TEST REPORT

FCC ID: 2ABFV-CCKID1 Product: ClicClock Model No.: Q50 Additional Model No.: ClicClock Trade Mark: N/A Report No.: TCT170406E011 Issued Date: Apr. 25, 2017

Issued for:

PC Smart S.A. Carrera 116 no.15-25 Bogota, Colombia

Issued By:

Shenzhen Tongce Testing Lab. 1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China TEL: +86-755-27673339 FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab. This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Report	No.:	TCT170406E011
1.00010		

TABLE OF CONTENTS

1.	Test Certification	
2.	Test Result Summary	4
3.	EUT Description	
4.	Genera Information	
	4.1. Test environment and mode	6
	4.2. Test Mode	
	4.3. Description of Support Units	9
	4.4. Configuration of Tested System	10
	4.5. Measurement Results Explanation Example	10
5.	Facilities and Accreditations	11
	5.1. Facilities	
	5.2. Location	11
	5.3. Measurement Uncertainty	11
6.	Test Results and Measurement Data	12
	6.1. Conducted Output Power Measurement	
	6.2. Peak to Average Ratio	
	6.3. 99% Occupied Bandwidth and 26dB Bandwidth Measurement	18
	6.4. Band Edge and Conducted Spurious Emission Measurement	
	6.5. Test Specification	22
	6.6. Effective Radiated Power and Effective Isotropic Radiated Power Measurement	
	6.7. Field Strength of Spurious Radiation Measurement	
	6.8. Frequency Stability Measurement	

CT 通测检测 TESTING CENTRE TECHNOLOGY

Product:	ClicClock	(\mathbf{c}^{*})		6
Model No.:	Q50			
Additional Model No.:	ClicClock			
Applicant:	PC Smart S.A.			
Address:	Carrera 116 no.15-25 Bogota, Colombia			
Manufacturer:	PC Smart S.A.	$\left(\mathcal{C}^{\prime}\right)$		(C
Address:	Carrera 116 no.15-25 Bogota, Colombia			
Date of Test:	Apr. 07, 2017 – Apr. 24, 2017			
Applicable Standards:	FCC CFR Title 47 Part 2 FCC CFR Title 47 Part22 Subpart H FCC CFR Title 47 Part24 Subpart E		(C)	

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

Garen

Reviewed By:

Approved By:

Tomsin

Joe Zhou

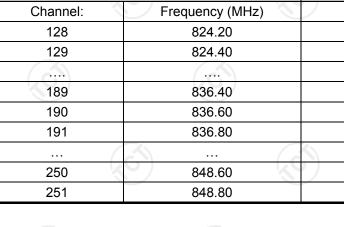
onsm

Page 3 of 42

Requirement		CFR 47 Section		Result
Conducted Output Power	(J)	§2.1046		PASS
Peak-to-Average Ratio		§24.232(d)	<i>—</i>	PASS
Effective Radiated Power		§22.913(a)(2)	S	PASS
Equivalent Isotropic Radiated Power		§24.232(c)		PASS
Occupied Bandwidth		§2.1049 §22.917(b) §24.238(b)		PASS
Band Edge		§2.1051 §22.917(a) §24.238(a)		PASS
Conducted Spurious Emission		§2.1051 §22.917(a) §24.238(a)	Ś	PASS
Field Strength of Spurious Radiation	J.	§2.1053 §22.917(a) §24.238(a)		PASS
Frequency Stability for Temperature & Voltage		§2.1055 §22.355 §24.235		PASS
e: 1. PASS: Test item meets the requ 2. Fail: Test item does not meet th 3. N/A: Test case does not apply t 4. The test result judgment is deci	e requirement. o the test object		<i>C</i> 4	

Page 4 of 42

3. EUT Description


Report No.: TCT170406E011

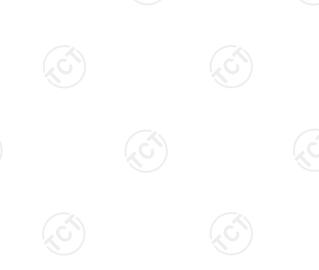
Product Name:	ClicClock	
Model :	Q50	
Additional Model:	ClicClock	
Trade Mark:	N/A	
Hardware Version:	G36SMB-V1.4	
Software Version:	G36S	6
Tx Frequency:	GSM/GPRS 850: 824.2 MHz ~ 848.8 MHz GSM/GPRS 1900: 1850.2 MHz ~ 1909.8MHz	
Rx Frequency:	GSM/GPRS 850: 869.2 MHz ~ 893.8 MHz GSM/GPRS 1900: 1930.2 MHz ~ 1989.8 MHz	
99% Occupied Bandwidth:	GSM/GPRS 850 Class 12: 245KGXW GSM/GPRS 1900 Class 12: 244KGXW	
Type of Modulation:	GSM/GPRS: GMSK	(c
Antenna Type:	Internal Antenna	
Antenna Gain:	GSM/GPRS 850: 0.05dBi GSM/GPRS 1900: 0.55dBi	
Power Supply:	DC 3.7V from rechargeable lithium battery	
Model difference :	All models above are identical in interior structure, electrical circuits and components, and just model names are different for the marketing requirement.	, C

Page 5 of 42

1. Test en						
		t:	25.0	2		
Tempera Humidity			25.0 ° 56 %			
	eric Pressure	<u></u>	1010			
Test Mode:						
Operatio	n mode:			the EUT in 200 and sele lation		
	s product ha tery was fully		echargeable	battery, so	in an indep	endent tes
performed. I continuously Z) and cons interconnect both horizon	Chamber, Me During the test working, invite idered typica ing cables, re ital and vertica ine following p	st, each emis vestigated all I configuration otating the tu cal polarization	ssion was m l operating n on to obtain urntable, var	nodes, rotat worst positi ying antenr	y: having th ed about al on, manipu a height fro	ne EUT I 3 axis (X, lating om 1m to 4r
performed. I continuously Z) and cons interconnect both horizon	During the test working, inv idered typica ing cables, re ital and vertic	st, each emis vestigated all I configuration otating the tu cal polarization	ssion was m l operating n on to obtain urntable, var	naximized b nodes, rotat worst positi ying antenr	y: having th ed about al on, manipu a height fro	ne EUT I 3 axis (X, lating om 1m to 4r
performed. I continuously Z) and cons interconnect both horizon	During the test working, inv idered typica ing cables, re ital and vertic	st, each emis vestigated all I configuration otating the tu cal polarization	ssion was m l operating n on to obtain urntable, var	naximized b nodes, rotat worst positi ying antenr	y: having th ed about al on, manipu a height fro	ne EUT I 3 axis (X, lating om 1m to 4r
performed. I continuously Z) and cons interconnect both horizon	During the test working, inv idered typica ing cables, re ital and vertic	st, each emis vestigated all I configuration otating the tu cal polarization	ssion was m l operating n on to obtain urntable, var	naximized b nodes, rotat worst positi ying antenr	y: having th ed about al on, manipu a height fro	ne EUT I 3 axis (X, lating om 1m to 4r
performed. I continuously Z) and cons interconnect both horizon	During the test working, inv idered typica ing cables, re ital and vertic	st, each emis vestigated all I configuration otating the tu cal polarization	ssion was m l operating n on to obtain urntable, var	naximized b nodes, rotat worst positi ying antenr	y: having th ed about al on, manipu a height fro	ne EUT I 3 axis (X, lating om 1m to 4r

Description Operation Frequency

		7 A		
	GSM 850	PCS1900		
Channel:	Frequency (MHz)	Channel:	Frequency (MHz)	
128	824.20	512	1850.20	
129	824.40	513	1850.40	
189	836.40	660	1879.80	


661

662

...

809

810

1880.00

1880.20

. . .

