	8.55	+96%
10508	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub)	LIE-TOD	7.00	+96%
10509	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub)	LTE-TOD	7,99	+9.6 %
10510	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	0.49	19.0 %
10511	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub)	LIE-IDD	7.74	19.0 %
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub)	LIE-IDD	7.74	19.0 %
10513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub)	LIE-IDD	0.42	± 9.0 %
10514	AAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub)	LIE-IDD	6,45	19.0 %
10515	AAE	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc)	WLAN	1.58	19.0 %
10516	AAE	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc)	WLAN	1.57	19.0 %
10517	AAF	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc dc)	WLAN	1.58	19.0 %
10518	AAF	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc)	WLAN	8.23	± 9.0 %
10519	AAF	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc)	WLAN	8.39	± 9.0 %
10520	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc dc)	WLAN	8.12	19.0 %
10521	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc)	WLAN	7.97	19.0 %
10522	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)	WLAN	8.45	19.0 %
10523	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc)	WLAN	8.08	19.0 %
10524	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc)	WLAN	8.27	± 9.0 %
10525	AAC	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc dc)	WLAN	8.36	19.0 %
10526	AAF	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc dc)	WLAN	8.42	19.0 %
10527	AAF	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc dc)	WLAN	8.21	19.0 %
10528	AAF	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc dc)	WLAN	8.36	± 9,6 %
10529	AAF	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc dc)	WLAN	8.36	± 9.6 %
10531	AAF	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc)	WLAN	8.43	± 9.6 %
10532	AAF	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc)	WLAN	8.29	± 9.6 %
10533	AAE	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc)	WLAN	8.38	±9.6%
10534	AAE	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc)	WLAN	8.45	± 9.6 %
10535	AAE	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc)	WLAN	8.45	± 9.6 %
10536	AAF	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc)	WLAN	8.32	19.0%
10537	AAF	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc)	WLAN	8.44	± 9.6 %
10538	AAF	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc)	WLAN	8.54	± 9.6 %
10540	AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)	WLAN	8.39	± 9.6 %
10541	AAA	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc)	WLAN	8.46	± 9.6 %
10542	AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc)	WLAN	8.65	± 9.6 %
10543	AAC	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc)	WLAN	8.65	± 9.6 %
10544	AAC	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc)	WLAN	8.47	± 9.6 %
10545	1 440	IEEE 802,11ac WiFi (80MHz, MCS1, 99pc dc)	WLAN	8.55	± 9.6 %

Certificate No: EUmmWV4-9492_May21

Page 12 of 19

10540	110	IEEE 802 11ac WiEi (80MHz, MCS2, 99pc dc)	WLAN	8.35	± 9.6 %
10546	AAC	IEEE 802 11ac WiFi (80MHz, MCS3, 99pc dc)	WLAN	8.49	± 9.6 %
10547	AAC	IEEE 802.11ac WiFI (80MHz, MCS4, 99pc dc)	WLAN	8.37	± 9.6 %
10548	AAC	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc)	WLAN	8.38	± 9.6 %
10550	AAC	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc dc)	WLAN	8.50	± 9.6 %
10551	AAC	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc dc)	WLAN	8.42	± 9.6 %
10552	AAC	IEEE 802.11ac WIFI (80MHz, MCS9, 99pc dc)	WLAN	8.45	± 9.6 %
10553	AAC	1555 802 11ac WIFI (00MHz, MCS0, 990c dc)	WLAN	8.48	± 9.6 %
10554	AAC	IEEE 802.11ac WIFI (160MHz, MCS0, 88pc dc)	WLAN	8.47	± 9.6 %
10555	AAC	1555 802 11ac WFF (160MHz, MCS1, 66pc dc)	WLAN	8.50	± 9.6 %
10556	AAC	IEEE 802.11ac WIFI (160MHz, MCS2, 3605 do)	WLAN	8.52	±9.6 %
10557	AAC	IEEE 802.11ac WIFI (160MHz, MCS3, 350c dc)	WLAN	8.61	±9.6 %
10558	AAC	IEEE 802.11ac WIFI (160MHz, MCS4, 95pc dc)	WLAN	8.73	± 9.6 %
10560	AAC	IEEE 802.11ac WIFI (160MHz, MCS3, 99pc dc)	WLAN	8.56	± 9.6 %
10561	AAC	IEEE 802.11ac WIFI (160MHz, MCS7, 99pc dc)	WLAN	8.69	± 9.6 %
10562	AAC	IEEE 802.11ac WIFI (160MHz, MCS8, 99pc dc)	WLAN	8.77	± 9.6 %
10563	AAC	IEEE 802.11ac WIFI (160MHz, MCS9, 99pc dc)	WIAN	8.25	± 9.6 %
10564	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc)	WIAN	8 45	± 9.6 %
10565	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc)	WLAN	8.13	+96%
10566	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc)	WLAN	8.00	+96%
10567	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc)	WLAN	9.37	+96%
10568	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc)	WLAN	8.10	+96%
10569	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc)	VVLAN	0.10	+0.6%
10570	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc)	WLAN	6.30	19.0 %
10571	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc)	WLAN	1.99	± 9.0 %
10572	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc)	WLAN	1.99	± 9.6 %
10573	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc)	WLAN	1.98	± 9,6 %
10574	AAC	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc)	WLAN	1.98	± 9.6 %
10575	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc)	WLAN	8.59	± 9.6 %
10576	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc)	WLAN	8.60	± 9.6 %
10577	AAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc)	WLAN	8.70	± 9.6 %
10578	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	± 9.6 %
10579	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	± 9.6 %
10580	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc)	WLAN	8.76	± 9.6 %
10581	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)	WLAN	8.35	± 9.6 %
10582	AAD	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc)	WLAN	8.67	± 9.6 %
10583	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc)	WLAN	8.59	± 9.6 %
10584	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc)	WLAN	8.60	± 9.6 %
10585	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc)	WLAN	8.70	± 9.6 %
10586	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	±9.6 %
10587	000	IEEE 802,11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	± 9.6 %
10588	000	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc)	WLAN	8.76	± 9.6 %
10589		IEEE 802,11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc)	WLAN	8.35	± 9.6 %
10500	AAA	IFEE 802 11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc)	WLAN	8.67	± 9.6 %
10590	AAA	IEEE 802 11n (HT Mixed, 20MHz, MCS0, 90pc dc)	WLAN	8.63	± 9.6 %
10501	AAA	LEEE 802 11n (HT Mixed, 20MHz, MCS1, 90pc dc)	WLAN	8.79	± 9.6 %
10592	AAA	IEEE 802 11n (HT Mixed 20MHz MCS2 90pc dc)	WLAN	8.64	± 9.6 %
10595	AAA	IEEE 802 11n (HT Mixed 20MHz, MCS3, 90pc dc)	WLAN	8.74	± 9.6 %
10594	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc dc)	WLAN	8.74	± 9.6 %
10595	AAA	IEEE 802 11n (HT Mixed, 20MHz, MCS5, 90pc dc)	WLAN	8.71	± 9.6 %
10596	AAA	IEEE 802 11p (HT Mixed, 20MHz, MCS6, 90pc dc)	WLAN	8.72	± 9.6 %
10597	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc dc)	WLAN	8.50	± 9.6 %
10598	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc)	WLAN	8.79	± 9.6 %
10599	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc dc)	WLAN	8.88	± 9.6 %
10600	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc dc)	WLAN	8.82	± 9.6 %
10601	AAA	IEEE 002.110 (HT Mixed, 40MHz, MC02, 80pc dc)	WLAN	8.94	± 9.6 %
10602	AAA	IEEE 002.1111(FT WINCU, 40WIEZ, WOOD, 80pc do)	WI AN	9.03	+96%

