

TEST REPORT No. I21Z61209-EMC01

for

Reliance Communications LLC

Orbic Speed 5G

Model Name: R500L5

FCC ID: 2ABGH-R500L5

with

Hardware Version: V1.2

Software Version: ORB500L5_v1.0.1.3_BVZRT

Issued Date: 2021-11-12

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191. Tel: +86(0)10-62304633-2512, Fax: +86(0)10-62304633-2504

Email: <u>cttl_terminals@caict.ac.cn</u>, website: www.caict.ac.cn

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I21Z61209-EMC01	Rev.0	1 st edition	2021-07-23
I21Z61209-EMC01	Rev.1	P96, modified the	2021-09-23
		editing error	
I21Z61209-EMC01	Rev.2	modified the editing	2021-10-08
		error for unit of	
		occupied bandwidth	
I21Z61209-EMC01	Rev.3	Added the information	2021-11-10
		for Subcontracting	
		Laboratory in P4.	
		modified the "average	
		power meter" to	
		"spectrum analyzer" in	
		P14.	
		Added the "Minimum	
		Measurement	
		Distance Evaluation"	
		in P14, P81 and P102.	
I21Z61209-EMC01	Rev.4	Added the output	2021-11-12
		power plots in the test	
		report.	

Note: the latest revision of the test report supersedes all previous version.

CONTENTS

1.	EST LABORATORY	4
1.1.	INTRODUCTION & ACCREDITATION	4
1.2.	TESTING LOCATION	4
1.3.	TESTING ENVIRONMENT	5
1.4.	PROJECT DATA	5
1.5.	SIGNATURE	5
2.	LIENT INFORMATION	6
2.1.	APPLICANT INFORMATION	6
2.2.	MANUFACTURER INFORMATION	6
3.	QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	7
3.1.	ABOUT EUT	7
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	7
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	7
4.	REFERENCE DOCUMENTS	8
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	8
4.2.	REFERENCE DOCUMENTS FOR TESTING	8
5.	ABORATORY ENVIRONMENT	9
6.	SUMMARY OF TEST RESULT	10
7.	IEASUREMENT UNCERTAINTY	11
8.	EST EQUIPMENT UTILIZED	12
ANI	EX A: MEASUREMENT RESULTS	14
	RADIATED OUTPUT POWER	
	FREQUENCY STABILITY	
	OCCUPIED BANDWIDTH	
AN	EX B: CALIBRATION CERTIFICATES LIST 1	89

1. Test Laboratory

1.1. Introduction & Accreditation

Telecommunication Technology Labs, CAICT is an ISO/IEC 17025:2017 accredited test laboratory under NATIONAL VOLUNTARY LABORATORY ACCREDITATION PROGRAM (NVLAP) with lab code 600118-0 and is also an FCC accredited test laboratory (CN5017), and ISED accredited test laboratory (CN0066). The detail accreditation scope can be found on NVLAP website.

1.2. Testing Location

Location 1: CTTL (huayuan North Road) Address: No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191 Location 2: MRT Technology (Suzhou) Co., Ltd Address: 4b Building, Liando U Valley, No.200 Xingpu Rd., Shengpu Town, Suzhou Industrial Park, China

Note: The spurious emission test for 110GHz-200GHz are tested by MRT Technology (Suzhou) Co., Ltd. , the report number is 2107RSU043-U1.

1.3. <u>Testing Environment</u>

Normal Temperature:	15-35 ℃
Relative Humidity:	20-75%

1.4. Project Data

Testing Start Date:	2021-06-20
Testing End Date:	2021-07-20

1.5. Signature

张 颖

Zhang Ying (Prepared this test report)

An Hui (Reviewed this test report)

Zhang Xia (Approved this test report)

2. <u>Client Information</u>

2.1. Applicant Information

Company Name:	Reliance Communications LLC
Address /Post:	91 Colin Drive, Unit 1, HOLBROOK, New York 11741, United States
Contact:	Saqib Ghouri
Email:	Saqib.Ghouri@reliance.us
Telephone:	+1 631-240-8400
Fax:	/

2.2. Manufacturer Information

Company Name:	Unimaxcomm			
Address /Post:	35F,HBC HuiLong Center Building-II Minzhi Street,Longhua, Shenzhen, P.R. China 518110			
Contact:	Vicky Yang			
Email:	ymei@unimaxcomm.com			
Telephone:	13828813765			
Fax:	1			

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT	
Description	Orbic Speed 5G
Model Name	R500L5
FCC ID	2ABGH-R500L5
Antenna	Embedded
Output power	25.06dBm maximum EIRP measured for n260
Extreme vol. Limits	4.20VDC to 3.50VDC (nominal: 3.8VDC)
Extreme temp. Tolerance	-10°C to +50°C
Note: Components list, ple original test record of CTTI	ease refer to documents of the manufacturer; it is also included in the

3.2. Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version
UT12a	352241200003907	V1.2	ORB500L5_v1.0.1.3_BVZRT
*EUT ID: is used to identify the test sample in the lab internally.			

3.3. Internal Identification of AE used during the test

AE ID*	Description	
AE1	Battery	
AE1		
Model		BTE-4401
Manufact	urer	HUIZHOU DXDRAGON INC
Capacita	nce	4400mAh
Rated Vo	ltage	3.80V

*AE ID: is used to identify the test sample in the lab internally.

Note: The worse-beam list as follow:

n260

	Module 0	module1
Beam ID	16	20

n261

	Module 0	module1
Beam ID	144	31

4. <u>Reference Documents</u>

4.1. Documents supplied by applicant

EUT parameters, referring to Annex A for detailed information, is supplied by the client or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 30	UPPER MICROWAVE FLEXIBLE USE SERVICE	10-1-20
		Edition
ANSI C63.26	American National Standard for Compliance Testing of	2015
	Transmitters Used in Licensed Radio Services	
KDB 842590	Upper Microwave Flexible Use Service v01r01	April 3,
		2020

5. Laboratory Environment

Semi/Full-anechoic chamber SAC-1 (23 meters × 17meters × 10meters) did not exceed following limits along the EMC testing:

Teneneneture	
Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 15 %, Max. = 75 %
Shielding effectiveness	0.014MHz - 1MHz, >60dB;
	1MHz - 1000MHz, >90dB.
Electrical insulation	> 2 M
Ground system resistance	< 4
Normalised site attenuation (NSA)	< ± 4 dB, 3m/10m distance,
	from 30 to 1000 MHz
Site voltage standing-wave ratio (S _{VSWR})	Between 0 and 6 dB, from 1GHz to 18GHz

6. Summary Of Test Result

n260

n261

Items	Test Name	Clause in FCC rules	Verdict
1	Output Power	2.1046, 30.202	Pass
2	Unwanted Emission(note1)	30.203	Pass
3	Frequency Stability	2.1055	Pass
4	Occupied Bandwidth	2.1049	Pass
5	Band Edge Compliance	2.1051, 30.203	Pass

Note1: The spurious emission test for 30MHz-110GHz was perfomaced by worst-case configuration, and spurious emission of 110GHz-200GHz are tested by MRT Technology (Suzhou) Co., Ltd. , the report number is 2107RSU043-U1.

Items	Test Name	Clause in FCC rules	Verdict
1	Output Power	2.1046, 30.202	Pass
2	Unwanted Emission(note2)	30.203	Pass
3	Frequency Stability	2.1055	Pass
4	Occupied Bandwidth	2.1049	Pass
5	Band Edge Compliance	2.1051, 30.203	Pass

Note2: The spurious emission test was perfomaced by worst-case configuration.

Explanation of worst-case configuration

The worst-case scenario for all measurements is based on the output power measurement investigation results. Output power was measured on QPSK,16QAM and 64QAM modulations. If it was found that QPSK was the worst case. All testing was performed using QPSK modulations to represent the worst case unless otherwise stated. The test results shown in the following sections represent the worst case emission.

Terms used in Verdict column

Р	Pass. The EUT complies with the essential requirements in the standard.		
NP	Not Performed. The test was not performed by CTTL.		
NA	Not Applicable. The test was not applicable.		
BR	Re-use test data from basic model report.		
F	Fail. The EUT does not comply with the essential requirements in the		
	standard.		

7. <u>Measurement Uncertainty</u>

Measurement Uncertainty:

Frequency Range	Uncertainty(dB) (k=2)
30MHz-1GHz	5.18
1GHz-18GHz	5.54
18GHz-40GHz	5.26
40GHz-60GHz	3.80
60GHz-75GHz	3.76
75GHz-110GHz	3.80

8. Test Equipment Utilized

NO.	NAME	TYPE	SERIES NUMBER	PRODUCER	CAL. DUE DATE	CAL. INTERVAL
1	Signal Generator	SMF100A	104940	R&S	2021-12-09	1 year
2	Signal Generator	E8257D (60GHz)	MY59140557	Keysight	2022-01-19	1 year
3	Antenna	VULB 9163	483	SCHWARZB ECK	2021-08-27	1 year
4	Antenna	3116	2661	ETS-Lindgre n	2022-01-05	1 year
5	Upconverter(50GHz-75G Hz)	SMZ-75	101309	R&S	2022-01-14	1 year
6	Upconverter(75GHz-110 GHz)	SMZ-110	101357	R&S	2022-01-14	1 year
7	Upconverter(110GHz-17 0GHz)/	82406B	ZEI00141	Ceyear	2022-02-04	1 year
8	Upconverter(170GHz-22 0GHz)/	82406C	ZEI00164	Ceyear	2022-02-04	1 year
9	Spectrum Analyzer	FSW67	103290	R&S	2022-02-04	1 year
10	(downconverter)Harmoni c Mixer(60GHz-90GHz)	FS-Z90	101655	R&S	2022-02-04	1 year
11	(downconverter)Harmoni c Mixer(75GHz-110GHz)	FS-Z110	101463	R&S	2022-01-19	1 year
12	(downconverter)Harmoni c Mixer(110GHz-170GHz)/	FS-Z170	101008	R&S	2022-02-17	1 year
13	(downconverter)Harmoni c Mixer(170GHz-220GHz)/	FS-Z220	101054	R&S	2021-12-14	1 year
14	Standard Gain Horn (40GHz-60GHz)	LB-19-25	J202024086	A-INFO	2022-01-14	1 year
15	Standard Gain Horn (40GHz-60GHz)	LB-19-25	J202024087	A-INFO	2022-01-14	1 year
16	Standard Gain Horn (60GHz-90GHz)	LB-12-25	J202062912	A-INFO	2022-02-17	1 year
17	Standard Gain Horn (50GHz-75GHz)	LB-15-25	J202062019	A-INFO	2021-12-14	1 year
18	Standard Gain Horn (75GHz-110GHz)	LB-10-25	J202023231	A-INFO	2022-01-27	1 year
19	Standard Gain Horn (75GHz-110GHz)	LB-10-25	J202023232	A-INFO	2022-01-27	1 year

24	DC power supply	PAS20-18	UH000695	Kikusui	2021-08-01	1 year
25	Incubator	SH-641	92009470	ESPEC	2022-02-14	1 year

Annex A: Measurement Results

A.1 Radiated Output Power

A.1.1 Summary

During the process of testing, the EUT was controlled via communication tester to ensure max power transmission and proper modulation.

In all cases, output power is within the specified limits.

30.202 (b) For mobile stations, the average power of the sum of all antenna elements is limited to a maximum EIRP of +43 dBm.

A.1.2 Minimum Measurement Distance Evaluation

According to KDB842590 D01, the measurements of the fundamental emission, out of band, harmonics and spurious emissions shall be made in the far field of the measurement antenna. The

far-field boundary for mmW antennas is greater than or equal to $2D^2/\lambda$ (with D being the largest

dimension of the antenna, and λ the wavelength of the emission). We calculate the far-field

boundary and the test distance meet the requirement of standard.

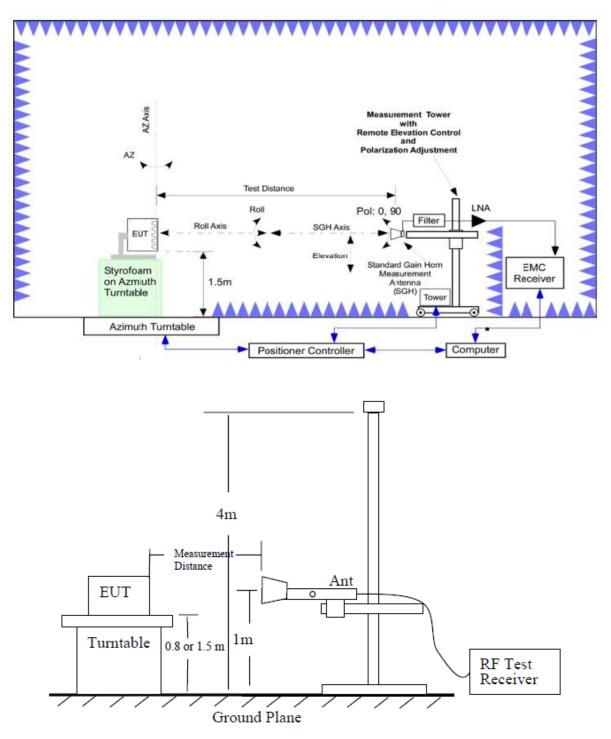
A.1.3 Method of Measurements

NASI C63.26 chapter 5.5.2.1: Such radiated measurements shall use substitution methods unless a test site validated to ANSI C63.4 requirements is utilized, in which case, radiated fundamental and/or unwanted emissions can be measured using the direct radiated field strength method.

The EUT was set up for the max output power with pseudo random data modulation.

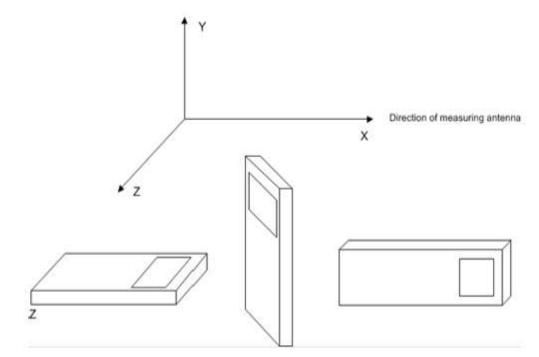
These measurements were done at 3 frequencies (bottom, middle and top of operational frequency range) for each bandwidth.

An spectrum analyzer is used to perform RF output power measurements, the fundamental condition that measurements be performed only over durations of active transmissions at maximum output power level applies. Thus, a spectrum analyzer can always be used to perform the measurement when the EUT can be configured to transmit continuously.


The EIRP measurement used integration method and the bandwidth is 100MHz.

The procedure of radiated emissions is as follows:

Using the test configuration as follow, measure the radiated emissions directly from the EUT and convert the measured field strength or received power to ERP or EIRP, as required, for comparison to the applicable limits.



The emission characteristics of the EUT can be identified from the pre-scan measurement information.

Exploratory radiated measurements (pre-scans) may be performed to determine the general EUT radiated emissions characteristics and, when necessary, the EUT-to-measurement antenna orientation that produces the maximum emission amplitude. Pre-scans shall only be used to determine the emission frequencies (i.e., not amplitude levels). The information garnered from a pre-scan can then be used to perform final compliance measurements using either the substitution or direct field strength method.

For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table or support at a nominal height of 80 cm above the reference ground plane. Radiated measurements shall be made with the measurement antenna positioned in both horizontal and vertical polarization. The measurement antenna shall be varied from 1 m to 4 m in height above the reference ground in a search for the relative positioning that produces the maximum radiated signal level (i.e., field strength or received power). When orienting the measurement antenna in vertical polarization, the minimum height of the lowest element of the antenna shall clear the site reference ground plane by at least 25 cm.

For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table or support at a nominal height of 1.5 m above the ground plane. When maximizing the emissions from the EUT for measurement, the EUT and its transmitting antenna(s) shall be rotated through 360°. For each mode of operation to be tested, the frequency spectrum (based on findings from exploratory measurements) shall be monitored.

Test Note:

The average EIRP reported below is calculated by:

EIRP(dBm)=Spectrum Analyzer Channel Power Level(dBm)-Antenna Factor(dBi) + Cable Loss(dB) + 20log(F)+20log(D)-27.56 Where: F:frequency (MHz) D:Distance(m) = 3m

A.1.4 Measurement Result

Note:

We choose the worst modulation by the EIRP of middle channel, the high channel and low channel measure the EIRP only with the worst modulation.

The plots are showed from Page 21 to page 80.

	n260), Module0, SCS=120I	kHz, CP-OFDM		
Bandwidth	RB size/offset	ower (dBm)			
			QPSK	16QAM	64QAM
		37025.04	16.20	/	/
	100% RB	38499.96	18.30	16.70	15.05
		39975	20.38	/	/
50MHz		37025.04	18.14	/	/
	1RB	38499.96	20.58	19.95	17.39
		39975	21.51	/	/
		37050	18.27	/	/
	100% RB	38499.96	17.59	16.65	13.35
		39949.92	20.29	/	/
100MHz		37050	18.89	/	/
	1RB	38499.96	19.61	17.93	15.92
		39949.92	22.50	/	/

Note:

We choose the worst modulation by the EIRP of middle channel, the high channel and low channel measure the EIRP only with the worst modulation.

	n260,	, Module0, SCS=120kl	Hz,PUSCH DF1	-		
Bandwidth	RB size/offset	RB size/offset Frequency (MHz) Power (dBm)				
			QPSK	16QAM	64QAM	
		37025.04	20.71	/	/	
	100% RB	38499.96	20.01	18.39	15.42	
		39975	22.15	/	/	
50MHz		37025.04	22.48	/	/	
	1RB	38499.96	22.15	19.74	17.67	
		39975	24.24	/	/	
		37050	20.24	/	/	
	100% RB	38499.96	20.19	18.74	15.92	
1000411-		39949.92	22.06	/	/	
100MHz		37050	22.85	/	/	
	1RB	38499.96	22.42	20.14	18.57	
		39949.92	25.06	/	/	

Note: The worst modulation is QPSK, and we test follow setups used QPSK.

n260, Module1, SCS=120kHz,PUSCH DFT							
Bandwidth	th RB size/offset Frequency (MHz) Power (dBm)						
			QPSK	16QAM	64QAM		
		37025.04	12.36	/	/		
	100% RB	38499.96	10.61	/	/		
		39975	10.59	/	/		
50MHz		37025.04	12.38	/	/		
	1RB	38499.96	12.41	/	/		
		39975	13.22	/	/		
		37050	10.27	/	/		
	100% RB	38499.96	12.05	/	/		
1000411-		39949.92	10.65	/	/		
100MHz		37050	12.71	/	/		
	1RB	38499.96	12.85	/	/		
		39949.92	12.78	/	/		

1

Note:

We choose the worst modulation by the EIRP of middle channel, the high channel and low channel measure the EIRP only with the worst modulation.

	n26 ⁻	1, Module0, SCS=120k	Hz,CP-OFDM			
Bandwidth	RB size/offset	ize/offset Frequency (MHz) Power (dBm)				
			QPSK	16QAM	64QAM	
		27525	12.12	/	/	
	100% RB	27924.96	11.85	10.68	8.52	
		28324.92	12.03	/	/	
50MHz		27525	13.34	/	/	
	1RB	27924.96	12.41	11.62	9.45	
		28324.92	12.37	/	/	
		27550.08	11.09	/	/	
	100% RB	27924.96	11.98	10.94	8.95	
		28299.96	11.12	/	/	
100MHz		27550.08	12.07	/	/	
	1RB	27924.96	12.57	10.43	8.77	
		28299.96	11.50	/	/	

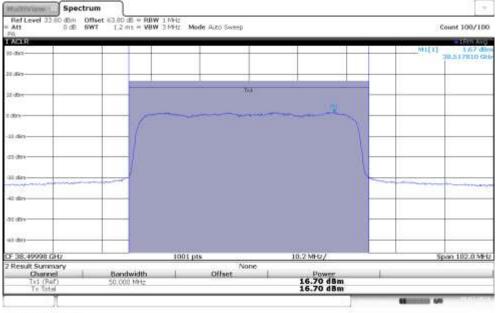
Note:

We choose the worst modulation by the EIRP of middle channel, the high channel and low channel measure the EIRP only with the worst modulation.

n261, Module0, SCS=120kHz,PUSCH DFT					
Bandwidth	RB size/offset	Frequency (MHz)	P	ower (dBm)	
			QPSK	16QAM	64QAM
		27525	11.78	/	/
	100% RB	27924.96	15.07	12.13	10.06
		28324.92	12.58	/	/
50MHz	1RB	27525	14.20	/	/
		27924.96	14.44	12.65	11.90
		28324.92	14.65	/	/
	100% RB	27550.08	12.59	/	/
		27924.96	14.52	12.74	10.68
1001411-		28299.96	13.48	/	/
100MHz		27550.08	14.95	/	/
	1RB	27924.96	16.04	14.95	11.66
		28299.96	15.18	/	/

Note: The worst modulation is QPSK, and we test follow setups used QPSK.

