FCC TEST REPORT FOR			
	PC Smart S.A.		
	Tablet		
	Model No.: PTSGOB8W		
	Additional No.: /		
Prepared for Address Prepared by Address	 PC Smart S.A. Carrera 116 no.15-25 Bogota, Colombia Shenzhen LCS Compliance Testing Laboratory Ltd. 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China 		
Tel Fax	: (+86)755-82591330 : (+86)755-82591332		
Web Mail	www.LCS-cert.comwebmaster@LCS-cert.com		
Date of receipt of test sample Number of tested samples Serial number Date of Test Date of Report	 June 14, 2017 1 Prototype June 14, 2017~June 23, 2017 June 23, 2017 		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 1 of 59

	FCC TEST REPORT		
FCC CFR 47 PART 15 C(15.247): 2016			
Report Reference No	LCS170614018AE		
Date of Issue:	June 23, 2017		
Testing Laboratory Name :	Shenzhen LCS Compliance Testing Laboratory Ltd.		
Address::	1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China		
Testing Location/ Procedure :	Full application of Harmonised standards ■ Partial application of Harmonised standards □ Other standard testing method □		
Applicant's Name :	PC Smart S.A.		
Address:	Carrera 116 no.15-25 Bogota, Colombia		
Test Specification			
Standard :	FCC CFR 47 PART 15 C(15.247): 2016		
Test Report Form No :	LCSEMC-1.0		
TRF Originator :	Shenzhen LCS Compliance Testing Laboratory Ltd.		
Master TRF:	Dated 2011-03		
Shenzhen LCS Compliance Testing	g Laboratory Ltd. All rights reserved.		
Shenzhen LCS Compliance Testing I the material. Shenzhen LCS Complia	n whole or in part for non-commercial purposes as long as the Laboratory Ltd. is acknowledged as copyright owner and source of ance Testing Laboratory Ltd. takes no responsibility for and will not g from the reader's interpretation of the reproduced material due to		
Test Item Description :	Tablet		
	RADUART		

Result:	Positive
	Recharge Voltage: DC 5.0V/2000mA
Ratings :	DC 3.7V by Lithium ion polymer battery (3500mAh)
Model/ Type reference :	PTSGOB8W
Trade Mark :	PCSMART

Compiled by:

Aking Jin

Supervised by:

Approved by:

n

Aking Jin/ File administrators

Glin Lu/ Technique principal

Gavin Liang/ Manager

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 59

FCC -- TEST REPORT

Test Report No. : LCS170	0614018AE	June 23, 2017 Date of issue	
Type / Model	: PTSGOB8W		
EUT	: Tablet		
Applicant	: PC Smart S.A.		
Address	: Carrera 116 no.15-25 E	Bogota, Colombia	
Telephone Fax	:/		
	. /		
Manufacturer			
Address	: Carrera 116 no.15-25 E	Bogota, Colombia	
	: /		
Fax	: /		
Factory	: PC Smart S.A.		
Address	: Carrera 116 no.15-25 Bogota, Colombia		
Telephone	:/		
Fax	: /		

Test Result Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
00	June 23, 2017	Initial Issue	Gavin Liang

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 4 of 59

TABLE OF CONTENTS

Description	Page
1. GENERAL INFORMATION	6
1.1 Description of Device (EUT)	
1.2 Support equipment List	
1.3 External I/O Cable	
1.4 Description of Test Facility	
1.5 Statement of the Measurement Uncertainty	
1.6 Measurement Uncertainty 1.7 Description of Test Modes	/ 8
1.8. Frequency of Channels	
2. TEST METHODOLOGY	
2.1 EUT Configuration	
2.2 EUT Exercise	
2.3 General Test Procedures	9
3. SYSTEM TEST CONFIGURATION	10
3.1 Justification	
3.2 EUT Exercise Software	
3.3 Special Accessories	
3.4 Block Diagram/Schematics	
3.5 Equipment Modifications	10
3.6 Test Setup 4. SUMMARY OF TEST RESULTS	
5. SUMMARY OF TEST EQUIPMENT	
6. MEASUREMENT RESULTS	
6.1 Peak Power	
6.2 Frequency Separation and 20 dB Bandwidth	
6.3 Number of Hopping Frequency	
6.4 Time of Occupancy (Dwell Time) 6.5 Conducted Spurious Emissions and Band Edges Test	
6.5 Conducted Spurious Emissions and Band Edges Test 6.6 Restricted Band Emission Limit	
6.7. AC Power line conducted emissions	
6.8. Band-edge measurements for radiated emissions	
6.9. Pseudorandom frequency hopping sequence	57
6.10. ANTENNA REQUIREMENT	58
7. TEST SETUP PHOTOGRAPHS OF EUT	
8. EXTERIOR PHOTOGRAPHS OF THE EUT	
9. INTERIOR PHOTOGRAPHS OF THE EUT	59

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 5 of 59

1. GENERAL INFORMATION

1.1 Description of Device (EUT)

: Tablet
: PTSGOB8W
:/
: PTSGOB8W
: EM_H8_V2.1
: Windows 10 home 1607 14393.1066
: DC 3.7V by Lithium ion polymer battery (3500mAh)
Recharge Voltage: DC 5.0V/2000mA
: 2402MHz-2480MHz
: GFSK,π/4DQPSK, 8DPSK for Bluetooth 4.0 DSS
GFSK for Bluetooth 4.0 DTS
: V4.0
: 79 Channels for Bluetooth 4.0 DSS
40 Channels for Bluetooth 4.0 DTS
: 1MHz for Bluetooth 4.0 DSS
2MHz for Bluetooth 4.0 DTS
: PIFA Antenna
: 2.0dBi (Max.)
: Supported 802.11b/802.11g/802.11n
: IEEE 802.11b:2412-2462MHz
IEEE 802.11g:2412-2462MHz
IEEE 802.11n HT20:2412-2462MHz
IEEE 802.11n HT40:2422-2452MHz
: IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK)
IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)
IEEE 802.11n: OFDM (64QAM, 16QAM,QPSK,BPSK)
: 11 Channels for WIFI 20MHz Bandwidth(802.11b/g/n-HT20)
7 Channels for WIFI 40MHz Bandwidth(802.11n-HT40)
: PIFA antenna
: 2.0dBi (Max.)
: 10°C to 60°C

1.2 Support equipment List

Manufacturer	Description	Model	Serial Number	Certificate
Shenzhen juke electronics Co., Ltd	AC/DC Adapter	JK050200- S04USA		VOC

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 6 of 59

1.3 External I/O Cable

I/O Port Description	Quantity	Cable
TF Card Slot	1	N/A
Micro USB Port	1	N/A
Earphone Jack	1	N/A
Mini HDMI	1	N/A

1.4 Description of Test Facility

CNAS Registration Number. is L4595. FCC Registration Number. is 899208.

Industry Canada Registration Number. is 9642A-1.

ESMD Registration Number. is ARCB0108.

UL Registration Number. is 100571-492.

TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5 Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6 Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	3.10dB	(1)
		30MHz~200MHz	2.96dB	(1)
Radiation Uncertainty	:	200MHz~1000MHz	3.10dB	(1)
		1GHz~26.5GHz	3.80dB	(1)
		26.5GHz~40GHz	3.90dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	1.63dB	(1)
Power disturbance	:	30MHz~300MHz	1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 7 of 59

1.7 Description of Test Modes

Bluetooth operates in the unlicensed ISM Band at 2.4GHz. With basic data rate feature, the data rates can be up to 1 Mb/s by modulating the RF carrier using GFSK techniques. The EUT works in the X-axis, Y-axis, Z-axis. The following operating modes were applied for the related test items. All test modes were tested, only the result of the worst case was recorded in the report.

Mode of Operations	Frequency Range (MHz)	Data Rate (Mbps)		
	2402	1/2/3		
BT V 4.0 DSS	2441	1/2/3		
	2480	1/2/3		
For Conducted Emission				
Test Mode	-	TX Mode		
For Radiated Emission				
Test Mode	-	TX Mode		

Worst-case mode and channel used for 150 kHz-30 MHz power line conducted emissions was the mode and channel with the highest output power that was determined to be TX (1Mbps).

Worst-case mode and channel used for 9kHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be TX(1Mbps-Low Channel).

Pre-test AC conducted emission at power adapter mode.

Pre-test AC conducted emission at both voltage AC 120V/60Hz and AC 240V/60Hz, recorded worst case.

1.8. Frequency of Channels

Channel Frequency(MHz) Channel Frequency(MHz) 1 2402 41 2442 2 2403 ------3 2404 -------------77 2478 ----78 2479 ---2440 79 2480 39 40 2441

Bluetooth V4.0 DSS

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR PART 15C 15.207, 15.209, 15.247 and DA 00-705.

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209, 15.247 under the FCC Rules Part 15 Subpart C.

2.3 General Test Procedures

2.3.1 Conducted Emissions

The EUT is directly placed on the ground. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turntable, which is directly placed on the ground. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a continuous transmits condition.

3.2 EUT Exercise Software

The system was configured for Bluetooth testing in a continuous transmits condition and change test channels by software (installed into the EUT) provided by application.

3.3 Special Accessories

N/A.

3.4 Block Diagram/Schematics

Please refer to the related document.

3.5 Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

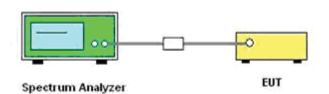
3.6 Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart C						
FCC Rules	Description of Test	Result				
§15.247(b)(1)	Maximum Conducted Output Power	Compliant				
§15.247(c)	Frequency Separation And 20 dB Bandwidth	Compliant				
§15.247(a)(1)(ii)	Number Of Hopping Frequency	Compliant				
§15.247(a)(1)(iii)	Time Of Occupancy (Dwell Time)	Compliant				
§15.209, §15.205	Conducted Spurious Emissions and Band Edges Test	Compliant				
§15.209, §15.247(d)	Radiated and Conducted Spurious Emissions	Compliant				
§15.205	Emissions at Restricted Band	Compliant				
§15.207(a)	Conducted Emissions	Compliant				
§15.203	Antenna Requirements	Compliant				
§15.247(i)§2.1093	RF Exposure	Compliant				

5. SUMMARY OF TEST EQUIPMENT


Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1	Power Sensor	R&S	NRV-Z51	100458	2017-06-17	2018-06-16
2	Power Sensor	R&S	NRV-Z32	10057	2017-06-17	2018-06-16
3	Power Meter	R&S	NRVS	100444	2017-06-17	2018-06-16
4	DC Filter	MPE	23872C	N/A	2017-06-17	2018-06-16
5	RF Cable	Harbour Industries	1452	N/A	2017-06-17	2018-06-16
6	SMA Connector	Harbour Industries	9625	N/A	2017-06-17	2018-06-16
7	Spectrum Analyzer	Agilent	N9020A	MY50510140	2016-10-27	2017-10-26
8	Signal analyzer	Agilent	E4448A(Ext ernal mixers to 40GHz)	US44300469	2017-06-15	2018-06-14
9	RF Cable	Hubersuhne	Sucoflex104	FP2RX2	2017-06-17	2018-06-16
10	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2017-06-17	2018-06-16
11	Amplifier	SCHAFFNER	COA9231A	18667	2017-06-17	2018-06-16
12	Amplifier	Agilent	8449B	3008A02120	2017-06-15	2018-06-14
13	Amplifier	MITEQ	AMF-6F-260 400	9121372	2017-06-15	2018-06-14
14	Loop Antenna	R&S	HFH2-Z2	860004/001	2017-06-17	2018-06-16
15	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2017-06-09	2018-06-08
16	Horn Antenna	EMCO	3115	6741	2017-06-09	2018-06-08
17	Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	2017-06-09	2018-06-08
18	RF Cable-R03m	Jye Bao	RG142	CB021	2017-06-17	2018-06-16
19	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2017-06-17	2018-06-16
20	EMI Test Receiver	ROHDE & SCHWARZ	ESCI	101142	2017-06-17	2018-06-16
21	Artificial Mains	ROHDE & SCHWARZ	ENV216	101288	2017-06-17	2018-06-16
22	EMI Test Software	AUDIX	E3	N/A	2017-06-17	2018-06-16

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 12 of 59

6. MEASUREMENT RESULTS

6.1 Peak Power

6.1.1 Block Diagram of Test Setup

6.1.2 Limit

According to §15.247(b)(1), For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

