

EMISSIONS TEST REPORT

Report Number: 102172761BOX-001 Project Number: G102172761

Report Issue Date: 09/08/2015

Product Designation: NC-220

Standards: CFR47 FCC Part 15 Subpart C 15.247:2015 CFR47 FCC Part 15 Subpart B:2015 IC RSS-247 Issue 1 May 2015 IC RSS-Gen Issue 4 November 2014 IC ICES-003 Issue 5 August 2012 IC RSS-102 Issue 5 March 2015 updated December 2010

Tested by: Intertek Testing Services NA, Inc. 70 Codman Hill Road Boxborough, MA 01719 Client: Mircom Technologies Ltd. 25 Interchange Way Vaughan ON L4K 5W3 Canada

Report prepared by Reviewer

Methan 2Vm

Vathana F. Ven / Staff Engineer, EMC

Report reviewed by

Kouma Sinn / Staff Engineer, EMC

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Emissions Report for Mircom Technologies Ltd. on the NC-220

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	
4	Description of Equipment Under Test	
5	System Setup and Method	
6	RF Output Power, Duty Cycle, and Human RF Exposure (CFR47 FCC Part 15 Subpart C 15.247(b)(3), KDB 558074, IC RSS-247 Issue 1 May 2015 5.4(4), IC RSS-102 Issue 5 March 2015)	Pass
7	6 dB Bandwidth (CFR47 FCC Part 15 Subpart C 15.247(a)(2), IC RSS-247 Issue 1 May 2015 5.2, IC RSS-Gen Section 6.6, KDB 558074)	Pass
8	Peak Power Spectral Density (FCC 15:2015 Subpart C Section 15.247 (e), RSS-247 Issue 1 May 2015 5.2(2), KDB 558074)	Pass
9	Band Edge Compliance (FCC 15:2015 Subpart C Section 15.247 (d), RSS-247 Issue 1 May 2015 5.2(2), KDB 558074)	Pass
10	Transmitter Radiated Spurious Emissions (CFR47 FCC Part 15 Subpart C 15.247(d), IC RSS-247 Issue 1 May 2015 5.5, KDB 558074)	Pass
11	Digital Devices and Receiver Radiated Spurious Emissions (CFR47 FCC Part 15 Subpart B 15.109, IC RSS-Gen Sections 7.1 & IC ICES-003 Issue 5 August 2012)	Pass
	AC Mains Conducted Emissions CFR47 FCC Part 15:2015 Subpart B Section 15.207 IC RSS-Gen Issue 3 December 2010, 7.2.2 (Table 2)	N/A, Battery Powered

12 Revision History

* - The EUT is battery powered and does not have facility to connect to the AC mains, directly or indirectly.

3 Client Information

This EUT was tested at the request of:

Company:	Mircom Technologies Ltd. 25 Interchange Way Vaughan ON L4K 5W3 Canada
Contact:	Mr. Mike Mahoney
Telephone:	(905) 660-4655
Fax:	(905) 695-3538
Email:	mmahoney@mircomgroup.com

4 Description of Equipment Under Test

Equipment Under Test						
Description	Manufacturer	Model Number	Serial Number			
Zigbee Wireless Sensor	Mircom Technologies	NC-220	00032 Transmit mode			
Zigbee Wireless Sensor	Mircom Technologies	NC-220	00031 Normal mode			
Zigbee Wireless Sensor	Mircom Technologies	NC-220	A00068 Transmit mode			

Receive Date:	06/04/2012, 07/30/2015	Start Date:	09/14/2012
Received Condition:	Good	Complete date:	09/08/2015
Туре:	Prototype		

Description of Equipment Under Test (provided by client) The NC-220 is a Wireless sensor with Zigbee wireless application. The Zigbee transceiver operates in the 2400-2483.5 MHz band from 2405-2480MHz using an integral antenna.