1909.60

1909.80

4.2. Test Mode

CT通测检测 TESTING CENTRE TECHNOLOGY

Antenna port conducted and radiated test items were performed according to KDB 971168 D01 Power Meas. License Digital Systems v02r02 with maximum output power. Radiated measurements were performed with rotating EUT in different three orthogonal test planes to find the maximum emission.

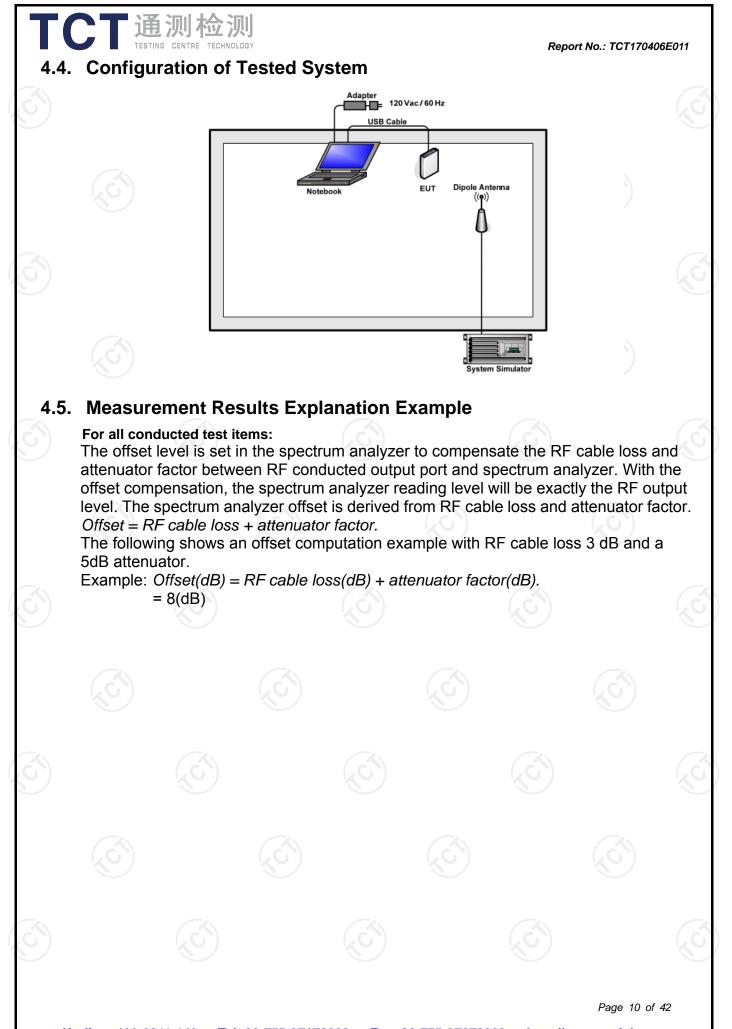
Radiated emissions were investigated as following frequency range:

- 1. 30 MHz to 10000 MHz for GSM850.
- 2. 30 MHz to 20000 MHz for PCS1900.

All modes and data rates and positions were investigated.

Test modes are chosen to be reported as the worst case configuration below:

Test Mode				
Band	Radiated TCs	Conducted TCs		
GSM 850	GPRS class 12 Link	GPRS class 12 Link		
PCS 1900	GPRS class 12 Link	GPRS class 12 Link		


Note: The maximum power levels are chosen to test as the worst case configuration as follows: GPRS multi-slot class 12 mode for GMSK modulation, EDGE multi-slot class 12 mode for 8PSK modulation. RMC 12.2Kbps mode for WCDMA band V and WCDMA band II, only these modes were used for all tests. In addition to above worst-case test, below investigating on all data rates and all modes are compliance with each FCC test case which has specific test limits. For spurious emissions at antenna port, the EUT was investigated the band edges on low and high channels, and the unwanted spurious emissions on middle channel for all modes, the results are PASS, then only the worst-results were reported in the test report. The Radiated Spurious emissions for GPRS and EDGE modes were investigated on the middle channel and the PASSed results were not worst than those data tested from the highest power channels.

Page 8 of 42

4.3. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	AKN1G	/	/	DELO
				the emission during the nd conditions for the inte
				Page 9 of
Hotline: 400-6611-1	40 Tel: 86-755-2	7673339 Fax: 8	6-755-27673332 I	http://www.tct-lab.com

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 572331

Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

CNAS - Registration No.: CNAS L6165

Shenzhen TCT Testing Technology Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6165.

5.2. Location

Shenzhen Tongce Testing Lab

Address: 1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China Tel: 86-755-36638142

5.3. Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU	
1	Conducted Emission	±2.56dB	
2	RF power, conducted	±0.12dB	
3	Spurious emissions, conducted	±0.11dB	
4	All emissions, radiated(<1G)	±3.92dB	
5	All emissions, radiated(>1G)	±4.28dB	
6	Temperature	±0.1°C	
7	Humidity	±1.0%	

	nd Measurement Data ut Power Measurement
.1. Test Specification Test Requirement:	FCC part 22.913(a) and FCC part 24.232(b)
Test Method:	FCC part 2.1046
Operation mode:	Refer to item 4.1
Limits:	GSM 850 7W PCS 1900 2W
Test Setup:	System Simulator EUT
Test Procedure:	 The transmitter output port was connected to the system simulator. Set EUT at maximum power through system simulator. Select lowest, middle, and highest channels for each band and different modulation. Measure the maximum burst average power for GSM and maximum average power for other modulation signal.

6.1.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
System simulator	R&S	CMU200	111382	Aug. 11, 2017
RF cable (9kHz-40GHz)	тст	RE-06	N/A	Aug. 12, 2017
Antenna Connector	тст	RFC-01	N/A	Aug. 12, 2017

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 12 of 42

6.1.3. Test data

Dandy OSM 050	(, C + Y)		r (dDree)			
Band: GSM 850	Measure	ed Average Powe	r (abm)			
Channel	128	190	251			
Frequency	824.2	836.6	848.8			
GSM (GMSK, Voice)	32.57	32.65	32.69			
GPRS (GMSK, 1-slot)	31.70	31.65	31.69			
GPRS (GMSK, 2-slot)	30.57	30.72	30.73			
GPRS (GMSK, 3-slot)	28.61	28.73	28.85			
GPRS (GMSK, 4-slot)	27.45	27.64	27.82			
Band: 1900	Measure	Measured Average Power (dBm)				
Channel	512	661	810			
Frequency	1850.2	1880.0	1909.8			
GSM (GMSK, Voice)	29.23	29.28	29.52			
GPRS (GMSK, 1-slot)	28.25	28.28	28.52			
GPRS (GMSK, 2-slot)	27.19	27.3	27.19			
GPRS (GMSK, 3-slot)	26.71	26.52	26.53			
GPRS (GMSK, 4-slot)	25.57	25.68	25.71			

CT通测检 ESTING CENTRE TECHNO 2. Peak to Average	Report No.: TCT170406	EO:
2.1. Test Specification	FCC Part24.232	٦
Test Requirement: Test Method:	FCC KDB 971168 v02r02 Section 5.7.1	-
Operation mode:	Refer to item 4.1	
Limit:	The peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.	
Test Setup:	System Simulator EUT Spectrum Analyzer	
Test Procedure:	 The testing follows FCC KDB 971168 v02r02 Section 5.7.1. The EUT was connected to spectrum analyzer and system simulator via a power divider. Set EUT to transmit at maximum output power. For GSM/EGPRS operating modes, signal gating is implemented on the spectrum analyzer by triggering from the system simulator. Set the CCDF (Complementary Cumulative Distribution Function) option of the spectrum analyzer. Record the maximum PAPR level associated with a probability of 0.1%. 	() ()
Test Result:	PASS	