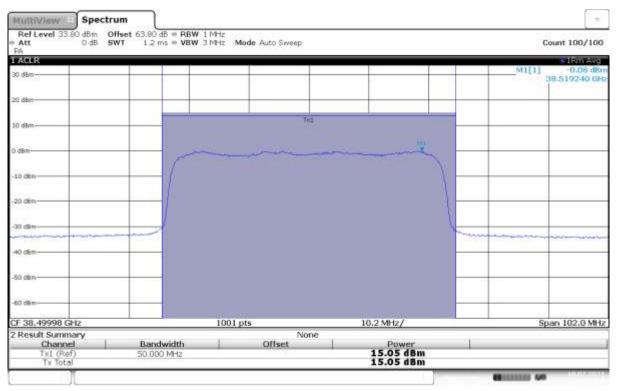
n261, Module1, PUSCH DFT									
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)						
			QPSK	16QAM	64QAM				
		27525	13.62	/	/				
	100% RB	27924.96	15.56	/	/				
		28324.92	16.39	/	/				
50MHz		27525	15.75	/	/				
	1RB	27924.96	18.01	/	/				
		28324.92	19.23	/	/				
		27550.08	13.68	/	/				
	100% RB	27924.96	15.73	/	/				
4001411		28299.96	16.93	/	/				
100MHz		27550.08	15.86	/	/				
	1RB	27924.96	18.19	/	/				
		28299.96	19.47	/	/				


n260, Module0, SCS=120kHz, CP-OFDM						
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)			
			QPSK	16QAM	64QAM	
50MHz	100% RB	38499.96	18.30	16.70	15.05	

n260, Module0, 50MHz Bandwidth, 100% RB, MID CHANNEL, QPSK

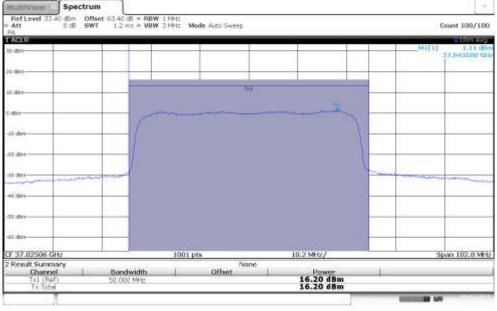
10 (8) 11 (8) 11 (8) 11 (8) 12 (8) 12 (8) 13 (8) 14 (8) 15 (8) 15 (8) 16 (8) 17 (8)	0.09 48 30,461940 03
5 dm	
1 dan	_
1.001	
38.49998 GHz 1001 pts 10.2 MHz/ Sg	an 102.0 MH

20:09:29 10.07.2021

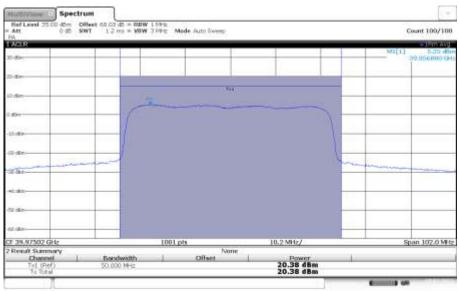

n260, Module0, 50MHz Bandwidth, 100% RB, MID CHANNEL, 16QAM

20:15:09 10.07.2021

n260, Module0, 50MHz Bandwidth, 100% RB, MID CHANNEL, 64QAM


17:14:30 10.07.2021

n260, Module0, SCS=120kHz, CP-OFDM						
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)			
			QPSK	16QAM	64QAM	
50MHz	100% RB	37025.04	16.20	/	/	

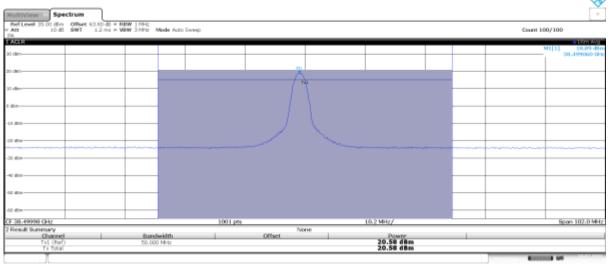

n260, Module0, 50MHz Bandwidth, 100% RB, LOW CHANNEL, QPSK

20:23:28 10.07.2021

n260, Module0, SCS=120kHz, CP-OFDM							
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)				
			QPSK	16QAM	64QAM		
50MHz	100% RB	39975	20.38	/	/		

n260, Module0, 50MHz Bandwidth, 100% RB, HIGH CHANNEL, QPSK

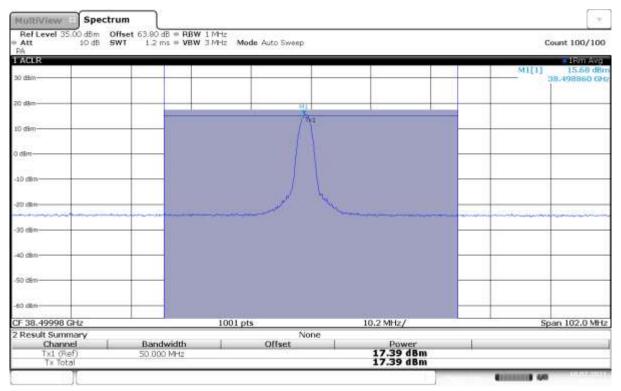
18:39:09 10.07.2021


©Copyright. All rights reserved by CTTL.

n260, Module0, SCS=120kHz, CP-OFDM						
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)			
			QPSK	16QAM	64QAM	
50MHz	1 RB	38499.96	20.58	19.95	17.39	

n260, Module0, 50MHz Bandwidth, 1RB, MID CHANNEL, QPSK

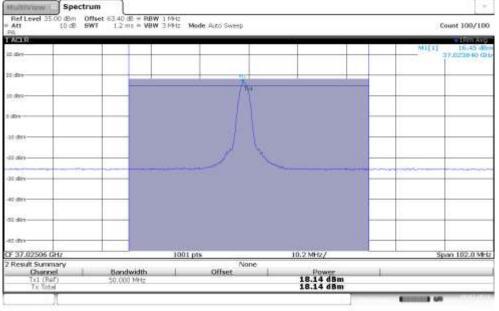
16:51:15 10.07.2021


n260, Module0, 50MHz Bandwidth, 1RB, MID CHANNEL, 16QAM

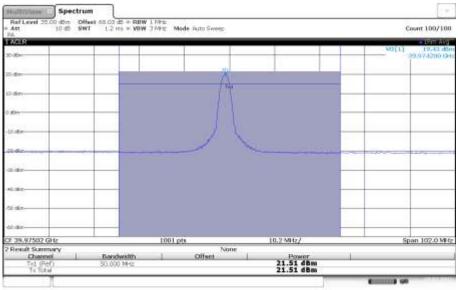
		0.000-0-000-0.004			= 1Rm Avg
au dam-				M1[1]	18.55 dB 38.498860 GF
0 dam		MA AND AND AND AND AND AND AND AND AND AN			
0 dBm		1			-
) dBm					
10 dBm					
20 dBm		\nearrow	~		
90 dBm					
1204211					-
+D dBm+					
AMAPPE 2010					
40 dBm 50 dBm 60 dBm					
50 dBm	1001	pts	10.2 MHz/		ipan 102.0 MH

16:58:43 10.07.2021

n260, Module0, 50MHz Bandwidth, 1RB, MID CHANNEL, 64QAM


17:07:35 10.07.2021

n260, Module0, SCS=120kHz, CP-OFDM						
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)			
			QPSK	16QAM	64QAM	
50MHz	1 RB	37025.04	18.14	/	/	


n260, Module0, 50MHz Bandwidth, 1 RB, LOW CHANNEL, QPSK

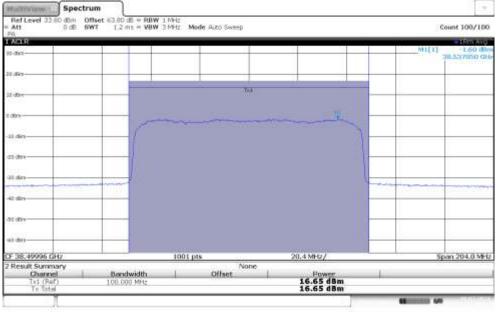
17:34:04 10.07.2021

n260, Module0, SCS=120kHz, CP-OFDM							
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)				
			QPSK	16QAM	64QAM		
50MHz	1 RB	39975	21.51	/	/		

n260, Module0, 50MHz Bandwidth, 1 RB, HIGH CHANNEL, QPSK

17:52:12 10.07.2021

©Copyright. All rights reserved by CTTL.


n260, Module0, SCS=120kHz, CP-OFDM							
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)				
			QPSK	16QAM	64QAM		
100MHz	100% RB	38499.96	17.59	16.65	13.35		

n260, Module0, 100MHz Bandwidth, 100% RB, MID CHANNEL, QPSK

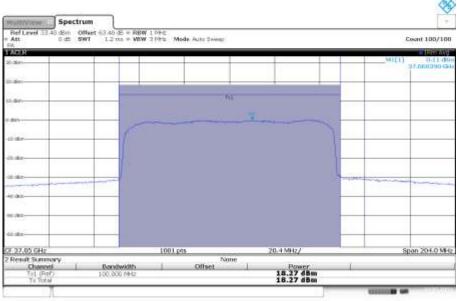
dist-		1			MI[1] -0.72 de
					38.536640 G
4917					
dire			244.1		
99	-			mite	
.an					
den					
dan	1				
in the second second	-				
Sn					
Sm					
Bix					
		1001 pts	445	i MHZ/	Span 204.0 M

n260, Module0, 100MHz Bandwidth, 100% RB, MID CHANNEL, 16QAM

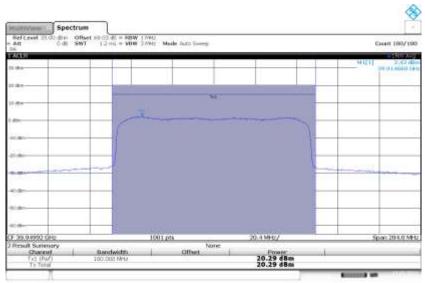
20:47:36 10.07.2021

MultiView	Spectrum								
RefLevel 33.0 Att PA	0dBm Offset 0dB SWT	63.90 dB = RBW 1.2 ms = VBW		de Auto Sweep				c	ount 100/100
1 ACLR									e 1Rm Avg
30 dām								M1[1]	-4.70 dBn 38.514630 GHs 1
20 d8m							_		
10 dēm				to a		to its			
0 dBm						-			
-10 dbm		-5	~~~~~~			month			
-20 d6m-									
-30 dBm									
-40 dBm		_							
-50 dBm		 _							
-60 dBm		 _							
CF 38.49996 GH	12	<u> </u>	1001 pt	5		20.4 MHz/		S	pan 204.0 MHz
2 Result Summa				No	ne				
Tx1 (Ref) Tx Total		Bandwidth 100.000 MHz	-	Offset	-	Power 13.35 dBm 13.35 dBm			
						17		STREET, NO.	voustore.

n260, Module0, 100MHz Bandwidth, 100% RB, MID CHANNEL, 64QAM


20:52:58 10.07.2021

n260, Module0, SCS=120kHz, CP-OFDM						
Bandwidth	RB size/offset	Frequency (MHz)	Po	ower (dBm)		
			QPSK	16QAM	64QAM	
100MHz	100% RB	37050	18.27	/	/	

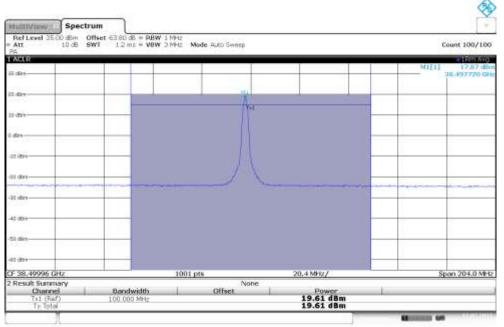

n260, Module0, 100MHz Bandwidth, 100% RB, LOW CHANNEL, QPSK

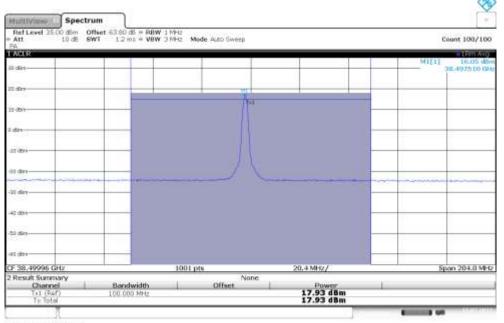
22:53:50 12.07.2021

n260, Module0, SCS=120kHz, CP-OFDM								
Bandwidth	Bandwidth RB size/offset Frequency (MHz) Power (dBm)							
QPSK 16QAM 64QAM					64QAM			
100MHz								

n260, Module0, 100MHz Bandwidth, 100% RB, HIGH CHANNEL, QPSK

00:00:30 13.07.2021

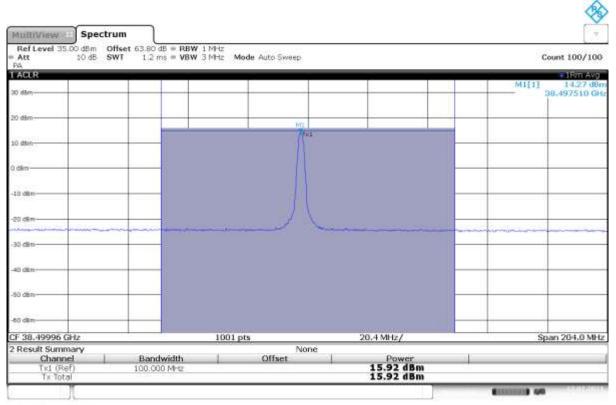

©Copyright. All rights reserved by CTTL.


n260, Module0, SCS=120kHz, CP-OFDM								
Bandwidth	RB size/offset	RB size/offset Frequency (MHz) Power (dBm)						
	QPSK 16QAM 64QAM							
100MHz								

n260, Module0, 100MHz Bandwidth, 1RB, MID CHANNEL, QPSK

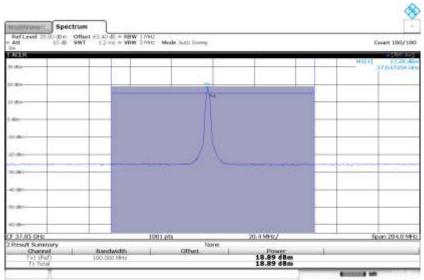
^{22:30:44 12.07.2021}

n260, Module0, 100MHz Bandwidth, 1RB, MID CHANNEL, 16QAM

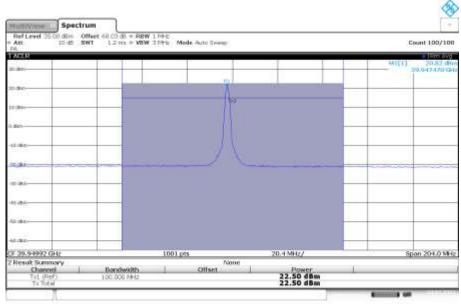


22:39:23 12.07.2021

n260, Module0, 100MHz Bandwidth, 1RB, MID CHANNEL, 64QAM


22:44:03 12.07.2021

n260, Module0, SCS=120kHz, CP-OFDM						
Bandwidth	RB size/offset	Frequency (MHz)	Po	ower (dBm)		
	QPSK 16QAM 64QAM					
100MHz	1 RB	37050	18.89	/	/	


n260, Module0, 100MHz Bandwidth, 1 RB, LOW CHANNEL, QPSK

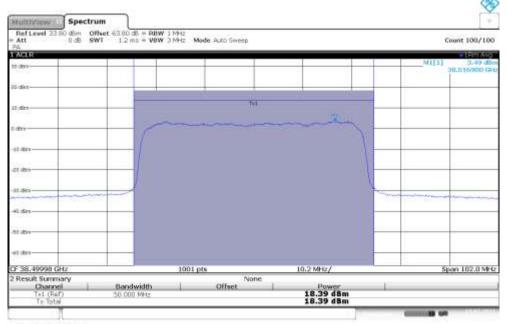
23:01:00 12:07.3021

n260, Module0, SCS=120kHz, CP-OFDM						
Bandwidth	RB size/offset	Frequency (MHz)	Po	ower (dBm)		
		QPSK 16QAM 64QAM				
100MHz	1 RB	39949.92	22.50	/	/	

n260, Module0, 100MHz Bandwidth, 1 RB, HIGH CHANNEL, QPSK

00:07:51 13:07.2021

©Copyright. All rights reserved by CTTL.

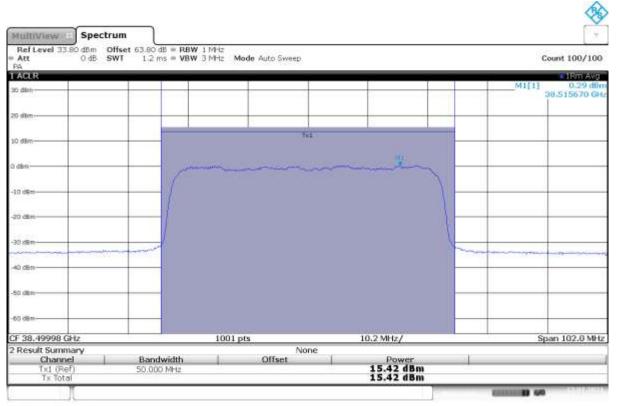

n260, Module0, SCS=120kHz, PUSCH DFT								
Bandwidth	RB size/offset	Frequency (MHz)	Po	ower (dBm)				
	QPSK 16QAM 64QAM							
50MHz								

n260, Module0, 50MHz Bandwidth, 100% RB, MID CHANNEL, QPSK

	ectrum	10						 	
Att 0 4	8 SWT 1.2	us + ABM	3 MHz Mor	de: Auto Sweep					Count 100/10
ACUR	_	-		_				Mi[i]	- Hanting
dan					-		-	MAEAI	38.494170 G
dist.									
fri -				1.	M				
Dix		1		- the			10		
~		1					1		
40/3							1		
85								 	
des -								 	
1855 1867								 	
disa Siri								 	
dis									
dan								 	
dita (dita)			1001 pt	6		10.2 MHz/		5	pon 102.0 M
don don sinn don 38,499908 GHz Channel		dwidth	1001 pt		one	10.2 MHz/		5	pon 102.0 M

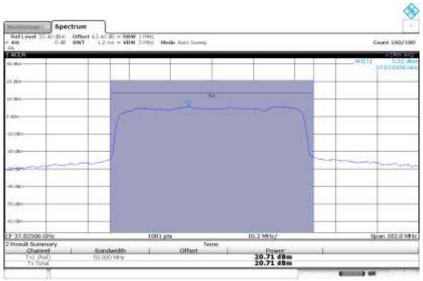
00:35:55 13.07.2021

n260, Module0, 50MHz Bandwidth, 100% RB, MID CHANNEL, 16QAM

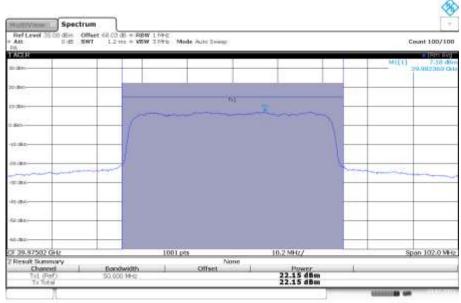


00:41:05 13.07.2021

n260, Module0, 50MHz Bandwidth, 100% RB, MID CHANNEL, 64QAM


00:49:21 13.07.2021

n260, Module0, SCS=120kHz, PUSCH DFT						
Bandwidth	RB size/offset	Frequency (MHz)	Po	wer (dBm)		
	QPSK 16QAM 64QAM					
50MHz	100% RB	37025.04	20.71	/	/	

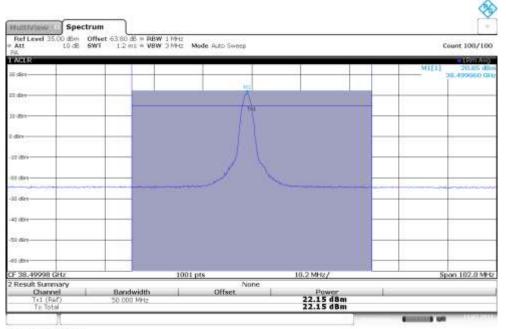

n260, Module0, 50MHz Bandwidth, 100% RB, LOW CHANNEL, QPSK

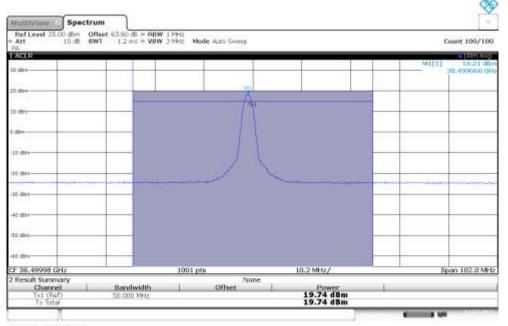
01:20:39 13.07.3021

n260, Module0, SCS=120kHz, PUSCH DFT						
Bandwidth	RB size/offset	Frequency (MHz)	Po	wer (dBm)		
QPSK 16QAM 64QAM					64QAM	
50MHz	100% RB	39975	22.15	/	/	

n260, Module0, 50MHz Bandwidth, 100% RB, HIGH CHANNEL, QPSK

04:08:13 13:07.2021

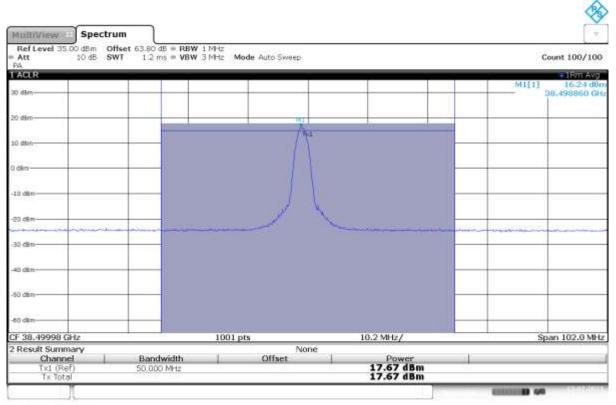

©Copyright. All rights reserved by CTTL.


n260, Module0, SCS=120kHz, PUSCH DFT						
Bandwidth	RB size/offset	RB size/offset Frequency (MHz) Power (dBm)				
QPSK 16QAM 64QAM						
50MHz	1 RB	38499.96	22.15	19.74	17.67	

n260, Module0, 50MHz Bandwidth, 1RB, MID CHANNEL, QPSK

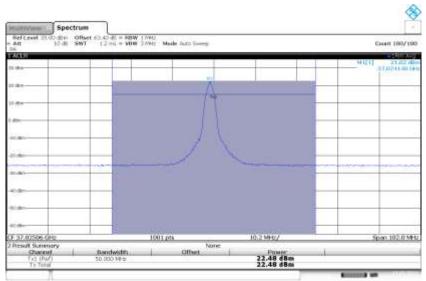
^{01:11:13 13.07.2021}

n260, Module0, 50MHz Bandwidth, 1RB, MID CHANNEL, 16QAM

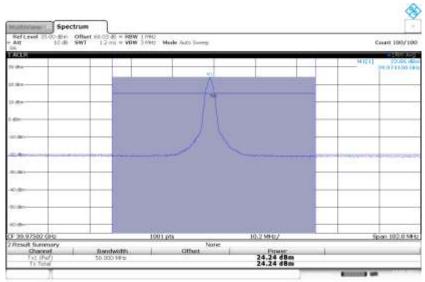


01:05:48 13.07.2021

n260, Module0, 50MHz Bandwidth, 1RB, MID CHANNEL, 64QAM


01:00:18 13.07.2021

	n260, Module0, SCS=120kHz, PUSCH DFT							
Bandwidth	Bandwidth RB size/offset Frequency (MHz) Power (dBm)							
	QPSK 16QAM 64QAM							
50MHz	1 RB	37025.04	22.48	/	/			


n260, Module0, 50MHz Bandwidth, 1 RB, LOW CHANNEL, QPSK

03:49:52 13.07.3021

n260, Module0, SCS=120kHz, PUSCH DFT								
Bandwidth	RB size/offset	Frequency (MHz) Power (dBm)						
	QPSK 16QAM 64QAM							
50MHz 1 RB 39975 24.24 / /								

n260, Module0, 50MHz Bandwidth, 1 RB, HIGH CHANNEL, QPSK

03:56:50 13.07.3021

©Copyright. All rights reserved by CTTL.

n260, Module0, SCS=120kHz, PUSCH DFT								
Bandwidth	andwidth RB size/offset Frequency (MHz) Power (dBm)							
	QPSK 16QAM 64QAM							
100MHz	100% RB	38499.96	20.19	18.74	15.92			

n260, Module0, 100MHz Bandwidth, 100% RB, MID CHANNEL, QPSK

Tultt/ Rever	Spectrum					
Ref Level 333 Att	0 dBm Offset 0 dB SWT	63.80 dB = PBV 1.2 ms = VBV	F1MH2 F3MH2 Mode Auto S	Sweep		Count 100/100
ACLR				1915-244		 (Bitt Av)
t den		_				Mi[1] 2.51 dB 30.511700 G
5 dikt						
				NI.		
l dini-				7		
dDix		F		manther	-	
0.001						
eab t					15	
1,983					lan	
1000						
ù dâre						
it dby						
sideria						
F 38,49996 G	42		1001 pts	20.4 MHz/		Span 204.0 MH
Result Summ				None		
Channe Tai (Rof		Bandwidth	Offs	et Pov 20.19	vor	
	6	100.000 MHz		20.19	obai	

n260, Module0, 100MHz Bandwidth, 100% RB, MID CHANNEL, 16QAM

West Villet		ACCEPTED AND AND AND AND AND AND AND AND AND AN				*
Ref Level 33 Att Pd	S0 dBm Offse 0 dB SWT	t 63.80 dB = RBW 1.2 ms = VBW	/ 1 MHz / 3 MHz Mode Auto S4	veep		Count 100/100
ACLR	_					(Burtan)
den						Mi[1] 1.05 dB 00.536640 G
dist-						
diri				Tel		
12017						
Di .	-	1.2	in it is	and the second sec	£	
		T				
- 000		1				
					1.55	
1005		10				
1.0801	_				1-	-
t dire						
t dbo						
5-den						
38,49996.0	Hz		1001 pts	20.4 MHz/	10	Span 204.0 Mt
Result Summ			1	None		
		Bandwidth	Offse	18.74 dB		
Channe Tat (Re		100.000 MHz		18.74 dB		