Equipment Under Test Power Configuration						
Rated Voltage	Rated Current	Rated Frequency	Number of Phases			
3VDC	N/A	N/A	N/A			

Operating modes of the EUT:

No.	Descriptions of EUT Exercising
1	The device was in transmit mode, channels 11 (2405 MHz), 18 (2440 MHz), 26 (2480 MHz)
2	The device was also tested in receive mode

5 System Setup and Method

		Cabl	es		
ID	Description	Length (m)	Shielding	Ferrites	Termination
	None				

Support Equipment								
Description	Description Manufacturer Model Number Serial Number							
Laptop	HP	350	N/A					
AC adapter	Direct Plug-in	35-D12-200	N/A					

5.1 Method:

Configuration as required by ANSI C63.4:2014, ANSI C63.10:2013 and KDB 558074.

5.2 EUT Block Diagram:

6 RF Output Power, Duty Cycle, and Human RF Exposure

6.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, *KDB 558074*, ANSI C63.10, RSS-102, FCC Part 2 and KDB 447498, and RSS-247.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1

GHz) < U_{CISPR} (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

CF - AG
FS = Field Strength in $dB\mu V/m$
RA = Receiver Amplitude (including preamplifier) in $dB\mu V$
CF = Cable Attenuation Factor in dB
AF = Antenna Factor in dB
AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dB μ V/m

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μ V NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 UF = $10^{(32 \text{ dB}\mu\text{V}/20)}$ = 39.8 $\mu\text{V/m}$

6.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	10/06/2014	10/06/2015
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/14/2015	03/14/2016
ETS001'	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	01/14/2015	01/14/2016
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	10/04/2014	10/04/2015

Software Utilized:

Name	Manufacturer	Version		
EMI Boxborough.xls	Intertek	08/27/2010		

6.3 Results:

The sample tested was found to Comply with both the FCC and Industry Canada requirements. The EIRP must not exceed 30 dBm. The RSS-102 Issue 5 Human Exposure Limit at 2.48 GHz = 5.47 W/m^2 .