6.2.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
System simulator	R&S	CMU200	111382	Aug. 11, 2017
Spectrum Analyzer	Agilent	N9020A	MY49100060	Aug. 12, 2017
RF cable (9kHz-40GHz)	тст	RE-06	N/A	Aug. 12, 2017
Antenna Connector	тст	RFC-01	N/A	Aug. 12, 2017

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

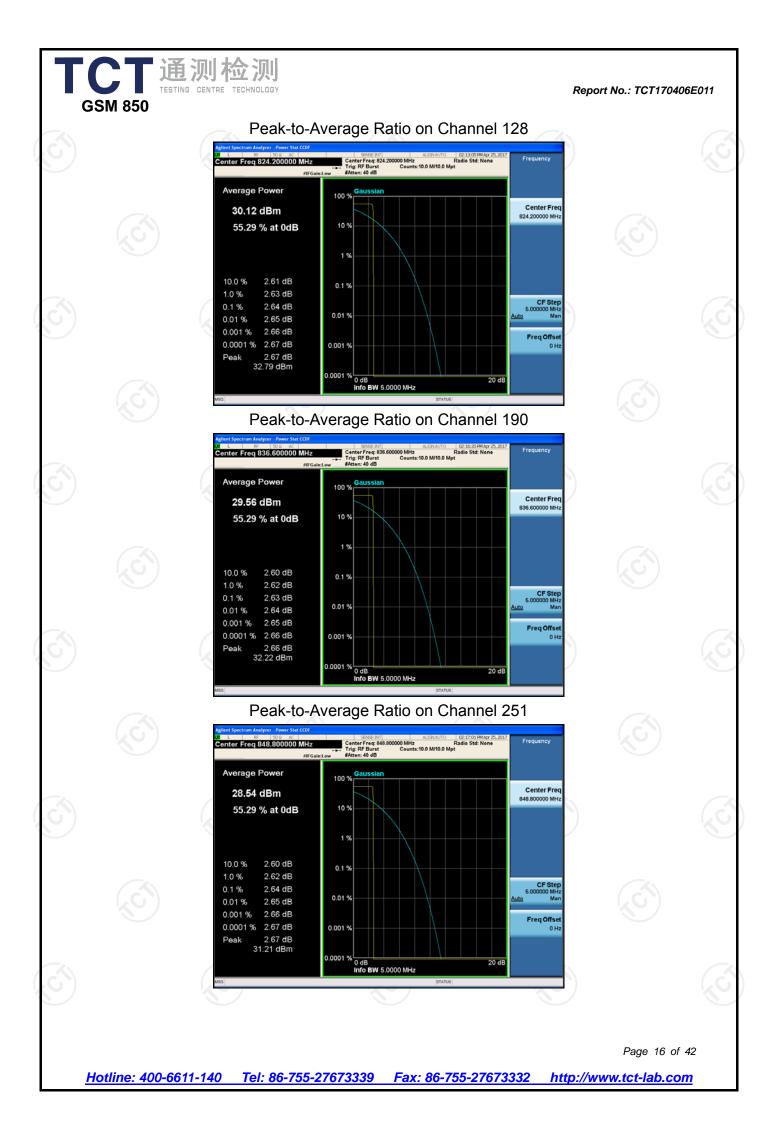
Page 14 of 42

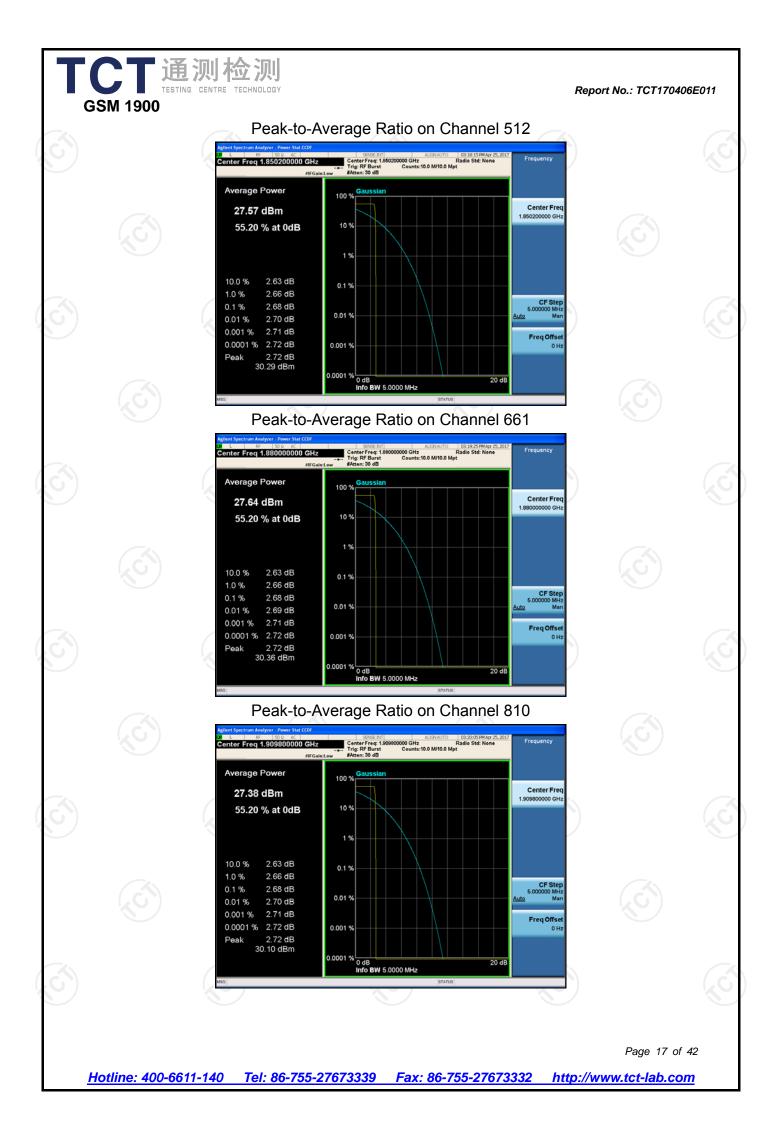
http://www.tct-lab.com Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332

6.2.3. Test Data

Cellular Band							
Mode	(GSM 850			SM 190	0	
Channel	128	190	251	512	661	810	
Frequency (MHz)	824.2	836.4	848.8	1850.2	1880	1909.8	
Peak-to- Average Ratio (dB)	2.67	2.66	2.67	2.72	2.72	2.72	

Test plots as follows:


Hotline: 400-6611-140 Tel: 86-755-27673339


Report No.: TCT170406E011

Page 15 of 42

http://www.tct-lab.com

Fax: 86-755-27673332

6.3. 99% Occupied Bandwidth and 26dB Bandwidth Measurement

6.3.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC part 22.913(a) and FCC part 24.232(b)	
Test Method:	FCC part 2.1049	
Operation mode:	Refer to item 4.1	
Limit:	N/A	
Test Setup:	System Simulator EUT Spectrum Analyzer	
Test Procedure:	 The testing follows FCC KDB 971168 v02r02 Section 4.2. The EUT was connected to the spectrum analyzer and system simulator via a power divider. The RF output of the EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. The 99% occupied bandwidth were measured, set RBW= 1% of span, VBW= 3*RBW, sample detector, trace maximum hold. The 26dB bandwidth were measured, set RBW= 1% of EBW, VBW= 3*RBW, peak detector, trace maximum hold. 	
Test Result:	PASS	