6.1.3 Test Procedure

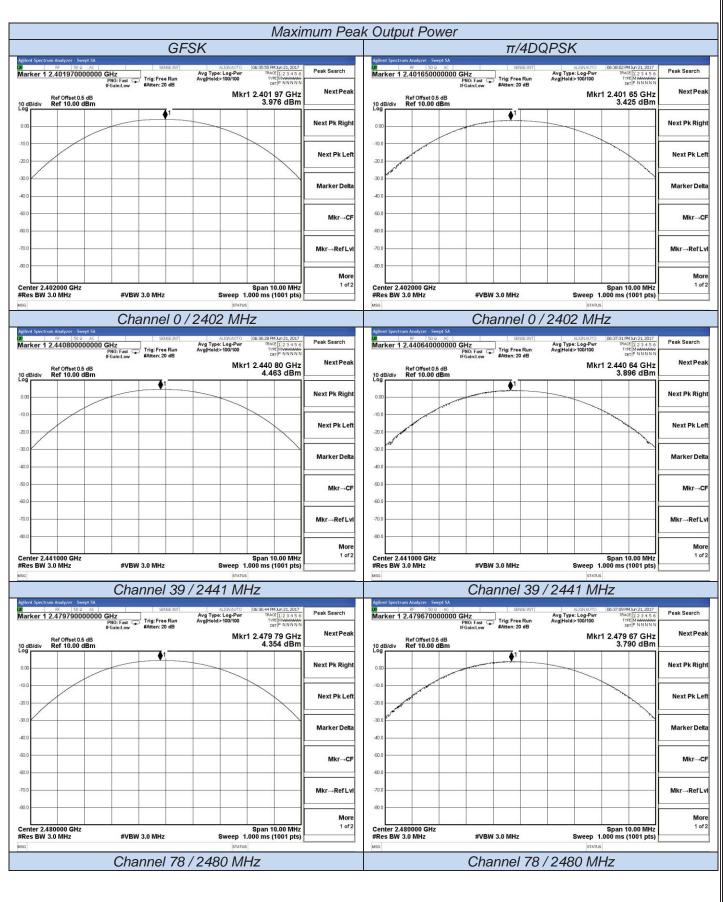
The transmitter output (antenna port) was connected to the spectrum analyzer.

According to ANSI C63.10:2013 Output power test procedure for frequency-hopping spread-spectrum (FHSS) devices; this is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test:

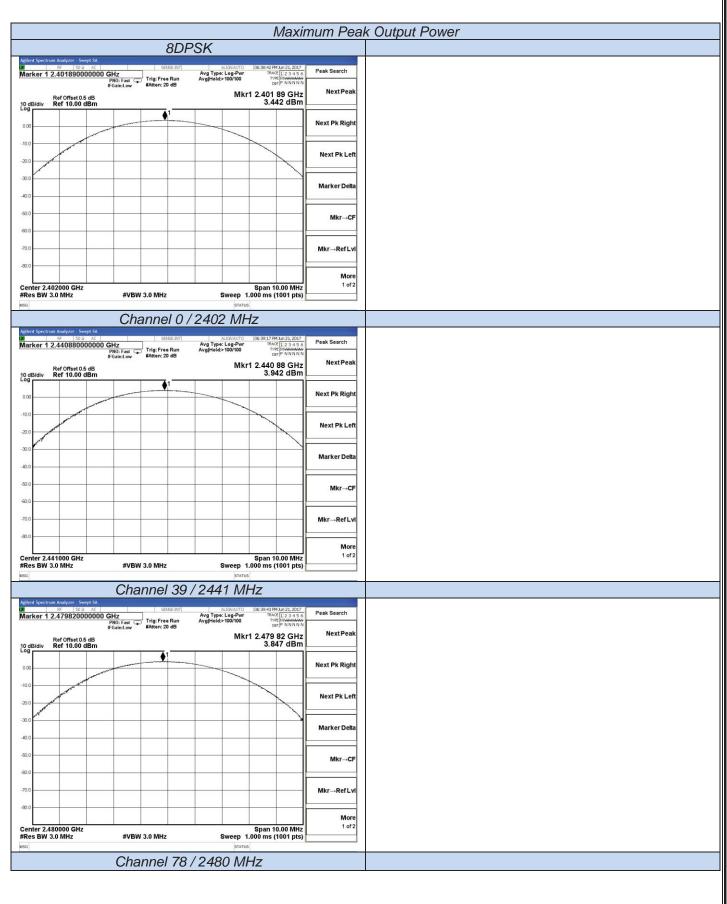
a) Use the following spectrum analyzer settings:

- 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- 2) RBW > 20 dB bandwidth of the emission being measured.
- 3) VBW ≥ RBW.
- 4) Sweep: Auto.
- 5) Detector function: Peak.
- 6) Trace: Max hold.
- b) Allow trace to stabilize.
- c) Use the marker-to-peak function to set the marker to the peak of the emission.
- d) The indicated level is the peak output power, after any corrections for external attenuators and cables.

6.1.4 Test Results


Test Mode	Channel	Frequency (MHz)	Measured Maximum Peak Power (dBm)	Limits (dBm)	Verdict
	0	2402	3.976		
GFSK	39	2441	4.463	30	PASS
	78	2480	4.354		
	0	2402	3.425		
π/4DQPSK	39	2441	3.896	21	PASS
	78	2480	3.790		
	0	2402	3.442		
8DPSK	39	2441	3.942	21	PASS
	78	2480	3.847		

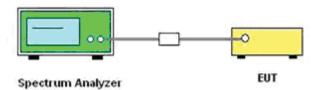
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 13 of 59


Remark:

- 1. Test results including cable loss;
- 2. please refer to following plots;
- 3. Measured output power at difference Packet Type for each mode and recorded worst case for each mode.
- 4. Worst case data at DH5 for GFSK, π /4DQPSK, 8DPSK modulation type;

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 14 of 59

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 15 of 59


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 16 of 59

6.2 Frequency Separation and 20 dB Bandwidth

6.2.1 Limit

According to §15.247(c) or A8.1(a), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

6.2.2 Block Diagram of Test Setup

6.2.3 Test Procedure

Frequency separation test procedure :

1). Place the EUT on the table and set it in transmitting mode.

2). Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.

3). Set center frequency of Spectrum Analyzer = middle of hopping channel.

4). Set the Spectrum Analyzer as RBW = 100 kHz, VBW = 300 kHz, Span = wide enough to capture the peaks of two adjacent channels, Sweep = auto.

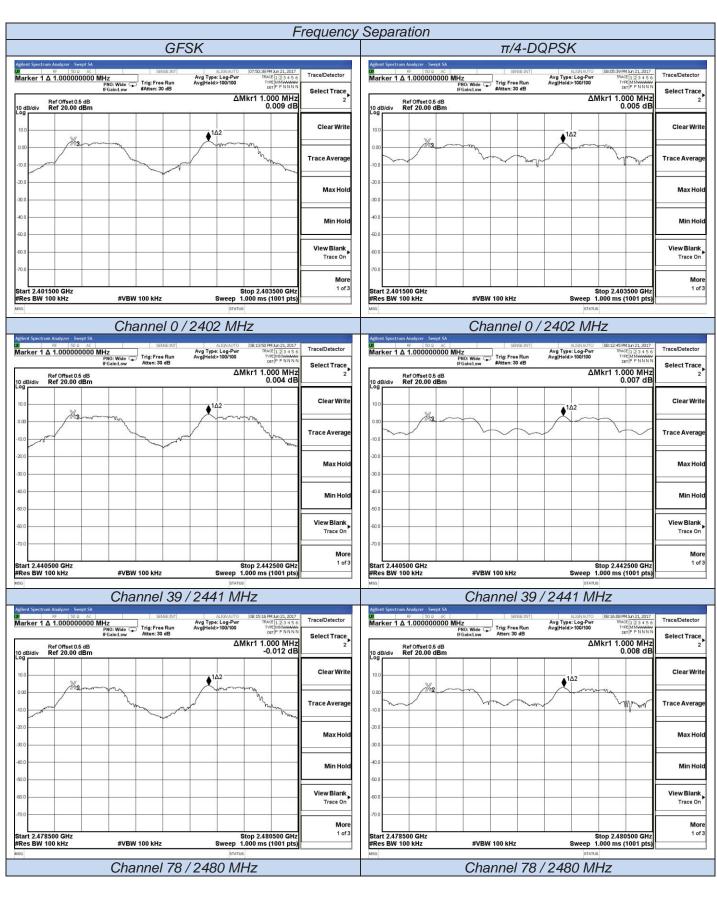
5). Max hold, mark 2 peaks of hopping channel and record the 2 peaks frequency.

20dB bandwidth test procedure:

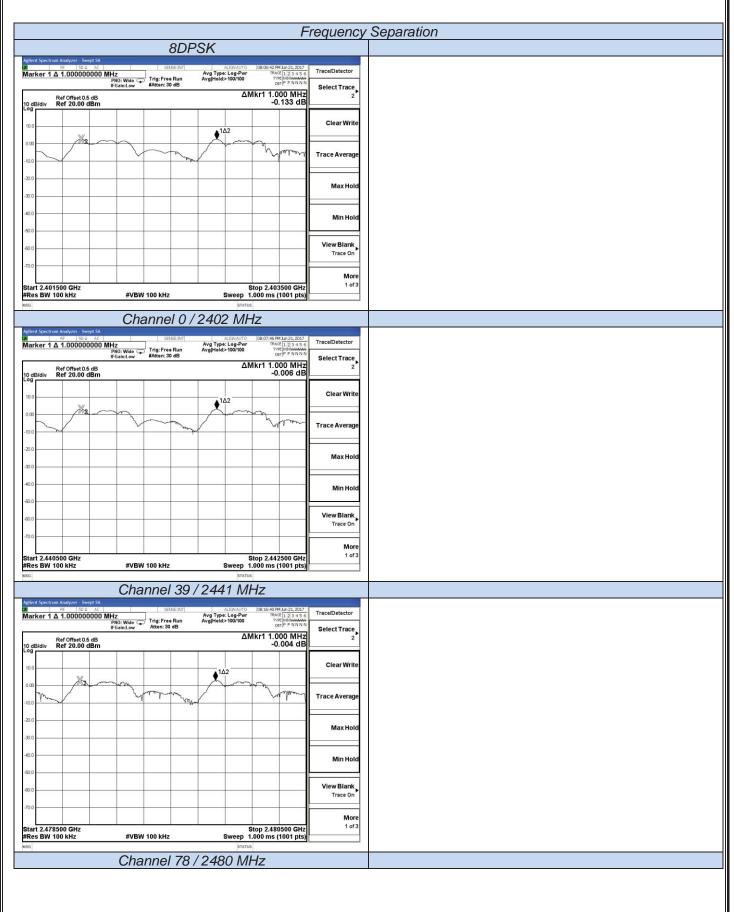
1). Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel.

2). RBW \geq 1% of the 20 dB bandwidth, VBW \geq RBW.

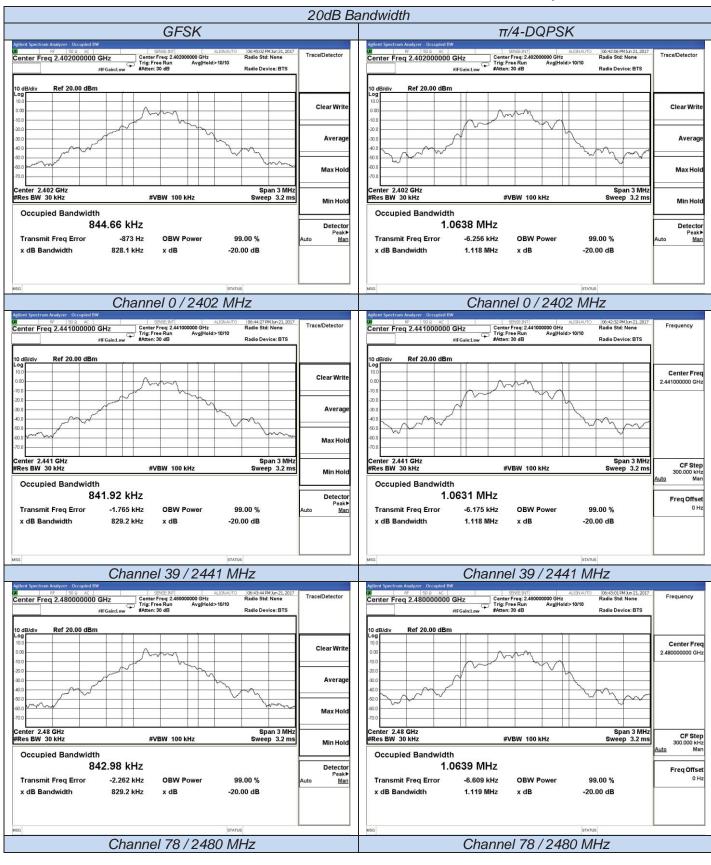
- 3). Detector function = peak.
- 4). Trace = max hold.