6.4 Setup Photographs:

Axis1 orientation

Axis 2 orientation

Report Number: 102172761BOX-001

Intertek

Axis 3 orientation

6.5 Test Data:

RF Output Power

Company:	Mircom Te	chnologies L	.td.				Antenna	a & Cables:	HF	Bands: N,	LF, HF, SHF
Model #:	NC-220						Antenna:	ETS001 01	-14-16.txt	ETS001 07	1-14-16.txt
Serial #:	A00068						Cable(s):	145-416 3m Track B 1-1	5GHz Cable 10-04-15.txt	NONE.	
Engineers:	Vathana V	en			Location:	10M	Barometer:	DAV004		Filter:	NONE
Project #:	G1021795	05	Date(s):	08/28/15							
Standard:	FCC Part ?	15 Subpart C	15.247				Temp/Humic	lity/Pressure:	21 deg C	51%	1011 mB
Receiver:	R&S ESI (145-128) 03-	14-2016	Limit Di	stance (m):	3		-	-		
PreAmp:	145014 05	-13-16.txt		Test Di	stance (m):	3					
F	PreAmp Use	ed? (Y or N):	Ν	Voltage/	Frequency:	Battery	powered	Freque	ncy Range:	Funda	amental
	Net = Rea	ading (dBuV/i	m) + Antenr	na Factor (dl	B1/m) + Cat	ole Loss (dE	3) - Preamp	Factor (dB)	- Distance F	actor (dB)	
Peak: F	PK Quasi-F	Peak: QP Av	erage: AVG	RMS: RMS	S; NF = Nois	se Floor, RE	s = Restricte	d Band; Bar	ndwidth den	oted as RB	W/VBW
	Ant.			Antenna	Cable	Pre-amp	Distance				
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth
Type	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(m)	dB(m)	dB	
	. ,			,	Note: RF O	utput Power		()			
	Note: EIRP	Obtained by	applying th	e path loss	correction fo	or a 3m test	distance, Ed	(dBuV/m)@	3m - 95.22 :	= dBm EIR	c
		,	<u> </u>	H11 - 2405	MHz, No pre	e-amp, X-A	kis (EUT Fla	t)			
PK	Н	2405.000	50.49	31.97	5.87	0.00	0.00	-6.89	30.00	-36.87	5/10MHz
PK	V	2405.000	46.20	31.97	5.87	0.00	0.00	-11.18	30.00	-41.18	5/10MHz
			CH11 -	2405MHz,	No pre-amp	, Y-Axis (El	JT on its lon	q side)			
PK	Н	2405.000	49.83	31.97	5.87	0.00	0.00	-7.55	30.00	-37.55	5/10MHz
PK	V	2405.000	50.88	31.97	5.87	0.00	0.00	-6.50	30.00	-36.50	5/10MHz
			CH11 -	2405MHz, I	No pre-amp	, Z-Axis (EL	JT on its sho	rt side)			
PK	Н	2405.000	48.63	31.97	5.87	0.00	0.00	-8.75	30.00	-38.75	5/10MHz
PK	V	2405.000	48.24	31.97	5.87	0.00	0.00	-9.14	30.00	-39.14	5/10MHz
		•	C	H18 - 2440	MHz, No pre	e-amp, X-A	kis (EUT flat)		•	•
PK	Н	2440.000	50.54	32.11	5.92	0.00	0.00	-6.65	30.00	-36.65	5/10MHz
PK	V	2440.000	47.56	32.11	5.92	0.00	0.00	-9.63	30.00	-39.65	5/10MHz
		•	CH18 -	2440MHz, I	No pre-amp	, Y-Axis (EL	JT on its lon	g side)		•	•
PK	н	2440.000	48.39	32.11	5.92	0.00	0.00	-8.80	30.00	-38.80	5/10MHz
PK	V	2440.000	50.13	32.11	5.92	0.00	0.00	-7.06	30.00	-37.06	5/10MHz
		•	CH18 -	2440MHz, N	No pre-amp,	Z-Axis (EU	T on its sho	rt side)			•
PK	Н	2440.000	49.31	32.11	5.92	0.00	0.00	-7.88	30.00	-37.88	5/10MHz
PK	V	2440.000	49.18	32.11	5.92	0.00	0.00	-8.01	30.00	-38.01	5/10MHz
		•	. (CH26 - 2480	MHz, No pr	e-amp, X-A	xis (EUT flat	:)			
PK	Н	2480.000	52.00	32.26	5.98	0.00	0.00	-4.98	30.00	-34.98	5/10MHz
PK	V	2480.000	47.56	32.26	5.98	0.00	0.00	-9.42	30.00	-45.42	5/10MHz
			CH26 -	2480MHz,	No pre-amp	, Y-Axis (El	JT on its lon	g side)			
PK	Н	2480.000	52.19	32.26	5.98	0.00	0.00	-4.79	30.00	-36.79	5/10MHz
PK	V	2480.000	51.90	32.26	5.98	0.00	0.00	-5.08	30.00	-35.08	5/10MHz
			CH26 -	2480MHz. I	No pre-amp	, Y-Axis (El	JT on its sho	ort side)			
PK	Н	2480.000	49.45	32.26	5.98	0.00	0.00	-7.53	30.00	-37.53	5/10MHz
PK	V	2480 000	49.04	32.26	5 98	0.00	0.00	-7 94	30.00	-37 94	5/10MHz

Duty Cycle

The worst-case duty cycle for typical EUT operation is shown below. The pulse train of the EUT extends beyond 100 ms as shown in the following plot.

Date: 17.SEP.2012 11:49:42

Issued: 09/04/2015

Date: 17.SEP.2012 11:58:20

Report Number: 102172761BOX-001

Date: 22.SEP.2012 20:16:41

There were 10 pulse trains in 100 ms period and the length of each pulse train was 551.102 μ S. The duty cycle is therefore, 5.511 ms in a 100ms period, or 5.511%, for a duty cycle correction factor of 25.18 dB.