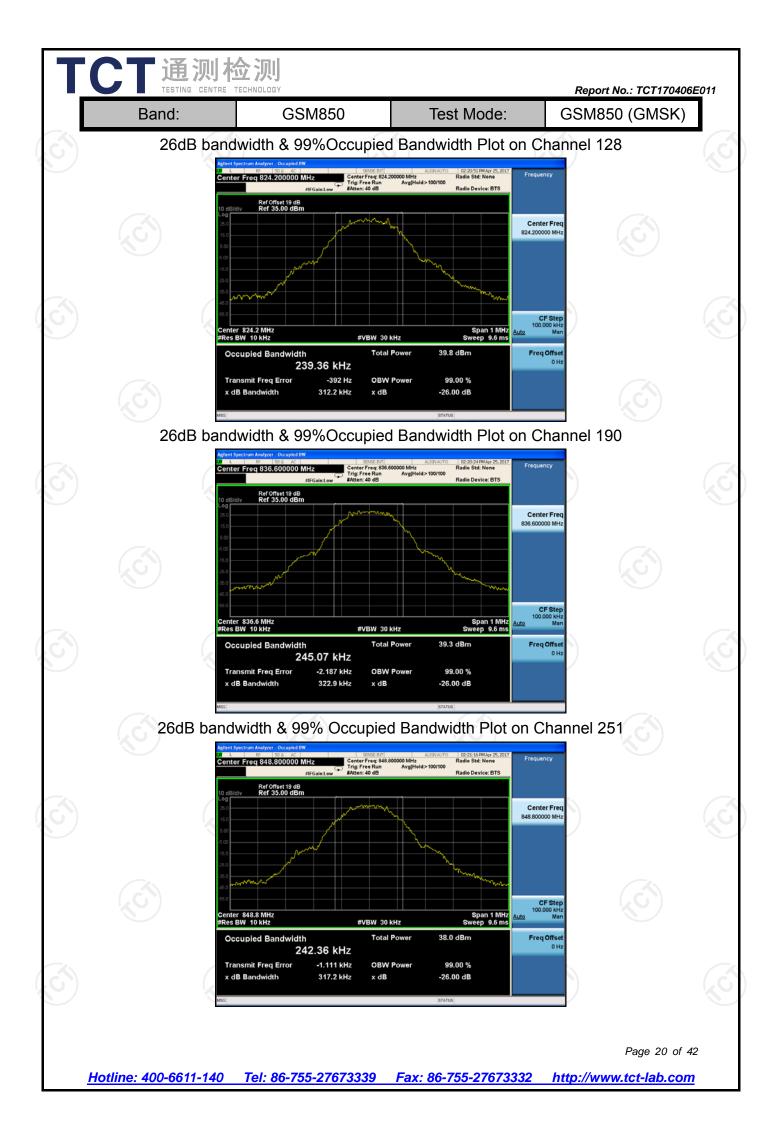
6.3.2. Test Instruments

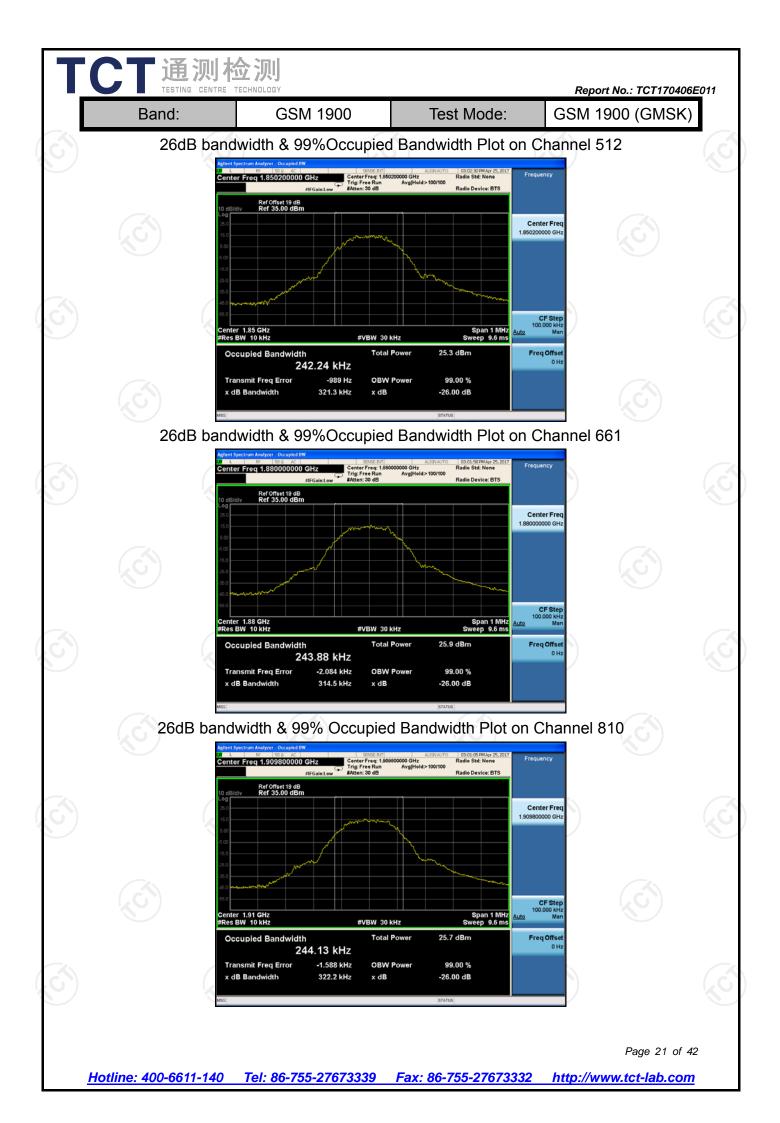
Equipment	Manufacturer	Model	Serial Number	Calibration Due
System simulator	R&S	CMU200	111382	Aug. 11, 2017
Spectrum Analyzer	Agilent	N9020A	MY49100060	Aug. 12, 2017
RF cable (9kHz-40GHz)	тст	RE-06	N/A	Aug. 12, 2017
Antenna Connector	тст	RFC-01	N/A	Aug. 12, 2017