Certificate No: EUmmWV4-9492_May21

Page 13 of 19

	0.1. 0		1	0.70	
0604		IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc dc)	WLAN	8.76	± 9.6 %
0605	ΔΔΔ	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc dc)	WLAN	8.97	± 9.6 %
0606	AAC	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc dc)	WLAN	8.82	± 9.6 %
0607	AAC	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc dc)	WLAN	8.64	± 9.6 %
0608	AAC	IEEE 802,11ac WiFi (20MHz, MCS1, 90pc dc)	WLAN	8.77	± 9.6 %
0609	AAC	IEEE 802,11ac WiFi (20MHz, MCS2, 90pc dc)	WLAN	8.57	± 9.6 %
0610	AAC	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc dc)	WLAN	8.78	± 9.6 %
0611	AAC	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc dc)	WLAN	8.70	± 9.6 %
0612	AAC	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc dc)	WLAN	8.77	± 9.6 %
0612	AAC	IEEE 802 11ac WiFi (20MHz, MCS6, 90pc dc)	WLAN	8.94	± 9.6 %
0013	AAC	IEEE 802 11ac WiFi (20MHz, MCS7, 90pc dc)	WLAN	8.59	± 9.6 %
0014	AAC	IEEE 802 11ac WiFi (20MHz, MCS8, 90pc dc)	WLAN	8.82	± 9.6 %
10615	AAC	IEEE 802 11ac WiFi (40MHz, MCS0, 90pc dc)	WLAN	8.82	±9.6 %
10010	AAC	IEEE 802 11ac WiFi (40MHz, MCS1, 90pc dc)	WLAN	8.81	±9.6 %
10617	AAC	IEEE 802 11ac WiFi (40MHz, MCS2, 90pc dc)	WLAN	8.58	± 9.6 %
10618	AAC	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc dc)	WLAN	8.86	± 9.6 %
10619	AAC	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc dc)	WLAN	8.87	± 9.6 %
10620	AAC	1555 802 11 ac WiFi (40MHz, MCS5, 90pc dc)	WLAN	8.77	± 9.6 %
10621	AAC	1222 802.11ac WiFi (40MHz, MCS6, 90pc dc)	WLAN	8.68	± 9.6 %
10622	AAC	IEEE 802.11ac WIFI (40MHz, MCS0, 50pc dc)	WLAN	8.82	± 9.6 %
10623	AAC	IEEE 802.11ac WIFI (40MHz, MCS9, 90pc dc)	WLAN	8.96	± 9.6 %
10624	AAC	IEEE 802.11ac WIFI (40MHz, MCS0, 90pc dc)	WLAN	8.96	± 9.6 %
10625	AAC	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc dc)	WIAN	8.83	± 9.6 %
10626	AAC	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc dc)	WLAN	8.88	+ 9.6 %
10627	AAC	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc)	WI AN	8.71	+9.6%
10628	AAC	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc dc)	WLAN	8.85	+96%
10629	AAC	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc dc)	VVLAN	9.72	+ 9.6 %
10630	AAC	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc dc)	VVLAN	9.91	+96%
10631	AAC	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc dc)	VVLAN	9.74	+96%
10632	AAC	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc dc)	VVLAN	0.74	+ 9.6 %
10633	AAC	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc dc)	WLAN	0.03	19.0 /0
10634	AAC	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc dc)	WLAN	0.00	19.0 %
10635	AAC	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc dc)	WLAN	0.01	19.0 %
10636	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc dc)	VVLAN	0.03	19.0 /
10637	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc dc)	WLAN	8.79	±9.07
10638	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc dc)	WLAN	8.86	± 9.6 %
10639	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc dc)	WLAN	8.85	± 9.6 %
10640	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 90pc dc)	WLAN	8.98	± 9.6 %
10641	AAC	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc dc)	WLAN	9.06	± 9.6 %
10642	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc dc)	WLAN	9.06	± 9.6 %
10643	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc dc)	WLAN	8.89	± 9.6 %
10644	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc dc)	WLAN	9.05	± 9.6 %
10645	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc dc)	WLAN	9.11	± 9.6 %
10646	AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7)	LTE-TDD	11.96	± 9.6 %
10647	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2.7)	LTE-TDD	11.96	± 9.6 %
10648	AAC	CDMA2000 (1x Advanced)	CDMA2000	3.45	± 9.6 %
10652	AAC	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	± 9.6 %
10653	AAC	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	± 9.6 °
10654	AAC	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	± 9.6 °
10655	AAC	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	± 9.6
10658	AAC	Pulse Waveform (200Hz, 10%)	Test	10.00	± 9.6
10650	AAC	Pulse Waveform (200Hz, 20%)	Test	6.99	± 9.6
10660	AAC	Pulse Waveform (200Hz, 40%)	Test	3.98	± 9.6
10661	AAC	Pulse Waveform (200Hz, 60%)	Test	2.22	± 9.6
10001	AAC	Pulse Waveform (200Hz, 80%)	Test	0.97	± 9.6
10002	AAC	Bluetooth Low Energy	Bluetooth	2.19	± 9.6
100/0	AAC	Didetoon cov chorgy	WLAN	9.09	± 9.6