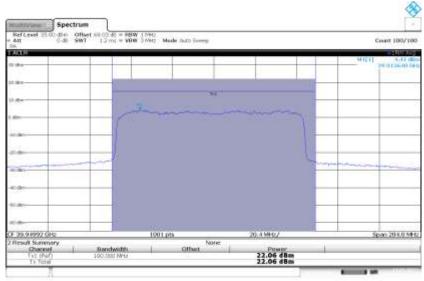

04:24:11 13.07.2021

^{04:16:57 13.07.2021}

n260, Module0, 100MHz Bandwidth, 100% RB, MID CHANNEL, 64QAM


04:31:22 13.07.2021

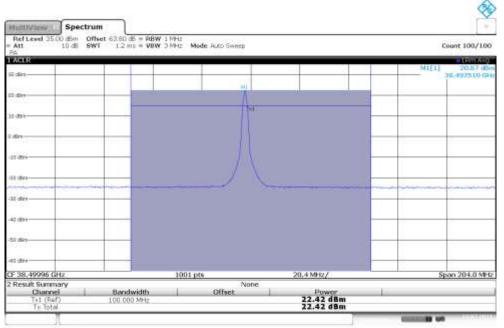
	n260, Module0, SCS=120kHz, PUSCH DFT							
Bandwidth	Bandwidth RB size/offset Frequency (MHz) Power (dBm)							
	QPSK 16QAM 64QAM							
100MHz	100% RB	37050	20.24	/	/			

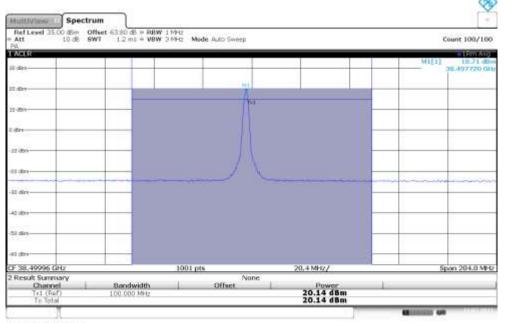

n260, Module0, 100MHz Bandwidth, 100% RB, LOW CHANNEL, QPSK

05:02:06 13.07.3021

n260, Module0, SCS=120kHz, PUSCH DFT								
Bandwidth	Bandwidth RB size/offset Frequency (MHz) Power (dBm)							
	QPSK 16QAM 64QAM							
100MHz	100% RB	39949.92	22.06	/	/			

n260, Module0, 100MHz Bandwidth, 100% RB, HIGH CHANNEL, QPSK

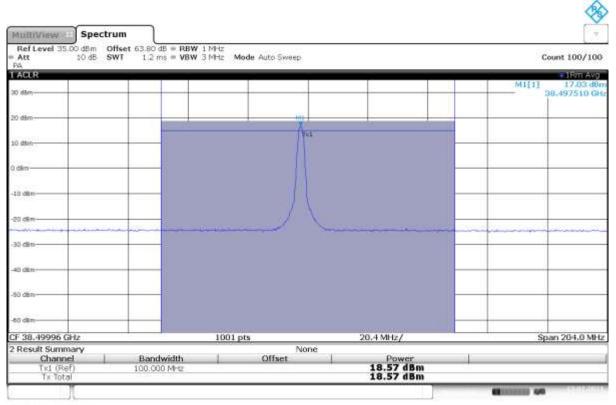

05:11:21 13.07.2021


n260, Module0, SCS=120kHz, PUSCH DFT								
Bandwidth	RB size/offset	set Frequency (MHz) Power (dBm)						
	QPSK 16QAM 64QAM							
100MHz	100MHz 1 RB 38499.96 22.42 20.14 18.57							

n260, Module0, 100MHz Bandwidth, 1RB, MID CHANNEL, QPSK

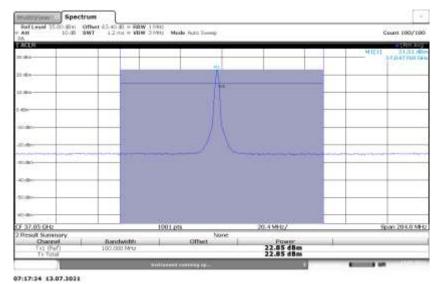
^{04:53:07 13.07.2021}

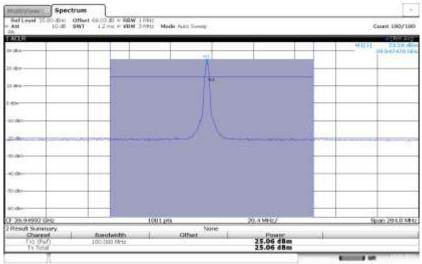
n260, Module0, 100MHz Bandwidth, 1RB, MID CHANNEL, 16QAM



^{04:45:20 13.07.2021}

n260, Module0, 100MHz Bandwidth, 1RB, MID CHANNEL, 64QAM

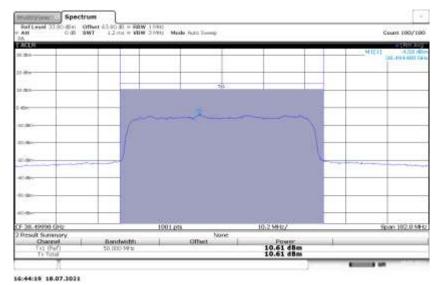

04:37:27 13.07.2021


n260, Module0, SCS=120kHz, PUSCH DFT								
Bandwidth	Bandwidth RB size/offset Frequency (MHz) Power (dBm)							
	QPSK 16QAM 64QAM							
100MHz	1 RB	37050	22.85	/	/			

n260, Module0, 100MHz Bandwidth, 1 RB, LOW CHANNEL, QPSK

n260, Module0, SCS=120kHz, PUSCH DFT								
Bandwidth	RB size/offset	Frequency (MHz)	Frequency (MHz) Power (dBm)					
	QPSK 16QAM 64QAM							
100MHz	100MHz 1 RB 39949.92 25.06 / /							

n260, Module0, 100MHz Bandwidth, 1 RB, HIGH CHANNEL, QPSK

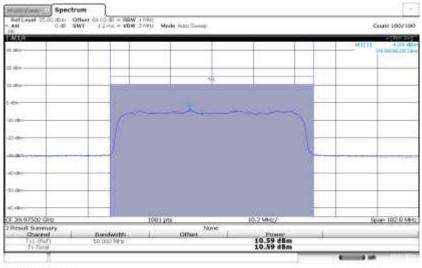

07:27:36 13.07.3011

	n260, Module1, SCS=120kHz, PUSCH DFT							
Bandwidth	Bandwidth RB size/offset Frequency (MHz) Power (dBm)							
	QPSK 16QAM 64QAM							
50MHz	100% RB	38499.96	10.61	/	/			

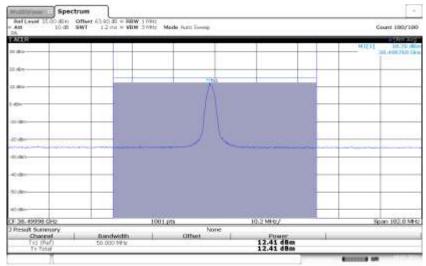
n260, Module1, 50MHz Bandwidth, 100% RB, MID CHANNEL, QPSK

n260, Module1, SCS=120kHz, PUSCH DFT								
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)					
	QPSK 16QAM 64QAM							
50MHz	50MHz 100% RB 37025.04 12.36 / /							

n260, Module1, 50MHz Bandwidth, 100% RB, LOW CHANNEL, QPSK


15:30:39 18.07.3031

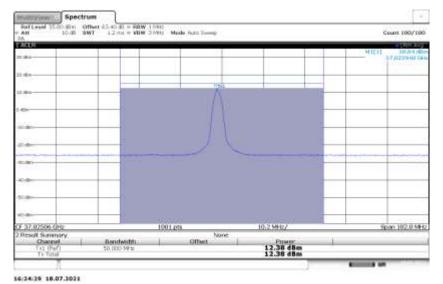
n260, Module1, SCS=120kHz, PUSCH DFT							
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)				
	QPSK 16QAM 64QAM						
50MHz	100% RB	39975	10.59	/	/		

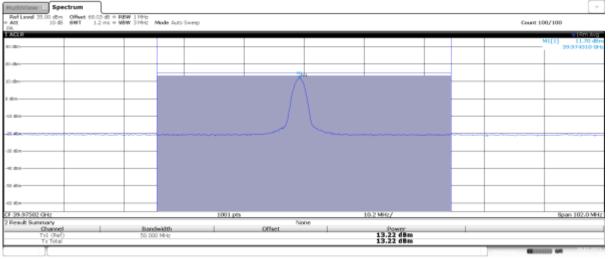

n260, Module1, 50MHz Bandwidth, 100% RB, HIGH CHANNEL, QPSK

14:03:17 18.07.3021

n260, Module1, SCS=120kHz, PUSCH DFT							
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)				
			QPSK 16QAM 64QAM				
50MHz	1 RB	38499.96	12.41	/	/		

n260, Module1, 50MHz Bandwidth, 1RB, MID CHANNEL, QPSK

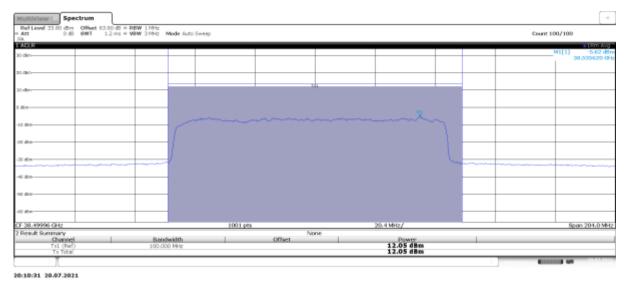

14:38:20 18.07.3021

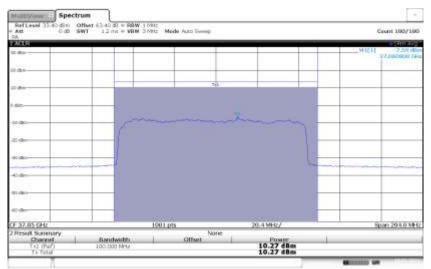

n260, Module1, SCS=120kHz, PUSCH DFT							
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)				
QPSK 16QAM 64QAM							
50MHz	1 RB	37025.04	12.38	/	/		

n260, Module1, 50MHz Bandwidth, 1 RB, LOW CHANNEL, QPSK

n260, Module1, SCS=120kHz, PUSCH DFT							
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)				
	QPSK 16QAM 64QAM						
50MHz	1 RB	39975	13.22	/	/		

n260, Module1, 50MHz Bandwidth, 1 RB, HIGH CHANNEL, QPSK


19:15:44 20.07.2021


n260, Module1, SCS=120kHz, PUSCH DFT							
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)				
	QPSK 16QAM 64QAM						
100MHz	100% RB	38499.96	12.05	/	/		

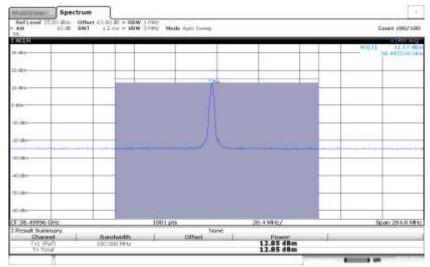
n260, Module1, 100MHz Bandwidth, 100% RB, MID CHANNEL, QPSK

n260, Module1, SCS=120kHz, PUSCH DFT							
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)				
			QPSK 16QAM 64QAM				
100MHz	100% RB	37050	10.27	/	/		

n260, Module1, 100MHz Bandwidth, 100% RB, LOW CHANNEL, QPSK

14:51:40 10.07.3021

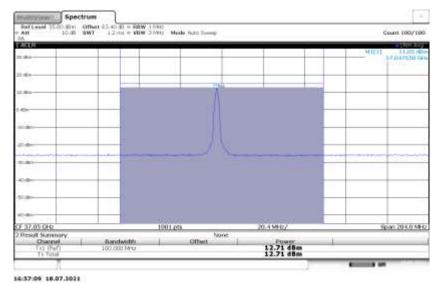
n260, Module1, SCS=120kHz, PUSCH DFT							
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)				
	QPSK 16QAM 64QAM						
100MHz	100% RB	39949.92	10.65	/	/		

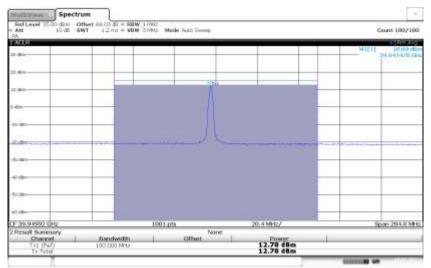

n260, Module1, 100MHz Bandwidth, 100% RB, HIGH CHANNEL, QPSK

17:25:25 10.07.2021

n260, Module1, SCS=120kHz, PUSCH DFT							
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)				
	QPSK 16QAM 64QAM						
100MHz	1 RB	38499.96	12.85	/	/		

n260, Module1, 100MHz Bandwidth, 1RB, MID CHANNEL, QPSK

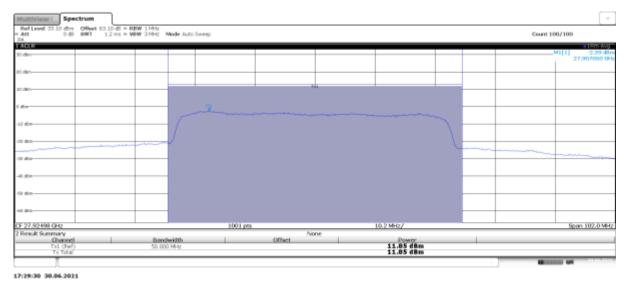

17:11:36 18.07.3031

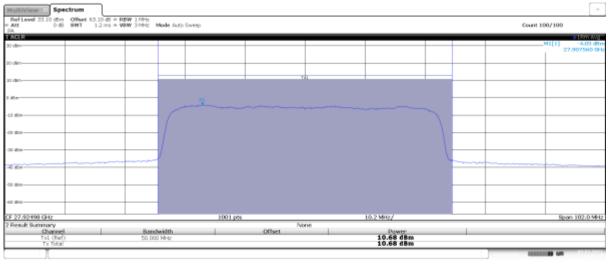

n260, Module1, SCS=120kHz, PUSCH DFT							
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)				
	QPSK 16QAM 64QAM						
100MHz	1 RB	37050	12.71	/	/		

n260, Module1, 100MHz Bandwidth, 1 RB, LOW CHANNEL, QPSK

n260, Module1, SCS=120kHz, PUSCH DFT							
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)				
	QPSK 16QAM 64QAM						
100MHz	1 RB	39949.92	12.78	/	/		

n260, Module1, 100MHz Bandwidth, 1 RB, HIGH CHANNEL, QPSK

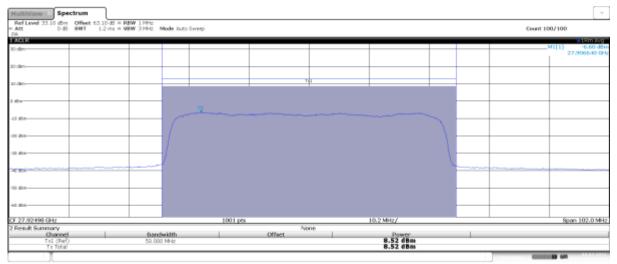

17:32:22 18.07.3021



n261, Module0, SCS=120kHz, CP-OFDM							
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)				
			QPSK 16QAM 64QAM				
50MHz	100% RB						

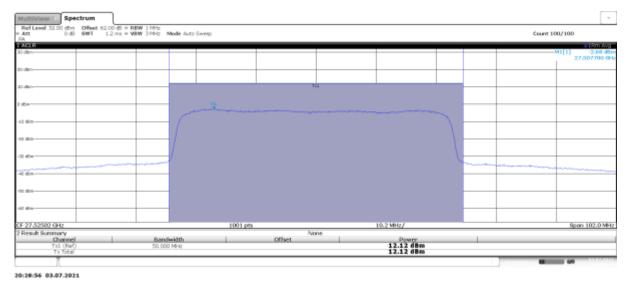
n261, Module0, 50MHz Bandwidth, 100% RB, MID CHANNEL, QPSK

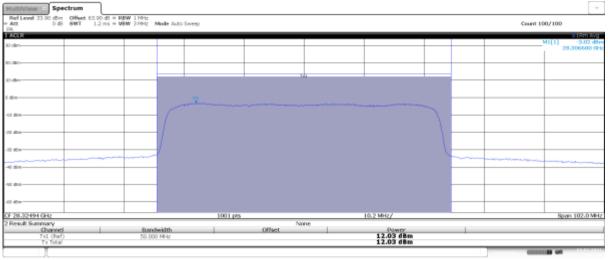
n261, Module0, 50MHz Bandwidth, 100% RB, MID CHANNEL, 16QAM



19:45:55 03.07.2021

n261, Module0, 50MHz Bandwidth, 100% RB, MID CHANNEL, 64QAM

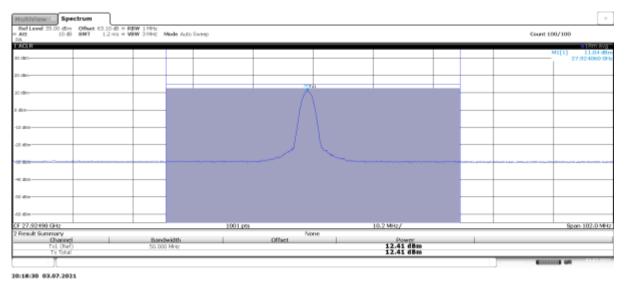

19:55:44 03.07.2021

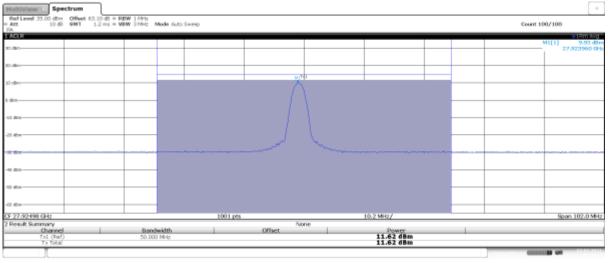

n261, Module0, SCS=120kHz, CP-OFDM							
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)				
	QPSK 16QAM 64QAM						
50MHz	100% RB	27525	12.12	/	/		

n261, Module0, 50MHz Bandwidth, 100% RB, LOW CHANNEL, QPSK

n261, Module0, SCS=120kHz, CP-OFDM									
Bandwidth	RB size/offset	Frequency (MHz)) Power (dBm)						
			QPSK 16QAM 64QAM						
50MHz	50MHz 100% RB 28324.92 12.03 / /								

n261, Module0, 50MHz Bandwidth, 100% RB, HIGH CHANNEL, QPSK


21:01:49 03:07.2021



n261, Module0, SCS=120kHz, CP-OFDM									
Bandwidth	RB size/offset	Frequency (MHz)	y (MHz) Power (dBm)						
			QPSK	16QAM	64QAM				
50MHz	50MHz 1 RB 27924.96 12.41 11.62 9.45								

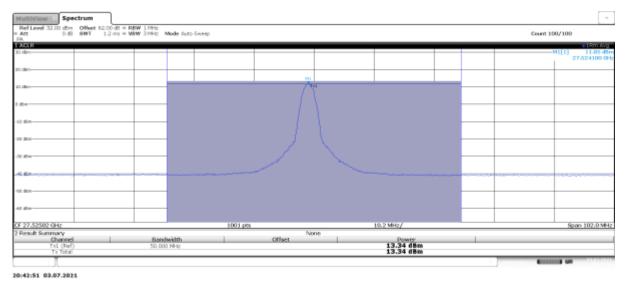
n261, Module0, 50MHz Bandwidth, 1RB, MID CHANNEL, QPSK

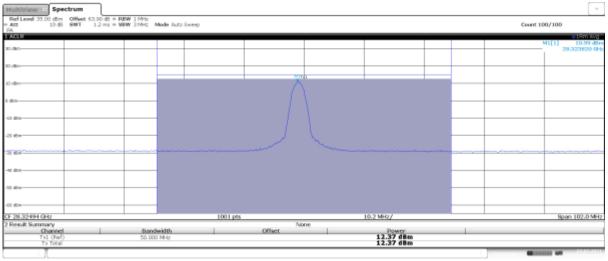
n261, Module0, 50MHz Bandwidth, 1RB, MID CHANNEL, 16QAM

20:10:19 03:07.2021

n261, Module0, 50MHz Bandwidth, 1RB, MID CHANNEL, 64QAM

Spectrum Ref Level 35.00 dbm Othet 63.10 d Att 10 d8 8WT 1.2 m	s = RBW 1MHz				
Att 10.48 SWT 1.2 m	s = VBW 3MHz Mode Auto Swe	p			Count 100/100
ACLR					• (Sm /s
o den					 M1[1] 7.70 d
0 dBriv					
			Tel		
) dên					
_					
#n					
5 45.0					
5 etc.					
			have		
0 6A		and the second			
e dan					
C 47.4					
- 10 M					
0.64					
F 27.92498 GHz		1001.pts		10.2 MHz/	Span 102-0 M
Result Summary			ione	Date Percy	Span 10270 M
Channel Tril (Ref)	Bandwidth	Offset		9.45 dBm	
Tel (Ret) Te Total	50.000 MHz			9,45 dBm 9,45 dBm	
T					 B

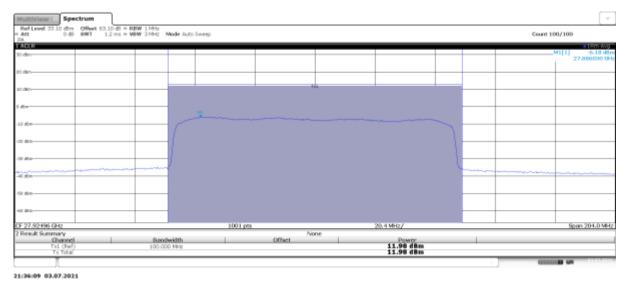

20:04:09 03:07.2021

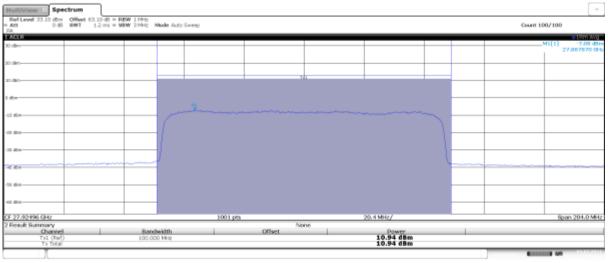

n261, Module0, SCS=120kHz, CP-OFDM									
Bandwidth	RB size/offset	size/offset Frequency (MHz) Power (dBm)							
			QPSK 16QAM 64QAM						
50MHz	50MHz 1 RB 27525 13.34 / /								

n261, Module0, 50MHz Bandwidth, 1 RB, LOW CHANNEL, QPSK

n261, Module0, SCS=120kHz, CP-OFDM								
Bandwidth	RB size/offset	Frequency (MHz)	(MHz) Power (dBm)					
	QPSK 16QAM 64QAM							
50MHz	50MHz 1 RB 28324.92 12.37 / /							

n261, Module0, 50MHz Bandwidth, 1 RB, HIGH CHANNEL, QPSK


20:55:05 03:07.2021



n261, Module0, SCS=120kHz, CP-OFDM									
Bandwidth	RB size/offset	Frequency (MHz) Power (dBm)							
	QPSK 16QAM 64QAM								
100MHz	100MHz 100% RB 27924.96 11.98 10.94 8.95								