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 18 of 42

6.3.3. Test data

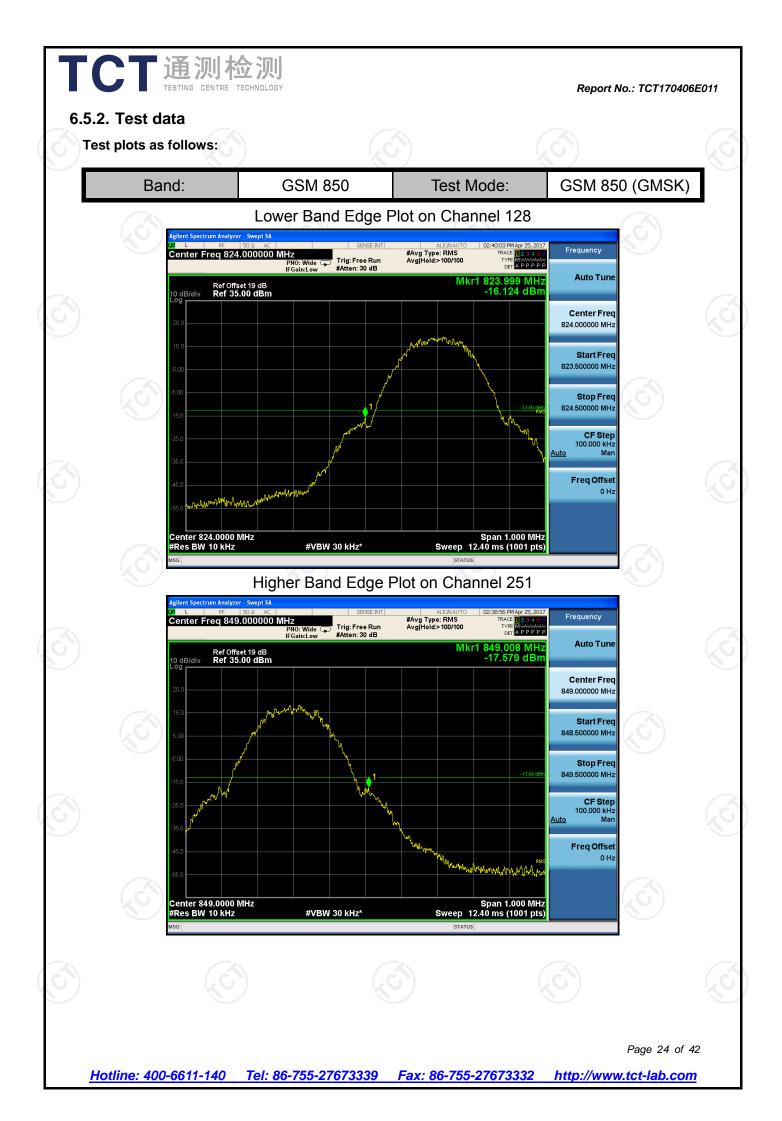

Cellular Band									
Mode		GSM850			GSM1900				
Channel	128	190	251	512	661	810			
Frequency (MHz)	824.2	836.4	848.8	1850.2	1880.0	1909.8			
99% OBW (kHz)	239.36	245.07	242.36	242.24	243.88	244.13			
26dB BW (kHz)	312.2	322.9	317.2	321.3	314.5	322.2			

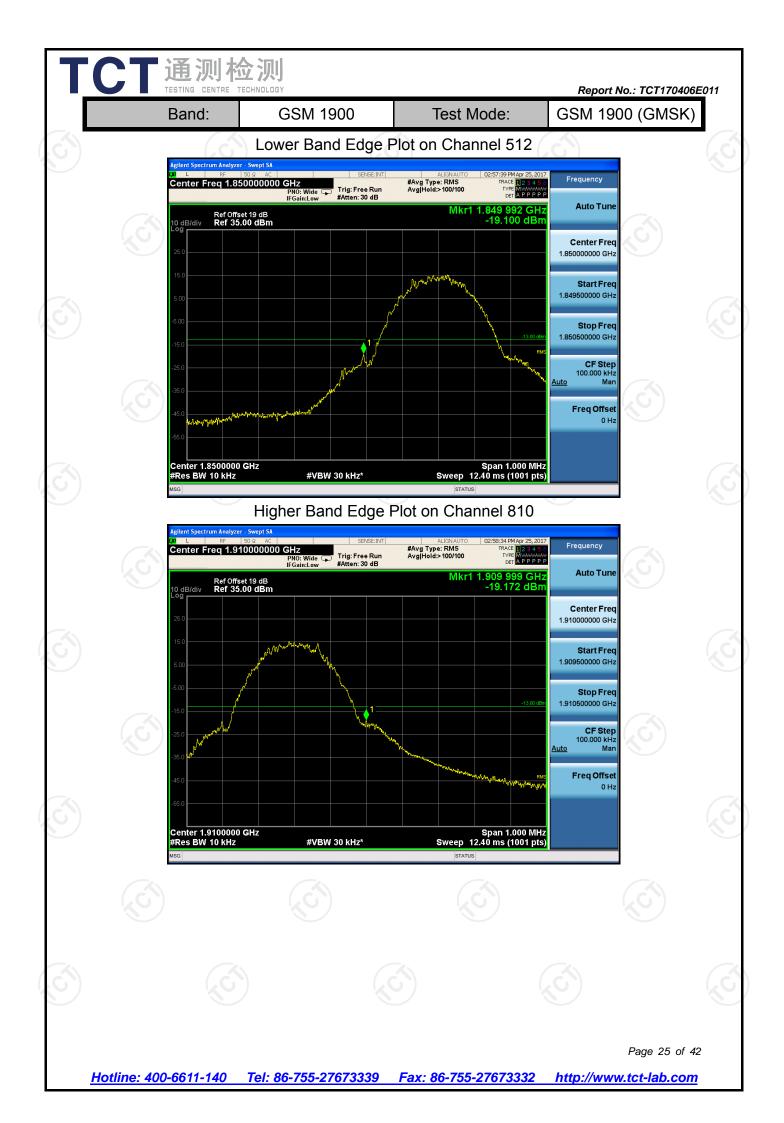

Note: GSM & GPRS use the same modulation technical (GMSK), and with the same channels, so the 99% OBW and the -26dB of GPRS not performed.

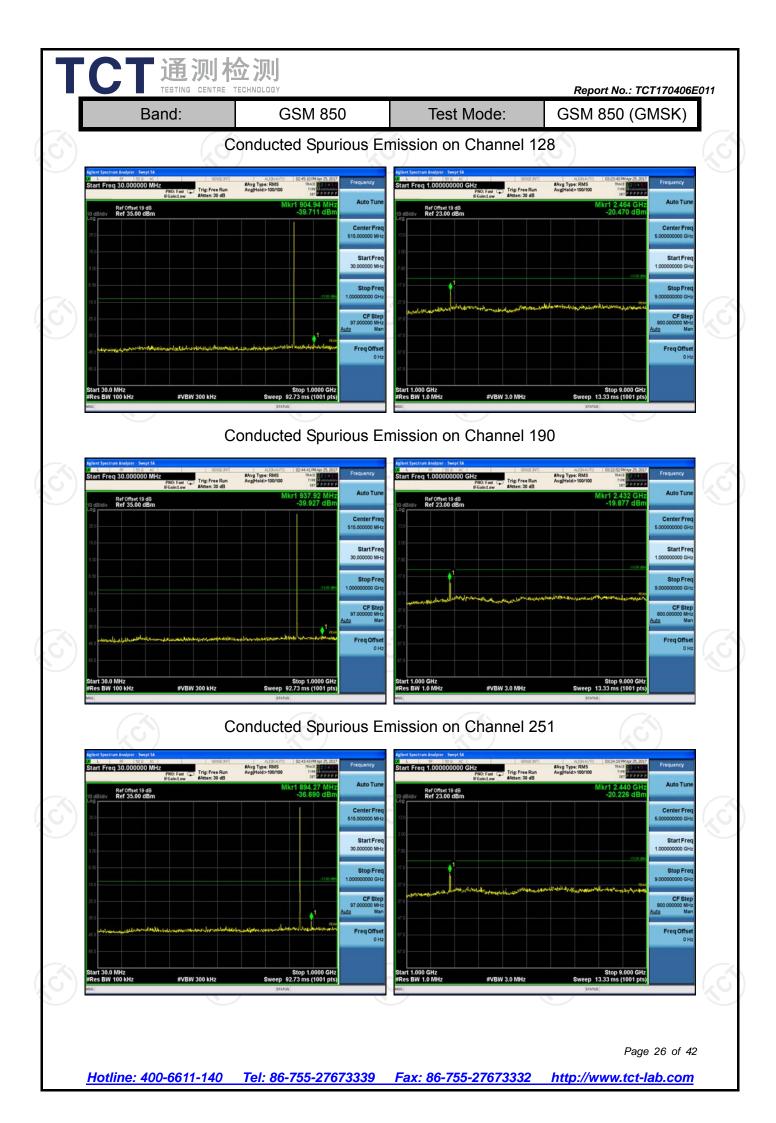
Test plots as follows:

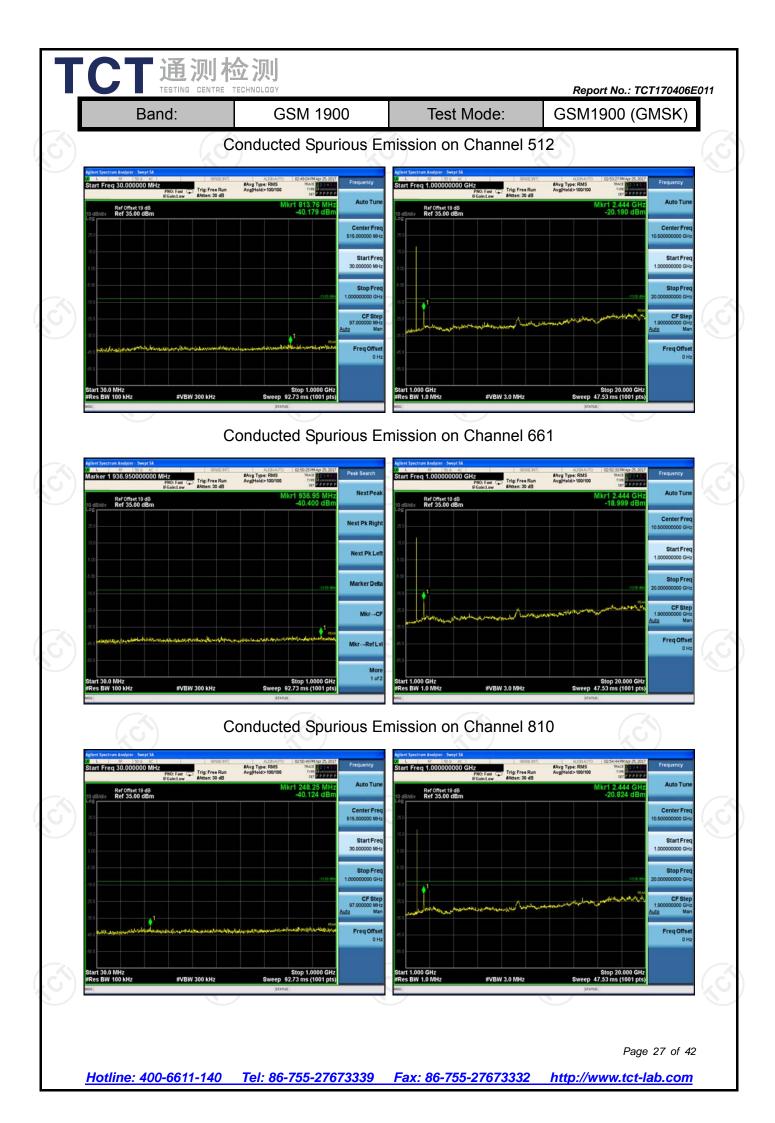
Page 19 of 42

Report No.: TCT170406E011




5. Test Specification	NO.	
Test Requirement:	FCC part22.917(a) and F	CC part24.238(a)
Fest Method:	FCC part2.1051	
Operation mode:	Refer to item 4.1	
_imit:	-13dBm	
rest Setup:	System Simulator	Power Divider
Fest Procedure:	 6.0. 2. The EUT was connected system simulator via a 3. The RF output of EUT analyzer by an RF ca The path loss was coneach measurement. 4. The band edges of low highest RF powers was 5. The conducted spuriou frequency range was 6. The RF fundamental fragainst the limit line in 7. The limit line is derived the transmitter power P(Watts) = P(W) - [43] 	was connected to the spectrum ble and attenuator. mpensated to the results for and high channels for the ere measured. us emission for the whole taken. requency should be excluded in the operating frequency band. d from 43 + 10log(P) dB below
est Result:	PASS	


Page 22 of 42


Equipme	ent	Manufacturer	Model	Serial Number	Calibration Due
System simu	ulator	R&S	CMU200	111382	Aug. 11, 2017
Spectrum An		Agilent	N9020A	MY49100060	Aug. 12, 2017
RF cabl (9kHz-40G		тст	RE-06	N/A	Aug. 12, 2017
Antenna Con	nector	ТСТ	RFC-01	N/A	Aug. 12, 2017
Note: The calibra internation			struments is 12 n	nonths and the calibration	ons are traceable to

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

6.6. Effective Radiated Power and Effective Isotropic Radiated Power

Measurement

TCT通测检测 TESTING CENTRE TECHNOLOGY

6.6.1. Test Specification

	FCC part 22.913(a) and FCC part 24.232(b)						
Fest Method:	FCC part 2.1046						
		WCDMA/HSPA					
	SPAN	500kHz	10MHz				
	RBW	10kHz	100kHz				
Receiver Setup:	VBW	30kHz	300kHz				
Veceiver Setup.	Detector	RMS	RMS				
	Trace	Average	Average				
	Average Type	Power	Power				
	Sweep Count	100	100				
	GSM850 7W ER	Р					
	PCS1900 2W EI						
Limit:	1 001900 277 EI	I NI					
Γest Setup:	CMU200	Ground Reference Plane	Antenna Tower				
	5.2.1. (for CD GSM/GPRS/I Section 2.2.1	MA/WCDMA), Se EDGE) and ANSI / 7.	TIA-603-C-2004				
Test Procedure:	platform 0.8 r chamber. The frequency wa and a spectru	2. The EUT was placed on a non-conductive rotating platform 0.8 meters high in a semi-anechoic chamber. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and a spectrum analyzer with RMS detector per section 5. of KDB 971168 D01.					
		asurement, the sy					

3		L 沙川 松 沙	reco 360 ante mete orier 4. Effe mea TIA/ ante	orded from a degrees rot ens in both h ntations. ctive Isotrop sured by su EIA-603-C. enna (substit	nalyzer pow ation of the and lowered orizontally a bic Radiated bstitution m The EUT wa ution antenr	e maximum er level (LV turntable an over a rang ind verticall Power (EIF ethod accor as replaced na) at the sa	nd the test ge from 1 to 4 y polarized RP) was rding to	s 1
्र T	est results:		the or reco raise facto ante EIRI	dipole anten orded the ma ed and lowe or (in dB) = \$ onna gain - A P was calcu	na through a aximum Ana red the test S.G Tx Ca analyzer rea	a Tx cable, lyzer readin antenna. Th ble loss + S ding. Then t e correctior	and then g through ne correction Substitution the EUT's n factor, EIRP)=
5		(C)				(C)		

6.6.2. Test Instruments

TCT通测检测 TESTING CENTRE TECHNOLOGY

	Radiated Em	ission Test Si	te (966)		
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
ESPI Test Receiver	ROHDE&SCHW ARZ	ESVD	100008	Aug. 11, 2017	
System simulator	R&S	CMU200	111382	Aug. 11, 2017	
Spectrum Analyzer	ROHDE&SCHW ARZ	FSEM	848597/001	Aug. 11, 2017	
Spectrum Analyzer	Agilent	N9020A	MY49100060	Aug. 12, 2017	
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Aug. 11, 2017	
Pre-amplifier	HP	8447D	2727A05017	Aug. 11, 2017	
Broadband Antenna	Schwarzbeck	VULB9163	340	Aug. 13, 2017	
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Aug. 13, 2017	
Broadband Antenna	Schwarzbeck	VULB9163	412	Aug. 13, 2017	
Horn Antenna	Schwarzbeck	BBHA 9120D	813	Aug. 13, 2017	
Dipole Antenna	тст	TCT-RF	N/A	Aug. 13, 2017	
Coax cable (9kHz-40GHz)	ТСТ	RE-low-01	N/A	Aug. 11, 2017	
Coax cable (9kHz-40GHz)	тст	RE-high-02	N/A	Aug. 11, 2017	
Coax cable (9kHz-40GHz)	тст	RE-low-03	N/A	Aug. 11, 2017	
Coax cable (9kHz-40GHz)	тст	RE-High-04	9 N/A	Aug. 11, 2017	
Antenna Mast	CCS	CC-A-4M	N/A	Aug. 12, 2017	
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A	
UNIVERSAL RADIO COMMUNICATION TESTER	CMU200	R&S	Sep. 12, 2016	Sep. 11, 2017	