6.2.4 Test Results

Т	he Measurement Re	sult With 1Mbps For	GFSK Modulation	
Channel	20dB Bandwidth (KHz)	Channel Separation (MHz)	Limit (KHz)	Result
Low	828.1		828.1	Pass
Middle	829.2	1.000	829.2	Pass
High	829.2		829.2	Pass
The	Measurement Resu	-DQPSK Modulation	on	
Channel	20dB Bandwidth (KHz)	Channel Separation (MHz)	Limit (KHz)	Result
Low	1118.0		745.33	Pass
Middle	1118.0	1.000	745.33	Pass
High	1119.0		746.00	Pass
Tł	ne Measurement Res	-DPSK Modulatior	1 IIII	
Channel	20dB Bandwidth (KHz)	Channel Separation (MHz)	Limit (KHz)	Result
Low	1164.0		776.00	Pass
Middle	1165.0	1.000	776.67	Pass
High	1162.0		774.67	Pass


Remark:

1. Test results including cable loss;

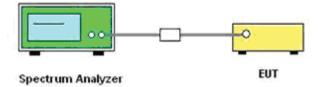

please refer to following plots;
 Measured at difference Packet Type for each mode and recorded worst case for each mode.
 Worst case data at DH5 for GFSK, π/4-DQPSK, 8DPSK modulation type;

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 19 of 59

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 20 of 59

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 21 of 59

Test Plot of Test Result BODESK Center Freq 2.40200000 GHz Center Freq 2.4020000 GHz Center Freq 2.402000 GHz Center Freq 2.402000 GHz Center Freq 2.402 GHz Center Freq 2.402 GHz Center Freq 2.402 GHz <th< th=""><th></th></th<>	
Network Operating Spectrum Australia Special Nith Australia Australia	
Image: State Action State Action Allow Action Allow Action Allow Action Center Freq 2.402000000 GHz Center Freq 2.40200000 GHz Radio State Nene. Trace/Detector Image: State Action Image: State Action Radio Device: BTS Trace/Detector Image: State Action Image: State Action Radio Device: BTS Clear Write Image: State Action Image: State Action Average	
Log Clear Write 10.0	
300 Average	
70.0	
#Res BW 30 kHz #VBW 100 kHz Sweep 3.2 ms Min Hold Occupied Bandwidth	
1.1014 MHz Detector Transmit Freq Error -5.737 kHz OBW Power 99.00 % x dB Bandwidth 1.164 MHz x dB -20.00 dB	
Channel 0 / 2402 MHz	
Aglent Spectrum Analyzer Occupied BW SPREEINT ALIGNATIO Occupied Std Trace/Detector 0 HF 19.0 p. AC SPREEINT ALIGNATIO Occupied Std Radio Std None Center Freq 2.441000000 GHz Trig: Free Run Avg Hold>10/10 Radio Std: None Trace/Detector #IFGaint.ew Atten: 30 dB Radio Device: BTS Radio Device: BTS Radio Device: BTS	
Io abidity Ref 20.00 dBm Log Clear Write Ioo Max Hold	
70.0 Center 2.441 GHz Frees BW 30 kHz #VBW 100 kHz Sweep 3.2 ms Min Hold	
Occupied Bandwidth	
1.1017 MHz Detector Transmit Freq Error -5.753 kHz OBW Power 99.00 % Auto Man	
x dB Bandwidth 1.165 MHz x dB -20.00 dB	
Channel 39 / 2441 MHz	
Aglent Spectrum Analyzer Occupied BW Aglent Spectrum Analyzer Occupied BW Aglent Spectrum Analyzer Occupied BW Aglent Spectrum Analyzer Occupied BW Aglend Spectrum Agglende> 0012 Ref Value 20.00 dBm Firg-Free 2.4800000 CHz Radio Std: None Firg-Free Run Avglende> 0010 Radio Device: BTS	
10 dB/div Ref 20.00 dBm 100 Clear Write 100 Clear Write 100 Clear Write 100 Clear Write 100 Max Hold 000 Max Hold	
#Res BW 30 kHz #VBW 100 kHz Sweep 3.2 ms Min Hold	
Occupied Bandwidth 1.1006 MHz Transmit Freq Error -5.710 kHz OBW Power 99.00 % Auto Man x dB Bandwidth 1.162 MHz x dB -20.00 dB	
Channel 78 / 2480 MHz	


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 22 of 59

6.3 Number of Hopping Frequency

6.3.1 Limit

According to §15.247(a)(1)(ii) or A8.1 (d), Frequency hopping systems operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels.

6.3.2 Block Diagram of Test Setup

6.3.3 Test Procedure

1). Place the EUT on the table and set it in transmitting mode.

2). Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.

3). Set Spectrum Analyzer Start=2400MHz, Stop = 2483.5MHz, Sweep = auto.

4). Set the Spectrum Analyzer as RBW, VBW=1MHz.

5). Max hold, view and count how many channel in the band.

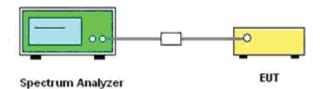
6.3.4 Test Results

The Measuremer	nt Result With The Wors	t Case of 1Mbps For	GFSK Modulation
Total No. of	Measurement Result (No. of Ch)	Limit (MHz)	Result
Hopping Channel	79	≥15	Pass

Note: The test data refer to the following page.

SHENZHEN LCS (COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2ABFV-PTSGOB8W	Re	port No.: LCS170614018AE
DIIDITEITEIT DOD C		10010:200101110000000	110	

Number Of Hopping Frequency			
Agind Spectrum Anlyzer, Swyet SA Stree Infl ALIONATIO (07/49/27 PM Xn 21, 2017) Marker 1 ∆ 78,000000000 MHz Stree Infl Augrave Log-Pwr Augrave Log-Pwr Trig: Free Run Avg Type: Log-Pwr Augrave Log-Pwr Trig: Stree Run Avg Type: Log Avg Trig: Stree Run Avg Trig: Stree R	Trace/Detector Select Trace		
	Clear Write		
-10.0	Trace Average		
	Max Hold		
40.0	Min Hold		
40.0	View Blank Trace On		
Start 2.40000 GHz Stop 2.48350 GHz #Res BW 1.0 MHz \$WBW 1.0 MHz	More 1 of 3		
GFSK			


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 24 of 59

6.4 Time of Occupancy (Dwell Time)

6.4.1 Limit

According to §15.247(a)(1)(iii) or A8.1 (d), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

6.4.2 Block Diagram of Test Setup

6.4.3 Test Procedure

1). Place the EUT on the table and set it in transmitting mode.

2). Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.

- 3). Set center frequency of Spectrum Analyzer = operating frequency.
- 4). Set the Spectrum Analyzer as RBW, VBW=1MHz, Span = 0Hz, Sweep = auto.
- 5). Repeat above procedures until all frequency measured was complete.
- 6.4.4 Test Results

The Dwell Time=Burst Width*Total Hops. The detailed calculations are showed as follows:

The duration for dwell time calculation: 0.4[s]*hopping number=0.4[s]*79[ch]=31.6[s*ch];

The burst width [ms/hop/ch], which is directly measured, refers to the duration on one channel hop.

The hops per second for all channels: The selected EUT Conf uses a slot type of 5-Tx&1-Rx and a hopping rate of 1600 [ch*hop/s] for all channels. So the final hopping rate for all channels is 1600/6=266.67 [ch*hop/s]

The hops per second on one channel: 266.67 [ch*hops/s]/79 [ch]=3.38 [hop/s];

The total hops for all channels within the dwell time calculation duration: 3.38 [hop/s]*31.6[s*ch]=106.67 [hop*ch];

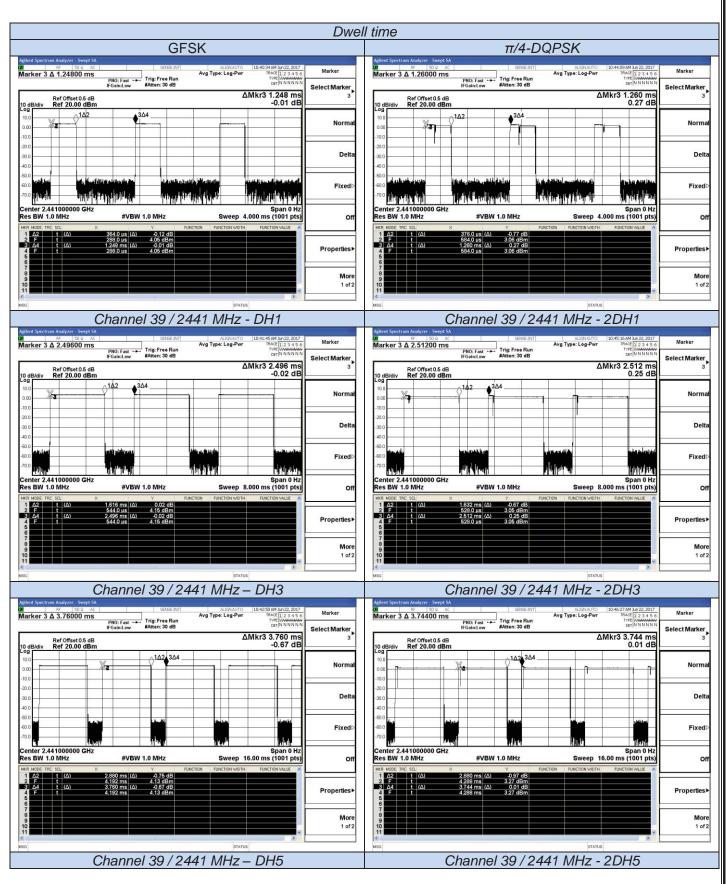
The dwell time for all channels hopping: 106.67 [hop*ch]*Burst Width [ms/hop/ch].

Mode	Frequency (MHz)	Burst Type	Pulse Width (ms)	Dwell Time (ms)	Limit (ms)	Verdict
		DH1	0.364	116.48		
GFSK	2441	DH3	1.616	258.56	400	PASS
		DH5	2.880	307.20		
		2DH1	0.376	120.32		
π/4-DQPSK	2441	2DH3	1.632	261.12	400	PASS
		2DH5	2.880	307.20		
		3DH1	0.376	120.32		
8DPSK	2441	3DH3	1.616	258.56	400	PASS
		3DH5	2.864	305.49		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 25 of 59

Remark:

- 1. Test results including cable loss;
- 2. please refer to following plots;
- 3. Measured at difference Packet Type for each mode and recorded woest case for each mode.
- 4. Worst case data at DH5 for GFSK, $\pi/4$ -DQPSK ,8DPSK modulation type;
- 5. Dwell Time Calculate formula:


DH1: Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second

DH3: Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second

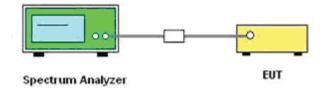
DH5: Dwell time=Pulse Time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second