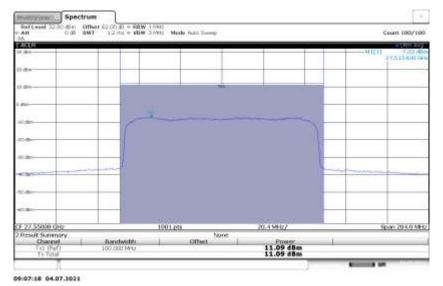
n261, Module0, 100MHz Bandwidth, 100% RB, MID CHANNEL, QPSK

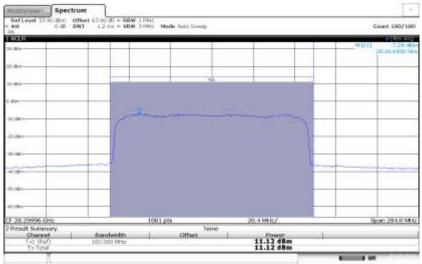
n261, Module0, 100MHz Bandwidth, 100% RB, MID CHANNEL, 16QAM

21:44:30 03:07.2021

Ref Level 33.10 dBm Att 0 dB PA	SWT 1.2	ms = VBW 3 MH	t Mode Auto Swe	ep			Count 100/100
LACLR							 18m Avg
10 dlm						_M1[-8.96 dBi 27.888480 GH
million							
10 dēm	_			TNS			
D dBm		-					_
10 dbm		, it			man		_
20 dBm	_)		_
30 d8m	_						
et) dBm		-				Marchine - Longe	
50 dilm		-					_
00 dBm		-3					
F 27.92496 GHz			001 pts).4 MHz/		Span 204.0 MH
Result Summary				None			
Channel Tx1 (Ref) Tx Total		dwidth 00 MHz	Offset		Power 8.95 dBm 8.95 dBm		

n261, Module0, 100MHz Bandwidth, 100% RB, MID CHANNEL, 64QAM


08:58:58 04.07.2021

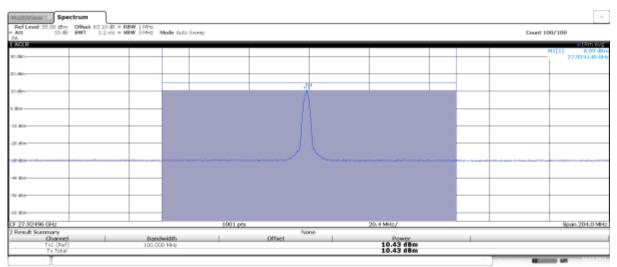

	n261, Module0, SCS=120kHz, CP-OFDM								
Bandwidth	Bandwidth RB size/offset Frequency (MHz) Power (dBm)								
			QPSK 16QAM 64QAM						
100MHz	100MHz 100% RB 27550.08 11.09 / /								

n261, Module0, 100MHz Bandwidth, 100% RB, LOW CHANNEL, QPSK

n261, Module0, SCS=120kHz, CP-OFDM							
Bandwidth	RB size/offset	Frequency (MHz)	Frequency (MHz) Power (dBm)				
			QPSK	16QAM	64QAM		
100MHz	100% RB	28299.96	11.12	/	/		

n261, Module0, 100MHz Bandwidth, 100% RB, HIGH CHANNEL, QPSK

09:14:43 04.07.3021


n261, Module0, SCS=120kHz, CP-OFDM									
Bandwidth	RB size/offset Frequency (MHz) Power (dBm)								
			QPSK 16QAM 64QAM						
100MHz	100MHz 1 RB 27924.96 12.57 10.43 8.77								

n261, Module0, 100MHz Bandwidth, 1RB, MID CHANNEL, QPSK

t 10 dB SWT 1.2 mi	■ VBW 3 MHz Mode Auto Sweep		Count 100/100
			M1[1] 10.91 dB
50			27.923940 68
im			
	-	141.	
im			
	8		
		M	
80		No.	
3n			
Burtherstein		1	
8n-		-	
811			
815			
27.92496 GHz	1001 pts	20.4 MHz/	Span 204.0 Mi
esult Summary	nidth Offset	one Power	

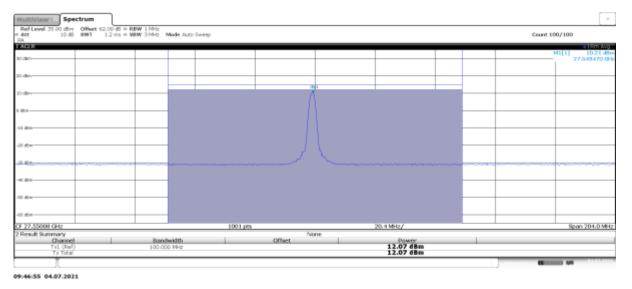
09:24:33 04.07.2021

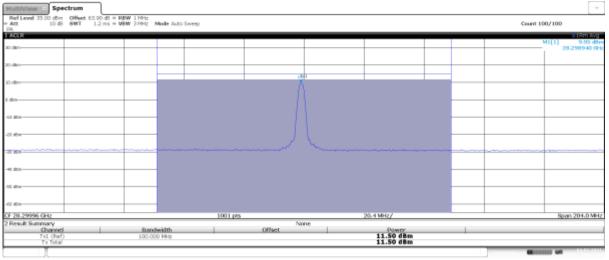
n261, Module0, 100MHz Bandwidth, 1RB, MID CHANNEL, 16QAM

09:31:21 04.07.2021

n261, Module0, 100MHz Bandwidth, 1RB, MID CHANNEL, 64QAM

tef Level 35.00 dBm Off Mt 10 dB SW	T 1.2 ms = V8	W 3 MHz M	Aode Auto S	iweep					Count 1	00/100
CLR										MI(1) 6.74
in .										27,923940
B/										
n					Tig MD				 	
					Λ					
	and the second second	and the second sec			and the second s					
le la										
7.92496 GHz				1001.pts			20.4 MHz/	_		Span 204.0
sult Summary Channel		Band	width		Offset	e	Dower			
Tal (Ref) Ta Total		100.00			MILEN'S		8.77 dBm 8.77 dBm 8.77 dBm			

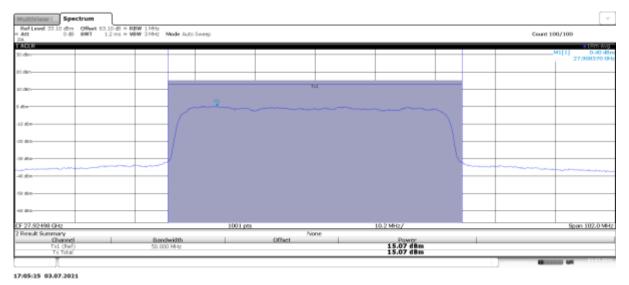

09:38:47 04.07.2021

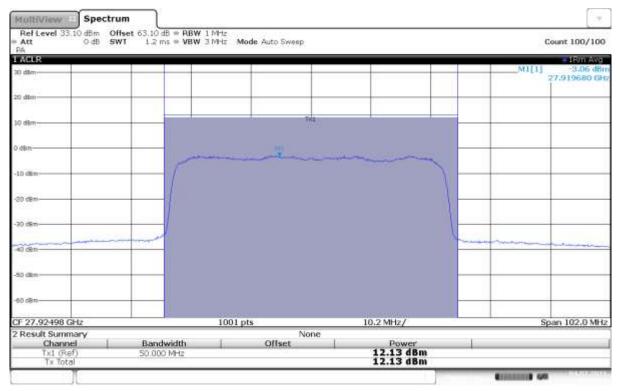

n261, Module0, SCS=120kHz, CP-OFDM						
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)			
			QPSK	16QAM	64QAM	
100MHz	1 RB	27550.08	12.07	/	/	

n261, Module0, 100MHz Bandwidth, 1 RB, LOW CHANNEL, QPSK

n261, Module0, SCS=120kHz, CP-OFDM						
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)			
			QPSK	16QAM	64QAM	
100MHz	1 RB	28299.96	11.50	/	/	

n261, Module0, 100MHz Bandwidth, 1 RB, HIGH CHANNEL, QPSK


09:57:00 04.07.2021



n261, Module0, SCS=120kHz, PUSCH DFT						
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)			
			QPSK	16QAM	64QAM	
50MHz	100% RB	27924.96	15.07	12.13	10.06	

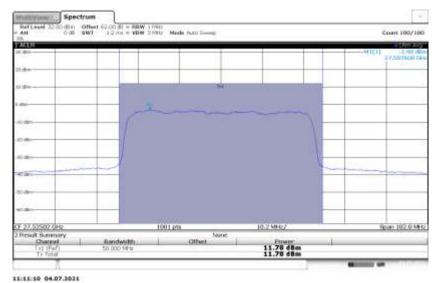
n261, Module0, 50MHz Bandwidth, 100% RB, MID CHANNEL, QPSK

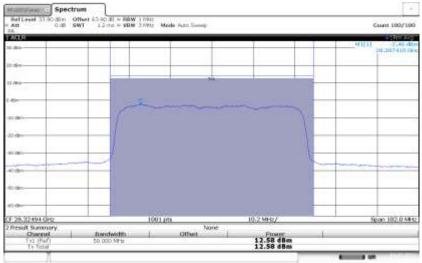
n261, Module0, 50MHz Bandwidth, 100% RB, MID CHANNEL, 16QAM

^{10:21:06 04.07.2021}

	T 1.2 ms ⊕ VBW ∃ MHz	Mode Auto Sweep		c	ount 100/100
R					= 1Pm Avg
				_M1[1]	-4.79 dB 7.908570 GF
-					
		TAL		-	
02 02					
	manutin	in the second			
			1		
			Į.		
5			4		
	J. C.				-
	man and a second			- in more man	and the second
80 D.					
			10.2 MHz/	St	an 102.0 MH
.92498 GHz	100	01 pts	10.2 90 127		
	Bandwidth	Offset	Power		
1			10.2 MHz/	St	an 1

n261, Module0, 50MHz Bandwidth, 100% RB, MID CHANNEL, 64QAM


10:29:58 04.07.2021

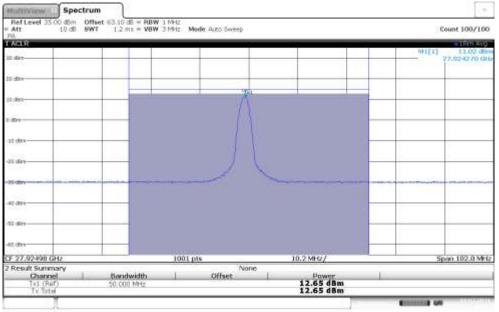

n261, Module0, SCS=120kHz, PUSCH DFT						
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)			
			QPSK	16QAM	64QAM	
50MHz	100% RB	27525	11.78	/	/	

n261, Module0, 50MHz Bandwidth, 100% RB, LOW CHANNEL, QPSK

n261, Module0, SCS=120kHz, PUSCH DFT						
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)			
			QPSK	16QAM	64QAM	
50MHz	100% RB	28324.92	12.58	/	/	

n261, Module0, 50MHz Bandwidth, 100% RB, HIGH CHANNEL, QPSK

11:30:17 04.07.3031


n261, Module0, SCS=120kHz, PUSCH DFT						
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)			
			QPSK	16QAM	64QAM	
50MHz	1 RB	27924.96	14.44	12.65	11.90	

n261, Module0, 50MHz Bandwidth, 1RB, MID CHANNEL, QPSK

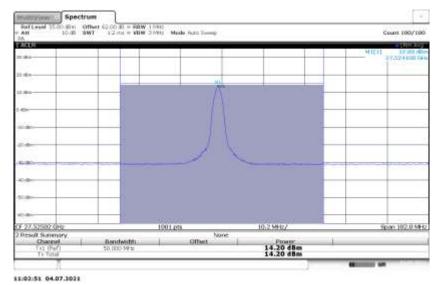
12 day	MI[1] 12:90 48 77.022960 G
10 disa	
0.4991	
201	
222	
to days	
I Sh	
13.000	
F 27.92498 GHz 1001 pts 10.2 MHz/	Span 102.0 MH
Result Summary None Channel Bandwidth Offset Power Tri (Raf) 50.000 MHz 14.44 dBm 14.44 dBm Tx Total 14.44 dBm 14.44 dBm 14.44 dBm	

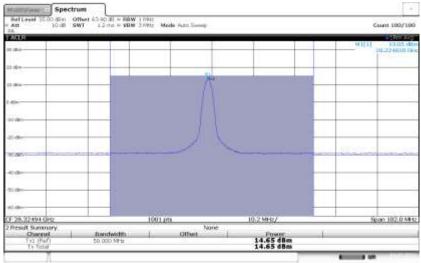
n261, Module0, 50MHz Bandwidth, 1RB, MID CHANNEL, 16QAM

10:50:17 04.07.2021

MultiView	rum					-
	Offset 63.10 dB = RB SWT 1.2 ms = VB		de Auto Sweep			Count 100/100
1 ACLR						= 18m Avg
30 dBm						M1[1] 10.54 dBm 27.924160 GHz
20 dBm						
10 dBm			Å	1		
0 dBm			- No			
-10 dBm	_					
-20 dite				L		
-90 dBm			-	m		
-40 dBm						
-50 dBm						
-60 /36m						
CF 27.92498 GHz		1001 pt	s :		10.2 MHz/	Span 102.0 MHz
2 Result Summary	Dec. 1. Date		No	ne	-	
Tx1 (Ref) Tx1 Tx Total	Bandwidth 50.000 MHz	-	Offset		Power 11.90 dBm 11.90 dBm	
1					1	 11 10 40

n261, Module0, 50MHz Bandwidth, 1RB, MID CHANNEL, 64QAM


10:40:41 04.07.2021

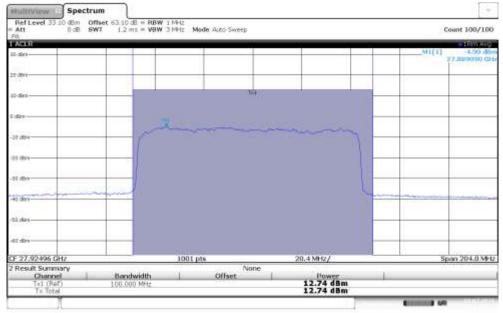

n261, Module0, SCS=120kHz, PUSCH DFT						
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)			
			QPSK	16QAM	64QAM	
50MHz	1 RB	27525	14.20	/	/	

n261, Module0, 50MHz Bandwidth, 1 RB, LOW CHANNEL, QPSK

n261, Module0, SCS=120kHz, PUSCH DFT						
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)			
			QPSK	16QAM	64QAM	
50MHz	1 RB	28324.92	14.65	/	/	

n261, Module0, 50MHz Bandwidth, 1 RB, HIGH CHANNEL, QPSK

11:38:05 04.07.3031


n261, Module0, SCS=120kHz, PUSCH DFT						
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)			
			QPSK	16QAM	64QAM	
100MHz	100% RB	27924.96	14.52	12.74	10.68	

n261, Module0, 100MHz Bandwidth, 100% RB, MID CHANNEL, QPSK

10 dim 10 dim 10 dim 10 dim -30 dim -30 dim	2	***				1.89 dBr 440 CH
10 den						
il det	æ		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
1 dim	m					
18 d8m	in	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
	(marine the second sec		mann	100		
				0		
15 d0/x						
N dbs				10		
				him	and the second second	_
10 ditris						_
11 din						
57 -\$Fr						
	1001 pts			-		anasas
F 27.92496 GHz	1001 pts	None	20.4 MHz/	207	Span 20	4.0 MH

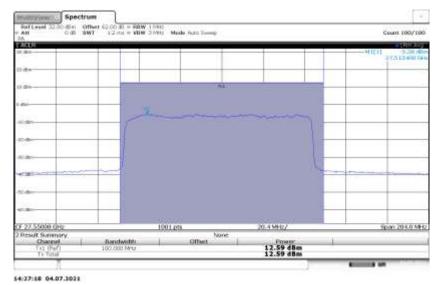
12:36:32 04.07.2021

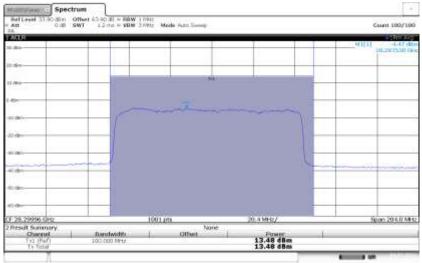
n261, Module0, 100MHz Bandwidth, 100% RB, MID CHANNEL, 16QAM

12:45:34 04.07.2021

Att 0 dB SWT	3.10 dB = RBW 1 MHz 1.2 ms = VBW 3 MHz	Mode Auto Sweep		Count 100/100
ACLR				s 18/m Avg
milb 0				M1[1] -7.16 dBi 27.890310 GH
20 dtm				
0 dām		THA		
0 dBm-	-		_	
10 dbm	men		many	
20 dBm				
30 d8m				
at) dem				
io din	_		_	
00 dBm	-		_	
F 27.92496 GHz	1001		20.4 MHz/	Span 204.0 MH
Result Summary		None		
	Bandwidth 00.000 MHz	Offset	Power 10.68 dBm 10.68 dBm	

n261, Module0, 100MHz Bandwidth, 100% RB, MID CHANNEL, 64QAM

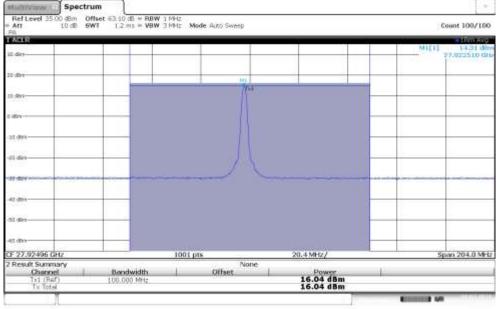

12:52:19 04.07.2021

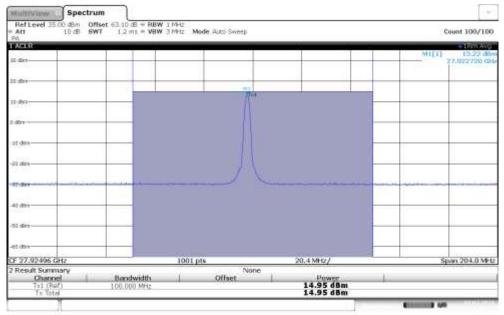

n261, Module0, SCS=120kHz, PUSCH DFT						
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)			
			QPSK	16QAM	64QAM	
100MHz	100% RB	27550.08	12.59	/	/	

n261, Module0, 100MHz Bandwidth, 100% RB, LOW CHANNEL, QPSK

n261, Module0, SCS=120kHz, PUSCH DFT						
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)			
			QPSK	16QAM	64QAM	
100MHz	100% RB	28299.96	13.48	/	/	

n261, Module0, 100MHz Bandwidth, 100% RB, HIGH CHANNEL, QPSK


14:34:28 04.07.3021


n261, Module0, SCS=120kHz, PUSCH DFT							
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)				
			QPSK	16QAM	64QAM		
100MHz	1 RB	27924.96	16.04	14.95	11.66		

n261, Module0, 100MHz Bandwidth, 1RB, MID CHANNEL, QPSK

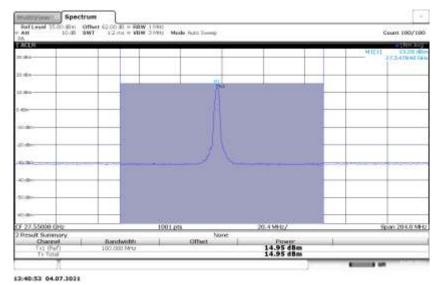
13:33:41 04.07.2021

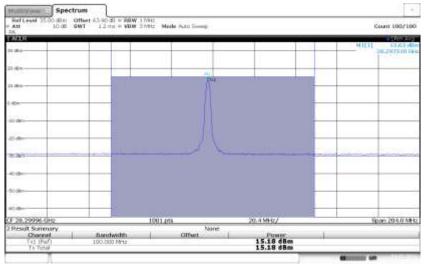
n261, Module0, 100MHz Bandwidth, 1RB, MID CHANNEL, 16QAM

13:16:15 04.07.2021

MultiView Spect	rum					-
	Offset 63.10 dB = R SWT 1.2 ms = VI		de Auto Sweep			Count 100/100
1 ACLR						= 18m Avg
30 dBm						M1[1] 9.93 dBm 27.922510 GHz
20 dBm						
10 d8m			X	1	da ba	
0 dBm						
+10 dBm-	_					
-20 dbm						
-30 dBm		* ~~ %~ ~	mund	1 mm		
-40 dBm						
-50 d8m						
-60 dBm	_					
CF 27.92496 GHz		1001 pt	IS		20.4 MHz/	Span 204.0 MHz
2 Result Summary			No	ne	-20000	
Tx1 (Ref) Tx Total	Bandwidth 100.000 MHz		Offset	-	Power 11.66 dBm 11.66 dBm	
						A

n261, Module0, 100MHz Bandwidth, 1RB, MID CHANNEL, 64QAM

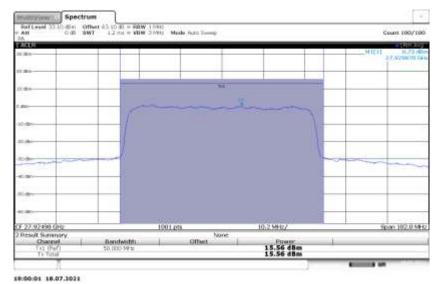

12:58:51 04.07.2021


	n261, Module0, SCS=120kHz, PUSCH DFT							
Bandwidth	Bandwidth RB size/offset Frequency (MHz) Power (dBm)							
	QPSK 16QAM 64QAM							
100MHz	1 RB	27550.08	14.95	/	/			

n261, Module0, 100MHz Bandwidth, 1 RB, LOW CHANNEL, QPSK

	n261, Module0, SCS=120kHz, PUSCH DFT							
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)					
	QPSK 16QAM 64QAM							
100MHz	100MHz 1 RB 28299.96 15.18 / /							

n261, Module0, 100MHz Bandwidth, 1 RB, HIGH CHANNEL, QPSK


14:42:30 04.07.3021

	n261, Module1, SCS=120kHz, PUSCH DFT							
Bandwidth	RB size/offset Frequency (MHz) Power (dBm)							
	QPSK 16QAM 64QAM							
50MHz	100% RB	27924.96	15.56	/	/			

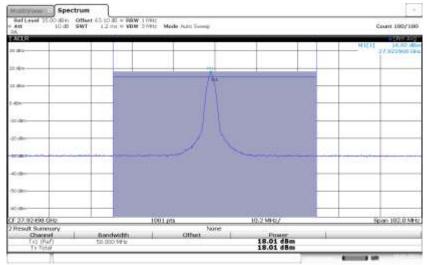
n261, Module1, 50MHz Bandwidth, 100% RB, MID CHANNEL, QPSK

	n261, Module1, SCS=120kHz, PUSCH DFT							
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)					
	QPSK 16QAM 64QAM							
50MHz 100% RB 27525 13.62 / /								

n261, Module1, 50MHz Bandwidth, 100% RB, LOW CHANNEL, QPSK

18:33:07 18.07.3031

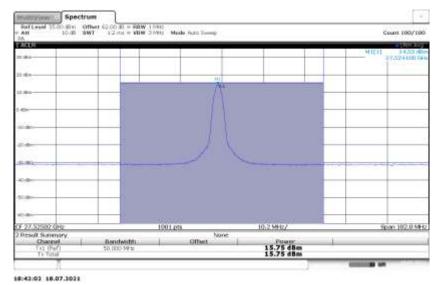
n261, Module1, SCS=120kHz, PUSCH DFT							
Bandwidth	RB size/offset	Frequency (MHz) Power (dBm)					
	QPSK 16QAM 64QAM						
50MHz	50MHz 100% RB 28324.92 16.39 / /						