Certificate No: EUmmWV4-9492_May21

Page 14 of 19

0070		IEEE 802 11ax (20MHz MCS1 90nc dc)	WLAN	8.57	± 9.6 %
10672	AAD	IEEE 802.11ax (20MHz, MCS1, 30pc dc)	WLAN	8.78	± 9.6 %
10673	AAD	IEEE 802.11ax (20MHz, MCS2, 00pc dc)	WLAN	8.74	± 9.6 %
10674	AAD	IEEE 802,11ax (20MHz, MCS4, 90pc dc)	WLAN	8.90	± 9.6 %
10675	AAD	IEEE 802.11ax (20MHz, MCS5, 90pc dc)	WLAN	8.77	± 9.6 %
10676	AAD	IEEE 802.11ax (20MHz, MCS6, 90pc dc)	WLAN	8.73	± 9.6 %
10677	AAD	IEEE 802.11ax (20MHz, MCS7, 90pc dc)	WLAN	8.78	±9.6 %
10678	AAD	IEEE 802.11ax (20MHz, MCS7, 50pc dc)	WLAN	8.89	± 9.6 %
10679	AAD	IEEE 802.11ax (20MHz, MCS9, 90pc dc)	WLAN	8.80	± 9.6 %
10680	AAD	IEEE 802.11ax (20MHz_MCS10, 90pc dc)	WLAN	8.62	± 9.6 %
10681	AAG	IEEE 802.11ax (20MHz_MCS11, 90pc dc)	WLAN	8.83	± 9.6 %
10682	AAF	IEEE 802.11ax (20MHz, MCS0, 99pc dc)	WLAN	8.42	± 9.6 %
10683	AAA	IEEE 802.11ax (20MHz, MCS1, 99pc dc)	WLAN	8.26	± 9.6 %
10004	AAC	IEEE 802 11ax (20MHz, MCS2, 99pc dc)	WLAN	8.33	±9.6 %
10685	AAC	IEEE 802.11ax (20MHz, MCS3, 99pc dc)	WLAN	8.28	± 9.6 %
10080	AAC	IEEE 802.11ax (20MHz, MCS4, 99pc dc)	WLAN	8.45	± 9.6 %
10687	AAE	IEEE 802.11ax (20MHz, MCS5, 99pc dc)	WLAN	8.29	± 9.6 %
10688	AAE	IEEE 802 11ax (20MHz, MCS6, 99pc dc)	WLAN	8.55	± 9.6 %
10689	AAD	IEEE 802 11ax (20MHz, MCS7, 99pc dc)	WLAN	8.29	± 9.6 %
10690	AAE	IEEE 802 11ax (20MHz, MCS8, 99pc dc)	WLAN	8.25	± 9.6 %
10691	AAB	IEEE 802.11ax (20MHz, MCS9, 99pc dc)	WLAN	8.29	± 9.6 %
10692	AAA	IEEE 802.11ax (20MHz, MCS10, 99pc dc)	WLAN	8.25	± 9.6 %
10693	AAA	IEEE 802 11ax (20MHz, MCS11, 99pc dc)	WLAN	8.57	± 9.6 %
10694	AAA	IEEE 802 11ax (20MHz, MCS0, 90pc dc)	WLAN	8.78	± 9.6 %
10695	AAA	IEEE 802 11ax (40MHz, MCS1, 90pc dc)	WLAN	8.91	± 9.6 %
10690	AAA	IEEE 802 11ax (40MHz, MCS2, 90pc dc)	WLAN	8.61	± 9.6 %
10697	AAA	IEEE 802 11ax (40MHz, MCS3, 90pc dc)	WLAN	8.89	± 9.6 %
10699	AAA	IEEE 802.11ax (40MHz, MCS4, 90pc dc)	WLAN	8.82	± 9.6 %
10700	AAA	IEEE 802.11ax (40MHz, MCS5, 90pc dc)	WLAN	8.73	± 9.6 %
10700		IEEE 802.11ax (40MHz, MCS6, 90pc dc)	WLAN	8.86	± 9.6 %
10707		IEEE 802.11ax (40MHz, MCS7, 90pc dc)	WLAN	8.70	± 9.6 %
10703	AAA	IEEE 802.11ax (40MHz, MCS8, 90pc dc)	WLAN	8.82	± 9.6 %
10704		IEEE 802.11ax (40MHz, MCS9, 90pc dc)	WLAN	8.56	± 9.6 %
10705		IEEE 802.11ax (40MHz, MCS10, 90pc dc)	WLAN	8.69	± 9.6 %
10706	AAC	IEEE 802.11ax (40MHz, MCS11, 90pc dc)	WLAN	8.66	± 9.6 %
10707	AAC	IEEE 802.11ax (40MHz, MCS0, 99pc dc)	WLAN	8.32	± 9.6 %
10708	AAC	IEEE 802.11ax (40MHz, MCS1, 99pc dc)	WLAN	8.55	± 9.6 %
10709	AAC	IEEE 802.11ax (40MHz, MCS2, 99pc dc)	WLAN	8.33	± 9.6 %
10710	AAC	IEEE 802.11ax (40MHz, MCS3, 99pc dc)	WLAN	8.29	± 9.6 %
10711	AAC	IEEE 802.11ax (40MHz, MCS4, 99pc dc)	WLAN	8.39	± 9.6 %
10712	AAC	IEEE 802.11ax (40MHz, MCS5, 99pc dc)	WLAN	8.67	± 9.6 %
10713	AAC	IEEE 802.11ax (40MHz, MCS6, 99pc dc)	WLAN	8.33	± 9.6 %
10714	AAC	IEEE 802.11ax (40MHz, MCS7, 99pc dc)	WLAN	8.26	± 9.6 %
10715	AAC	IEEE 802.11ax (40MHz, MCS8, 99pc dc)	WLAN	8.45	± 9.6 %
10716	AAC	IEEE 802.11ax (40MHz, MCS9, 99pc dc)	WLAN	8.30	± 9.6 %
10717	AAC	IEEE 802.11ax (40MHz, MCS10, 99pc dc)	WLAN	8.48	± 9.6 %
10718	AAC	IEEE 802.11ax (40MHz, MCS11, 99pc dc)	WLAN	8.24	± 9.6 %
10719	AAC	IEEE 802.11ax (80MHz, MCS0, 90pc dc)	WLAN	8.81	± 9.6 %
10720	AAC	IEEE 802.11ax (80MHz, MCS1, 90pc dc)	WLAN	8.87	± 9.6 %
10721	AAC	IEEE 802.11ax (80MHz, MCS2, 90pc dc)	WLAN	8.76	± 9.6 %
10722	AAC	IEEE 802.11ax (80MHz, MCS3, 90pc dc)	WLAN	8.55	± 9.6 %
10723	AAC	IEEE 802.11ax (80MHz, MCS4, 90pc dc)	WLAN	8.70	± 9.6 %
10724	AAC	IEEE 802.11ax (80MHz, MCS5, 90pc dc)	WLAN	8.90	± 9.6 %
10725	AAC	IEEE 802.11ax (80MHz, MCS6, 90pc dc)	WLAN	8.74	± 9.6 %
10726	AAC	IEEE 802.11ax (80MHz, MCS7, 90pc dc)	WLAN	8.72	± 9.6 %
10727	AAC	IEEE 802.11ax (80MHz, MCS8, 90pc dc)	WLAN	8.66	± 9.6 %