6. Measured at low, middle and high channel, recorded worst at middle channel;

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 26 of 59

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 27 of 59

	Dwe	ll time
Adlent Spectrum Analyzer - Sweet SA		
Aglent Spectrum Analyzer : Swept SA 27 RF 50 0 A AC SPEE INT ALIGNAUTO 10-074749AM 3/n22,2017 Marker 3 ∆ 1.24800 ms FN0: East →→ Trig: Free Run FGoint.uw Atten: 30 dB LET State Set Set Set Set Set Set Set Set Set S	Marker	
If Galinitiew #Atten: 30 dB Del[NINNN] Ref Offset 0.5 dB ΔMkr3 1.248 ms -0.08 dB 10 dB/div Ref 20.00 dBm -0.08 dB	Select Marker	
	Normal	
	Delta	
	Fixed⊳	
Center 2.441000000 GHz Span 0 Hz Res BW 1.0 MHz #VBW 1.0 MHz Sweep 4.000 ms (1001 PHz) Mexi Mode Tre Sci. x y Flaction Vietner Micro Vietner	Off	
1 Δ2 t (Δ) 376 0 μs (Δ) 0.38 dB 2 F t 668 0 μs 3.06 dBm 3 Δ4 t (Δ) 1.248 ms (Δ) -0.08 dB 4 F t 668 0 μs -3.05 dBm 5 t t 668 0 μs -3.05 dBm	Properties►	
	More 1 of 2	
Channel 39 / 2441 MHz - 3DH1		
Aglent Spectrum Audyzer. Swept SA 9 9 100 2002 42 5002 AC 9 502 AC 9 2002 1048500M3/br22.2017 Marker 3 Δ 2.504000 ms Tale Extra Park Avg Type: Log-Pwr	Marker	
PHO:Fast → This release to the formation of the formati	Select Marker	
	Normal	
	Delta	
	Fixed⊳	
Tr T1 Imm T1 T1 Im	Off	
1 Δ2 F t Δ3 cd4 b us 3.27 dBm 22 F t 644.0 us 3.27 dBm 5 644.0 us 3.27 dBm 645.0 dB 645.0 us 3.27 dBm 645.0 us 65.0 us <	Properties►	
	More 1 of 2	
Channel 39 / 2441 MHz - 3DH3 Addent Spectrum Analyzer: Swept SA		
Marker 3 Δ 3.72800 ms AUSNUTO 10.49490 M 30.22,2017 PNO: Fast →→ IFGainLow Frig: Free Run #Atten: 30 dB Avg Type: Log Pwr trig: Vere Run Betten: 30 dB	Marker Select Marker	
Ref 07fset 0.5 dB ΔMkr3 3.728 ms 10 dB/div Ref 20.00 dBm 0.80 dB Log 0 0	3	
	Normal	
	Delta	
	Fixed⊳	
Center 2.441000000 GHz Span 0 Hz Span 0 Hz Res BW 1.0 MHz #VBW 1.0 MHz Sweep 16.00 ms (1001 pts) MRR MODE TRC SQL X Y Function Function worth Function worth	Off	
1 Δ2 t (Δ) 2.86 ms; (Δ) 0.05 dB 2 F t 1.840 ms; 2.46 dBm 3 Δ4 t (Δ) 3.728 ms; (Δ) 0.80 dB 4 F t 1.840 ms; 2.45 dBm 5 5 5	Properties►	
7 8 9 10 11	More 1 of 2	
Channel 39 / 2441 MHz – 3DH5		


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 28 of 59

6.5 Conducted Spurious Emissions and Band Edges Test

6.5.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

6.5.2 Block Diagram of Test Setup

6.5.3 Test Procedure

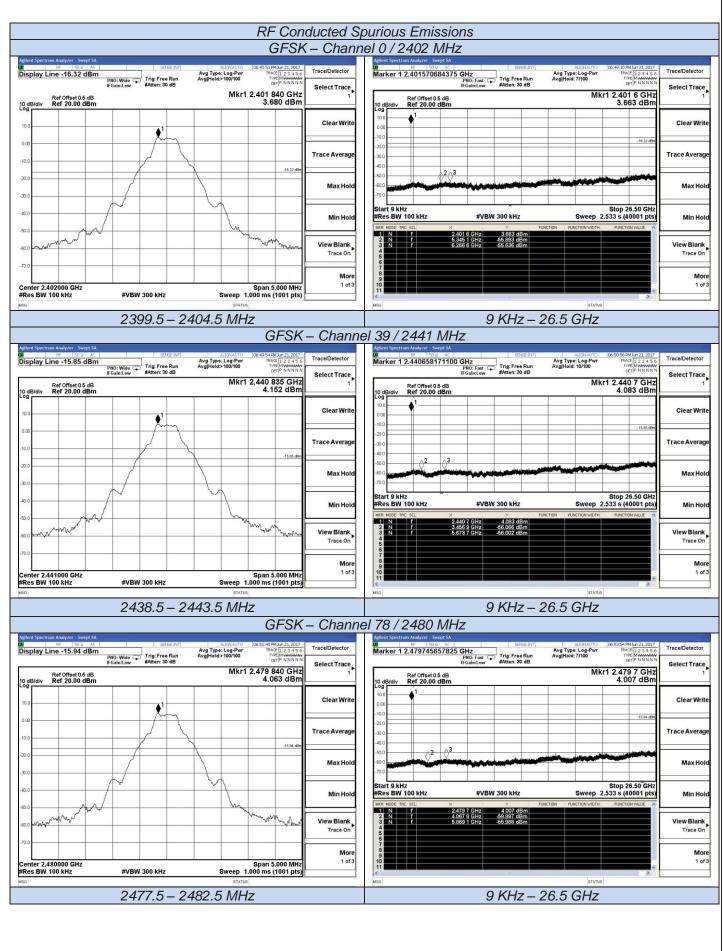
Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 KHz. The video bandwidth is set to 300 KHz.

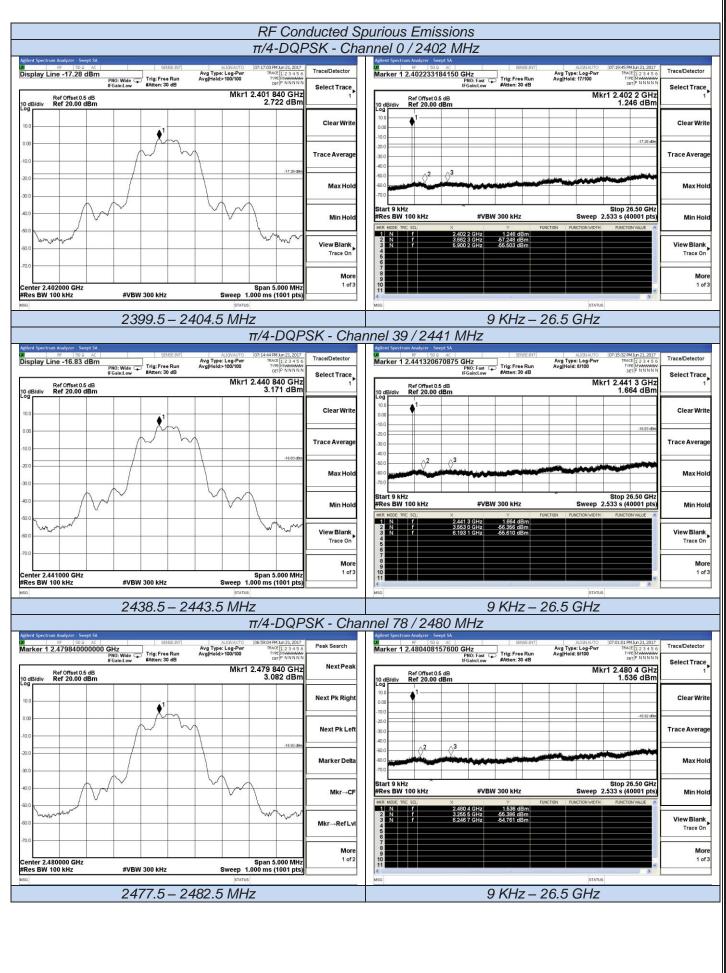
Measurements are made over the 9 kHz to 26.5GHz range with the transmitter set to the lowest, middle, and highest channels

6.5.4 Test Results of Conducted Spurious Emissions

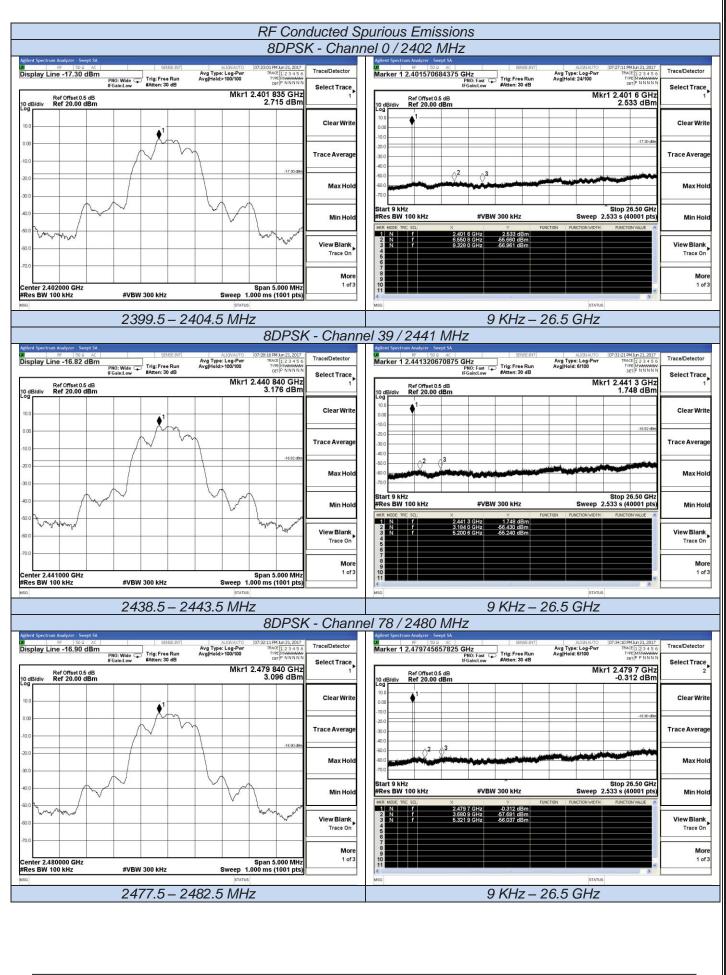
No non-compliance noted. Only record the worst test result in this report. The test data refer to the following page.

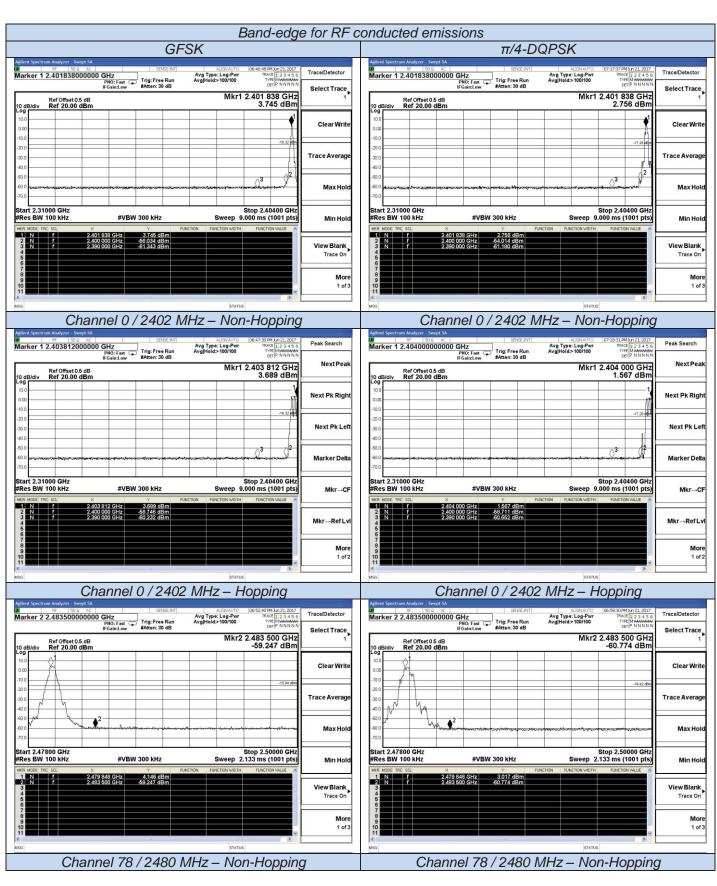

Test Mode	Channel	Frequency (MHz)	Reading Frequency (MHz)	Conducted Spurious Emission (dBm)	Limits (dBc)	Verdict						
	0	2402	5345.1	-55.893	<20	PASS						
	0	2402	6266.6	-55.636	<20	FA00						
GFSK	39	2441	3456.9	-56.066	<20	PASS						
GFSK	39	2441	5673.7	-56.002	<20	FA33						
	78	2480	4067.8	-58.897	-20	PASS						
	78	2480	5869.1	-55.988	<20	PASS						
	0	0	0	0	2402	3662.3	-57.248	<20	PASS			
π/4-DQPSK 8DPSK		2402	5900.2	-55.503	<20	FASS						
	20	2441	3553.0	-56.356	<20	PASS						
	39	2441	6193.1	-55.610	<20	PASS						
	78	78	78	78	78	78	78	2400	3255.5	-55.386	.00	DACO
								2480	6246.7	-54.761	<20	PASS
	0	-	2402	6550.8	-55.660	-20	PASS					
		0 2402	9328.0	-56.961	<20	PASS						
			0444	3184.0	-56.430	.00						
	39	2441	5200.6	-55.240	<20	PASS						
	70	2400	3680.9	-57.691		DAGO						
	78	2480	5321.9	-56.037	<20	PASS						