RSS-102 Issue 5 Exposure Limits:

Frequency Range	Electric Field	Magnetic Field	Power Density	Reference Period
(MHz)	(V/m rms)	(A/m rms)	(W/m ²)	(minutes)
0.003-10 ²¹	83	90	-	Instantaneous*
0.1-10	-	0.73/ f	-	6**
1.1-10	87/ f ^{0.5}	-	-	6**
10-20	27.46	0.0728	2	6
20-48	58.07/ f ^{0.25}	$0.1540/f^{0.25}$	8.944/ f ^{0.5}	6
48-300	22.06	0.05852	1.291	6
300-6000	$3.142 f^{0.3417}$	$0.008335 f^{0.3417}$	$0.02619 f^{0.6834}$	6
6000-15000	61.4	0.163	10	6
15000-150000	61.4	0.163	10	$616000/f^{1.2}$
150000-300000	$0.158 f^{0.5}$	$4.21 \ge 10^{-4} f^{0.5}$	6.67 x 10 ⁻⁵ f	$616000/f^{1.2}$
Note: f is frequency *Based on nerve stin ** Based on specific	in MHz. nulation (NS). absorption rate (SAR)).		

Table 4: RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)

1.1 Test Procedure

The EUT was measured in a radiated fashion. The RF output power was measured using a resolution bandwidth which encompassed the entire emission bandwidth. The data obtained was adjusted for equipment losses and converted from a field strength reading to a power reading using the provisions of RSS-Gen 4.6.

1.2 Results:

RSS-102 Issue 5 Exposure Limit at 2.48 GHz = 5.47 W/m²

Maximum EIRP measured at 2480 MHz -4.79 dBm or 0.332 mW

Power Density = $EIRP/(4*pi*20^2)$

Power Density = $0.00006604 \text{ mW/cm}^2$

Power Density = 0.0006604 W/m^2

The calculated maximum power density at 20 cm distance is less than the limit for general population / uncontrolled exposure. The device has also met the higher FCC RF exposure limits.

Report Number: 102	2172761BOX-001		Issued: 09/04/2015
Test Personnel:	Vathana Ven	Test Date:	09/14/2012, 08/28/2015
Supervising/Reviewing		_	
Engineer:			
(Where Applicable)	N/A		
	FCC Part 15 Subpart C	_	
Product Standard:	15.247; IC RSS-247	Test Levels:	See tables
Input Voltage:	3V Fresh battery		
Pretest Verification w/		Ambient Temperature:	21 °C
Ambient Signals or		Relative Humidity:	51 %
BB Source:	Ambient		
		Atmospheric Pressure:	1011 mbars

Deviations, Additions, or Exclusions: None

7 6 dB Bandwidth & 99% Power Bandwidth

7.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, *KDB 558074*, ANSI C63.10, and RSS-247.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

7.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	10/06/2014	10/06/2015
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/14/2015	03/14/2016
ETS001'	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	01/14/2015	01/14/2016
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	10/04/2014	10/04/2015

Software Utilized:

Name	Manufacturer	Version
None		

7.3 Results:

The 99% power bandwidth, or 6 dB bandwidth, must not be less than 500 kHz. The sample tested was found to Comply.

Channel	6 dB Bandwidth	99% Power Bandwidth
Channel 11 (2405 MHz)	1.488 MHz	3.151 MHz
Channel 18 (2440 MHz)	1.507 MHz	2.975 MHz
Channel 26 (2480 MHz)	1.527 MHz	2.975 MHz

Plots were taken using an RBW of ~1-5% of the measured emission bandwidth, per KDB 558074 and IC RSS-Gen 6.6.