Certificate No: EUmmWV4-9492_May21

Page 15 of 19

10700		IEEE 902 11ax (80MHz MCS9, 90nc dc)	WLAN	8.65	± 9.6 %
10728	AAC	IEEE 802.11ax (80MHz, MCS10, 90pc dc)	WLAN	8.64	±9.6%
10729	AAC	IEEE 802.11ax (80MHz, MCS11, 90pc dc)	WLAN	8.67	± 9.6 %
10730	AAC	IEEE 802.11ax (80MHz, MCS0, 99pc dc)	WLAN	8.42	± 9.6 %
10731	AAC	IEEE 802.11ax (80MHz, MCS0, 80ps dc)	WLAN	8.46	± 9.6 %
10732	AAC	IEEE 802.11ax (80MHz, MCS2, 990c dc)	WLAN	8.40	± 9.6 %
10733	AAC	IEEE 802.11ax (80MHz, MCS2, 90pc dc)	WLAN	8.25	± 9.6 %
10734	AAC	IEEE 802.11ax (80MHz, MCS3, 3505 00)	WLAN	8.33	± 9.6 %
10735	AAC	1555 802 11ax (80MHz, MCS5, 99pc dc)	WLAN	8.27	± 9.6 %
10736	AAC	IEEE 802.11ax (80MHz, MCS6, 99pc dc)	WLAN	8.36	± 9.6 %
10737	AAC	IEEE 802.11ax (80MHz, MCS7, 99pc dc)	WLAN	8.42	± 9.6 %
10738	AAC	IEEE 802.11ax (80MHz, MCS7, 95pc dd)	WLAN	8.29	± 9.6 %
10739	AAC	IEEE 802.11ax (80MHz, MCS0, 99pc dc)	WLAN	8.48	±9.6 %
10740	AAC	IEEE 802.11ax (80MHz, MCS40, 99pc dc)	WLAN	8.40	± 9.6 %
10741	AAC	IEEE 802.11ax (80MHz, MCS10, 99pc dc)	WLAN	8.43	± 9.6 %
10742	AAC	IEEE 802.11ax (80MHz, MCS11, 99pc 6c)	WLAN	8.94	± 9.6 %
10743	AAC	IEEE 802.11ax (160MHz, MCS0, 90pc dc)	WLAN	9.16	± 9.6 %
10744	AAC	IEEE 802.11ax (160MHz, MCS1, 90pc dc)	WLAN	8.93	± 9.6 %
10745	AAC	IEEE 802.11ax (160MHz, MCS2, 90pc dc)	WIAN	9.11	± 9.6 %
10746	AAC	IEEE 802.11ax (160MHz, MCS3, 90pc dc)	WIAN	9.04	+ 9.6 %
10747	AAC	IEEE 802.11ax (160MHz, MCS4, 90pc dc)	WLAN	8.93	+96%
10748	AAC	IEEE 802.11ax (160MHz, MCS5, 90pc dc)		8.90	+96%
10749	AAC	IEEE 802.11ax (160MHz, MCS6, 90pc dc)		8.70	+96%
10750	AAC	IEEE 802.11ax (160MHz, MCS7, 90pc dc)	VVLAIN	0.73	+96%
10751	AAC	IEEE 802.11ax (160MHz, MCS8, 90pc dc)	VVLAN	0.02	+ 9.6 %
10752	AAC	IEEE 802.11ax (160MHz, MCS9, 90pc dc)	WLAN	0.01	+06%
10753	AAC	IEEE 802.11ax (160MHz, MCS10, 90pc dc)	WLAN	9.00	19.0 %
10754	AAC	IEEE 802.11ax (160MHz, MCS11, 90pc dc)	WLAN	8.94	19.0 %
10755	AAC	IEEE 802.11ax (160MHz, MCS0, 99pc dc)	WLAN	0.04	19.0 %
10756	AAC	IEEE 802.11ax (160MHz, MCS1, 99pc dc)	WLAN	8.//	19.0 %
10757	AAC	IEEE 802.11ax (160MHz, MCS2, 99pc dc)	WLAN	0.77	19.0 %
10758	AAC	IEEE 802.11ax (160MHz, MCS3, 99pc dc)	WLAN	0.09	19.0 %
10759	AAC	IEEE 802.11ax (160MHz, MCS4, 99pc dc)	WLAN	8.58	19.0 %
10760	AAC	IEEE 802.11ax (160MHz, MCS5, 99pc dc)	WLAN	8.49	± 9.0 %
10761	AAC	IEEE 802.11ax (160MHz, MCS6, 99pc dc)	WLAN	8.58	19.0 %
10762	AAC	IEEE 802.11ax (160MHz, MCS7, 99pc dc)	WLAN	8.49	± 9.0 %
10763	AAC	IEEE 802.11ax (160MHz, MCS8, 99pc dc)	WLAN	8.53	± 9.6 %
10764	AAC	IEEE 802.11ax (160MHz, MCS9, 99pc dc)	WLAN	8.54	± 9.6 %
10765	AAC	IEEE 802.11ax (160MHz, MCS10, 99pc dc)	WLAN	8.54	± 9.6 %
10766	AAC	IEEE 802.11ax (160MHz, MCS11, 99pc dc)	WLAN	8.51	± 9.6 %
10767	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	7.99	± 9.6 %
10768	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	± 9.6 %
10769	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	± 9.6 %
10770	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
10771	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
10772	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.23	± 9.6 %
10773	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.03	± 9.6 %
10774	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
10775	AAC	5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	± 9.6 %
10776	AAC	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	± 9.6 %
10777	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	± 9.6 %
10778	AAC	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.34	±9.6%
10779	AAC	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.42	± 9.6 %
10780	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	± 9.6 %
10781	AAC	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	± 9.6 %
10782	AAC	5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.43	± 9.6 %
10700	100	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	± 9.6 %