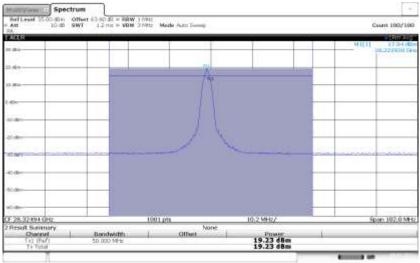

n261, Module1, 50MHz Bandwidth, 100% RB, HIGH CHANNEL, QPSK

19:23:39 18.07.3021

	n261, Module1, SCS=120kHz, PUSCH DFT							
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)					
	QPSK 16QAM 64QAM							
50MHz	50MHz 1 RB 27924.96 18.01 / /							

n261, Module1, 50MHz Bandwidth, 1RB, MID CHANNEL, QPSK

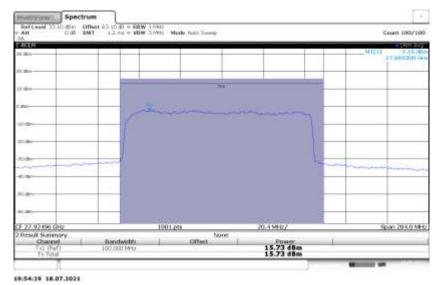

19:06:58 18.07.3031


	n261, Module1, SCS=120kHz, PUSCH DFT							
Bandwidth	Bandwidth RB size/offset Frequency (MHz) Power (dBm)							
	QPSK 16QAM 64QAM							
50MHz	1 RB	27525	15.75	/	/			

n261, Module1, 50MHz Bandwidth, 1 RB, LOW CHANNEL, QPSK

	n261, Module1, SCS=120kHz, PUSCH DFT							
Bandwidth	RB size/offset	Frequency (MHz)	cy (MHz) Power (dBm)					
	QPSK 16QAM 64QAM							
50MHz 1 RB 28324.92 19.23 / /								

n261, Module1, 50MHz Bandwidth, 1 RB, HIGH CHANNEL, QPSK

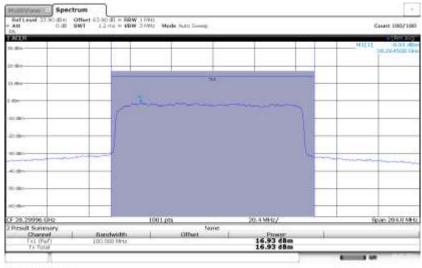

19:13:00 18.07.3021

	n261, Module1, SCS=120kHz, PUSCH DFT							
Bandwidth	dwidth RB size/offset Frequency (MHz) Power (dBm)							
	QPSK 16QAM 64QAM							
100MHz	100% RB	27924.96	15.73	/	/			

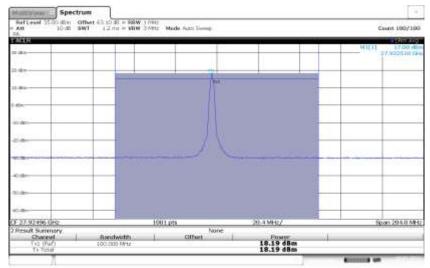
n261, Module1, 100MHz Bandwidth, 100% RB, MID CHANNEL, QPSK

	n261, Module1, SCS=120kHz, PUSCH DFT							
Bandwidth	RB size/offset	Frequency (MHz)	Power (dBm)					
	QPSK 16QAM 64QAM							
100MHz 100% RB 27550.08 13.68 / /								

n261, Module1, 100MHz Bandwidth, 100% RB, LOW CHANNEL, QPSK


19:31:17 10.07.3031

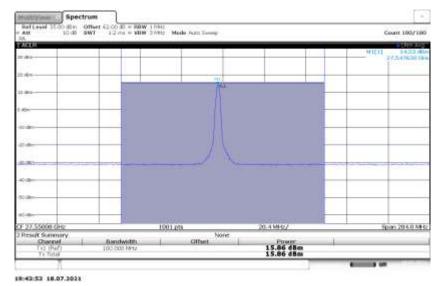
n261, Module1, SCS=120kHz, PUSCH DFT							
Bandwidth	RB size/offset	Frequency (MHz) Power (dBm)					
	QPSK 16QAM 64QAM						
100MHz 100% RB 28299.96 16.93 / /							

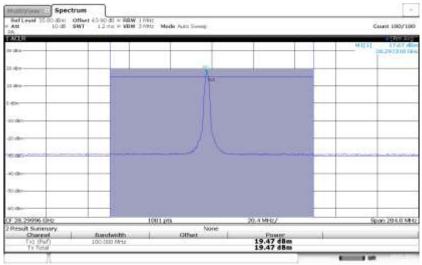

n261, Module1, 100MHz Bandwidth, 100% RB, HIGH CHANNEL, QPSK

20:02:01 18.07.2021

	n261, Module1, SCS=120kHz, PUSCH DFT										
Bandwidth RB size/offset Frequency (MHz) Power (dBm)											
	QPSK 16QAM 64QAM										
100MHz	1 RB	27924.96	18.19	/	/						

n261, Module1, 100MHz Bandwidth, 1RB, MID CHANNEL, QPSK


19:49:13 18.07.3031


n261, Module1, SCS=120kHz, PUSCH DFT									
Bandwidth RB size/offset Frequency (MHz) Power (dBm)									
			QPSK	16QAM	64QAM				
100MHz	1 RB	27550.08	15.86	/	/				

n261, Module1, 100MHz Bandwidth, 1 RB, LOW CHANNEL, QPSK

n261, Module1, SCS=120kHz, PUSCH DFT										
Bandwidth	Bandwidth RB size/offset Frequency (MHz) Power (dBm)									
			QPSK	16QAM	64QAM					
100MHz 1 RB 28299.96 19.47 / /										

n261, Module1, 100MHz Bandwidth, 1 RB, HIGH CHANNEL, QPSK

20:14:14 10.07.2021

A.2 Emission Limit

A.2.1 Minimum Measurement Distance Evaluation

According to KDB842590 D01, the measurements of the fundamental emission, out of band, harmonics and spurious emissions shall be made in the far field of the measurement antenna. The

far-field boundary for mmW antennas is greater than or equal to $2D^2/\lambda$ (with D being the largest

dimension of the antenna, and λ the wavelength of the emission). We calculate the far-field

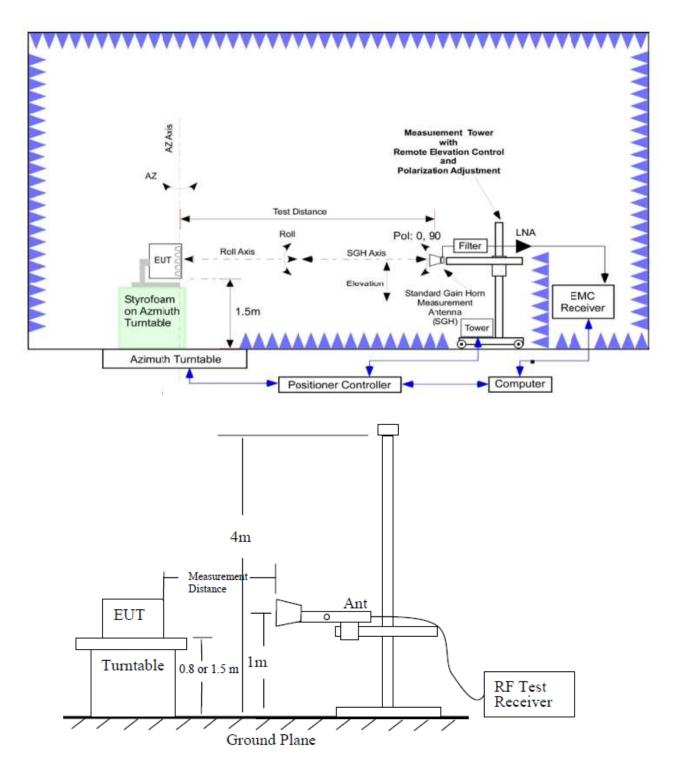
boundary and the test distance meet the requirement of standard.

A.2.2 Measurement Method

The measurement procedures in ANSI C63.26 are used.

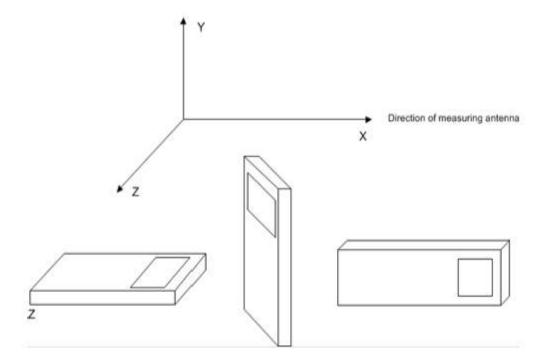
The spectrum was scanned from 30 MHz to the 5th harmonic of the highest frequency generated within the equipment. The resolution bandwidth is set as outlined in Part 30.203.

The spectrum is scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of FR2 n260 and FR2 n261.


NASI C63.26 chapter 5.5.2.1: Such radiated measurements shall use substitution methods unless a test site validated to ANSI C63.4 requirements is utilized, in which case, radiated fundamental and/or unwanted emissions can be measured using the direct radiated field strength method.

The procedure of radiated spurious emissions is as follows:

Using the test configuration as follow, measure the radiated emissions directly from the EUT and convert the measured field strength or received power to ERP or EIRP, as required, for comparison to the applicable limits.



The emission characteristics of the EUT can be identified from the pre-scan measurement information.

Exploratory radiated measurements (pre-scans) may be performed to determine the general EUT radiated emissions characteristics and, when necessary, the EUT-to-measurement antenna orientation that produces the maximum emission amplitude. Pre-scans shall only be used to determine the emission frequencies (i.e., not amplitude levels). The information garnered from a pre-scan can then be used to perform final compliance measurements using either the substitution or direct field strength method.

For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table or support at a nominal height of 80 cm above the reference ground plane. Radiated measurements shall be made with the measurement antenna positioned in both horizontal and vertical polarization. The measurement antenna shall be varied from 1 m to 4 m in height above the reference ground in a search for the relative positioning that produces the maximum radiated signal level (i.e., field strength or received power). When orienting the measurement antenna in vertical polarization, the minimum height of the lowest element of the antenna shall clear the site reference ground plane by at least 25 cm.

The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector.

For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table or support at a nominal height of 1.5 m above the ground plane. When maximizing the emissions from the EUT for measurement, the EUT and its transmitting antenna(s) shall be rotated through 360°. For each mode of operation to be tested, the frequency spectrum (based on findings from exploratory measurements) shall be monitored.

Final measurements shall be performed for the worst case combination(s) of variable technical parameters that result in the maximum measured emission amplitude, record the frequency and amplitude of the highest fundamental emission (if applicable), and the frequency and amplitude

data for the six highest-amplitude spurious emissions.

Test Setting: Detector=RMS Trace mode=trace average Sweep time= auto couple Number of sweep points ≥2*span/RBW The trace was allowed to stabilize RBW=1MHz, VBW=3MHz The average EIRP reported below is calculated by: 30M-1GHz: ERP(dBm)=Spectrum Analyzer Level(dBm)+Total loss(dB)-2.15 1GHz-18GHz: EIRP(dBm)= Spectrum Analyzer Level(dBm)+Total loss(dB) 18GHz-60GHz: EIRP(dBm)= Spectrum Analyzer Level(dBm)-Antenna Factor(dBi) + Cable Loss(dB) + 20log(F)+20log(D)-27.56 60GHz-110GHz: EIRP(dBm)= Spectrum Analyzer Level(dBm)-Antenna Factor(dBi) + converter Loss(dB) + 20log(F)+20log(D)-27.56 Where: F:frequency (MHz) D:Distance(m) Frequency Range Distance(m) 30MHz-1GHz 3 3 1GHz-18GHz 3 18GHz-40GHz 3

A.2.3 Measurement Limit

40GHz-60GHz 60GHz-75GHz

75GHz-110GHz

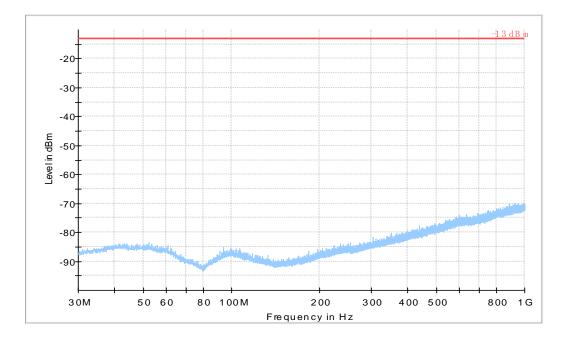
Part 30.203 specify that the total radiated power of any emission outside a licensee's frequency block shall be -13 dBm/MHz or lower. However, in the bands immediately outside and adjacent to the licensee's frequency block, having a bandwidth equal to 10 percent of the channel bandwidth, the conductive power or the total radiated power of any emission shall be -5 dBm/MHz or lower.

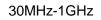
3 3

A.2.4 Measurement Results

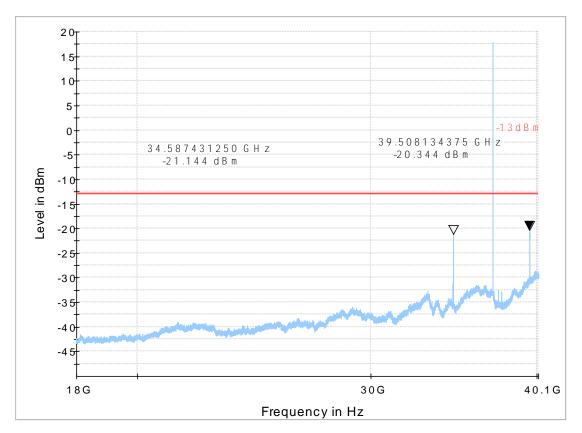
Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the FR2 n260 and n261. It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the FR2 n260 and n261 into any of the other blocks. The equipment must ©Copyright. All rights reserved by CTTL. Page 84 of 219

still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this. The evaluated frequency range is from 30MHz to 110GHz for n261 and 30MHz to 100GHz n260.

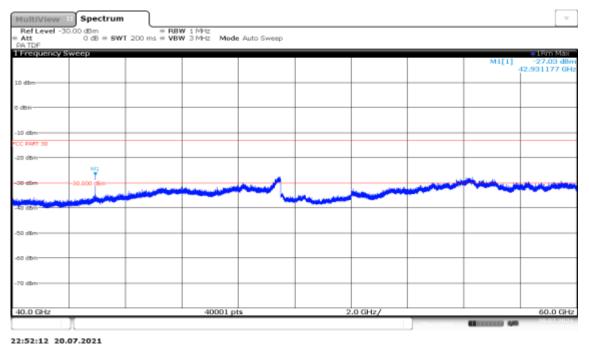



A.2.4 Measurement Results Table(worst case of all power)

Frequency	Antenna	Modulatio	Bandwi	Channel	Frequency	Result
		n	dth		Range	
n260	Module0	PUSCH	100MHz	Low	30MHz-110GHz	Pass
		DFT,	/1RB	Middle	30MHz-110GHz	Pass
		QPSK		High	30MHz-110GHz	Pass
n261	Module1	PUSCH	100MHz	Low	30MHz-100GHz	Pass
		DFT,	/1RB	Middle	30MHz-100GHz	Pass
		QPSK		High	30MHz-100GHz	Pass



1GHz-18GHz



Full Spectrum

n260, Module0, 100MHz, PUSCH DFT, QPSK, 1RB, Low channel, 18GHz-40GHz

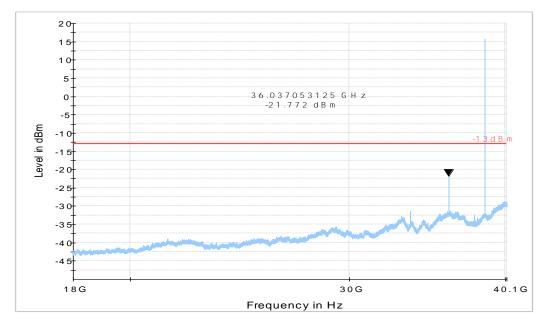
n260, Module0, 100MHz, PUSCH DFT, QPSK, 1RB, Low channel, 40GHz-60GHz

MultiView									
Ref Level -6.0	SWT	RBW 100 ms = VBW	1 MHz 3 MHz Mode /	Auto Sweep					
TDF Inp: ExtMix	E			-					
1 Frequency S	weep							M1[1]	 1Rm Max -22.52 dBm
40 d8m-									52.757658 GHz
30 d8m									
20 d8m-									
20 0011									
10 dBm									
0 dam									
FCC PART 30	-6.000 dêm								
-20 dBm									
-30 dBm				al and a set of the	descention of second	the second states of the	strendly denoted in	and the second s	design and a second
-40 dBm-									
-50 dBm									
60.0 GHz			30001 pt	s	1	.5 GHz/			75.0 GHz
	J							(IIIII) (A)	21.07.2021

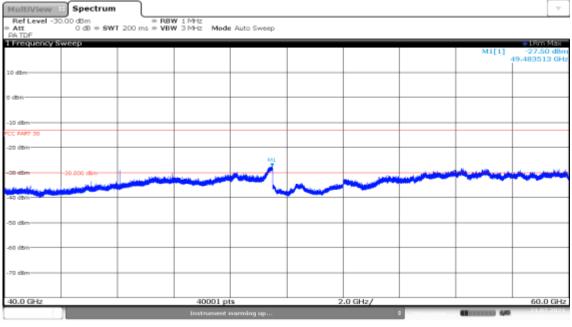
10:26:45 21.07.2021

n260, Module0, 100MHz, PUSCH DFT, QPSK, 1RB, Low channel, 60GHz-75GHz

	Spectrum								~
Ref Level -4.0	00 dBm	= RBW	1 MHz 3 MHz Mode /	Auto Sween					
DF Inp: ExtMix	< W	200 113 0 101	STOLE THORE	Hato offeep					
Frequency S	weep							M1[1]	 18m Ma -17.85 di
dām									04.762325 0
d8m-									
abm									
-									
dām									
d8m									
lüm									
	-4.000 d8m								
PART 20									
								MB	
dilm						والمتعامين ويترب	a labelation of	and the second sec	And a second second
				and the second sec	فقيت الحربم أنتبيه				
dim									
dem									
92.5 GHz			70001 pt	ts	L	3.5 GHz/			Span 35.0 G
221071012			70001 p	1.0		and striky	_		apatri Jario G


09:27:50 21.07.2021

n260, Module0, 100MHz, PUSCH DFT, QPSK, 1RB, Low channel, 75GHz-110GHz



Full Spectrum

n260, Module0, 100MHz, PUSCH DFT, QPSK, 1RB, Mid channel, 18GHz-40GHz

^{00:44:12 21.07.2021}

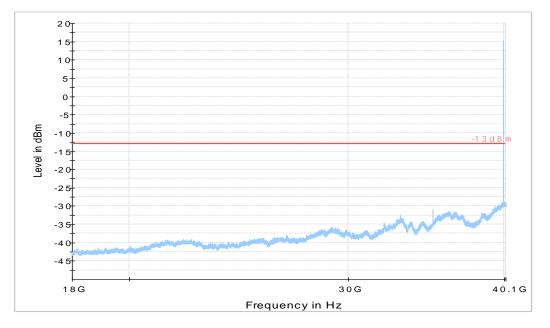
n260, Module0, 100MHz, PUSCH DFT, QPSK, 1RB, Mid channel, 40GHz-60GHz

MultiView								~
Ref Level -6.0	SWT	1 MHz 3 MHz Mode /	Auto Sweep					
TDF Inp: ExtMis 1 Frequency S								1Rm Max
	incep.						M1[1]	-22.32 dBm
40 dBm-								60.030749 GHz
30 d8m								
an dao								
20 d8m								
10 d8m								
a dam-								
	-6.000 d8m							
PCC PART 30								
20 dBm								
-	, i i titu i		alas in strend on	والمحادث والمحاد				
-30 dBm								
-40 dBm								
-50 dBm								
		55551						75.0.011-
60.0 GHz		30001 pt	ts.	1	.5 GHz/			75.0 GHz
	Д					100 a surface	E	21.07.2021

10:32:24 21.07.2021

n260, Module0, 100MHz, PUSCH DFT, QPSK, 1RB, Mid channel, 60GHz-75GHz

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MultiView	Spectrum								~
1 Frequency Sweep		swit 2	BBW BBW BBW BBW BBW	1 MHz 3 MHz Mode /	Auto Sweep					
40 dm	1 Frequency Sy	weep								18m Max
40 dtm Image: state									M1[1]	-17.49 dBm
30 den. Image: Section of the secti	an in								10	
20 dBm International and and an antipart of the second sec	40 dpm									
20 dBm International and and an antipart of the second sec										
20 dBm International and and an antipart of the second sec										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	30 dBm									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
0 dBm 1.000 dBm	20 d8m									
0 dBm 1.000 dBm										
0 dBm 1.000 dBm										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10 d8m									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 dBm									
-20 dbm -30 dbm		4 000 48 0								
20 dEm		4,000 deni								
20 dEm	-10 (Bro									
20 dBm 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	FCC PART 30									
40 dBm 700 dBm									M1	
40 dBm 700 dBm	an in							and a subservation of	and the second second	
-40 dBm	-zu dem						A DESCRIPTION OF THE OWNER OF THE		and the party of the second	A DECEMBER OF
-50 dbm		1				and house and head of the				
-50 dbm	فيتباد وترجعها والطبيتين	A STREET, STREE	denses of the second states	a find the short provide	a contraction for any other	perfective sectors and the				
-50 dbm	and the second se									
-50 dbm										
-50 dbm										
	-40 dBm									
	-50 dBm									
20001 str. 0.5 //	CF 92.5 GHz			70001			E CLIE /			Span 35.0 GHz
	CP 92.3 GHZ			70001 pi	15	3	a anz/			span 35.0 GHz
		Д						March 1977 Trade	40	21.02.2021


09:08:18 21.07.2021

n260, Module0, 100MHz, PUSCH DFT, QPSK, 1RB, Mid channel, 75GHz-110GHz

Full Spectrum

n260, Module0,100MHz, PUSCH DFT, QPSK, 1RB, High channel, 18GHz-40GHz

I Frequency S	weep	-				M1[1]	-27.23 dB
						sulti	49,401515 (#
10 dRm-		-					
obn							
10 dBm							
C 14411 20							
20 dbm			 				
30 dilm	-10.020 .000		 m	 	-	~~~~	-
40 dBm				Section and Party			
50 dBm							
sti dilim							
70 dilm							

00:57:05 21.07.2021

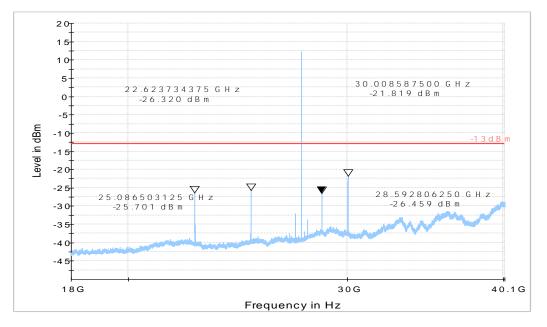
n260, Module0, 100MHz, PUSCH DFT, QPSK, 1RB, High channel, 40GHz-60GHz