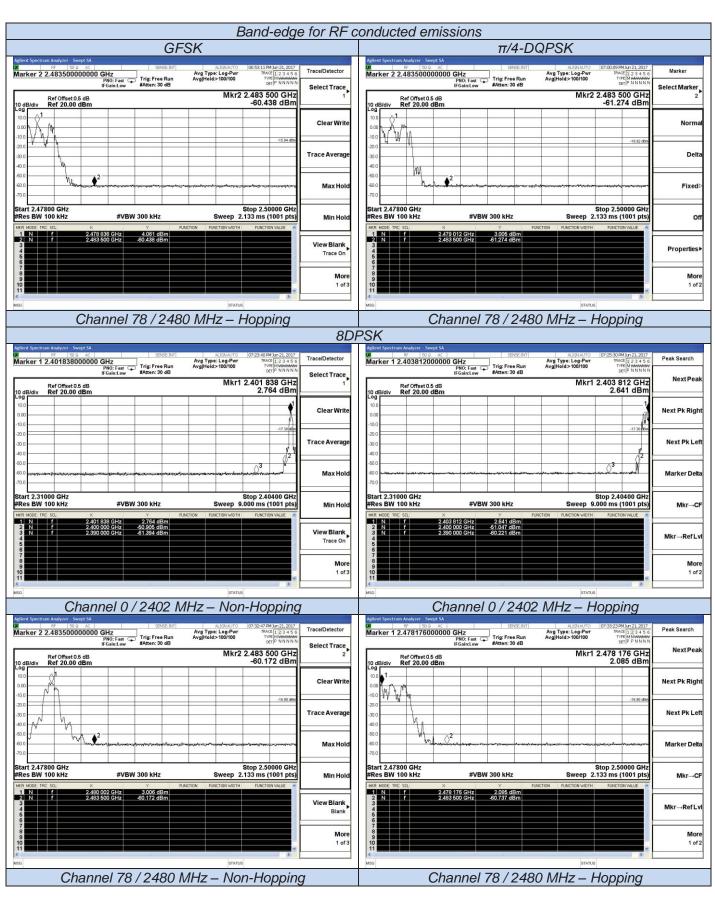
Remark:


1. Test results including cable loss;

2. please refer to following plots;


3. Measured at difference Packet Type for each mode and recorded worst case for each mode. 4. Worst case data at DH5 for GFSK, π /4-DQPSK, 8DPSK modulation type;


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 31 of 59


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 32 of 59

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 33 of 59

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 34 of 59

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 35 of 59

6.6 Restricted Band Emission Limit

6.6.1. Standard Applicable

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz		MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(\2\)	
13.36-13.41				

\1\ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

\2\ Above 38.6

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

6.6.2. Measuring Instruments and Setting

Please refer to section 6 of equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting	
Attenuation	Auto	
Start Frequency	1000 MHz	
Stop Frequency	10 th carrier harmonic	
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average	
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 36 of 59

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

6.6.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 0.8 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.

- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position ($\pm 45^{\circ}$) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

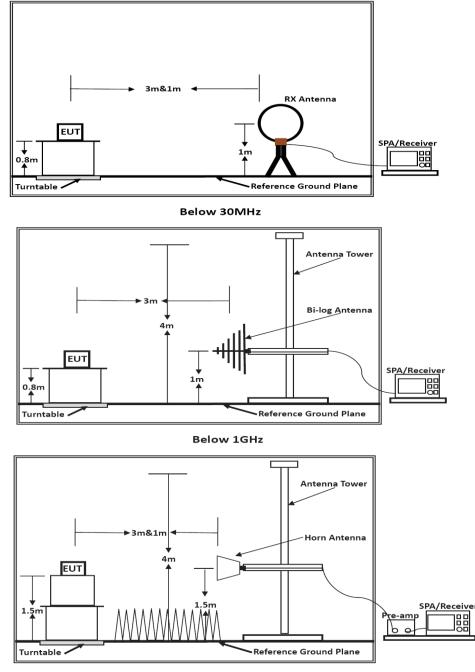
4) Sequence of testing above 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Premeasurement:


--- The antenna is moved spherical over the EUT in different polarizations of the antenna.

Final measurement:

--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

6.6.4. Test Setup Layout

Above 1GHz

Above 10 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1.5m.

Distance extrapolation factor = 20 log (specific distanc [3m] / test distance [1.5m]) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 41 of 59

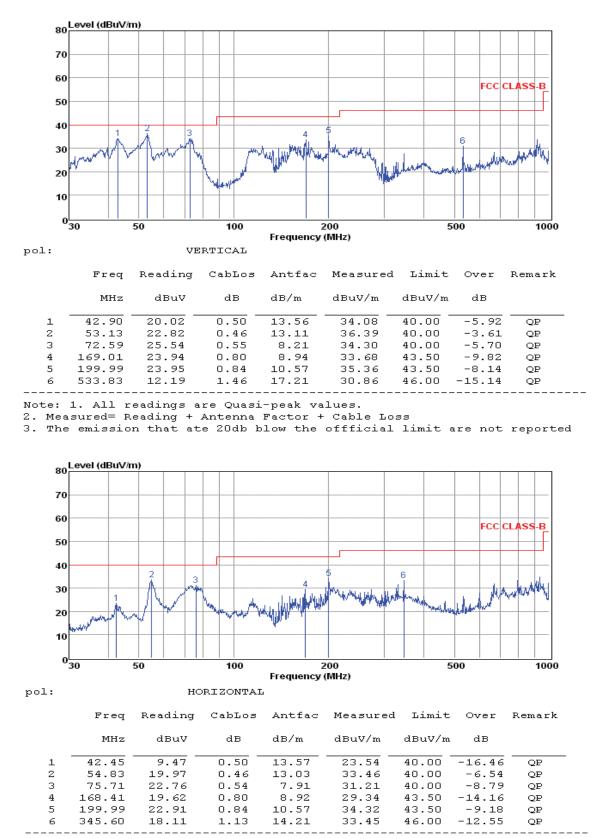
6.6.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.6.6. Results of Radiated Emissions (9 kHz~30MHz)

Temperature	25 ℃		H	umidity		60%	
Test Engineer	Aking .	Jin	Configurations		n Configurations BT		BT
Freq. (MHz)	Level (dBuV)		Limit B)	: Over Limit (dBuV)		Remark	
-	-		-	-		See Note	

Note:


The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor.

PASS.

Only record the worst test result in this report.

The test data please refer to following page.

Below 1GHz (Low Channel)

Note: 1. All readings are Quasi-peak values. 2. Measured= Reading + Antenna Factor + Cable Loss

3. The emission that ate 20db blow the offficial limit are not reported

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 43 of 59

The res	ult for GFS	K, Chanr	nel 0 / 24	02 MHz					
Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4804.00	53.15	33.06	35.04	3.94	55.11	74.00	-18.89	Peak	Horizontal
4804.00	41.31	33.06	35.04	3.94	43.27	54.00	-10.73	Average	Horizontal
4804.00	53.01	33.06	35.04	3.94	54.97	74.00	-19.03	Peak	Vertical
4804.00	39.56	33.06	35.04	3.94	41.52	54.00	-12.48	Average	Vertical
7206.00	52.87	34.25	36.11	4.45	55.46	74.00	-18.54	Peak	Horizontal
7206.00	41.10	34.25	36.11	4.45	43.69	54.00	-10.31	Average	Horizontal
7206.00	51.48	34.25	36.11	4.45	54.07	74.00	-19.93	Peak	Vertical
7206.00	37.55	34.25	36.11	4.45	40.14	54.00	-13.86	Average	Vertical
9608.00	47.93	35.14	37.23	4.62	50.46	74.00	-23.54	Peak	Horizontal
9608.00	36.99	35.14	37.23	4.62	39.52	54.00	-14.48	Average	Horizontal
9608.00	50.34	35.14	37.23	4.62	52.87	74.00	-21.13	Peak	Vertical
9608.00	35.62	35.14	37.23	4.62	38.15	54.00	-15.85	Average	Vertical
12010.00	45.58	36.11	38.14	5.21	48.76	74.00	-25.24	Peak	Horizontal
12010.00	36.64	36.11	38.14	5.21	39.82	54.00	-14.18	Average	Horizontal
12010.00	47.66	36.11	38.14	5.21	50.84	74.00	-23.16	Peak	Vertical
12010.00	38.71	36.11	38.14	5.21	41.89	54.00	-12.11	Average	Vertical
14430.00	46.60	37.18	39.21	5.59	50.16	74.00	-23.84	Peak	Horizontal
14430.00	37.09	37.18	39.21	5.59	40.65	54.00	-13.35	Average	Horizontal
14430.00	45.43	37.18	39.21	5.59	48.99	74.00	-25.01	Peak	Vertical
14430.00	35.88	37.18	39.21	5.59	39.44	54.00	-14.56	Average	Vertical
16835.00	50.42	38.22	40.17	5.91	54.38	74.00	-19.62	Peak	Horizontal
16835.00	37.84	38.22	40.17	5.91	41.80	54.00	-12.20	Average	Horizontal
16835.00	48.42	38.22	40.17	5.91	52.38	74.00	-21.62	Peak	Vertical
16835.00	36.00	38.22	40.17	5.91	39.96	54.00	-14.04	Average	Vertical

Above 1GHz: .

The result for GFSK, Channel 39 / 2441 MHz

Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4882.00	57.71	33.16	35.15	3.96	59.68	74.00	-14.32	Peak	Horizontal
4882.00	42.52	33.16	35.15	3.96	44.49	54.00	-9.51	Average	Horizontal
4882.00	53.87	33.16	35.15	3.96	55.84	74.00	-18.16	Peak	Vertical
4882.00	39.28	33.16	35.15	3.96	41.25	54.00	-12.75	Average	Vertical
7323.00	46.20	34.32	36.19	4.48	48.81	74.00	-25.19	Peak	Horizontal
7323.00	37.92	34.32	36.19	4.48	40.53	54.00	-13.47	Average	Horizontal
7323.00	47.56	34.32	36.19	4.48	50.17	74.00	-23.83	Peak	Vertical
7323.00	40.68	34.32	36.19	4.48	43.29	54.00	-10.71	Average	Vertical
9764.00	48.70	35.23	37.31	4.65	51.27	74.00	-22.73	Peak	Horizontal
9764.00	39.24	35.23	37.31	4.65	41.81	54.00	-12.19	Average	Horizontal
9764.00	52.61	35.23	37.31	4.65	55.18	74.00	-18.82	Peak	Vertical
9764.00	40.36	35.23	37.31	4.65	42.93	54.00	-11.07	Average	Vertical
12205.00	51.31	36.19	38.26	5.26	54.50	74.00	-19.50	Peak	Horizontal
12205.00	39.13	36.19	38.26	5.26	42.32	54.00	-11.68	Average	Horizontal
12205.00	48.28	36.19	38.26	5.26	51.47	74.00	-22.53	Peak	Vertical
12205.00	39.49	36.19	38.26	5.26	42.68	54.00	-11.32	Average	Vertical
14646.00	48.78	37.27	39.29	5.63	52.39	74.00	-21.61	Peak	Horizontal
14646.00	32.42	37.27	39.29	5.63	36.03	54.00	-17.97	Average	Horizontal
14646.00	50.75	37.27	39.29	5.63	54.36	74.00	-19.64	Peak	Vertical
14646.00	38.85	37.27	39.29	5.63	42.46	54.00	-11.54	Average	Vertical
17087.00	45.45	38.30	40.25	5.95	49.45	74.00	-24.55	Peak	Horizontal
17087.00	36.01	38.30	40.25	5.95	40.01	54.00	-13.99	Average	Horizontal
17087.00	45.68	38.30	40.25	5.95	49.68	74.00	-24.32	Peak	Vertical
17087.00	39.10	38.30	40.25	5.95	43.10	54.00	-10.90	Average	Vertical