Certificate No: EUmmWV4-9492_May21

Page 16 of 19

				9.20	+06 %
0784	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.29	19.6%
0785	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.40	19.0 %
0786	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.35	±9.6%
0787	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.44	± 9.6 %
0788	AAC	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
0789	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
0790	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
0791	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.83	± 9.6 %
0702	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	± 9.6 %
10793	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	± 9.6 %
0704	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	± 9.6 %
10705	AAC	5G NR (CP-OEDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.84	± 9.6 %
10795	AAC	5C NR (CP-OEDM 1 RB 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	± 9.6 %
10790	AAC	5G NR (CP-OEDM 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.01	± 9.6 %
10/9/	AAC	SO NR (CP OFDM, 1 RB, 50 MHz, OPSK, 30 kHz)	5G NR FR1 TDD	7.89	± 9.6 %
10798	AAC	SC NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	± 9.6 %
10799	AAC	SG NR (CF-OFDM, 1 RB, 80 MHz, OPSK 30 kHz)	5G NR FR1 TDD	7.89	± 9.6 %
10801	AAC	SG NR (CP-OPDM, 1 RB, 00 MHz, OPSK 30 KHz)	5G NR FR1 TDD	7.87	± 9.6 %
10802	AAC	5G NR (CP-OFDM, 1 RB, 90 MHZ, OPSK, 30 KHZ)	5G NR FR1 TDD	7.93	± 9.6 %
10803	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 KHz)	5G NR FR1 TDD	8.34	± 9.6 %
10805	AAD	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 KHz)	5G NR FR1 TDD	8.37	± 9.6 %
10806	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 KHz)	5G NR FR1 TDD	8.34	+9.6 %
10809	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 KHz)	5G NR FR1 TDD	8.34	+960
10810	AAD	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 KHz)	SC NR FR1 TDD	8 35	+969
10812	AAD	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 KHz)	5G NR FR1 TDD	8.35	+96
10817	AAD	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 KHz)	50 NR FR1 TDD	8.34	+96
10818	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 KHz)	5G NR FRI TDD	833	+96
10819	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 KHz)	SG NR FR1 TDD	8.30	+96
10820	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 KHz)	SC NR FR1 TDD	8.41	+969
10821	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 KHz)	SG NR FRI TDD	0.41	+960
10822	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 KHz)	SO NR FRI TOD	0.41	+06
10823	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	SG NR FRI TDD	0.00	+06
10824	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	SGINR FRI TOD	0.39	19.0
10825	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	19.0
10827	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.42	± 9.0
10828	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.43	± 9.0
10829	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.40	±9.6
10830	AAD	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7,63	± 9.6
10831	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.73	± 9.6
10832	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.74	± 9.6
10833	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	± 9.6
10834	AAD	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.75	± 9.6
10835	AAD	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	± 9.6
10836	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.66	± 9.6
10837	AAD	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.68	± 9.6
10839	AAD	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	± 9.6
10840	100	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.67	± 9.6
10841	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.71	± 9.6
10843	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.49	± 9.6
10844	AAD	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6
10846	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6
10854	AAD	5G NR (CP-OEDM, 100% RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6
10854	AAD	5G NR (CP-OEDM, 100% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	± 9.6
10855	AAD	5C NR (CP-OFDM, 100% RB, 10 MHz, QP SK 60 kHz)	5G NR FR1 TDD	8.37	± 9.6
10856	AAD	50 NR (0P-0FDM, 100% RB, 20 MHz, 0P 0R, 00 KHz)	5G NR FR1 TDD	8.35	± 9.6
10857	AAD	50 NR (0P-0FDM, 100% RB, 25 MHz, 0P 51, 00 KHz)	5G NR FR1 TDD	8.36	±96
10858	AAD	50 NR (CP-OFDW, 100% RD, 30 WHZ, QFSR, 00 KHZ)	5G NR FR1 TDD	8 34	+96
10859	AAD	5G NK (CP-OFDM, 100% KB, 40 MILZ, QF5K, 00 KHZ)	00.11111100	0.04	

Certificate No: EUmmWV4-9492_May21

Page 17 of 19

			EC NR EPI TOD	8 41	+96%
0860	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)	SG NR FRI TDD	9.40	+96%
0861	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)	5G NR FRI TDD	0.40	± 9.0 %
0863	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.0 %
0864	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	19.0 %
0865	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
0866	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
0868	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	± 9.6 %
10869	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10870	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.86	± 9.6 %
10871	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10872	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	± 9.6 %
10873	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	± 9.6 %
10874	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	± 9.6 %
10875	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	±9.6 %
10070	AAD	5G NR (CP-OEDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.39	± 9.6 %
10070	AAD	5G NR (CP-OEDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	7.95	± 9.6 %
10877	AAD	5C NR (CP-OEDM 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.41	± 9.6 %
10878	AAD	5G NR (CP-OFDM 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.12	± 9.6 %
10879	AAD	5G NR (CP-OFDM, 100% BB 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.38	± 9.6 %
10880	AAD	SC NR (DET & OEDM 1 RB 50 MHz OPSK 120 kHz)	5G NR FR2 TDD	5.75	±9.6 %
10881	AAD	50 NR (DFT-S-OFDM, 100% RB 50 MHz, QPSK, 120 KHz)	5G NR FR2 TDD	5.96	± 9.6 %
10882	AAD	5G NR (DFT-S-OFDM, 100% RB, 50 MHz, 160AM, 120 kHz)	5G NR FR2 TDD	6.57	± 9.6 %
10883	AAD	5G NR (DFT-S-OFDM, 1 RB, 50 MHz, 160AM, 120 kHz)	5G NR FR2 TDD	6.53	± 9.6 %
10884	AAD	5G NR (DFT-S-OFDM, 100% RB, 50 MHz, 100AM, 120 KHz)	5G NR FR2 TDD	6.61	± 9.6 %
10885	AAD	5G NR (DFT-S-OFDM, 1 RB, 50 MHz, 640AM, 120 kHz)	5G NR FR2 TDD	6.65	± 9.6 %
10886	AAD	5G NR (DFT-S-OFDM, 100% RB, 50 MHz, 040AM, 120 KHz)	5G NR FR2 TDD	7.78	± 9.6 %
10887	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 KHz)	5G NR FR2 TDD	8.35	± 9.6 %
10888	AAD	5G NR (CP-OFDM, 100% RB, 50 MHZ, QPSK, 120 KHZ)	5G NR FR2 TDD	8.02	+ 9.6 %
10889	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 KH2)	5G NR FR2 TDD	8.40	+ 9.6 %
10890	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 KHz)	5G NR FR2 TDD	8.13	+96%
10891	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	SO NR FR2 TOD	9.11	+96%
10892	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	SGINK FR2 TDD	5.66	+ 9.6 %
10897	AAD	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	SGINK FRI TDD	5.00	+ 9.6 %
10898	AAD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	SG NR FRI TDD	5.07	+0.6%
10899	AAD	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	SG NR FRI TDD	5.07	+06%
10900	AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	SG NR FRI TDD	5.00	19.0 %
10901	AAD	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.00	19.07
10902	AAD	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10903	AAD	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	19.07
10904	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10905	AAD	5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10906	AAD	5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10907	AAD	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5 78	± 9.6 %
10908	AAD	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	± 9.6 %
10909		5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.96	± 9.6 9
10910	AAD	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	± 9,6 %
10911	AAD	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	± 9.6 %
10912		5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
10012	AAD	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 °
10914	AAD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.85	± 9.6 °
10015	AAD	5G NR (DET-s-OEDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	± 9.6 °
10913	AAD	5G NR (DET-s-OEDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	± 9.6 °
10916	AAD	5G NR (DET-s-OEDM 50% RB 100 MHz OPSK 30 kHz)	5G NR FR1 TDD	5.94	± 9.6
10917	AAD	5C NR (DET-s-OEDM 100% RB 5 MHz OPSK 30 kHz)	5G NR FR1 TDD	5.86	± 9.6
10918	AAD	5G NR (DET-s-OEDM 100% RB 10 MHz OPSK 30 kHz)	5G NR FR1 TDD	5.86	± 9.6
10919	AAD	5C NR (DET-S-OEDM, 100% RB, 15 MHz, OPSK, 30 kHz)	5G NR FR1 TDD	5.87	± 9.6
1 10920	I AAD	00 Mix (DE1-3-01 DM, 100 /0 KD, 10 Minz, 00 OK, 00 KHZ)			