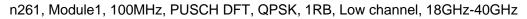
MultiView	Spectrum								V
Ref Level -6.0 TDF Inp: ExtMix	swt		1 MHz 3 MHz Mode A	uto Sweep					
1 Frequency S									1Rm Max
1 Frequency a	weep							M1[1]	-22.32 dBm
40 d8m-									62.648162 GHz
30 d8m									
20 d8m-									
10 d8m									
a dam									
FCC PART 30	-6.000 dêm								
-20 dBm	and and in the state of the state	State of the state of the state	Margaret and south						
-30 dBm			and the second	and the second second second	محلحهما ومطار ليعتقله	the sector of th	and the second second second	a la companya da companya d	and the second second
-30 dbm									
-40 dBm									
-50 dBm									
60.0 GHz			30001 pt	s	1	.5 GHz/			75.0 GHz
	Л						htere sur long	CI.I.I.B 49	21.07.2021

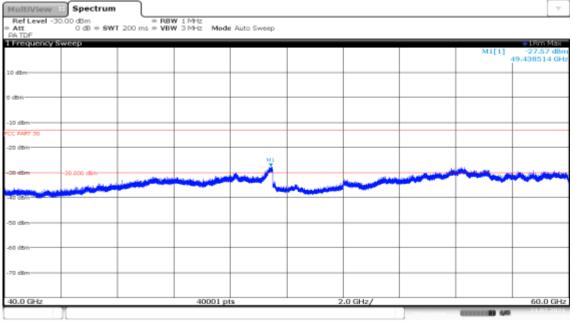
10:39:11 21.07.2021

n260, Module0, 100MHz, PUSCH DFT, QPSK, 1RB, High channel, 60GHz-75GHz

MultiView		·							Ψ.
Ref Level -4.0	SWT		1 MHz 3 MHz Mode /	Auto Sweep					
TDF Inp: ExtMix	: W								 1Rm Max
1 Frequency S	weep							M1[1]	-17.91 dBm
40 d8m								10	05.042321 GHz
40 dpm									
30 d8m									
20 d8m									
10 d8m									
10 dbm									
0 dBm									
	-+.000 d8m								
	1.000 0010								
FCC PART 20					-				
								MI	
-20 dBm						الالتقادية ويقويان			Man, Same
all and all have				The barrier burger and	terror and the second				
and capiti		and the second se							
-40 dBm									
-50 dBm									
CF 92.5 GHz		·	70001 pt	ts	3	5 GHz/		1	Span 35.0 GHz
	1						And a subscription	E	21.07.2021
L	7								


09:19:14 21.07.2021


n260, Module0, 100MHz, PUSCH DFT, QPSK, 1RB, High channel, 75GHz-110GHz



Full Spectrum

^{01:05:13 21.07.2021}

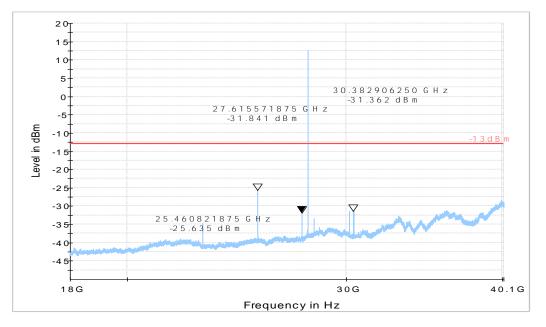
n261, Module1, 100MHz, PUSCH DFT, QPSK, 1RB, Low channel, 40GHz-60GHz

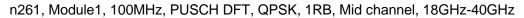
MultiView	Spectrum								∇
Ref Level -6.0 TDF Inp: ExtMix	SWT	● RBW 100 ms ● VBW	1 MHz 3 MHz Mode /	Auto Sweep					
1 Frequency S	weep								1Rm Max
The querky of	are ep							M1[1]	-21.93 dBm
40 d8m									61.917186 GHz
30 dBm									
20 d8m-									
10 d8m									
a dam									
	-6.000 dēm								
PCC PART 30									
-20 dBm									
the second s	in the internet of	and the second	and the second second	land market and a					
-30 dBm					Marilli		damle of closes and be	and the second second	A real free real real real real real real real r
-40 dBm									
-50 dBm									
60.0 GHz			30001 pt	ne .	1	.5 GHz/			75.0 GHz
doto cartz	Υ		30001 pi			in any		G	
	д							and the second second	

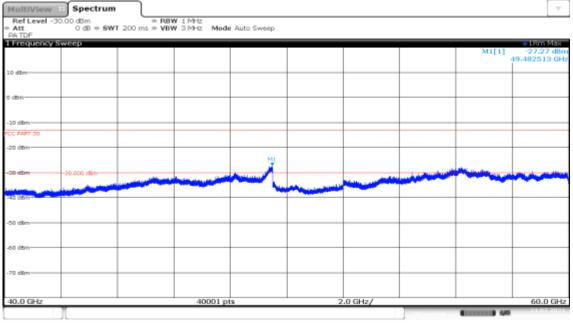
n261, Module1, 100MHz, PUSCH DFT, QPSK, 1RB, Low channel, 60GHz-75GHz

MultiView \cdots Spectrum				V
Ref Level -4.00 dBm	RBW 1 MHz Mode Auto Sweep			
TDF Inp: ExtMix W	comis e von prez made rato sneep			
Frequency Sweep			M1[1]	 1Rm Max -19.15 dB
0 d8m				99.632684 G
o d8m				
0 dām				
D dBm				
düm				
-4.000 d8m				
III dilam				
C PART 30				
0 dBm				
u dem			and a second	
واستأد الاستعباد والمراجع والمستلم وال	and a state of the second			
o upni				
0 dBm				
o dbm				
5.0 GHz	70001 pts	2.5 GHz/		100.0 Gł
Л				

09:48:38 21.07.2021


n261, Module1, 100MHz, PUSCH DFT, QPSK, 1RB, Low channel, 75GHz-100GHz


^{10:04:17 21.07.2021}



Full Spectrum

^{01:10:24 21.07.2021}

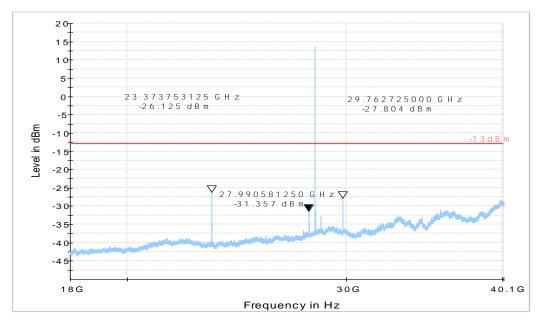
n261, Module1, 100MHz, PUSCH DFT, QPSK, 1RB, Mid channel, 40GHz-60GHz

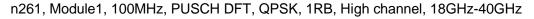
MultiView									v
Ref Level -6.0	SWT	RBW 100 ms = VBW	1 MHz 3 MHz Mode /	Auto Sweep					
TDF Inp: ExtMix	E								
1 Frequency S	weep								 1Rm Max
40 d8m-								M1[1]	-22.25 dBm 51.708193 GHz
30 d8m									
20 dBm-									
10 d8m									
a april	-6.000 dêm								
PCC PART 30									
-20 dBm	Janes and an	alithere also has sold							
		and the second se	the second state of the second second	and the second second second		and an other barrier of the			
-30 dBm							and the state of t	in al market	A STATISTICS IN CONTRACTOR
-40 dBm									
-50 dBm			56681			E 211-1			TE O CIL
60.0 GHz	_		30001 pt	s	1	.5 GHz/			75.0 GHz
	Л						the environment	C	21.02.2021

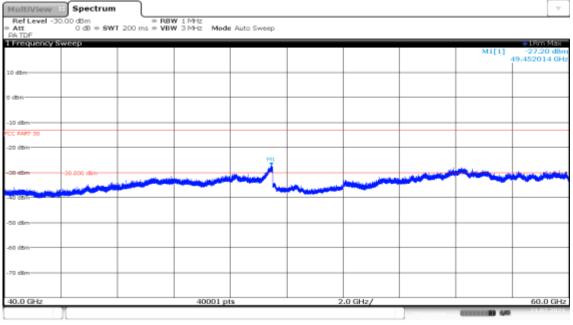
n261, Module1, 100MHz, PUSCH DFT, QPSK, 1RB, Mid channel, 60GHz-75GHz

MultiView :: Spectrum				Ψ.
Ref Level -4.00 dBm = RBW = SWT 200 ms = VBW	1 MHz 3 MHz Mode Auto Sweep			
TDF Inp: ExtMix W				
1 Frequency Sweep			M1[1]	 1Rm Max -19.14 dBm
40 d8m				99,434830 GHz
30 d8m				
20 dBm				
10 d8m				
0 dBm				
4.000 dam				
PCC PART 30				
				MJ -
-20 dBm				and the second second
			the second s	
The local state of a state of the	the state of the s			
-40 dBm				
-+u dem				
-50 dBm				
75.0 GHz	70001 pts	2.5 GHz/		100.0 GHz
Г Л			E	21.07.2021

09:34:31 21.07.2021


n261, Module1, 100MHz, PUSCH DFT, QPSK, 1RB, Mid channel, 75GHz-100GHz


^{10:12:26 21.07.2021}



Full Spectrum

^{01:16:45 21.07.2021}

n261, Module1, 100MHz, PUSCH DFT, QPSK, 1RB, High channel, 40GHz-60GHz

MultiView									V
Ref Level -6.0	DO dBm	RBW 100 ms = VBW	i MHz 3 MHz - Mode /	auto Sween					
TDF Inp: ExtMix	E	100 111 0 1011	- The Theorem	are streep					
1 Frequency S	weep								 1Rm Max
40 d8m-								M1[1]	-21.70 dBm 51.569698 GHz
30 d8m									
20 d8m									
10 d8m									
0 dam									
PCC PART 30	-6.000 dêm								
Pool Press and									
-20 dBm	North and a start								
Non-Linear State	lintenen-duit	Statistics of the local division of the loca	and the second second second	a design and the state		a ta a fai da a fa a sa a sa			
-30 dBm							in the local sector	A Los de Angleis	triant and the bills of the same
-40 dBm									
-50 dBm									
60.0 GHz			30001 pt	s	1	.5 GHz/			75.0 GHz
	Д						the surface of	40	21.02.2021

n261, Module0, 100MHz, PUSCH DFT, QPSK, 1RB, High channel, 60GHz-75GHz

fultiView 🗉 Spec	trum							~
Ref Level -4.00 dBm	SWT 200 ms = VB	W 1 MHz W 3 MHz Mode	auto Sween					
DF Inp: ExtMix W		in product	are srreep					
Frequency Sweep							M1[1]	 18m Max -18.91 d8
dām								99.454829 G
d8m								
d8m								
dsm								
düm								
-4.000 d8m								
C PART 30								
- PORT and								
dim								M
							أعسف المتعدين	
and the second	and a subsection of the second se	A DELLARD AND A DELLARD	يتبيك كمحفظ بتريكين	مطرحه ويترجى المشاركة				
l dBm								
0 dBm								
		70001 -			S E CIL- I			100.00
5.0 GHz		70001 p	LS .	2	2.5 GHz/			100.0 G
						States and the second	C	

09:41:44 21.07.2021

n261, Module1, 100MHz, PUSCH DFT, QPSK, 1RB, High channel, 75GHz-110GHz

^{10:21:05 21.07.2021}

A.3 Frequency Stability

\$2.1055

A.3.1 Method of Measurement

Frequency stability is a measure of the frequency drift due to temperature and supply voltage variations, with reference to the frequency measured at +20 °C and rated supply voltage. Two reference points are established at the applicable unwanted emissions limit using a RBW equal to the RBW required by the unwanted emissions specification of the applicable regulatory standard. These reference points measured using the lowest and highest channel of operation shall be identified as F_L and F_H respectively.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -30° C.
- 3. With the EUT, powered via nominal voltage, and transmitted on middle channel for each FR2 band, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10[°]C increments from -30[°]C to +50[°]C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 5. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any self-heating to stabilize, before continuing.
- 6. Subject the EUT to overnight soak at +50℃.
- 7. With the EUT, powered via nominal voltage, and transmitted on the center channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10 °C increments from -30°C to +50°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5° C during the measurement procedure.

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of the lower, higher and nominal voltage. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress.

A.3.2 Measurement results

n260, PUSCH DFT QPSK, 1RB

Frequency Error vs Temperature OPERATING FREQUENCY: 38499960000Hz

POWER TEMP FREQUENCY Deviation Freq. Dev (VDC) (°C) (Hz) (Hz) (%) 3.8 +20(REF) 38499361000 1 / -30 38499061000 -300000 -0.0008% -20 38499321000 -40000 -0.0001% -10 38499381000 20000 0.0001% +0 38499311000 -50000 -0.0001% +10 38499231000 -130000 -0.0003% +20 38499271000 -90000 -0.0002% +30 38499111000 -250000 -0.0006% +40 38499121000 -240000 -0.0006% +50 38499171000 -190000 -0.0005% 3.5 +20 38499151000 -210000 -0.0005% 4.2 +20 -180000 38499181000 -0.0005%

n261, PUSCH DFT QPSK, 1RB

Frequency Error vs Temperature

OPERATING FREQUENCY: 27924960000Hz

POWER	TEMP	FREQUENCY	Freq. Dev	Deviation
(VDC)	(°C)	(Hz)	(Hz)	(%)
3.8	+20(REF)	27924011000	/	/
	-30	27924141000	130000	0.0005%
	-20	27924101000	90000	0.0003%
	-10	27924521000	510000	0.0018%
	+0	27924121000	110000	0.0004%
	+10	27924121000	110000	0.0004%
	+20	27924121000	110000	0.0004%
	+30	27923981000	-30000	-0.0001%
	+40	27924041000	30000	0.0001%
	+50	27924041000	30000	0.0001%
3.5	+20	27924001000	-10000	0.0000%
4.2	+20	27924231000	220000	0.0008%

A.4 Occupied Bandwidth

A.4.1 Minimum Measurement Distance Evaluation

According to KDB842590 D01, the measurements of the fundamental emission, out of band, harmonics and spurious emissions shall be made in the far field of the measurement antenna. The

far-field boundary for mmW antennas is greater than or equal to $2D^2/\lambda$ (with D being the largest

dimension of the antenna, and λ the wavelength of the emission). We calculate the far-field

boundary and the test distance meet the requirement of standard.

A.4.2 Measurement Method

Occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the mid frequencies frequency. The table below lists the measured 99% BW. Spectrum analyzer plots are included on the following pages. The measurement method is from ANSI C63.26:

a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts.

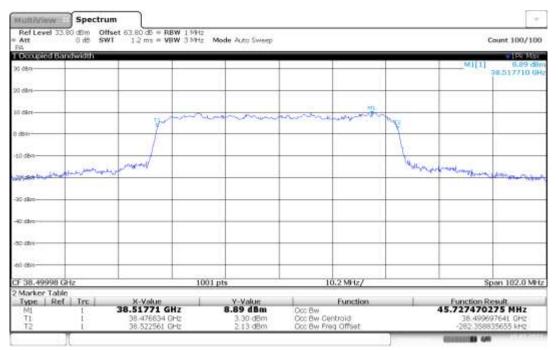
b) The nominal IF filter 3 dB bandwidth (RBW) shall be in the range of 1% to 5% of the anticipated OBW, and the VBW shall be set \ge 3 × RBW.

c) Set the reference level of the instrument as required to prevent the signal amplitude from exceeding the maximum spectrum analyzer input mixer level for linear operation.d) Set the detection mode to peak, and the trace mode to max-hold.

The average EIRP reported below is calculated by:

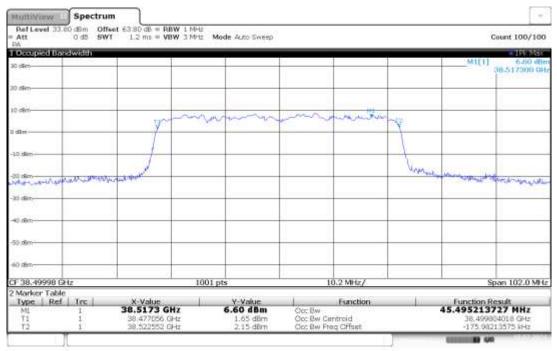
EIRP(dBm)=Spectrum Analyzer Channel Power Level(dBm)-Antenna Factor(dBi) + Cable Loss(dB) + 20log(F)+20log(D)-27.56 Where:

F:frequency (MHz) D:Distance(m)=3m



n260, 50MHz (99%)

MID CHANNEL


Module0, CP-OFDM							
Frequency(MHz)	Trequency(MHz) Occupied Bandwidth (99%) (MHz)						
28400.06	QPSK	16QAM	64QAM				
38499.96	45.73	45.50	45.61				

n260, 50MHz Bandwidth, MID CHANNEL, QPSK (99% BW)

^{02:13:12 10.07.2021}

n260, 50MHz Bandwidth, MID CHANNEL, 16QAM (99% BW)

02:46:15 10.07.2021

©Copyright. All rights reserved by CTTL.

n260, 50MHz Bandwidth, MID CHANNEL, 64QAM (99% BW)

02:57:07 10.07.2021

Note: The worst modulation is QPSK, and we test follow setups used QPSK.

n260, 50MHz (99%)

LOW CHANNEL

Module0, CP-OFDM						
Frequency(MHz) Occupied Bandwidth (99%) (MHz)						
27025_04	QPSK	16QAM	64QAM			
37025.04	45.46	/	/			

n260, 50MHz Bandwidth, LOW CHANNEL, QPSK (99% BW)

Att. 0		t 63.40 dB = RB 1.2 ms = VB		ode Auto Sweep				0	Count 100/100
PA Cocupied Bandw	idth	Co (1.5 - 386)	AN USASIRE 13						a ta te start
10 dBm								M1[1]	8.77 db 37.043100 GF
tū dām			_	-					
D dêm		1122	the second second	mm	magun	mi mi			
1 d9m		T	a sectore and		and another an	Action of the	Y		
10 dBm							1		
29 dBm	4 Ja Mener	haddread					andre	-	a historication
30 dBm									
40 dBm									
50 dBm			-			-			
60 dBm			-						
F 37.02506 GHz			1001	its	1	0.2 MHz/		S	pan 102.0 MH
Marker Table Type Ref 1 Mi Ti	Inc.	X-Value 37.0431 GH 37.002213 G		Y-Value 8.77 dBm 2.71 dBm	Occ Bw Occ Bw Ce	Function		Function R 45.456588	

03:12:58 10.07.2021



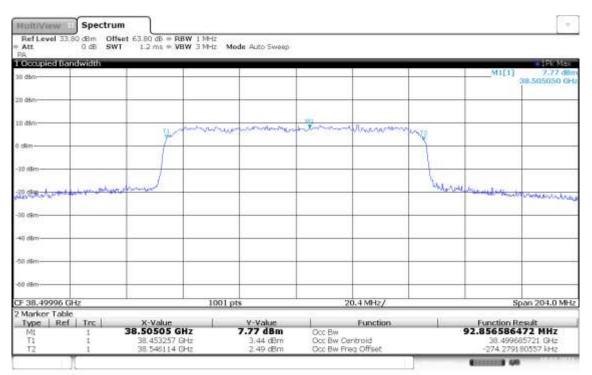
n260, 50MHz (99%)

HIGH CHANNEL

Module0, CP-OFDM						
Frequency(MHz) Occupied Bandwidth (99%) (MHz)						
20075	QPSK	16QAM	64QAM			
39975	45.79	/	/			

n260, 50MHz Bandwidth, HIGH CHANNEL, QPSK (99% BW)

03:40:21 10.07.2021



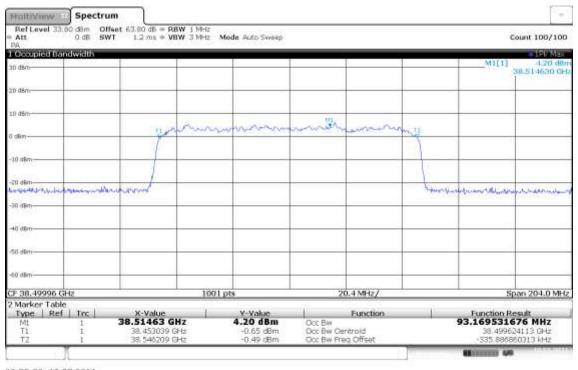
n260, 100MHz (99%)

MID CHANNEL

Module0, CP-OFDM						
Frequency(MHz) Occupied Bandwidth (99%) (MHz)						
38499.96	QPSK	16QAM	64QAM			
36499.90	92.85	93.09	93.16			

n260, 100MHz Bandwidth, QPSK (99% BW)

20:40:29 10.07.2021



n260, 100MHz Bandwidth, 16QAM (99% BW)

Holt/Wew 1	Spectrum								
RefLevel 33.8 # Att. PA				Mode Auto Sweep					Count 100/100
1 Occupied Band	dwidth	_							I Ski Mare
30 dBm								M1[1]	6.98 d0n 38.537050 GH
20 dBm								-	
10 dBm-		V	rithing	man	unn	(min ment	5 TE		
0 18m		K					4		
-30 dBm				_				-	-
-20 dBm							No.		
Massand	can here be	er- 10					"Way of	manuman	1990 - Minhaut
-30 dBm			-						
-40 dBm				-					
-50 dBm-								-	
-60 dBm				_					
CF 38.49996 GH	z		100	1 pts	2	0.4 MHz/			ipan 204.0 MHz
2 Marker Table					- 20		- N		
Type Ref MI T1 T2		X-Value 38.53705 (38.452977 38.546069	GHz	Y-Value 6.98 dBm 3.57 dBm 2.50 dBm	Occ Bw Occ Bw Cr Occ Bw Pr				
			ar de	control to result ()	a server to de la la		10	Contrast 4	

20:47:46 10.07.2021

n260, 100MHz Bandwidth, 64QAM (99% BW)

20:53:09 10.07.2021

Note: The worst modulation is 64QAM, and we test follow setups used 64QAM.