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 44 of 59

The re-	sult for GFS		<u>nel 78 / 2</u>		Z				
Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac dB	Cab. Los dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4960.00	58.95	33.26	35.14	3.98	61.05	74.00	-12.95	Peak	Horizontal
4960.00	44.48	33.26	35.14	3.98	46.58	54.00	-7.42	Average	Horizontal
4960.00	55.33	33.26	35.14	3.98	57.43	74.00	-16.57	Peak	Vertical
4960.00	39.99	33.26	35.14	3.98	42.09	54.00	-11.91	Average	Vertical
7440.00	49.16	34.39	36.27	4.52	51.80	74.00	-22.20	Peak	Horizontal
7440.00	40.40	34.39	36.27	4.52	43.04	54.00	-10.96	Average	Horizontal
7440.00	51.99	34.39	36.27	4.52	54.63	74.00	-19.37	Peak	Vertical
7440.00	38.99	34.39	36.27	4.52	41.63	54.00	-12.37	Average	Vertical
9920.00	51.21	35.31	37.38	4.69	53.83	74.00	-20.17	Peak	Horizontal
9920.00	36.47	35.31	37.38	4.69	39.09	54.00	-14.91	Average	Horizontal
9920.00	47.87	35.31	37.38	4.69	50.49	74.00	-23.51	Peak	Vertical
9920.00	42.35	35.31	37.38	4.69	44.97	54.00	-9.03	Average	Vertical
12400.00	46.03	36.28	38.33	5.31	49.29	74.00	-24.71	Peak	Horizontal
12400.00	38.38	36.28	38.33	5.31	41.64	54.00	-12.36	Average	Horizontal
12400.00	50.56	36.28	38.33	5.31	53.82	74.00	-20.18	Peak	Vertical
12400.00	38.04	36.28	38.33	5.31	41.30	54.00	-12.70	Average	Vertical
14880.00	45.25	37.33	39.37	5.68	48.89	74.00	-25.11	Peak	Horizontal
14880.00	37.52	37.33	39.37	5.68	41.16	54.00	-12.84	Average	Horizontal
14880.00	46.06	37.33	39.37	5.68	49.70	74.00	-24.30	Peak	Vertical
14880.00	39.81	37.33	39.37	5.68	43.45	54.00	-10.55	Average	Vertical
17360.00	51.50	38.38	40.32	5.99	55.55	74.00	-18.45	Peak	Horizontal
17360.00	35.48	38.38	40.32	5.99	39.53	54.00	-14.47	Average	Horizontal
17360.00	47.73	38.38	40.32	5.99	51.78	74.00	-22.22	Peak	Vertical
17360.00	37.57	38.38	40.32	5.99	41.62	54.00	-12.38	Average	Vertical

The result for GFSK, Channel 78 / 2480 MHz

The result for π /4-DQPSK, Channel 0 / 2402 MHz

Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4804.00	54.44	33.06	35.04	3.94	56.40	74.00	-17.60	Peak	Horizontal
4804.00	41.49	33.06	35.04	3.94	43.45	54.00	-10.55	Average	Horizontal
4804.00	56.63	33.06	35.04	3.94	58.59	74.00	-15.41	Peak	Vertical
4804.00	41.94	33.06	35.04	3.94	43.90	54.00	-10.10	Average	Vertical
7206.00	51.55	34.25	36.11	4.45	54.14	74.00	-19.86	Peak	Horizontal
7206.00	37.73	34.25	36.11	4.45	40.32	54.00	-13.68	Average	Horizontal
7206.00	49.70	34.25	36.11	4.45	52.29	74.00	-21.71	Peak	Vertical
7206.00	37.63	34.25	36.11	4.45	40.22	54.00	-13.78	Average	Vertical
9608.00	50.67	35.14	37.23	4.62	53.20	74.00	-20.80	Peak	Horizontal
9608.00	35.04	35.14	37.23	4.62	37.57	54.00	-16.43	Average	Horizontal
9608.00	54.03	35.14	37.23	4.62	56.56	74.00	-17.44	Peak	Vertical
9608.00	40.63	35.14	37.23	4.62	43.16	54.00	-10.84	Average	Vertical
12010.00	49.37	36.11	38.14	5.21	52.55	74.00	-21.45	Peak	Horizontal
12010.00	36.98	36.11	38.14	5.21	40.16	54.00	-13.84	Average	Horizontal
12010.00	46.47	36.11	38.14	5.21	49.65	74.00	-24.35	Peak	Vertical
12010.00	36.04	36.11	38.14	5.21	39.22	54.00	-14.78	Average	Vertical
14430.00	50.61	37.18	39.21	5.59	54.17	74.00	-19.83	Peak	Horizontal
14430.00	35.40	37.18	39.21	5.59	38.96	54.00	-15.04	Average	Horizontal
14430.00	48.44	37.18	39.21	5.59	52.00	74.00	-22.00	Peak	Vertical
14430.00	38.54	37.18	39.21	5.59	42.10	54.00	-11.90	Average	Vertical
16835.00	52.28	38.22	40.17	5.91	56.24	74.00	-17.76	Peak	Horizontal
16835.00	35.57	38.22	40.17	5.91	39.53	54.00	-14.47	Average	Horizontal
16835.00	51.79	38.22	40.17	5.91	55.75	74.00	-18.25	Peak	Vertical
16835.00	41.41	38.22	40.17	5.91	45.37	54.00	-8.63	Average	Vertical

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 45 of 59

The rea	suit for $\pi/4$ -	,							
Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4882.00	59.48	33.16	35.15	3.96	61.45	74.00	-12.55	Peak	Horizontal
4882.00	44.07	33.16	35.15	3.96	46.04	54.00	-7.96	Average	Horizontal
4882.00	54.47	33.16	35.15	3.96	56.44	74.00	-17.56	Peak	Vertical
4882.00	41.27	33.16	35.15	3.96	43.24	54.00	-10.76	Average	Vertical
7323.00	48.47	34.32	36.19	4.48	51.08	74.00	-22.92	Peak	Horizontal
7323.00	38.87	34.32	36.19	4.48	41.48	54.00	-12.52	Average	Horizontal
7323.00	51.75	34.32	36.19	4.48	54.36	74.00	-19.64	Peak	Vertical
7323.00	37.93	34.32	36.19	4.48	40.54	54.00	-13.46	Average	Vertical
9764.00	47.55	35.23	37.31	4.65	50.12	74.00	-23.88	Peak	Horizontal
9764.00	38.99	35.23	37.31	4.65	41.56	54.00	-12.44	Average	Horizontal
9764.00	50.57	35.23	37.31	4.65	53.14	74.00	-20.86	Peak	Vertical
9764.00	40.02	35.23	37.31	4.65	42.59	54.00	-11.41	Average	Vertical
12205.00	51.18	36.19	38.26	5.26	54.37	74.00	-19.63	Peak	Horizontal
12205.00	36.38	36.19	38.26	5.26	39.57	54.00	-14.43	Average	Horizontal
12205.00	50.24	36.19	38.26	5.26	53.43	74.00	-20.57	Peak	Vertical
12205.00	39.18	36.19	38.26	5.26	42.37	54.00	-11.63	Average	Vertical
14646.00	47.89	37.27	39.29	5.63	51.50	74.00	-22.50	Peak	Horizontal
14646.00	35.15	37.27	39.29	5.63	38.76	54.00	-15.24	Average	Horizontal
14646.00	46.75	37.27	39.29	5.63	50.36	74.00	-23.64	Peak	Vertical
14646.00	35.82	37.27	39.29	5.63	39.43	54.00	-14.57	Average	Vertical
17087.00	47.23	38.30	40.25	5.95	51.23	74.00	-22.77	Peak	Horizontal
17087.00	36.33	38.30	40.25	5.95	40.33	54.00	-13.67	Average	Horizontal
17087.00	52.09	38.30	40.25	5.95	56.09	74.00	-17.91	Peak	Vertical
17087.00	36.00	38.30	40.25	5.95	40.00	54.00	-14.00	Average	Vertical

The result for π /4-DQPSK, Channel 39 / 2441 MHz

The result for π /4-DQPSK, Channel 78 / 2480 MHz

Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac dB	Cab. Los dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4960.00	56.72	33.26	35.14	3.98	58.82	74.00	-15.18	Peak	Horizontal
4960.00	40.80	33.26	35.14	3.98	42.90	54.00	-11.10	Average	Horizontal
4960.00	54.75	33.26	35.14	3.98	56.85	74.00	-17.15	Peak	Vertical
4960.00	42.01	33.26	35.14	3.98	44.11	54.00	-9.89	Average	Vertical
7440.00	52.30	34.39	36.27	4.52	54.94	74.00	-19.06	Peak	Horizontal
7440.00	40.61	34.39	36.27	4.52	43.25	54.00	-10.75	Average	Horizontal
7440.00	47.55	34.39	36.27	4.52	50.19	74.00	-23.81	Peak	Vertical
7440.00	33.97	34.39	36.27	4.52	36.61	54.00	-17.39	Average	Vertical
9920.00	50.37	35.31	37.38	4.69	52.99	74.00	-21.01	Peak	Horizontal
9920.00	35.87	35.31	37.38	4.69	38.49	54.00	-15.51	Average	Horizontal
9920.00	50.52	35.31	37.38	4.69	53.14	74.00	-20.86	Peak	Vertical
9920.00	37.44	35.31	37.38	4.69	40.06	54.00	-13.94	Average	Vertical
12400.00	47.62	36.28	38.33	5.31	50.88	74.00	-23.12	Peak	Horizontal
12400.00	37.12	36.28	38.33	5.31	40.38	54.00	-13.62	Average	Horizontal
12400.00	47.36	36.28	38.33	5.31	50.62	74.00	-23.38	Peak	Vertical
12400.00	38.48	36.28	38.33	5.31	41.74	54.00	-12.26	Average	Vertical
14880.00	49.76	37.33	39.37	5.68	53.40	74.00	-20.60	Peak	Horizontal
14880.00	38.81	37.33	39.37	5.68	42.45	54.00	-11.55	Average	Horizontal
14880.00	49.37	37.33	39.37	5.68	53.01	74.00	-20.99	Peak	Vertical
14880.00	36.87	37.33	39.37	5.68	40.51	54.00	-13.49	Average	Vertical
17360.00	48.51	38.38	40.32	5.99	52.56	74.00	-21.44	Peak	Horizontal
17360.00	36.37	38.38	40.32	5.99	40.42	54.00	-13.58	Average	Horizontal
17360.00	47.46	38.38	40.32	5.99	51.51	74.00	-22.49	Peak	Vertical
17360.00	34.65	38.38	40.32	5.99	38.70	54.00	-15.30	Average	Vertical

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 46 of 59

I ne res	sult for 8DF				Ζ				
Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4804.00	55.89	33.06	35.04	3.94	57.85	74.00	-16.15	Peak	Horizontal
4804.00	41.49	33.06	35.04	3.94	43.45	54.00	-10.55	Average	Horizontal
4804.00	53.26	33.06	35.04	3.94	55.22	74.00	-18.78	Peak	Vertical
4804.00	40.72	33.06	35.04	3.94	42.68	54.00	-11.32	Average	Vertical
7206.00	50.46	34.25	36.11	4.45	53.05	74.00	-20.95	Peak	Horizontal
7206.00	36.34	34.25	36.11	4.45	38.93	54.00	-15.07	Average	Horizontal
7206.00	46.43	34.25	36.11	4.45	49.02	74.00	-24.98	Peak	Vertical
7206.00	36.67	34.25	36.11	4.45	39.26	54.00	-14.74	Average	Vertical
9608.00	51.24	35.14	37.23	4.62	53.77	74.00	-20.23	Peak	Horizontal
9608.00	37.08	35.14	37.23	4.62	39.61	54.00	-14.39	Average	Horizontal
9608.00	48.99	35.14	37.23	4.62	51.52	74.00	-22.48	Peak	Vertical
9608.00	38.24	35.14	37.23	4.62	40.77	54.00	-13.23	Average	Vertical
12010.00	51.05	36.11	38.14	5.21	54.23	74.00	-19.77	Peak	Horizontal
12010.00	37.31	36.11	38.14	5.21	40.49	54.00	-13.51	Average	Horizontal
12010.00	49.65	36.11	38.14	5.21	52.83	74.00	-21.17	Peak	Vertical
12010.00	36.28	36.11	38.14	5.21	39.46	54.00	-14.54	Average	Vertical
14430.00	48.14	37.18	39.21	5.59	51.70	74.00	-22.30	Peak	Horizontal
14430.00	38.30	37.18	39.21	5.59	41.86	54.00	-12.14	Average	Horizontal
14430.00	50.29	37.18	39.21	5.59	53.85	74.00	-20.15	Peak	Vertical
14430.00	37.78	37.18	39.21	5.59	41.34	54.00	-12.66	Average	Vertical
16835.00	46.60	38.22	40.17	5.91	50.56	74.00	-23.44	Peak	Horizontal
16835.00	34.24	38.22	40.17	5.91	38.20	54.00	-15.80	Average	Horizontal
16835.00	50.82	38.22	40.17	5.91	54.78	74.00	-19.22	Peak	Vertical
16835.00	35.85	38.22	40.17	5.91	39.81	54.00	-14.19	Average	Vertical