Certificate No: EUmmWV4-9492_May21

Page 18 of 19

			SC NR FR1 TDD	5.82	+9.6%
0922	AAD	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	SG NR FRI TDD	5.84	+96%
0923	AAD	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	SGINK FRI TOD	5.84	+96%
0924	AAD	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	SG NR FRI TDD	5.04	+96%
0925	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	SG NR FRI TDD	5.84	+96%
0926	AAD	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	SG NR FRI TDD	5.04	+96%
0927	AAD	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FRI TDD	5.94	+06%
0928	AAD	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	19.0 %
0929	AAD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	19.0 %
0930	AAD	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	19.0 7
0931	AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	19.07
0932	AAB	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	19.07
0933		5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.0 7
10934	AAA	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
10935	AAA	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6%
10936	AAC	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	± 9.6 %
10037	AAD	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.77	± 9.6 %
10937	AAB	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	± 9.6
10030	AAD	5G NR (DET-s-OEDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.82	± 9.6 °
10939	AAB	5G NR (DET-s-OEDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.89	± 9.6
10940	AAB	5G NR (DET-s-OEDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	± 9.6
10941	AAB	5G NR (DET-S-OEDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6
10942	AAB	5G NR (DFT-S-OEDM 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	± 9.6
10943	AAB	SG NR (DET-s-OEDM 100% BB 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.81	± 9.6
10944	AAB	SG NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6
10945	AAB	5G NR (DFT & OEDM 100% RB 15 MHz OPSK, 15 kHz)	5G NR FR1 FDD	5.83	± 9.6
10946	AAC	50 NR (DFT-S-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	± 9.6
10947	AAB	5G NR (DFT-5-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	± 9.6
10948	AAB	5G NR (DFT-S-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	± 9.6
10949	AAB	5G NR (DFT-S-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	± 9.6
10950	AAB	5G NR (DFT-S-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.92	± 9.6
10951	AAB	5G NR (DFT-S-OFDM, 100% NB, 50 MHz, 64-OAM 15 kHz)	5G NR FR1 FDD	8.25	± 9.6
10952	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-OAM, 15 kHz)	5G NR FR1 FDD	8.15	± 9.6
10953	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-OAM, 15 KHz)	5G NR FR1 FDD	8.23	± 9.6
10954	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 KHz)	5G NR FR1 FDD	8.42	± 9.6
10955	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 04-0AM, 15 KHz)	5G NR FR1 FDD	8.14	± 9.6
10956	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 KHz)	5G NR FR1 FDD	8.31	± 9.6
10957	AAC	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 KHz)	5G NR FR1 FDD	8.61	+ 9.6
10958	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-04M, 30 KHz)	5G NR FR1 FDD	8 33	+96
10959	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 KHz)	5G NR FR1 TDD	0.32	+96
10960	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHZ, 64-QAM, 15 KHZ)	50 NR FR1 TDD	0.36	+96
10961	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 KHz)	SC NR FRI TOD	9.00	+96
10962	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 KHz)	SG NR FRI TDD	9.40	+ 9.6
10963	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 KHz)	SG NR FRI TDD	9.00	+0.6
10964	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	SGINK FRI TDD	9.29	19.0
10965	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.37	19.0
10966	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	± 9.0
10967	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.42	± 9.0
10968	AAB	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.49	± 9.0
10972	AAB	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	11.59	± 9.
10973	AAB	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	9.06	± 9.
10074	AAB	5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz)	5G NR FR1 TDD	10.28	± 9.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EUmmWV4-9492_May21