LOW CHANNEL

Module0, CP-OFDM							
Frequency(MHz) Occupied Bandwidth (99%) (MHz)							
27050	QPSK	16QAM	64QAM				
37050	/	/	93.09				

n260, 100MHz Bandwidth, LOW CHANNEL, 64QAM (99% BW)

MultiView	Spectru	n)						×3
Att	40 dBm Offs 0 dB SW	et 63:40 dB = R I 1.2 ms = V		Mode Auto Sweep				Count 100/100
PA L Occupied Ba	ndwidth							- 19k Max
10 dBm			-					M1[1] 8.12 dBr 37.060390 GH
zo dim				_				
10 d8m				y war when an	MI	and the second sec		
		1	Mar marine	Andrew March 1	PORT NAME AND	Constant Constant.	The second	
0 dem		1	-					
10 dBm		+ +	-	-				
co dem jarrent	a horald	want		_			M	www. March march and
	Constant of the							10002.02005
30 dBm			-					
40 dBm		-	-				-	
50 dBm				_				
-60 dBm								
CF 37.05 GHz			100	1 pts		20.4 MHz/		Span 204.0 MHz
2 Marker Table		X-Value	10	M Makes		Frankland.		Denskies Denski
Type Ref Mi Ti T2	1 1	37.06039 GI 37.00343 G 37.09653 G	Hz	Y-Value 8.12 dBm 2.88 dBm 4.54 dBm	Occ Bw Occ Bw C	Eunction entroid reg Offset		Function Result 93.099485288 MHz 37.049979675 GHz -20.125371605 kHz

22:54:01 12.07.2021

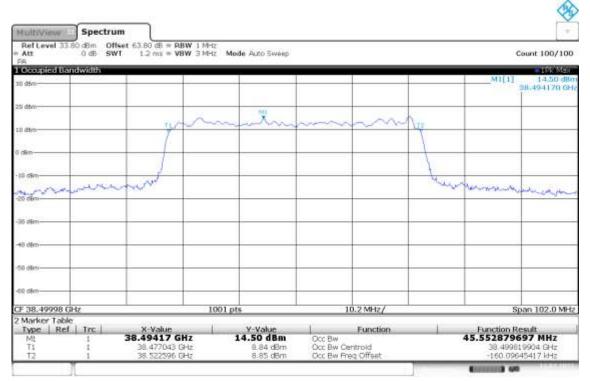
HIGH CHANNEL

Module0, CP-OFDM							
Frequency(MHz) Occupied Bandwidth (99%) (MHz)							
39949, 92	QPSK	16QAM	64QAM				
59949.92	/	/	93.28				

n260, 100MHz Bandwidth, LOW CHANNEL, 64QAM (99% BW)

MultiView E	Spectrum								-
Ref Level 35.0 Att	0 dBm Offse 0 dB SWT	t 68.03 dB = R 1.2 ms = V		Mode Auto Sweep					Count 100/100
PA Occupied Bar	dwidth	_							TER Max
CONTRACTANCE IN	00/00/07							M1[1]	10.13 dB
10 dBm			-					102.45	39,914660 GF
				_					
10 dBm-									
10 dBm	-		HI	CARL LINE MADE	an and the second	to and a	0.000		
0.00011		7			actores	04304-0	A TO		
) dBm		1							
		1							
10 dBm-								_	
10 dbm	- de brateller	monthall				1	Marin	Longen and	
Sa and the second	All and the second						107		- har and the
an dhe			-	-					-
40 dBm								-	
and and a second									
50 dBm									
aŭ diterr									
F 39.94992 G			10	01 pts		20.4 MHz/			Span 204.0 MH
Marker Table Type Ref		X-Value		Y-Value	1	Function		Function I	landt
Mt Mt	1 100-1	39.91466 G	Hz	10.13 dBm	Occ Bw	FURGINI		93.285605	483 MHz
T1	1	39.903077 (6.54 dBm	Occ Bw O				719683 GHz
T2	1	39.9963624	3H2	5.73 dBm	Occ Bw Fr	eg Ultset -		·200.316	932938 kHz

00:00:41 13.07.2021

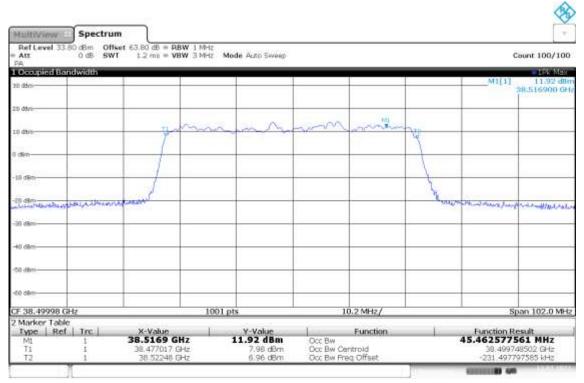


n260, 50MHz (99%)

MID CHANNEL

Module0, PUSCH DFT							
Frequency(MHz) Occupied Bandwidth (99%) (MHz)							
38499.96	QPSK	16QAM	64QAM				
36499.90	45. 55	45.46	45.38				

n260, 50MHz Bandwidth, QPSK (99% BW)



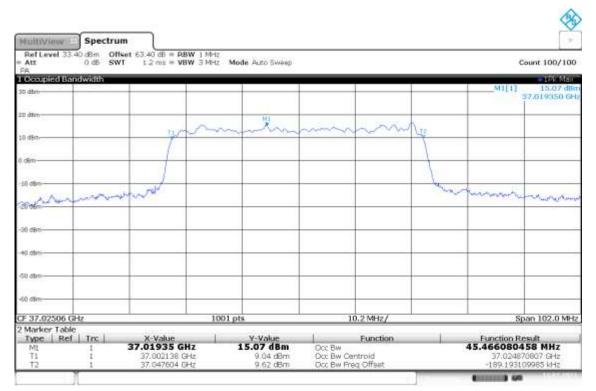
00:36:05 13.07.2021

n260, 50MHz Bandwidth, 16QAM (99% BW)

00:41:16 13.07.2021

n260, 50MHz Bandwidth, 64QAM (99% BW)

MultiView E	Spectru	m set 63.80 dB = 1	ADDAL 1 LE LA						100
Att PA	0 dB SW		VBW 3 MHz	Mode Auto Sweep				Ce	ount 100/100
Occupied Bar	dwidth								- LER Max
10 d\$m	090/09/07/							M1[1]	9.54 dB 8.515670 GF
to dêm		-							
iD dBm		71		nmm			10		
) dêm		ľ					7		
10 dBm-		1	-	_		-	1		
20 dBm		- di	_				N.		
Jana Marting Balling and	here and the second	radam.					The-tes	nimetriande	mound
40 dBm									
50 dBm		-				-			
60 dBm	1	-							
F 38.49998 G	Hz		100	01 pts	া	0.2 MHz/	1	Sp	an 102.0 MH
2 Marker Table Type Ref ML T1 T2		X-Value 38.51567 38.477208 38.522589	GHz	Y-Value 9.54 dBm 4.18 dBm 4.73 dBm	Occ Bw Occ Bw O Occ Bw Fr		4	Function Re 5.38120238 38.499898 -81.701326	299 GHz



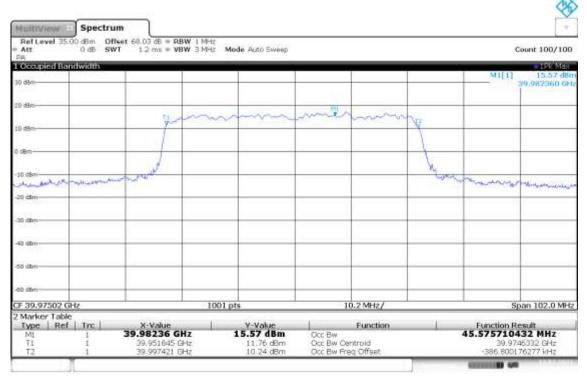
n260, 50MHz (99%)

LOW CHANNEL

Module0, PUSCH DFT							
Frequency(MHz) Occupied Bandwidth (99%) (MHz)							
27025 04	QPSK	16QAM	64QAM				
37025.04	45.46	/	/				

n260, 50MHz Bandwidth, LOW CHANNEL, QPSK (99% BW)

01:20:49 13.07.2021



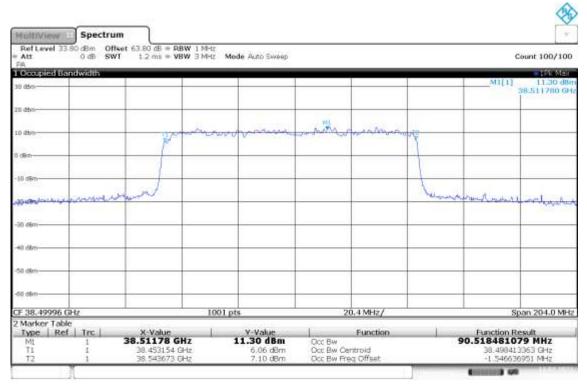
n260, 50MHz (99%)

HIGH CHANNEL

Module0, PUSCH DFT							
Frequency(MHz) Occupied Bandwidth (99%) (MHz)							
39975	QPSK	16QAM	64QAM				
39975	45.57	/	/				

n260, 50MHz Bandwidth, HIGH CHANNEL, QPSK (99% BW)

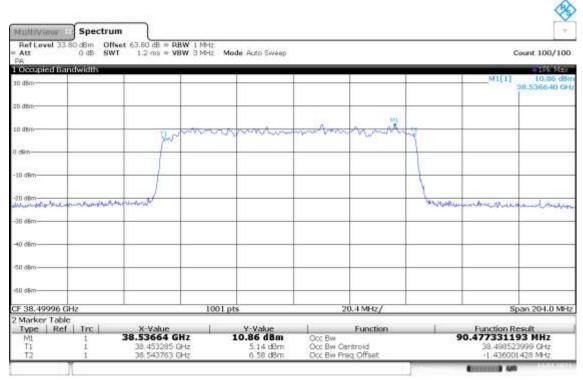
04:08:24 13.07.2021



MID CHANNEL

Module0, PUSCH DFT							
Frequency(MHz)	Frequency(MHz) Occupied Bandwidth (99%) (MHz)						
38499.96	QPSK	16QAM	64QAM				
36499.96	90. 51	90.47	90.33				

n260, 100MHz Bandwidth, MID CHANNEL, QPSK (99% BW)


04:17:07 13.07.2021

 \wedge

n260, 100MHz Bandwidth, MID CHANNEL, 16QAM (99% BW)

04:24:21 13.07.2021

n260, 100MHz Bandwidth, MID CHANNEL, 64QAM (99% BW)

Att 0	12 ms = 1	VBW 3 MHz	Mode Auto Sweep					Count 100/100
Occupied Bandwi	ith							- Line Man
10 d\$m		1				-	M1[1]	6.27 dB 38.464700 GF
to dêm			_					
10 dB/9		man	umm	mas	and the second	20		
l dên	Y	ne and success		Lawrence and	www.	m -		
10 dBm		-			-	1		
20 dBm	mound	-	_		-	hermon	a market a	
38 dBm	2000 BC	-	_			0.5000	- 100000000	
40 d8m					-			
50 dBm								
60 dBm			_					
F 38.49996 GHz		1001	pts	3	20.4 MHz/		S	pan 204.0 MH
Marker Table Type Ref T	c X-Value		Y-Value	1.000	Function	1	Function R	
Mt 1 Ti I	38.4647 (38.453362		6.27 dBm 1.17 dBm	Occ Bw Occ Bw C Occ Bw Fi	entroid	9	0.3313577 38.49852	07 MHz 27468 GHz

04:31:33 13.07.2021

Note: The worst modulation is QPSK, and we test follow setups used QPSK.

LOW CHANNEL

Module0, PUSCH DFT							
Frequency(MHz) Occupied Bandwidth (99%) (MHz)							
27050	QPSK	16QAM	64QAM				
37050	90.14	/	/				

n260, 100MHz Bandwidth, LOW CHANNEL, QPSK (99% BW)

MultiView	Spectrum	n)							-
Att	3.40 dBm Offs 0 dB SW1	et 63:40 dB = Rd 1.2 ms = VB	BW 1 MHz BW 3 MHz Mo	de Auto Sweep					Count 100/100
PA L Occupied B	andwidth	_	_						IFR Max
10 dBm							1	M1[1]	11.04 dBt 37.082810 GH
zo dim-			-						
10 dBm		W	winner	-	mining	month,	1 ¹		
0.dem		J.					1		
-10 dBm	_								
20 dim	a spectra and and and and and and and and and an	in normal					mound	Muran	warming his
Mr. Hoursense	Walter Handson								
30 dBm		-		-				-	
40 dBm									
50 dBm									
60 dBm									
CF 37.05 GHz			1001 pt	ts.	2	0.4 MHz/		S	pan 204.0 MHz
2 Marker Tab		X-Value	1	V. Ushin		Function		Function R	andt
Type Re Mi Ti T2		37.08281 G 37.003653 C 37.093803 C	∃Hz.	Y-Value 11.04 dBm 3.97 dBm 7.33 dBm	Occ Bw Occ Bw Ce Occ Bw Fn	entroid	S	0.1499439 37.04872	

05:02:16 13.07.2021

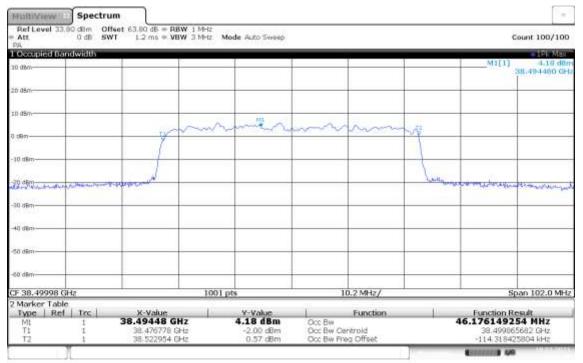
HIGH CHANNEL

Module0, PUSCH DFT						
Frequency(MHz)	Occupied Bandwidth (99%) (MHz)					
39949, 92	QPSK	16QAM	64QAM			
59949.92	90.64	/	/			

n260, 100MHz Bandwidth, HIGH CHANNEL, QPSK (99% BW)

T1 T2	1	39.902993 0 39.99364 0	a-lz.	8.34 dBm 8.95 dBm	Occ Bw Ce Occ Bw Fre				6494 GHz 6377 MHz
2 Marker Table Type Ref		X-Value 39.91364 G	Hz	Y-Value 12.16 dBm	Occ Bw	Function	,	Function F	
7F 39.94992 GF	łz		100	l pts	2	0.4 MHz/			pan 204.0 M
60 dBm			-	-					
50 dBm									
40 dBm									
10 dlim				-					-
ili diim							5340	Contraction of the second	ware welting
10 dBm	Andrewson	mont					hours	uman	
(BI)									
D dBm		11M	war	mmm	mon	mmin	- Po		
D dêm			1000	-					
0 dBm									39,913640.6
Occupied Ban	dwidth	-						M1[1]	12.16 d
RefLevel 35.0 Att	0 dBm Offse 0 dB SWT	t 68.03 dB = RB 1.2 ms = VB		Mode Auto Sweep					Count 100/10
tultiview E	Spectrum	· · · · · · · · · · · · · · · · · · ·							1
									-

05:11:32 13.07.2021



NOTE: Note: The worst modulation is QPSK, and we test follow setups used QPSK. **n260, 50MHz (99%) MID CHANNEL**

Module1, PUSCH DFT						
Frequency(MHz)	Occupied Bandwidth (99%) (MHz)					
38499.96	QPSK	16QAM	64QAM			
30499.90	46.18	/	/			

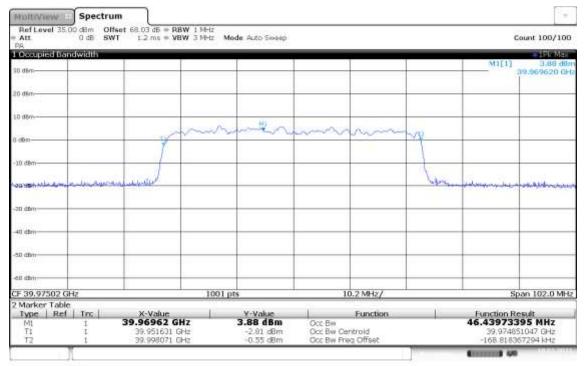
n260, 50MHz Bandwidth, MID CHANNEL, QPSK (99% BW)

16:44:30 18.07.2021

LOW CHANNEL

Module1, PUSCH DFT						
Frequency(MHz)	Occupied Bandwidth (99%) (MHz)					
27025 04	QPSK	16QAM	64QAM			
37025.04	45.43	/	/			

n260, 50MHz Bandwidth, LOW CHANNEL, QPSK (99% BW)


HultiView	Spectrum						
Ref Level 33 # Att PA	40 dBm Offer 0 dB SWT	et 63.40 dB = RBW 1 M 1.2 ms = VBW 3 M				Co	unt 100/100
1 Occupied Ba	indwidth	_					LER Max
30 dBm							5,72 dilm 7,041360 GHz
20 d8m							
10 dêm					-	-	
0 d9m		ym		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Nº		
-10 dBm							
-20 pBm	while say they	mand			ha	martine Maria	et fourtheast
-30 dBm						war obersed ber	
-40 dBm							
-50 dBm							
-60 dBm							
CF 37.02506 0	10,00 m	0 / / ·	1001 pts	10.2 MHz/	30 - C	Spa	an 102.0 MHz
2 Marker Tabl		X-Value	Y-Value	Function	- P	Function Re	-
Type Ref Mi Ti T2		37.04136 GHz 37.002089 GHz 37.047515 GHz	5.72 dBm 0.83 dBm 0.49 dBm	Occ Bw Occ Bw Centroid Occ Bw Freg Offset		45.4261001 37.02490 -257.72531	LS MHZ 2275 GHz
() I	1				10	Emma 44	

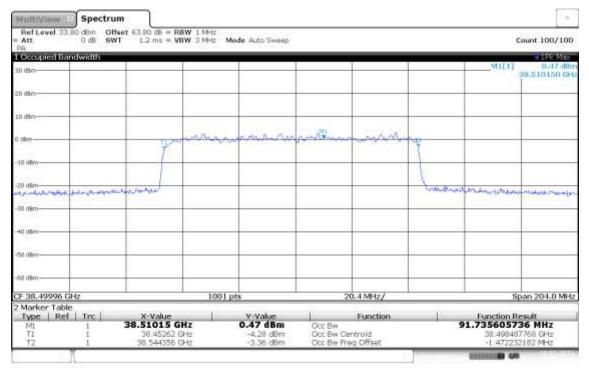
15:21:09 18.07.2021

HIGH CHANNEL

Module1, PUSCH DFT						
Frequency(MHz)	Occupied Bandwidth (99%) (MHz)					
27025 04	QPSK	16QAM	64QAM			
37025.04	46.44	/	/			

n260, 50MHz Bandwidth, HIGH CHANNEL, QPSK (99% BW)

16:03:27 18.07.2021



MID CHANNEL

Module1, PUSCH DFT						
Frequency(MHz)	Occupied Bandwidth (99%) (MHz)					
38499.96	QPSK	16QAM	64QAM			
36499.90	91.74	/	/			

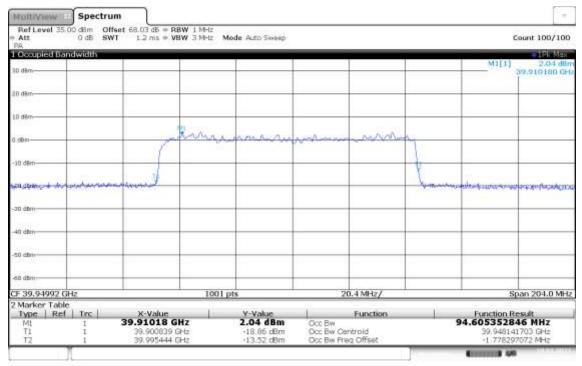
n260, 100MHz Bandwidth, MID CHANNEL, QPSK (99% BW)

17:17:59 18.07.2021

LOW CHANNEL

Module1, PUSCH DFT						
Frequency(MHz)	Occupied Bandwidth (99%) (MHz)					
27050	QPSK	16QAM	64QAM			
37050	91.34	/	/			

n260, 100MHz Bandwidth, LOW CHANNEL, QPSK (99% BW)


Ref Level 33 = Att	Spectrum	et 63.40 dB = R		Mode Auto Sweep					
PA 1 Occupied Ba	and the first state	1 - 201799-1762	890. 250.000					1	THE MAKE
30 dBm			-					M1[1]	0.40 dilm 37.066800 GHz
20 dBm	-		-	-				-	
10 dBm		-						-	
0 :38m		1	ninna	manin	and a mar	manorton	Nº.	-	
-10 dlim				-					
au dam	100 2003	here al							
الديني المريدين المريد -30 dbm	and an	and the second		_		_	And the	noto-decension in	and the second of the second o
-40 dbm				_					
-58 dBm									
-60 dBm				_					
CF 37.05 GHz	0		100	1 pts	-	20.4 MHz/		S	pan 204.0 MHz
2 Marker Tab		A Mahar		W. Mahar	1	F1	12	Firm Mary D	
Re 		X-Value 37.0608 G 37.002797 (37.094132 (3Hz	V-Value 0.40 dBm -4.35 dBm -3.16 dBm	Occ Bw Occ Bw C Occ Bw P	Function Centrold Preg Offset			650.8T 51 MHz 4618 GHz 2306 MHz
2	1						10	Committee of	

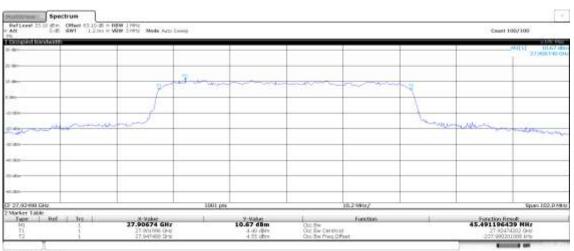
16:51:59 18.07.2021

HIGH CHANNEL

Module1, PUSCH DFT						
Frequency(MHz)	Occupied Bandwidth (99%) (MHz)					
39949, 92	QPSK	16QAM	64QAM			
39949.92	94.61	/	/			

n260, 100MHz Bandwidth, HIGH CHANNEL, QPSK (99% BW)

17:25:36 18.07.2021



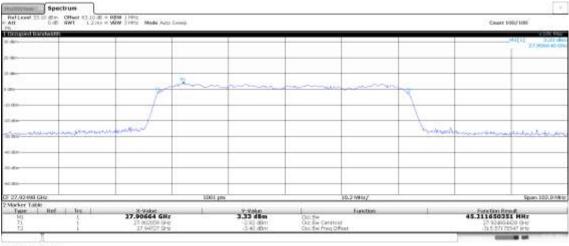
MID CHANNEL

Module0, CP-OFDM					
Frequency(MHz)	Occupied Bandwidth (99%) (MHz)				
27024.06	QPSK	16QAM	64QAM		
27924.96	45.49	45.39	45.21		

n261, 50MHz Bandwidth, MID CHANNEL, QPSK (99% BW)

16:29:53 03.07.2021

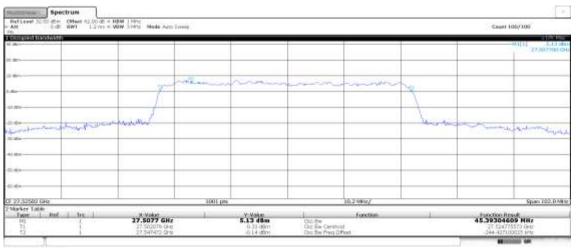
n261, 50MHz Bandwidth, MID CHANNEL, 16QAM (99% BW)


	VRW Sinits Mode Airp I	Loose					Coast 1	
TANK MARKAGE								4.00 0 77.00 7000 0
2	per-			w		-2		
e								-
						1	22,52340	
							man in the large	to-nine,Midam.
-92-409 GHz		1001 prs			10.2 MHz/			Span 102,0 A
ker Table ween Ref Drom PD 1 Ti 1	31 Volue 27.90756 GHz 27.90200 0Hg 27.907417 0Hg	1	V-Value 4.90 dBm 0.14 dSm 0.09 dbm	Octow Octow Octow Cartical Octow Preg Offi	Function		Function Res 45.39631614 27.434710 -251.41033	5931942

19:46:06 03.07.2021

n261, 50MHz Bandwidth, MID CHANNEL, 64QAM (99% BW)

19:55:54 03.07.2021


Note: The worst modulation is QPSK, and we test follow setups used QPSK.

n261, 50MHz (99%)

LOW CHANNEL

Module0, CP-OFDM								
Frequency(MHz) Occupied Bandwidth (99%) (MHz)								
27525	QPSK	16QAM	64QAM					
21323	45.39	/	/					

n261, 50MHz Bandwidth, LOW CHANNEL, QPSK (99% BW)

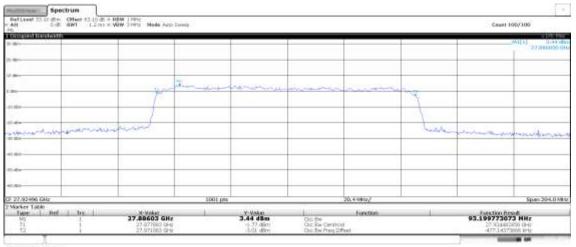
20:29:07 03.07.2021

HIGH CHANNEL

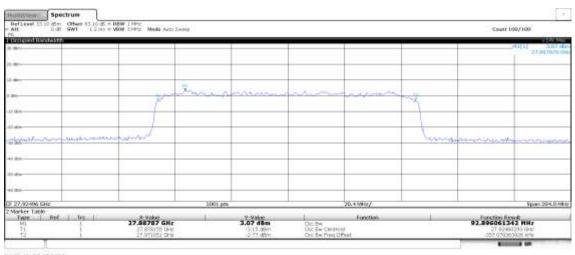
Module0, CP-OFDM							
Frequency(MHz) Occupied Bandwidth (99%) (MHz)							
28324.92	QPSK	16QAM	64QAM				
20324.92	45.37	/	/				

n261, 50MHz Bandwidth, HIGH CHANNEL, QPSK (99% BW)

21:02:00 03.07.2021



MID CHANNEL


Module0, CP-OFDM							
Frequency(MHz) Occupied Bandwidth (99%) (MHz)							
27924.96	QPSK	16QAM	64QAM				
27924.96	93. 19	92.89	93.03				

n261, 100MHz Bandwidth, MID CHANNEL, QPSK (99% BW)

21:36:19 03.07.2021

n261, 100MHz Bandwidth, MID CHANNEL, 16QAM (99% BW)

21:44:41 03.07.2021

n261, 100MHz Bandwidth, MID CHANNEL, 64QAM (99% BW)

F 27.92496 GF Marker Table Type Ref		X-Value	1001	pts Y-Value	2	0.4 MHz/		Sunction R	pan 204.0 MH
60 dBm			-	-				-	
58 dBm			-						
10 dBm								-	
Bollinghandrand	renationally	annow soul					Unphy	Martine martine Law	harmans
tu dam				-					
10 dBm							1		
dbri		i i i i	Mar Sand		and the second	whiteman	∿_tr		
D dilm				_					
D dBm				_					
D dželo	owidin							M1[1]	-0.99 dft 27.888480 GF
94 Occupied Ban	duviettla	57-2157-68	2AUGAIH						I FIRMER

08:59:09 04.07.2021

Note: The worst modulation is QPSK, and we test follow setups used QPSK.