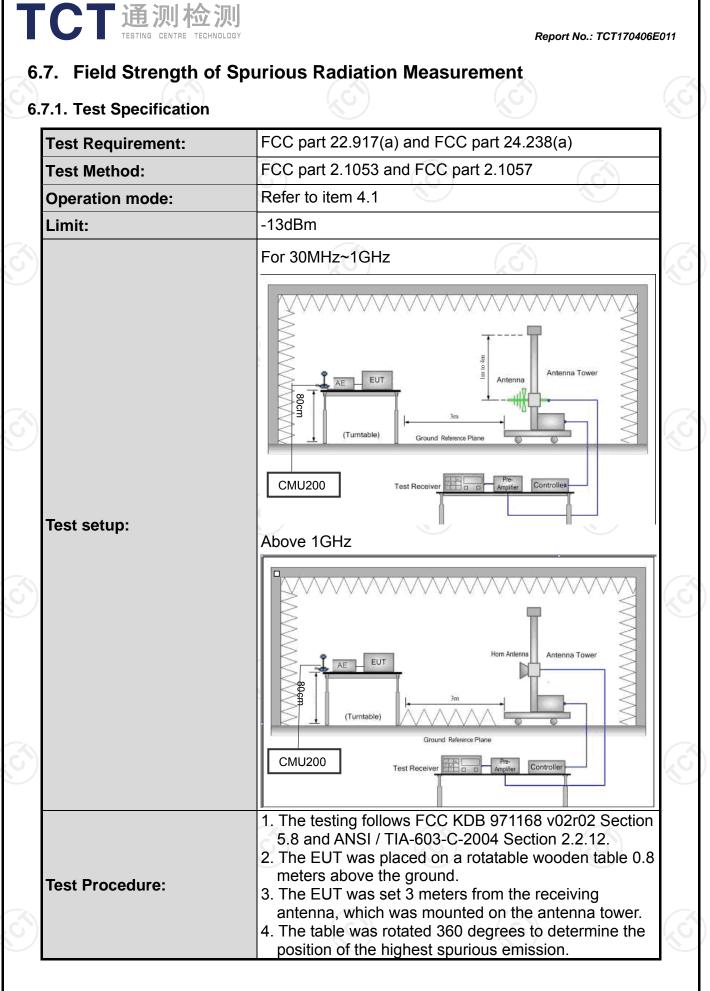
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 30 of 42

6.6.3. Test Data

TCT 通测检测 TESTING CENTRE TECHNOLOGY

		Test Result	of ERP		
	G	SSM 850 Radiate	d Power ERP		
	Hori	zontal Polarizatio	n (Antenna Pol.)		
Frequency (MHz)	(EUT Pol.)	LVL (dBm)	Correction Factor (dB)	ERP (dBm)	ERP (W)
824.40	Н	9.41	21.66	31.07	1.28
836.60	(H)	9.48	21.54	31.02	1.26
848.80	H	9.69	21.46	31.15	1.30
		Vertical Polar	ization (Antenna	Pol.)	-
Frequency (MHz)	(EUT Pol.)	LVL (dBm)	Correction Factor (dB)	ERP (dBm)	ERP (W)
824.40	Н	10.52	21.66	32.18	1.65
836.60	H	10.63	21.54	32.17	1.65
848.80	Н	10.70	21.46	32.16	1.64


	GPR	S 850 (1-solt) Ra	adiated Power ERP)	
	Hor	izontal Polarizati	on (Antenna Pol.)		
Frequency (MHz)	(EUT Pol.)	LVL (dBm)	Correction Factor (dB)	ERP (dBm)	ERP (W)
824.40	Н	8.15	22.42	30.57	1.14
836.60	Н	8.54	22.65	31.19	1.32
848.80	Н	8.47	22.26	30.73	1.18
	Ve	ertical Polarizatio	n (Antenna Pol.)		
Frequency (MHz)	(EUT Pol.)	LVL (dBm)	Correction Factor (dB)	ERP (dBm)	ERP (W)
824.40	Н	9.06	21.66	30.72	1.18
836.60	Н	9.80	21.54	31.34	1.36
848.80	Н	9.31	21.46	30.77	1.19

Note: All GPRS slot have been tested, but only the worst GPRS 1-slot show in this test item.

Report No.: TCT170406E011

		PCS1900 F	Radiated Power EIRP	,	
		Horizontal Pol	arization (Antenna P	ol.)	
requenc y (MHz)	(EUT Pol.)	LVL (dBm)	Correction Factor (dB)	EIRP (dBm)	EIRP (W)
1850.20	Н	7.90	21.54	29.44	0.88
1880.00	Н	7.12	21.48	28.60	0.72
1909.80	Н	7.01	21.62	28.63	0.73
		Vertical Pola	rization (Antenna Pol	.)	
requenc y (MHz)	(EUT Pol.)	LVL (dBm)	Correction Factor (dB)	EIRP (dBm)	EIRP (W)
1850.20	Н	8.41	22.74	31.15	1.30
1880.00	Н	8.42	22.62	31.04	1.27
1909.80	H	8.19	22.56	30.75	1.19
requenc		LVL	Correction	EIRP	EIRP
у (MHz)	(EUT Pol.)	(dBm)	Factor (dB)	(dBm)	(W)
1850.20	Н	6.85	21.54	28.39	0.69
1880.00	H	6.31	21.48	27.79	0.60
1909.80	Н	6.42	21.62	28.04	0.64
		Vertical Pola	rization (Antenna Pol	.)	
Frequenc y (MHz)	(EUT Pol.)	LVL (dBm)	Correction Factor (dB)	EIRP (dBm)	EIRP (W)
1850.20	H	7.92	22.74	30.66	1.16
1880.00	Н	7.06	22.62	29.68	0.93
1909.80	Н	7.15	22.56	29.71	0.94
lote : All GPF	RS slot have been te	sted, but only the v	vorst GPRS 1-slot show in ti	his test item.	

Page 32 of 42

Page 33 of 42

	one me spuriou polariza 6. Make t RBW = maximu 7. A horn and wa 8. Tune th same e emissio 9. Taking 10. Repea 11. EIRP Anten 12. ERP 13. The F agains 14. The li the trar = P(W) = [30 +	 5. The height of the receiving antenna is varied between one meter and four meters to search for the maximum spurious emission for both horizontal and vertical polarizations. 6. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking record of maximum spurious emission. 7. A horn antenna was substituted in place of the EUT and was driven by a signal generator. 8. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission. 9. Taking the record of output power at antenna port. 10. Repeat step 7 to step 8 for another polarization. 11. EIRP (dBm) = S.G. Power – Tx Cable Loss + Tx Antenna Gain 12. ERP (dBm) = EIRP - 2.15 13. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 14. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts) = P(W) - [43 + 10log(P)] (dB) = [30 + 10log(P)] (dBm) - [43 + 10log(P)] (dB) = -13dBm. 			
Test results: Remark:	PASS All modul		sted, but only the worst		
3) (s	Worst cas	se at GSM850/PCS1	900		
			Page 34 of		