The result for 8DPSK, Channel 0 / 2402 MHz

The result for 8DPSK, Channel 39 / 2441 MHz

Freq. MHz	Reading dBuv	Ánt. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4882.00	60.50	33.16	35.15	3.96	62.47	74.00	-11.53	Peak	Horizontal
4882.00	43.29	33.16	35.15	3.96	45.26	54.00	-8.74	Average	Horizontal
4882.00	54.73	33.16	35.15	3.96	56.70	74.00	-17.30	Peak	Vertical
4882.00	39.63	33.16	35.15	3.96	41.60	54.00	-12.40	Average	Vertical
7323.00	53.55	34.32	36.19	4.48	56.16	74.00	-17.84	Peak	Horizontal
7323.00	37.19	34.32	36.19	4.48	39.80	54.00	-14.20	Average	Horizontal
7323.00	48.92	34.32	36.19	4.48	51.53	74.00	-22.47	Peak	Vertical
7323.00	33.78	34.32	36.19	4.48	36.39	54.00	-17.61	Average	Vertical
9764.00	53.36	35.23	37.31	4.65	55.93	74.00	-18.07	Peak	Horizontal
9764.00	39.19	35.23	37.31	4.65	41.76	54.00	-12.24	Average	Horizontal
9764.00	52.56	35.23	37.31	4.65	55.13	74.00	-18.87	Peak	Vertical
9764.00	40.41	35.23	37.31	4.65	42.98	54.00	-11.02	Average	Vertical
12205.00	50.48	36.19	38.26	5.26	53.67	74.00	-20.33	Peak	Horizontal
12205.00	36.48	36.19	38.26	5.26	39.67	54.00	-14.33	Average	Horizontal
12205.00	48.89	36.19	38.26	5.26	52.08	74.00	-21.92	Peak	Vertical
12205.00	38.12	36.19	38.26	5.26	41.31	54.00	-12.69	Average	Vertical
14646.00	47.90	37.27	39.29	5.63	51.51	74.00	-22.49	Peak	Horizontal
14646.00	37.15	37.27	39.29	5.63	40.76	54.00	-13.24	Average	Horizontal
14646.00	45.86	37.27	39.29	5.63	49.47	74.00	-24.53	Peak	Vertical
14646.00	37.64	37.27	39.29	5.63	41.25	54.00	-12.75	Average	Vertical
17087.00	48.35	38.30	40.25	5.95	52.35	74.00	-21.65	Peak	Horizontal
17087.00	39.06	38.30	40.25	5.95	43.06	54.00	-10.94	Average	Horizontal
17087.00	49.18	38.30	40.25	5.95	53.18	74.00	-20.82	Peak	Vertical
17087.00	35.34	38.30	40.25	5.95	39.34	54.00	-14.66	Average	Vertical

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 47 of 59

	sult for 8DF				HZ				
Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac dB	Cab. Los dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4960.00	59.16	33.26	35.14	3.98	61.26	74.00	-12.74	Peak	Horizontal
4960.00	43.58	33.26	35.14	3.98	45.68	54.00	-8.32	Average	Horizontal
4960.00	55.89	33.26	35.14	3.98	57.99	74.00	-16.01	Peak	Vertical
4960.00	38.62	33.26	35.14	3.98	40.72	54.00	-13.28	Average	Vertical
7440.00	47.85	34.39	36.27	4.52	50.49	74.00	-23.51	Peak	Horizontal
7440.00	40.75	34.39	36.27	4.52	43.39	54.00	-10.61	Average	Horizontal
7440.00	47.37	34.39	36.27	4.52	50.01	74.00	-23.99	Peak	Vertical
7440.00	37.82	34.39	36.27	4.52	40.46	54.00	-13.54	Average	Vertical
9920.00	52.04	35.31	37.38	4.69	54.66	74.00	-19.34	Peak	Horizontal
9920.00	35.25	35.31	37.38	4.69	37.87	54.00	-16.13	Average	Horizontal
9920.00	50.82	35.31	37.38	4.69	53.44	74.00	-20.56	Peak	Vertical
9920.00	39.29	35.31	37.38	4.69	41.91	54.00	-12.09	Average	Vertical
12400.00	47.87	36.28	38.33	5.31	51.13	74.00	-22.87	Peak	Horizontal
12400.00	37.45	36.28	38.33	5.31	40.71	54.00	-13.29	Average	Horizontal
12400.00	50.50	36.28	38.33	5.31	53.76	74.00	-20.24	Peak	Vertical
12400.00	37.58	36.28	38.33	5.31	40.84	54.00	-13.16	Average	Vertical
14880.00	49.43	37.33	39.37	5.68	53.07	74.00	-20.93	Peak	Horizontal
14880.00	36.87	37.33	39.37	5.68	40.51	54.00	-13.49	Average	Horizontal
14880.00	47.42	37.33	39.37	5.68	51.06	74.00	-22.94	Peak	Vertical
14880.00	36.29	37.33	39.37	5.68	39.93	54.00	-14.07	Average	Vertical
17360.00	49.96	38.38	40.32	5.99	54.01	74.00	-19.99	Peak	Horizontal
17360.00	34.93	38.38	40.32	5.99	38.98	54.00	-15.02	Average	Horizontal
17360.00	49.14	38.38	40.32	5.99	53.19	74.00	-20.81	Peak	Vertical
17360.00	37.48	38.38	40.32	5.99	41.53	54.00	-12.47	Average	Vertical

The result for 8DPSK, Channel 78 / 2480 MHz

Notes:

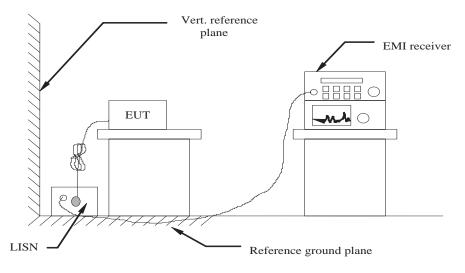
1). Measuring frequencies from 9k~10th harmonic (ex. 26GHz), No emission found between lowest internal used/generated frequency to 30 MHz.

2). Radiated emissions measured in frequency range from 9k~10th harmonic (ex. 26GHz) were made with an instrument using Peak detector mode.

3). 18~25GHz at least have 20dB margin. No recording in the test report.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 48 of 59

6.7. AC Power line conducted emissions

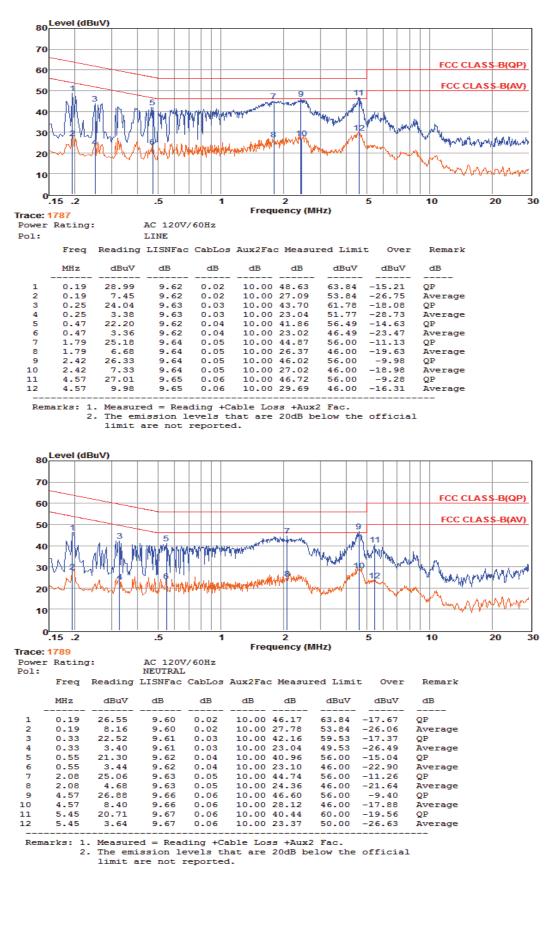

6.7.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range	Limits (dBµV)
(MHz)	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

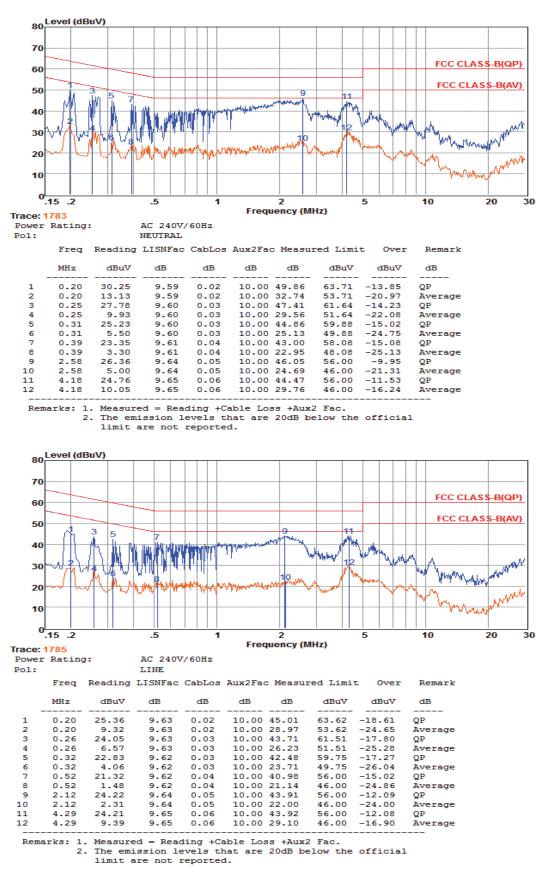
* Decreasing linearly with the logarithm of the frequency

6.7.2 Block Diagram of Test Setup



6.7.3 Test Results

PASS.

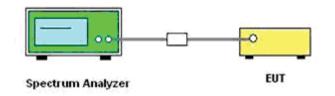

The test data please refer to following page.

AC Conducted Emission of power adapter @ AC 120V/60Hz @ GFSK (worst case)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 50 of 59

AC Conducted Emission of power adapter @ AC 240V/60Hz @ GFSK (worst case)

***Note: Pre-scan all modes and recorded the worst case results in this report (GFSK)


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 51 of 59

6.8. Band-edge measurements for radiated emissions

6.8.1 Standard Applicable

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

6.8.2. Test Setup Layout

6.8.3. Measuring Instruments and Setting

Please refer to section 6 of equipment list in this report. The following table is the setting of Spectrum Analyzer.

6.8.4. Test Procedures

According to KDB 412172 section 1.1 Field Strength Approach (linear terms): eirp = $p_t \times g_t = (E \times d)^2/30$ Where: p_t = transmitter output power in watts, g_t = numeric gain of the transmitting antenna (unitless), E = electric field strength in V/m, d = measurement distance in meters (m). erp = eirp/1.64 = (E x d)^2/(30 x 1.64) Where all terms are as previously defined.

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz for peak detector and RBW=1MHz, VBW=1/B for Peak detector.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.
- 6. Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- 7. Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see 12.2.5 for guidance on determining the applicable antenna gain)

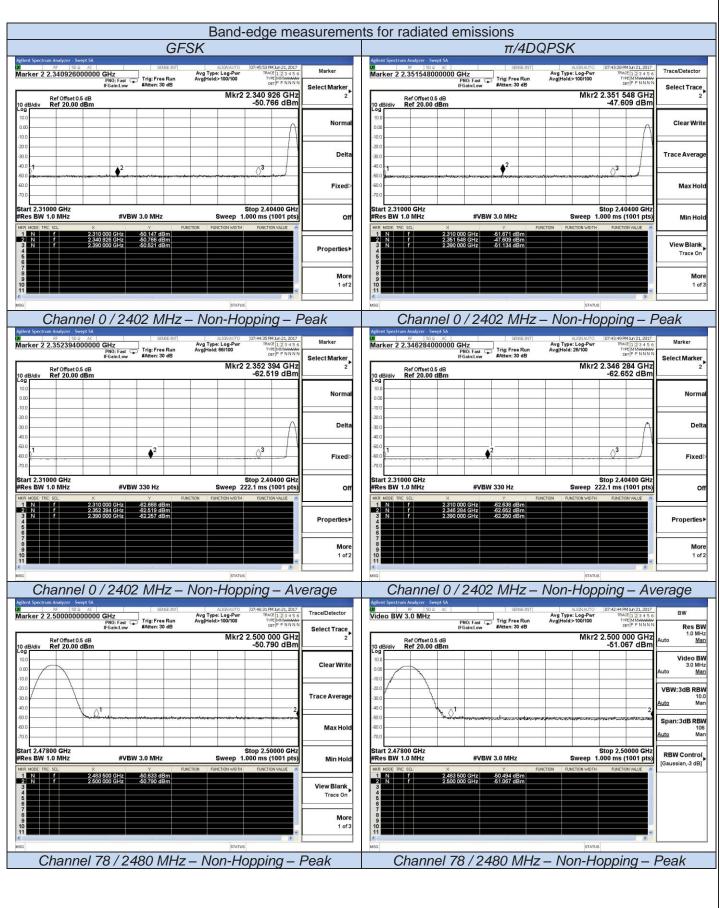
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 52 of 59

- Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies ≤ 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).
- 9. For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).
- 10. Compare the resultant electric field strength level to the applicable regulatory limit.
- 11. Perform radiated spurious emission test duress until all measured frequencies were complete.