LOW CHANNEL

Module0, CP-OFDM							
Frequency(MHz) Occupied Bandwidth (99%) (MHz)							
27550.09	QPSK	16QAM	64QAM				
27550.08	93. 23	/	/				

n261, 100MHz Bandwidth, LOW CHANNEL, QPSK (99% BW)

HultiView	Spectrur	•							
Ref Level 32. # Att. PA	00 dBm Offs 0 dB SW	et 62.00 dB = 1.2 ms =		Mode Auto Sweep					Count 100/100
1 Occupied Ba	ndwidth								I Skeldare
30 dêm								-M1[1]	0.60 dBn 27.515430 GH
30 dilm-		-						-	
10 dBm		-							
0 cBm		120	million	Agumment.	mann	Marinetto	-		-
-10 dBm-		f.					1		
-20 dam- All all marked and all all all all marked and all all all all all all all all all al	فيرسلونهم الفعري	wowned				-	bernte	had a start	awatranside
-40 dBm									
-50 dBm		-	-					_	
-60 dbm									
CF 27.55008 C		<u>.</u>	100)1 pts	2	0.4 MHz/		5	pan 204.0 MHz
2 Marker Table Type Ref		X-Value	- 1	Y-Value	1	Function	- ii	Function R	andt
MI TI TZ		27.51543 27.503272 27.596497	GHz	0.60 dBm -2.53 dBm -3.32 dBm	Occ Bw Occ Bw Oa Occ Bw Fre	ntroid		93.225001 27.5496	
	8						10	2000000 44	

09:07:29 04.07.2021

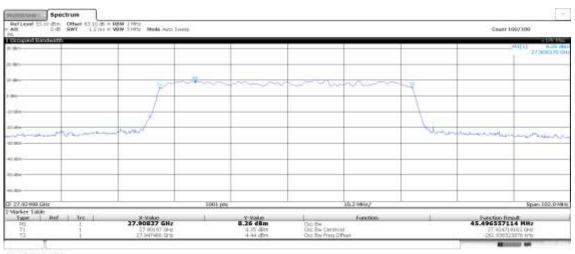
HIGH CHANNEL

Module0, CP-OFDM							
Frequency(MHz) Occupied Bandwidth (99%) (MHz)							
28200.06	QPSK	16QAM	64QAM				
28299.96	93.10	/	/				

n261, 100MHz Bandwidth, HIGH CHANNEL, QPSK (99% BW)

HultiView	Spectrum	Course and							
Ref Level 333 Att PA	0 dBm Offee 0 dB SWT	t 63.90 dB = 1 1.2 ms = 1		Mode Auto Sweep				Co	ount 100/100
1 Occupied Bar	idwidth								I She Max
30 dBm								M1[1]	1.89 dBr 8.264300 GH
20 dBm						-			
10 dBm			ML					-	
0 dBm		i.	mernel	Laminord.	minor	Andrew	No.	-	
-10 dBm				-			1	-	
-20 dBm				_				_	
	enselstrim halet	canal.		_			A CHARL	where and the most	tomprovada dive
-40 dBm				_				-	
-58 dēm	I		-	-					
-60 dBm				-		-			
CF 28.29996 G	Hz		1001	pts	1 3	20.4 MHz/		Sp	an 204.0 MHz
2 Marker Table Type Ref		X-Value 28.2643		Y-Value 1.89 dBm	1	Function	- P	Function Re 93.1014083	
MI T1 T2	1 1	28.253225 28.346326	GHz	-2.36 dBm -3.52 dBm	Occ Bw Occ Bw O Occ Bw Fr			28.29977 -184.76712	5233 GHz
() ()							10	Excercit 4/9	

09:14:54 04.07.2021

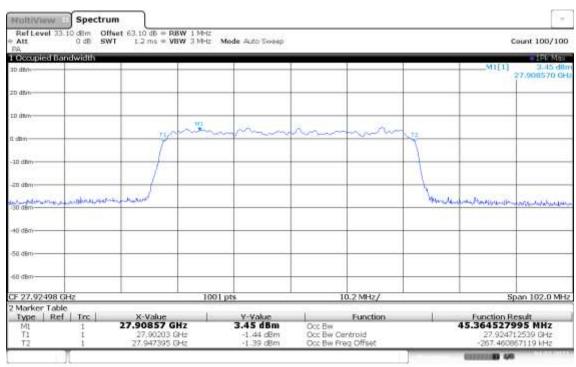


MID CHANNEL

Module0, PUSCH DFT							
Frequency(MHz) Occupied Bandwidth (99%) (MHz)							
27024.06	QPSK	16QAM	64QAM				
27924.96	45. 49	45.31	45.36				

n261, 50MHz Bandwidth, MID CHANNEL, QPSK (99% BW)

17:05:36 03.07.2021


n261, 50MHz Bandwidth, MID CHANNEL,16QAM (99% BW)

PALL.	0 dB 50	WT 1.2 ms = VBV	N 3 MHz 1	Mode Auto Sweep					Count 100/100
Occupied I	andwidth							وربي بر را محصصه	15k Max
10 dBm								M1[1]	5.52 di 27.919680 G
ab dBm				-					
to dilm	-			ML					
dbn		y~	m	- man	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m	14		
10 dbm		- /		_					
atti dBmi	-			_					
30 dBm	wanter	marked		-			Arine	and an and an and a second	horana
40 dBm		_							
58 dBm		_		_	-				
60 dBm		_		_					
F 27.92498	GHz		1001	pts	- 3	10.2 MHz/		s	pan 102.0 MH
Marker Ta Type R		X-Value	1	Y-Value	1	Function	1	Function R	esult
MI Ti	1	27.91968 GH 27.901975 GH		5.52 dBm 0.26 dBm	Occ Bw Occ Bw O	entroid		45.314677	32173 GHz

^{10:21:17 04.07.2021}

n261, 50MHz Bandwidth, MID CHANNEL, 64QAM (99% BW)

10:30:09 04.07.2021

Note: The worst modulation is QPSK, and we test follow setups used QPSK.

LOW CHANNEL

Module0, PUSCH DFT							
Frequency(MHz) Occupied Bandwidth (99%) (MHz)							
97595	QPSK	16QAM	64QAM				
27525	45.18	/	/				

n261, 50MHz Bandwidth, LOW CHANNEL, QPSK (99% BW)

Ref Level 32.00 dBm # Att 0 dB	Cfrum Offset 62.00 dB = RBW 11 SWT 1.2 ms = VBW 31	A-Iz A-Iz Mode Auto Sweep			Count 100/100
PA 1 Occupied Bandwidth					- Fighter
3D dêm-					
ap dem-					
10 dkm	n X	mm	min	N/2	
0 :@m	T	-		Y	
-10 dēm				1	
-20 dBm -da que de charles (normalis a marche) -30 dBm	- In considerable			human	montherest
-40 dBm					
-50 dim					
-60 dbm					
CF 27.52502 GHz		1001 pts	10.2 MHz/		Span 102.0 MHz
2 Marker Table Type Ref Trc	X-Value	V-Value	Function	<u> </u>	Function Result
ML 1 T1 1 T2 1	27.5076 GHz 27.50206 GHz 27.547239 GHz	6.97 dBm 0.95 dBm 0.76 dBm	Occ Bw Occ Bw Centroid Occ Bw Freg Offset		179369753 MHz 27.524649558 GHz -370.442345654 kHz
					A (11111)

11:11:21 04.07.2021

HIGH CHANNEL

Module0, PUSCH DFT								
Frequency(MHz) Occupied Bandwidth (99%) (MHz)								
20224 02	QPSK	16QAM	64QAM					
28324. 92 45. 14 / /								

n261, 50MHz Bandwidth, HIGH CHANNEL, QPSK (99% BW)

11:20:28 04.07.2021

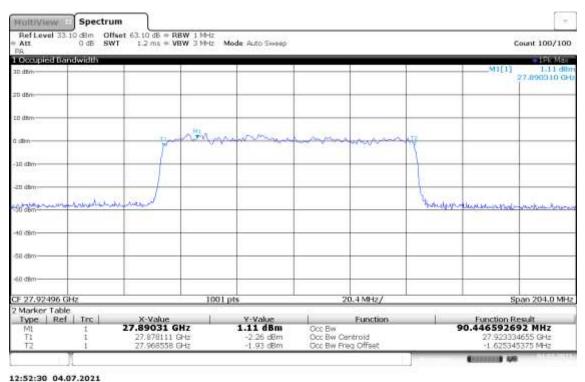
MID CHANNEL

Module0, PUSCH DFT							
Frequency(MHz)	equency(MHz) Occupied Bandwidth (99%) (MHz)						
27024.06	QPSK	16QAM	64QAM				
27924.96 90. 99 90. 55 90. 45							

n261, 100MHz Bandwidth, MID CHANNEL, QPSK (99% BW)

HaltiView	Spectrum						8
Ref Level 33. Att	10 dBm Offse 0 dB SWT	t 63.10 dB = RBW 1 M 1.2 ms = VBW 3 M	Hz Hz Mode Auto Sweep			c	ount 100/100
PA I Occupied Bar	ndwidth	CS. (-31) - 00477311701					- Challen
3D d8m						M1[1]	5.56 dBn 27.886440 GH
20 dBm					-		Contract Contractor
10 dlm		19					
0 dBm		- Thereway	mummin	mannen	"Fe		
-10 dlm					1		
-20 dBm							
-30 dBm	norman	and the second			levering.	anter have my	- distinguised on
-+0 d8m						_	
58 dBm							
-60 dBm							
CF 27.92496 G	Hz		1001 pts	20.4 MHz/		S	pan 204.0 MHz
2 Marker Table Type Ref		X-Value	Y-Value	Function	1	Function R	and t
MI T1 T2	1 1 1	27.88644 GHz 27.877743 GHz 27.968734 GHz	5.56 d8m 2.82 dBm 2.40 dBm	Occ Bw Occ Bw Centroid Occ Bw Freq Offset	9	27.92323 -1.72148	77 MHz 8514 GHz
6 - L - L - L - L - L - L - L - L - L -	1				10	Committee 4/0	

12:36:42 04.07.2021



RefLevel 33	10 dBm Off	set 63.10 dB = RBW 1						
PA	0 dB 5W	/T 1.2 ms = VBW 3	MHz Mode Auto Swi	eeb.				Sount 100/100
1 Occupied Ba	andwidth							I Pic Max
30 d8m							M1[1]	2.73 diln 27.889090 GH
20 dBm							-	
10 dim								
0 dBm		your the	mm	man	mann	-to		
-10 dBm	-			_		1	-	
-20 dbm				_		1		-
-30 dBm	and the second second	and and a second				bardent	life medayana	maghile
-40 dBm							-	
-58 dBm								
-60 dBm				_				
CF 27.92496 (1001 pts	3	20.4 MHz/		s	pan 204.0 MHz
2 Marker Tabl Type Ref		X-Value	Y-Value	1	Function	1	Function R	thore
MI T1 T2		27.88909 GHz 27.878169 GHz 27.968716 GHz	2.73 dBi -2.18 dBi -0.22 dB	m Occ Bw O	entroid	2	90.5474233 27.92344	
	1						-	

n261, 100MHz Bandwidth, MID CHANNEL, 16QAM (99% BW)

12:45:45 04.07.2021

n261, 100MHz Bandwidth, MID CHANNEL, 64QAM (99% BW)

Note: The worst modulation is QPSK, and we test follow setups used QPSK.

LOW CHANNEL

Module0, PUSCH DFT							
Frequency(MHz) Occupied Bandwidth (99%) (MHz)							
27550.09	QPSK	16QAM	64QAM				
27550.08 91.04 / /							

n261, 100MHz Bandwidth, LOW CHANNEL, QPSK (99% BW)

Ref Level 32.0		t 62.00 dE = RBV 1.2 ms = VBV		de Auto Sweep					= Count 100/100
PA 1 Occupied Ban	idwidth								IFk Max
30 dêm								M1[1]	4.14 dtm 27.513400 GH
20 dêm									
10 dBm-									
1948/1224 1949-1959		12.00	MAR .	mm	minn	mannen	W.		
0 cBm-		M					1		
-10 dBm-							1		
-00 dam									
- Billion	and an internet and	running					hours	annon	hermonie
-40 d8m								_	
- 0.00 M									
-50 d§m									-
-60 dbm									
CF 27.55008 G	Hz		1001 pt	8	2	0.4 MHz/		S	pan 204.0 MHz
2 Marker Table Type Ref		X-Value	1	V-Value	1	Function	i i	Function R	endt
MI TI TZ		27.5134 GH 27.502909 GH 27.593952 GH	ź	4.14 dBm 1.50 dBm 0.96 dBm	Occ Bw Occ Bw Oe Occ Bw Fre	ntroid	1	91.0427929 27.5484	
	-						10	Contrast 44	

14:27:29 04.07.2021

HIGH CHANNEL

Module0, PUSCH DFT							
Frequency(MHz) Occupied Bandwidth (99%) (MHz)							
22200.06	QPSK	16QAM	64QAM				
28299.96 90.98 / /							

n261, 100MHz Bandwidth, HIGH CHANNEL, QPSK (99% BW)

Ref Level 33 # Att		et 63.90 dB = RB		fode Auto Sweep					
PA 1 Occupied Ba	ndwidth		AUBANA S						-
30 dBm				-				M1[1]	4.85 dBn 28.287530 GH
20 dBm							-	-	
10 dBm				Tot .			0	-	
0 dBm	1	X~	man	intern	www.ww	Wwww	-	_	
-10 dBm									-
-20 dBm				_					
-30 dBm	lunus and	maned		-			Johnson	malluburborborg	- ale much
-40 dBm				_				_	
-58 dēm									
-60 dBm				_			-	-	-
CF 28.29996 C	Hz		1001	pts	20	0.4 MHz/		s	pan 204.0 MHz
2 Marker Tabl					- 70		1		
Type Ref ML T1 T2	1 1 1	X-Value 28.28753 GH 28.252774 GP 28.343757 GP	12	V-Value 4.85 dBm 1.80 dBm 1.21 dBm	Occ Bw Occ Bw Oe Occ Bw Fre				
	7							Contract of	

14:34:38 04.07.2021

NOTE: Note: The worst modulation is QPSK, and we test follow setups used QPSK. **n261, 50MHz (99%) MID CHANNEL**

Module1, PUSCH DFT							
Frequency(MHz) Occupied Bandwidth (99%) (MHz)							
27024 06	QPSK	16QAM	64QAM				
27924.96 45.43 / /							

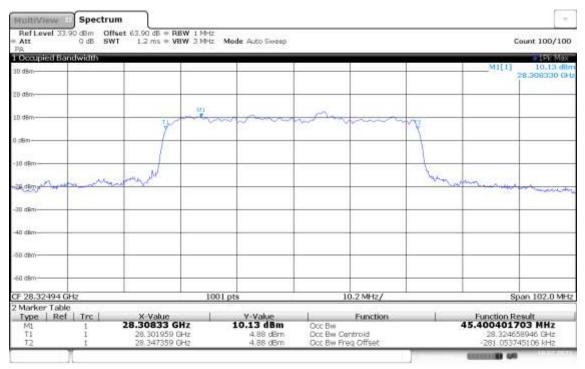
n261, 50MHz Bandwidth, MID CHANNEL, QPSK (99% BW)

19:00:12 18.07.2021

LOW CHANNEL

Module1, PUSCH DFT							
Frequency(MHz) Occupied Bandwidth (99%) (MHz)							
97595	QPSK	16QAM	64QAM				
27525 45.57 / /							

n261, 50MHz Bandwidth, LOW CHANNEL, QPSK (99% BW)


HultiView	Spectrum								
RefLevel 32 # Att PA	OD dBm Offer TWB Bb 0	et 62.00 dB = RB 1.2 ms = VB		Mode Auto Sweep				(ount 100/100
1 Occupied Ba	ndwidth		_						IFK Max
30 dim-								M1[1]	8.24 dilm 27.519420 GH
2D dBm									
10 dilm		12	m	row	m		10		
0 dhin							1		
-10 dBm								-	
-20 dbm	mon	por d	-	-			ban	ming	man
-30 dBm				-					
-40 dBm				_					-
-50 dBm									
-60 dBm									
CF 27.52502 0	364.7		100	l pts		0.2 MHz/			an 102.0 MHz
2 Marker Table			100.	i pus		0.2 00 127		0	3401 102.0 90 12
Type Ref		X-Value	11	Y-Value	1	Function	1	Function R	esult
M1 T1 T2	1 1 1	27.51942 GH 27.502031 GH 27.547603 GH	-tz	8.24 dBm 2.78 dBm 2.10 dBm	Occ Bw Dcc Bw Ce Occ Bw Fr	entroid		45.5715097 27.5248	15 MHz 17197 GHz 09248 kHz
	1							E	Contraction of the local division of the loc

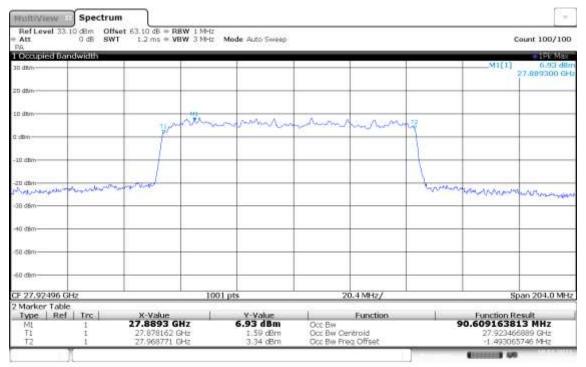
18:33:18 18.07.2021

HIGH CHANNEL

Module1, PUSCH DFT							
Frequency(MHz) Occupied Bandwidth (99%) (MHz)							
20224 02	QPSK	16QAM	64QAM				
28324. 92 45.40 / /							

n261, 50MHz Bandwidth, HIGH CHANNEL, QPSK (99% BW)

19:23:50 18.07.2021



MID CHANNEL

Module1, PUSCH DFT						
Frequency(MHz)	Occupied Bandwidth (99%) (MHz)					
27924.96	QPSK	16QAM	64QAM			
27924.90	90.61	/	/			

n261, 100MHz Bandwidth, MID CHANNEL, QPSK (99% BW)

19:54:40 18.07.2021

LOW CHANNEL

Module1, PUSCH DFT						
Frequency(MHz)	Occupied Bandwidth (99%) (MHz)					
27550.00	QPSK	16QAM	64QAM			
27550. 08	90.63	/	/			

n261, 100MHz Bandwidth, LOW CHANNEL, QPSK (99% BW)

HultiView		Constant and the second							-
Ref Level 33 # Att. PA		et 62.00 dB = RBW 1.2 ms = VBW		de Auto Sweep				c	ount 100/100
1 Occupied B	andwidth								I Ek Max
30 dêm									3,76 d8n 27,564140 GH
20 dêm-									
10 dBm				minun	A ML I	n m.	12		
0 :@m	-	- The state	a manual	Comment Com	~~~~~	And man a	1	-	
-10 dēm-	-			·					
-20 dBm	Anenn	inner					Lun	n-hannananananan	104
-30 d8m-									and the second states
-40 dBm	-								
-50 dBm									
-60 dbm								-	
CF 27.55008	GHz		1001 pt	s	2	0.4 MHz/		S	oan 204.0 MHz
2 Marker Tab		ar an burn	1		- 10	Transform.			
Type Ref Trc M1 1 1 T1 1 1 T2 1 1		Tric X-Value 1 27.56414 GHz 1 27.503363 GHz 1 27.593989 GHz 1 27.593989 GHz		Y-Value 3.76 dBm -0.22 dBm 1.95 dBm	Occ Bw Occ Bw Occ Bw Centroid Occ Bw Freg Offset		Function Result 90.626318673 MHz 27.549675992 GHz -1.404018361 MHz		
10 I	1						111	Contract 40	

19:31:28 18.07.2021

HIGH CHANNEL

Module1, PUSCH DFT						
Frequency(MHz)	Occupied Bandwidth (99%) (MHz)					
28200.06	QPSK	16QAM	64QAM			
28299.96	90.79	/	/			

n261, 100MHz Bandwidth, HIGH CHANNEL, QPSK (99% BW)

HaltiView 1	Spectrum									
	0 dBm Offse 0 dB SWT	t 63.90 dB = RE 1.2 ms = VB		Mode Auto Sweep					Count 100/100	
1 Occupied Ban	dwidth								IFK Max	
30 dBm			S					M1[1]	6.77 ditn 28.264500 GH	
20 dBm			-	-		-		-		
10 dBm-		D. A	in	man		-n sann				
0.c8n		Jun					1	-	-	
-10 dBm			_	-				_		
-20 dim	million	m	-	_			Lawa	manut	A	
-30 dim		_		_				-	- narring	
40 dBm-				_			_			
-50 dBm			-	_		_	_	-		
-60 dBm				_						
CF 28.29996 GH	lz		1001	pts	2	0.4 MHz/		5	pan 204.0 MHz	
2 Marker Table Type Ref	Tec	X-Value	- 11	Y-Value	i.	Function	1	Function P	loadt .	
Mi Ti T2	1 28.2645 GHz 1 28.253004 GHz 1 28.343792 GHz		Hz	6.77 dBm 3,77 dBm 4,73 dBm	Occ Bw Occ Bw Centroid Occ Bw Freq Offset			90.787726 28.2983		
							05		Concession of Street, or other	

20:02:12 18.07.2021