7.4 Setup Photograph:

7.5 Plots/Data:

Channel 18 (2440 MHz) 6 dB Bandwidth

Intertek

Channel 26 (2480 MHz) 6 dB Bandwidth

Channel 11 (2405 MHz) 99% Power Bandwidth

Channel 18 (2440 MHz) 99% Power Bandwidth

Intertek

Report Number: 102172761BOX-001

Intertek

Deviations, Additions, or Exclusions: None

Issued: 09/04/2015

8 Peak Power Spectral Density

8.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, *KDB 558074*, ANSI C63.10, and RSS-247.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1

GHz) < U_{CISPR} (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF +	CF - AG
Where	FS = Field Strength in $dB\mu V/m$
	RA = Receiver Amplitude (including preamplifier) in $dB\mu V$
	CF = Cable Attenuation Factor in dB
	AF = Antenna Factor in dB
	AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dB μ V/m

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μ V NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF – AG = 52.0 + 7.4 + 1.6 – 29.0 = 32.0 UF = $10^{(32 \text{ dB}\mu\text{V}/20)}$ = 39.8 $\mu\text{V/m}$

8.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	10/06/2014	10/06/2015
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/14/2015	03/14/2016
ETS001'	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	01/14/2015	01/14/2016
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	10/04/2014	10/04/2015

Software Utilized:

Name	Manufacturer	Version
EMI Boxborough.xls	Intertek	08/27/2010

8.3 Results:

The sample tested was found to Comply. The peak power spectral density must not exceed 8 dBm in any 3 kHz bandwidth using the methods of KDB 558074.

8.4 Setup Photographs:

Axis1 orientation

Axis 2 orientation

Report Number: 102172761BOX-001

Intertek

Axis 3 orientation

8.5 Test Data:

Radiated Emissions

Company:	Mircom Te	chnologies L	td.				Antenna	a & Cables:	HF	Bands: N,	LF, HF, SHF	
Model #:	Model #: NC-220				Antenna: ETS001 01-14-16.txt ETS001 01-14-16.txt							
Serial #:	Serial #: A00068					Cable(s): 145-416 3m Track B 1-15GHz Cable 10-04-15.txt NONE.						
Engineers:	Vathana Ve	en			Location:	10M	Barometer:	DAV004		Filter:	NONE	
Project #:	G1021795	05	Date(s):	08/28/15								
Standard:	FCC Part 1	5 Subpart C	15.247				Temp/Humid	ity/Pressure:	21 deg C	51%	1011 mB	
Receiver:	R&S ESI (1	45-128) 03-	14-2016	Limit Di	stance (m):	3	-	-	•			
PreAmp:	145014 05	-13-16.txt		Test Di	stance (m):	3						
F	PreAmp Use	ed? (Y or N):	Ν	Voltage/	Frequency:	Battery	powered	Freque	ncy Range:			
	Net = Rea	ding (dBuV/r	n) + Antenn	a Factor (d	31/m) + Cat	ole Loss (dE) - Preamp	Factor (dB)	- Distance I	Factor (dB)		
Peak: F	PK Quasi-F	eak: QP Av	erage: AVG	RMS: RMS	S; NF = Nois	e Floor, RE	= Restricte	d Band; Bar	ndwidth den	oted as RB	W/VBW	
	Ant.		- Č	Antenna	Cable	Pre-amp	Distance					1
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth	
Туре	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB		FCC
Peak	Power Spe	ctral Density	, normalized	from 100kl	Hz to 3 kHz	using Band	width Correc	tion Factor	10LOG(3/1	00 kHz)=-1	5.2 dB	
	Note: EIRP	Obtained by	applying the	e path loss o	correction for	or a 3m test	distance, E(dBuV/m)@	3m - 95.22	= dBm EIRF	2	1
		,	CH1	<mark>1 - 2405MH</mark>	z, No pre-ar	np, Worst-o	ase Orienta	tion				
РК	Н	2405.000	38.75	31.97	5.87	0.00	0.00	-33.83	8.00	-41.83	3/10kHz	1
РК	V	2405.000	33.77	31.97	5.87	0.00	0.00	-38.81	8.00	-46.81	3/10kHz	
			CH1	<mark>8 - 2440MH</mark>	Iz, No pre-a	mp, Worst-o	case Orienta	ition				
РК	Н	2440.000	36.98	32.11	5.92	0.00	0.00	-35.41	8.00	-43.41	3/10kHz	1
РК	V	2440.000	39.14	32.11	5.92	0.00	0.00	-33.25	8.00	-41.25	3/10kHz	
			CH2	<mark>6 - 2480MH</mark>	lz, No pre-a	mp, Worst-o	case Orienta	ition				1
РК	Н	2480.000	39.69	32.26	5.98	0.00	0.00	-32.49	8.00	-40.49	3/10kHz	1
РК	V	2480.000	36.11	32.26	5.98	0.00	0.00	-36.07	8.00	-44.07	3/10kHz	1