Page 19 of 19

ANNEX E 5G Verification Source

peredited by the Swice Accordite	tion Sontion (SAC)	outine.	000 0400
ne Swiss Accreditation Service	e is one of the signato	ories to the EA	reditation No.: SCS 0108
ultilateral Agreement for the n	ecognition of calibrati	on certificates	
Auden		Certificate No:	5G-Veri30-1076_Sep20
CALIBRATION	CERTIFICA	TE	
Object	5G Verification	n Source 30 GHz - SN: 1076	1010
0.110-11-0.1	OA CAL AF		
Calibration procedure(s)	Calibration pro	ocedure for sources in air above 6 GH	z
Calibration date:	September 11	, 2020	
This calibration certificate docum	ents the traceability to	national standards, which realize the physical units	of measurements (SI).
The measurements and the unce	ertainties with confidence	e probability are given on the following pages and a	are part of the certificate.
All calibrations have been condu	cted in the closed labor	alory facility: environment temperature $(22 \pm 3)^{\circ}$ C a	nd humidity < 70%.
All calibrations have been condu Calibration Equipment used (M&	cted in the closed labor TE critical for calibration	ratory facility: environment temperature $(22 \pm 3)^{\circ}$ C a	nd humidity < 70%.
All calibrations have been condu Calibration Equipment used (M& Primary Standards	cted in the closed labor TE critical for calibration ID #	atory facility: environment temperature (22 ± 3)°C a n) Cal Date (Certificate No.)	nd humidity < 70%. Scheduled Calibration
All calibrations have been condu Calibration Equipment used (M& Primary Standards Reference Probe EUmmWV3 DAEAin	TE critical for calibration ID # SN: 9374	atory facility: environment temperature (22 ± 3)°C a n) Cal Date (Certificate No.) 31-Dec-19 (No. EUMMWV3-9374_Dec19)	nd humidity < 70%. Scheduled Calibration Dec-20
All calibrations have been condu Calibration Equipment used (M& Primary Standards Reference Probe EUmmWV3 DAE4ip	TE critical for calibration ID # SN: 9374 SN: 1602	ratory facility: environment temperature (22 ± 3)°C a n) Cal Date (Certificate No.) 31-Dec-19 (No. EUmmWV/3-9374_Dec19) 11-Aug-20 (No. DAE4ip-1602_Aug20)	nd humidity < 70%. Scheduled Calibration Dec-20 Aug-21
All calibrations have been condu Calibration Equipment used (M& Primary Standards Reference Probe EUmmWV3 DAE4ip	TE critical for calibration ID # SN: 9374 SN: 1602	atory facility: environment temperature (22 ± 3)°C a n) Cal Date (Certificate No.) 31-Dec-19 (No. EUmmWV/3-9374_Dec19) 11-Aug-20 (No. DAE4ip-1602_Aug20)	nd humidity < 70%. Scheduled Calibration Dec-20 Aug-21
All calibrations have been condu Calibration Equipment used (M& Primary Standards Reference Probe EUmmWV3 DAE4ip Secondary Standards	ted in the closed labor TE critical for calibration ID # SN: 9374 SN: 1602	atory facility: environment temperature (22 ± 3)°C a n) Cal Date (Certificate No.) 31-Dec-19 (No. EUmmWV3-9374_Dec19) 11-Aug-20 (No. DAE4ip-1602_Aug20) Check Date (in house)	nd humidity < 70%. Scheduled Calibration Dec-20 Aug-21 Scheduled Check
All calibrations have been condu Calibration Equipment used (M& <u>Primary Standards</u> Reference Probe EUmmWV3 DAE4ip Secondary Standards	ted in the closed labor TE critical for calibration ID # SN: 9374 SN: 1602 ID #	ratory facility: environment temperature (22 ± 3)°C a n) Cal Date (Certificate No.) 31-Dec-19 (No. EUmmWV3-9374_Dec19) 11-Aug-20 (No. DAE4ip-1602_Aug20) Check Date (in house)	nd humidity < 70%. Scheduled Calibration Dec-20 Aug-21 Scheduled Check
All calibrations have been condu Calibration Equipment used (M& Primary Standards Reference Probe EUmmWV3 DAE4ip Secondary Standards	ted in the closed labor TE critical for calibration ID # SN: 9374 SN: 1602 ID #	ratory facility: environment temperature (22 ± 3)°C a n) Cal Date (Certificate No.) 31-Dec-19 (No. EUmmWV/3-9374_Dec19) 11-Aug-20 (No. DAE4ip-1602_Aug20) Check Date (in house)	nd humidity < 70%. Scheduled Calibration Dec-20 Aug-21 Scheduled Check
All calibrations have been condu Calibration Equipment used (M& Primary Standards Reference Probe EUmmWV3 DAE4ip Secondary Standards	cted in the closed labor TE critical for calibration ID # SN: 9374 SN: 1602 ID #	ratory facility: environment temperature (22 ± 3)°C a n) Cal Date (Certificate No.) 31-Dec-19 (No. EUmmWV/3-9374_Dec19) 11-Aug-20 (No. DAE4ip-1602_Aug20) Check Date (in house)	nd humidity < 70%. Scheduled Calibration Dec-20 Aug-21 Scheduled Check
All calibrations have been condu Calibration Equipment used (M& Primary Standards Reference Probe EUmmWV3 DAE4ip Secondary Standards	cted in the closed labor TE critical for calibration ID # SN: 9374 SN: 1602 ID #	ratory facility: environment temperature (22 ± 3)°C a n) Cal Date (Certificate No.) 31-Dec-19 (No. EUmmWV/3-9374_Dec19) 11-Aug-20 (No. DAE4ip-1602_Aug20) Check Date (in house)	nd humidity < 70%. Scheduled Calibration Dec-20 Aug-21 Scheduled Check
All calibrations have been condu Calibration Equipment used (M& Primary Standards Reference Probe EUmmWV3 DAE4ip Secondary Standards	cted in the closed labor TE critical for calibration ID # SN: 9374 SN: 1602 ID #	ratory facility: environment temperature (22 ± 3)°C a n) Cal Date (Certificate No.) 31-Dec-19 (No. EUmmWV3-9374_Dec19) 11-Aug-20 (No. DAE4ip-1602_Aug20) Check Date (in house)	nd humidity < 70%. Scheduled Calibration Dec-20 Aug-21 Scheduled Check
All calibrations have been condu Calibration Equipment used (M& Primary Standards Reference Probe EUmmWV3 DAE4ip Secondary Standards	cted in the closed labor TE critical for calibration ID # SN: 9374 SN: 1602 ID #	ratory facility: environment temperature (22 ± 3)°C a n) Cal Date (Certificate No.) 31-Dec-19 (No. EUmmWV3-9374_Dec19) 11-Aug-20 (No. DAE4ip-1602_Aug20) Check Date (in house)	nd humidity < 70%. Scheduled Calibration Dec-20 Aug-21 Scheduled Check
All calibrations have been condu Calibration Equipment used (M& Primary Standards Reference Probe EUmmWV3 DAE4ip Secondary Standards	cted in the closed labor TE critical for calibration ID # SN: 9374 SN: 1602 ID #	ratory facility: environment temperature (22 ± 3)°C a n) Cal Date (Certificate No.) 31-Dec-19 (No. EUmmWV3-9374_Dec19) 11-Aug-20 (No. DAE4ip-1602_Aug20) Check Date (in house)	nd humidity < 70%. Scheduled Calibration Dec-20 Aug-21 Scheduled Check
All calibrations have been condu Calibration Equipment used (M& <u>Primary Standards</u> Reference Probe EUmmWV3 DAE4ip <u>Secondary Standards</u>	cted in the closed labor TE critical for calibration ID # SN: 9374 SN: 1602 ID #	ratory facility: environment temperature (22 ± 3)°C a n) Cal Date (Certificate No.) 31-Dec-19 (No. EUmmWV3-9374_Dec19) 11-Aug-20 (No. DAE4ip-1602_Aug20) Check Date (in house)	nd humidity < 70%. Scheduled Calibration Dec-20 Aug-21 Scheduled Check
All calibrations have been condu Calibration Equipment used (M& Primary Standards Reference Probe EUmmWV3 DAE4ip Secondary Standards	Cted in the closed labor TE critical for calibration ID # SN: 9374 SN: 1602 ID # ID #	ratory facility: environment temperature (22 ± 3)°C a n) Cal Date (Certificate No.) 31-Dec-19 (No. EUmmWV3-9374_Dec19) 11-Aug-20 (No. DAE4ip-1602_Aug20) Check Date (in house) Function	nd humidity < 70%. Scheduled Calibration Dec-20 Aug-21 Scheduled Check Signature
All calibrations have been condu Calibration Equipment used (M& <u>Primary Standards</u> Reference Probe EUmmWV3 DAE4ip <u>Secondary Standards</u>	Cted in the closed labor TE critical for calibration ID # SN: 9374 SN: 1602 ID # ID # Name Leif Klysner	ratory facility: environment temperature (22 ± 3)°C a n) Cal Date (Certificate No.) 31-Dec-19 (No. EUmmWV3-9374_Dec19) 11-Aug-20 (No. DAE4ip-1602_Aug20) Check Date (in house) Function Laboratory Technician	Ind humidity < 70%. Scheduled Calibration Dec-20 Aug-21 Scheduled Check Signature Signature
All calibrations have been condu Calibration Equipment used (M& <u>Primary Standards</u> Reference Probe EUmmWV3 DAE4ip Secondary Standards Calibrated by:	Cted in the closed labor TE critical for calibration ID # SN: 9374 SN: 1602 ID # ID # Name Leif Klysner	ratory facility: environment temperature (22 ± 3)°C a n) Cal Date (Certificate No.) 31-Dec-19 (No. EUmmWV3-9374_Dec19) 11-Aug-20 (No. DAE4ip-1602_Aug20) Check Date (in house) Function Laboratory Technician	Ind humidity < 70%. Scheduled Calibration Dec-20 Aug-21 Scheduled Check Signature Signature
All calibrations have been condu Calibration Equipment used (M& Primary Standards Reference Probe EUmmWV3 DAE4ip Secondary Standards Calibrated by:	Cted in the closed labor TE critical for calibration ID # SN: 9374 SN: 1602 ID # ID # Name Leif Klysner Katja Pokovic	atory facility: environment temperature (22 ± 3)°C a n) Cal Date (Certificate No.) 31-Dec-19 (No. EUmmWV3-9374_Dec19) 11-Aug-20 (No. DAE4ip-1602_Aug20) Check Date (in house) Function Laboratory Technician Technical Manager	Ind humidity < 70%. Scheduled Calibration Dec-20 Aug-21 Scheduled Check Signature Signature Set May
All calibrations have been condu Calibration Equipment used (M& <u>Primary Standards</u> Reference Probe EUmmWV3 DAE4ip <u>Secondary Standards</u> Calibrated by: Approved by:	ID # SN: 9374 SN: 1602 ID # ID # Leif Klysner Katja Pokovic	ratory facility: environment temperature (22 ± 3)°C a n) Cal Date (Certificate No.) 31-Dec-19 (No. EUmmWV/3-9374_Dec19) 11-Aug-20 (No. DAE4ip-1602_Aug20) Check Date (in house) Function Laboratory Technician Technical Manager	Ind humidity < 70%. <table> Scheduled Calibration Dec-20 Aug-21 Scheduled Check Signature Sept May Mage Locued: September 11, 2000</table>