6.8.5. Test Results

	GFSK – Non-Hopping									
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict			
2310.000	-50.147	2.0	0.0	47.083	Peak	74.00	PASS			
2310.000	-62.668	2.0	0.0	34.562	Average	54.00	PASS			
2390.000	-50.521	2.0	0.0	46.709	Peak	74.00	PASS			
2390.000	-62.257	2.0	0.0	34.973	Average	54.00	PASS			
2483.500	-50.633	2.0	0.0	46.597	Peak	74.00	PASS			
2483.500	-61.516	2.0	0.0	35.714	Average	54.00	PASS			
2500.000	-50.790	2.0	0.0	46.440	Peak	74.00	PASS			
2500.000	-61.926	2.0	0.0	35.304	Average	54.00	PASS			

	π/4DQPSK – Non-Hopping									
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict			
2310.000	-51.671	2.0	0.0	45.559	Peak	74.00	PASS			
2310.000	-62.638	2.0	0.0	34.592	Average	54.00	PASS			
2390.000	-51.134	2.0	0.0	46.096	Peak	74.00	PASS			
2390.000	-62.250	2.0	0.0	34.980	Average	54.00	PASS			
2483.500	-50.494	2.0	0.0	46.736	Peak	74.00	PASS			
2483.500	-61.508	2.0	0.0	35.722	Average	54.00	PASS			
2500.000	-51.067	2.0	0.0	46.163	Peak	74.00	PASS			
2500.000	-62.020	2.0	0.0	35.210	Average	54.00	PASS			


			8DPSK-No	n-Hopping			
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict
2310.000	-50.832	2.0	0.0	46.398	Peak	74.00	PASS
2310.000	-62.466	2.0	0.0	34.764	Average	54.00	PASS
2390.000	-49.963	2.0	0.0	47.267	Peak	74.00	PASS
2390.000	-62.291	2.0	0.0	34.939	Average	54.00	PASS
2483.500	-48.209	2.0	0.0	49.021	Peak	74.00	PASS
2483.500	-61.663	2.0	0.0	35.567	Average	54.00	PASS
2500.000	-49.948	2.0	0.0	47.282	Peak	74.00	PASS
2500.000	-61.919	2.0	0.0	35.311	Average	54.00	PASS

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 53 of 59

Remark:

- 1. Measured at difference Packet Type for each mode and recorded worst case for each mode.
- 2. Worst case data at DH5 for GFSK, $\pi/4DQPSK$, 8DPSK modulation type;
- 3. Measured at Hopping and Non-Hopping mode, recorded worst at Non-Hopping mode.
- 4. The other emission levels were very low against the limit.
- 5. The average measurement was not performed when the peak measured data under the limit of average detection.
- 6. Set the Spectrum/receiver as RBW=1MHz/VBW=330Hz/Sweep time=Auto/Detector=Peak when measured the data of average.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 54 of 59

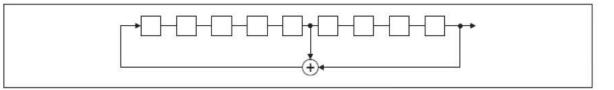
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 55 of 59

GF	SK		π/4D	QPSK	
Agilent Spectrum Analyzer - Swept SA			Agilent Spectrum Analyzer - Swept SA		
Marker 2 2.500000000000 GHz Storage Sto	ALIGNAUTO 07:47:13 PM Jun 21, 2017 Avg Type: Log-Pwr TRACE 12:3:4:5:6 Avg Hold>100/100 TYPE MMWWWW DET P P N N N N	Trace/Detector	W RF 50.2 AC SENSE.INT Video BW 330 Hz PN0: Fast G Trig: Free Run	ALIGNAUTO 07:42:21 PM Jun 21, 2017 Avg Type: Log-Pwr TRACE 12:3 4 5 6 Avg Hold: 80/100 TYPE MMWHWWW DETP P N N N N	Trace/Detector
IFGein:Low #Atten: 30 dB Ref Offset 0.5 dB 10 dB/div Ref 20.00 dBm Log	Mkr2 2.500 000 GHz -61.926 dBm	Select Trace	Ref Offset 0.5 dB	Mkr2 2.500 000 GHz -62.020 dBm	Select Trace
0.00		Clear Write			Clear Write
10.0		Trace Average	-10.0		Trace Average
	2	Max Hold		2	Max Hold
-70.0 Start 2.47800 GHz #Res BW 1.0 MHz #VBW 330 Hz	Stop 2.50000 GHz Sweep 52.00 ms (1001 pts)	Min Hold	-700 Start 2.47800 GHz #Res BW 1.0 MHz #VBW 330 Hz	Stop 2.50000 GHz Sweep 52.00 ms (1001 pts)	Min Hold
MKR MODE TRC SCL X Y FL	UNCTION FUNCTION WIDTH FUNCTION VALUE	MITTOIL	MKR MODE TRC SCL X Y F	UNCTION FUNCTION WIDTH FUNCTION VALUE	MITTOIL
1 N f 2483500 GHz 451516 dBm 2 N f 2.500 000 GHz 451926 dBm 4 5 6		View Blank Trace On	1 N f 2483 500 GHz 61 508 dBm 2 N f 2500 000 GHz 62 020 dBm 4 5		View Blank Trace On
7 8 9 10 11	×	More 1 of 3	7 8 9 10 11	~	More 1 of 3
MSG	STATUS		MSG	STATUS	
Channel 78 / 2480 MHz -	- Non-Hopping – Av		Channel78 / 2480 MHz -	Non-Hopping – Av	erage
Agilent Spectrum Analyzer - Swept SA		σD	Agilent Spectrum Analyzer - Swept SA		
W RF 50.2 AC SENSE:INT Marker 2 2.349010000000 GHz	ALIGNAUTO 07:40:48 PM Jun 21, 2017 Avg Type: Log-Pwr TRACE 1 2 3 4 5 6	Trace/Detector	OX RF 50.0. AC SENSE:INT Marker 2 2.500000000000 GHz SENSE:INT SENSE:INT	ALIGNAUTO 07:41:35 PM Jun 21, 2017 Avg Type: Log-Pwr TRACE 1 2 3 4 5 6	Trace/Detector
PN0: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold>100/100 DET P P N N N N	Select Trace	PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold:>100/100 DET P P N N N N	Palast Trass
Ref Offset 0,5 dB 10 dB/div Ref 20.00 dBm	Mkr2 2.349 010 GHz -48.755 dBm		Ref Offset 0.5 dB 10 dB/div Ref 20.00 dBm	Mkr2 2.500 000 GHz -49.948 dBm	Select Trace
		1111 - 11111	Log 10.0		
0.00		Clear Write	0.00		Clear Write
-200 -300 -400		Trace Average	-20.0 -30.0 -40.0	2	Trace Average
50.0 Concernent Active and Active	The sector of	Max Hold	500	sedinchur, nie akole con sie con sie con sie and sie akon	Max Hold
Start 2.31000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz MKR MODELTRC SQL X Y PL	Stop 2.40400 GHz Sweep 1.000 ms (1001 pts)	Min Hold	Start 2.47800 GHz #Res BW 1.0 MHz #VBW 3.0 MHz	Stop 2.50000 GHz Sweep 1.000 ms (1001 pts)	Min Hold
1 N f 2.310 000 GHz 50.832 dBm 2 N f 2.349 010 GHz 48.755 dBm 3 N f 2.390 000 GHz 49.963 dBm 4 - - - -		View Blank	1 N f 2.483 500 GHz 48 209 dBm 2 N f 2.500 000 GHz -49.948 dBm 3		View Blank Trace On
5 7 8 9		More	5 6 7 8 9		More
10 11 11 11 11 11 11 11 11 11 11 11 11 1	STATUS	1 of 3	10 11 %	STATUS	1 of 3
Channel 0 / 2402 MHz	– Non-Hopping – P	Peak	Channel 78 / 2480 MHz	r – Non-Hopping – P	Peak
Agilent Spectrum Analyzer - Swept SA 02 RF 50 Ω AC SENSE:INT	ALIGNAUTO 07:39:50 PM) m 21, 2017	Trace/Detector	Agilent Spectrum Analyzer - Swept SA 02 RF 50 Q: AC SENSE:INT	ALIGNAUTO 07:41:57 PM Jun 21, 2017	BW
Marker 2 2.35540200000 GHz PN0: Fast IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 96/100 TYPE MMMWWWW DET P P NNNN	Select Trace	Video BW 330 Hz PN0: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 73/100 DET P P N N N N	Res BW
Ref Offset 0.5 dB	Mkr2 2.355 402 GHz -62.551 dBm	2	Ref Offset 0.5 dB 10 dB/div Ref 20.00 dBm	Mkr2 2.500 000 GHz -61.919 dBm	Auto Man Video BW
10.0 0.00 -10.0		Clear Write	10.0		330 Hz Auto <u>Man</u>
-20.0	Λ	Trace Average	-20.0		VBW:3dB RBW 10.0 Auto Man
40.0 1 €0.0 2 -70.0 2 2 -70.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\langle \rangle^3$	Max Hold	40.0 / 40.0 /	2	Span:3dB RBW 106 Auto Man
Start 2.31000 GHz #Res BW 1.0 MHz #VBW 330 Hz	Stop 2.40400 GHz Sweep 222.1 ms (1001 pts)	Min Hold	Start 2.47800 GHz #Res BW 1.0 MHz #VBW 330 Hz	Stop 2.50000 GHz Sweep 52.00 ms (1001 pts)	RBW Control [Gaussian,-3 dB]
MRI MODE TRC: XL Y P 1 N f 2.310 000 GHz 82.456 dBm 2 N f 2.355 402 GHz 62.456 dBm 3 N f 2.390 000 GHz 62.251 dBm 4 6 6 6 6	FUNCTION FUNCTION WIDTH FUNCTION VALUE	View Blank Trace On	Implement N Y J 1 N f 2.483 500 GHz 41.653 dBm 2 N f 2.483 600 GHz 41.919 dBm 3 f 2.600 000 GHz 41.919 dBm 4 6 6 6	FUNCTION FUNCTION WIDTH FUNCTION VALUE	
7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	v	More 1 of 3	7 8 9 10 11	v A	
Channel 0 / 2402 MHz –	Non-Hopping – Av	erage	Channel78 / 2480 MHz -	Non-Hoppina – Av	erage

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 56 of 59

6.9. Pseudorandom frequency hopping sequence

6.9.1 Standard Applicable


For 47 CFR Part 15C sections 15.247 (a) (1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

6.9.2 EUT Pseudorandom Frequency Hopping Sequence Requirement

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of pseudorandom frequency hopping sequence as follows:

0	2	4	6		63	2 64	78	1	73 75 7	7
				T	T					_
							1			
					1					
				1	L		<u>}</u>	<u> </u>	 	

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 57 of 59

6.10. ANTENNA REQUIREMENT

6.10.1 Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

6.10.2 Antenna Connected Construction

6.10.2.1. Standard Applicable

According to § 15.203 & RSS-Gen, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

6.10.2.2. Antenna Connector Construction

The directional gains of antenna used for transmitting is 2.0dBi, and the antenna is a PIFA antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details.

The Bluetooth and 2.4G WLAN are use the same antenna.

6.10.2.3. Results: Compliance.

7. TEST SETUP PHOTOGRAPHS OF EUT

Please refer to separated files for Test Setup Photos of the EUT.

8. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

9. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

-----THE END OF REPORT------