6.7.2. Test Instruments

	Radiated Em	ission Test Si	te (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
ESPI Test Receiver	ROHDE&SCHW ARZ	ESVD	100008	Aug. 11, 2017
System simulator	R&S	CMU200	111382	Aug. 11, 2017
Spectrum Analyzer	ROHDE&SCHW ARZ	FSEM	848597/001	Aug. 11, 2017
Spectrum Analyzer	Agilent	N9020A	MY49100060	Aug. 12, 2017
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Aug. 11, 2017
Pre-amplifier	HP	8447D	2727A05017	Aug. 11, 2017
Loop antenna	ZHINAN	ZN30900A	12024	Aug. 13, 2017
Broadband Antenna	Schwarzbeck	VULB9163	340	Aug. 13, 2017
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Aug. 13, 2017
Horn Antenna	Schwarzbeck	BBHA 9170	373	Aug. 13, 2017
Dipole Antenna	тст	TCT-RF	N/A	Aug. 13, 2017
Coax cable (9kHz-40GHz)	тст	RE-low-01	N/A	Aug. 11, 2017
Coax cable (9kHz-40GHz)	тст	RE-high-02	N/A	Aug. 11, 2017
Coax cable (9kHz-40GHz)	тст	RE-low-03	N/A	Aug. 11, 2017
Coax cable (9kHz-40GHz)	тст	RE-High-04	9 N/A	Aug. 11, 2017
Antenna Mast	CCS	CC-A-4M	N/A	Aug. 12, 2017
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 35 of 42

uency Range (requency (MF 		@3m (dBµ∨ 	//m)	Limit@3m (dBµV/m)
				-	-
2. The emission Leve 2. The emission requirement				- borted. It is deeme	ed to comply v

Band	CENTRE TECHNOLOGY		Test channel:	port No.: TCT17 Lowest	
Bana	-		Temperature :	25°C	
Test mode:	GSM	850	Relative Humidity:	56%	
Frequency	Spurious	Emission		Desult	
(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
1648.40	Vertical	-42.72			
2472.60	V	-39.36			
3296.80	V	-51.81	-13.00	PASS	
1648.40	Horizontal	-42.63	-13.00	PASS	
2472.60	H	-38.44			
3296.80	(G) H	-51.99	(\dot{c})		
Band			Test channel:	Middle	
Test mode:	GSM 850		Temperature : Relative	25°C	
				56%	
Frequency (MHz)	Spurious	Emission	Limit (dBm)	Result	
	Polarization	Level (dBm)		Result	
1673.20	Vertical	-41.68			
2509.80	V	-44.77			
3346.40	V (O	-52.48	-13.00	PASS	
1673.20	Horizontal	-41.67	-13.00	1,400	
2509.80	H	-39.83			
3346.40	H	-52.23		<u></u>	
Band			Test channel:	Highest	
	GSM	850	Temperature : Relative	25°C	
Test mode:		G2101 020		56%	
Frequency	Spurious	Emission	Limit (dBm)	Result	
(MHz)	Polarization	Level (dBm)		Result	
1697.60	Vertical	-42.65			
2546.40	V	-46.87			
3395.20	V	-52.43	-13.00	PASS	
1697.60	Horizontal	-43.63		1 433	
2546.40	Н	-46.63			
3395.20	H	-56.84	1		

Remark:

The emission behaviour belongs to narrowband spurious emission.
 The emission levels of not record in the report are very lower than the limit and not show in test report.
 Test Frequency range is up to 10GHz,

C		则检测 entre technology			Report No.: TCT17040	6E011
	Band			Test channel:	Lowest	
		D00	4000	Temperature :	25°C	
Te	est mode:	PCS [·]	1900	Relative Humidity:	56%	K
F	requency	Spurious I	Emission	Limit (dBm)	Result	
	(MHz)	Polarization	Level (dBm)		Result	
	3700.40	Vertical	-49.63			
	5550.60	V	-47.35			
	7400.80	V	-52.99	12.00	DACC	
	3700.40	Horizontal	-49.82	13.00	PASS	
	5550.60	G H	-50.81			
	7400.80	Н	-52.53			
Te	est mode:			Test channel:	Middle	
	Test mode:	PCS 1900		Temperature :	25°C	
Te				Relative Humidity:	56%	
F	requency	Spurious I	Emission	Limit (dBm)	Result	
	(MHz)	Polarization	Level (dBm)		Result	
	3760.00	Vertical	-49.52			
	5640.00	V (O	-53.48			
	7520.00	V	-45.83	-13.00	PASS	
	3760.00	Horizontal	-47.18	-13.00	FA33	
	5640.00	Н	-53.23			
	7520.00	H	-53.41	(\mathbf{G})	(\mathbf{G})	
Te	est mode:			Test channel:	Highest	
		DCS -	1900	Temperature :	25°C	
Te	est mode:	PCS 1900		Relative Humidity:	56%	
F	requency	Spurious I	Emission	Limit (dBm)	Result	
	(MHz)	Polarization	Level (dBm)		Result	
	3819.60	Vertical	-52.79			
	5729.40	V	-54.82			
	7639.20	V (G)	-58.65	-13.00	PASS	
	3819.60	Horizontal	-52.65	-13.00	FA33	
	5729.40	Н	-55.96			
		H				

Remark:

The emission behaviour belongs to narrowband spurious emission.
 The emission levels of not record in the report are very lower than the limit and not show in test report.

3. Test Frequency range is up to 20GHz,

Page 38 of 42

3.1. Test Specification	
Test Requirement:	FCC Part 2.1055(a)(1)(b)
Test Method:	FCC Part 2.1055(a)(1)(b)
Operation mode:	Refer to item 4.1
Limit:	±2.5 ppm
Test Setup:	System Simulator EUT Thermal Chamber
	Test Procedures for Temperature Variation 1. The testing follows FCC KDB 971168 v02r02 Section
Test Procedure:	 9.0. 2. The EUT was set up in the thermal chamber and connected with the system simulator. 3. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute. 4. With power OFF, the temperature was raised in 10°C steps up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute. Test Procedures for Voltage Variation 1. The testing follows FCC KDB 971168 v02r02 Section 9.0. 2. The EUT was placed in a temperature chamber at 25±5° C and connected with the system simulator. 3. The power supply voltage to the EUT was varied from BEP to 115% of the nominal value measured at the input to the EUT. 4. The variation in frequency was measured for the worst case.
Test Result:	PASS
Remark:	All three channels of all modulations have been tested, but only the worst channel and the worst modulation show in this test item.

Page 39 of 42

Equipment	Manufacturer	Model	Serial Number	Calibration Due
System simulator	R&S	CMU200	111382	Aug. 11, 2017
RF cable (9kHz-40GHz)	тст	RE-06	N/A	Aug. 12, 2017
Antenna Connecto	r TCT	RFC-01	N/A	Aug. 12, 2017
lote: The calibration inte international system		struments is 12 n	nonths and the calibratio	ons are traceable to

6.8.3. Test Data

Band :	GSM 850	Channel:	190	
Limit (ppm) :	2.5	Frequency:	836.6MHz	
Temperature (°C)	Deviation (ppm)		Result	
50	0.010			
40	0.013			
30	0.011			
20	0.009			
10	0.010		PASS	
0	0.012			
-10	0.008			
-20	0.012			
-30	0.009			

Band :	GSM 1900	Channel:	661	
Limit (ppm) :	Note	Frequency:	1880MHz	
Temperature (°C)	Deviation (ppm)		Result	
50	0.022			
40	0.021			
30	0.019			
20	0.018			
10	0.017		PASS	(
0	0.016			
-10	0.017			
-20	0.020			
-30	0.018			

Note: The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small.

Page 41 of 42

Report No.: TCT170406E011

Test Result of Voltage Variation

Band & Channel	Voltage (Volt)	Deviation (ppm)	Limit (ppm)	Result
GSM 850 CH190	4.2	0.026		PASS
	3.7	0.023	2.5	
	BEP	0.019		
GSM 1900 CH661	4.2	0.012		
	3.7	0.009	(Note 3.)	
	BEP	0.007		

Note:

1. Normal Voltage = 3.7V.

 Battery End Point (BEP) = 3.5V.
 The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small.

*****END OF REPORT*****