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

CW Continuous wave

Calibration is Performed According to the Following Standards

- Internal procedure QA CAL-45-5Gsources
- IEC TR 63170 ED1, "Measurement procedure for the evaluation of power density related to human exposure to radio frequency fields from wireless communication devices operating between 6 GHz and 100 GHz", January 2018

Methods Applied and Interpretation of Parameters

- Coordinate System: z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange.
- Measurement Conditions: (1) 10 GHz: The forward power to the horn antenna is measured prior and after the measurement with a power sensor. During the measurements, the horn is directly connected to the cable and the antenna ohmic and mismatch losses are determined by far-field measurements. (2) 30, 45, 60 and 90 GHz: The verification sources are switched on for at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize reflections.
- Horn Positioning: The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn.
- E- field distribution: E field is measured in two x-y-plane (10mm, 10mm + λ/4) with a vectorial E-field probe. The E-field value stated as calibration value represents the E-fieldmaxima and the averaged (1cm² and 4cm²) power density values at 10mm in front of the horn.
- Field polarization: Above the open horn, linear polarization of the field is expected. This is
 verified graphically in the field representation.

Calibrated Quantity

 Local peak E-field (V/m) and peak values of the total and normal component of the poynting vector |Re{S}| and n.Re{S} averaged over the surface area of 1 cm² (pStotavg1cm² and pSnavg1cm²) and 4cm² (pStotavg4cm² and pSnavg4cm²) at the nominal operational frequency of the verification source.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Page 2 of 5

Certificate No: 5G-Veri30-1076_Sep20

©Copyright. All rights reserved by CTTL.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	cDASY6 Module mmWave	V2.0
Phantom	5G Phantom	
Distance Horn Aperture - plane	10 mm	
XY Scan Resolution	dx, dy = 2.5 mm	
Number of measured planes	2 (10mm, 10mm + λ/4)	
Frequency	30 GHz ± 10 MHz	

Calibration Parameters, 30 GHz

Distance Horn Aperture to Measured Plane	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Avg Power Density n.Re{S}, Re{S} (W/m2)		Uncertainty (k = 2)
				1 cm ²	4 cm ²	
10 mm	69.5	193	1.27 dB	85.4, 86.2	74.1, 75.2	1.28 dB

1 derived from far-field data

Certificate No: 5G-Veri30-1076_Sep20

Page 3 of 5

DASY Report

Measurement Report for 5G Verification Source 30 GHz, UID 0 -, Channel 30000 (30000.0MHz)

Device under Test	Properties				
Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type	
5G Verification Source	30 GHz 100.0 x 100.0 x 1	100.0	SN: 1076		
Exposure Conditio	ons				
Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	5.55 mm	Validation band	CW	30000.0, 30000	1.0

Hard	ware	Setu	p

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom - 1002	Air	EUmmWV3 - SN9374_F1-78GHz,	DAE4ip Sn1602,
		2019-12-31	2020-08-11

Scan Setup		Measurement Results	
	5G Scan		5G Scan
Grid Extents [mm]	60.0 x 60.0	Date	2020-09-11, 13:02
Grid Steps [lambda]	0.25 x 0.25	Avg. Area [cm ²]	1.00
Sensor Surface [mm]	5.55	pStot avg [W/m ²]	86.2
MAIA	MAIA not used	pSn avg [W/m ²]	85.4
		Epeak [V/m]	193
		Power Drift [dB]	-0.05

Certificate No: 5G-Veri30-1076_Sep20

Page 4 of 5

DASY Report

Measurement Report for 5G Verification Source 30 GHz, UID 0 -, Channel 30000 (30000.0MHz)

Name, Manufacturer	Dimensions (mm	1	IMEI	DUT Type	
5G Verification Source 30 G	Hz 100.0 x 100.0 x 1	100.0	SN: 1076		
Exposure Conditions					
Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
6G -	5.55 mm	Validation band	CW	30000.0, 30000	1.0
Hardware Setup					
Phantom	Medium		Probe, Calib	ration Date	DAE, Calibration Date
mmWave Phantom - 1002	Air		EUmmWV3 2019-12-31	- SN9374_F1-78GHz,	DAE4ip Sn1602, 2020-08-11
Scan Setun			Monsuran	nont Doculto	

Scan Setup		Measurement Results	
	5G Scan		5G Scan
Grid Extents [mm]	60.0 × 60.0	Date	2020-09-11, 13:02
Grid Steps [lambda]	0.25 x 0.25	Avg. Area [cm ²]	4.00
Sensor Surface [mm]	5.55	pStot avg [W/m ²]	75.2
MAIA	MAIA not used	pS _n avg [W/m ²]	74.1
		Epeak [V/m]	193
		Power Drift (dB)	-0.05

Certificate No: 5G-Veri30-1076_Sep20

Page 5 of 5

ANNEX F Accreditation Certificate