Report Number: 102	2172761BOX-001		Issued: 09/04/2015
Test Personnel:	Vathana Ven	Test Date:	08/28/2015
Supervising/Reviewing		-	
Engineer:			
(Where Applicable)	N/A		
	FCC Part 15 Subpart C		
Product Standard:	15.247; IC RSS-247	Test Levels:	Below 8 dBm
Input Voltage:	3V Fresh battery		
Pretest Verification w/		Ambient Temperature:	21 °C
Ambient Signals or		Relative Humidity:	51 %
BB Source:	Ambient	Relative Hamary.	
		Atmospheric Pressure:	1011 mbars

Deviations, Additions, or Exclusions: None

9 Band Edge Compliance

9.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, *KDB 558074*, ANSI C63.4:2013, and RSS-247.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1

GHz) < U_{CISPR} (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF +	CF - AG
Where	FS = Field Strength in $dB\mu V/m$
	RA = Receiver Amplitude (including preamplifier) in $dB\mu V$
	CF = Cable Attenuation Factor in dB
	AF = Antenna Factor in dB
	AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dB μ V/m

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μ V NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF – AG = 52.0 + 7.4 + 1.6 – 29.0 = 32.0 UF = $10^{(32 \text{ dB}\mu\text{V}/20)}$ = 39.8 $\mu\text{V/m}$

9.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV003'	Weather Station	Davis Instruments	7400	PE80529A39A	08/17/2011	09/17/2012
145128'	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	08/23/2011	09/23/2012
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	09/04/2011	10/04/2012
HORN2'	HORN ANTENNA	EMCO	3115	9602-4675	10/24/2011	10/24/2012

Software Utilized:

Name	Manufacturer	Version
EMI Boxborough.xls	Intertek	08/27/2010

9.3 Results:

Spurious emissions at the band edges must be at least 20 dB lower than the fundamental field strength when measured with a 100 kHz bandwidth, without the need to be below the general limits of FCC Part 15 Section 15.209 and of RSS-Gen. Emissions in restricted bands must meet the general limits of FCC Part 15 Section 15.209 and of RSS-Gen.

The sample tested was found to Comply.

9.4 Setup Photograph:

Issued: 09/04/2015

9.5 Plots/Data:

Intertek

Lower Band Edge Compliance, 31.91 dB down

Radiated Emissions

Company:	IGEACare	Solutions Inc	;				Antenn	a & Cables:	SHF	Bands: N,	LF, HF, SHF
Model #:	NC-220						Antenna:	HORN2 V3m	10-24-2012.txt	HORN2 H3m	10-24-2012.txt
Serial #:	00032						Cable(s):	145-416 3mTrkE	3 09-04-2012.txt		
Engineers:	Vathana Ve	en			Location:	10m Chamber	Barometer:	DAV003		Filter:	
Project #:	G10033410)2	Date(s):	09/14/12							
Standard:	FCC Part 1	5 Subpart C	15.247/RS	S-247			Temp/Humic	lity/Pressure:	24C	49%	1009mbar
Receiver:	R&S ESI (1	45-128) 09-3	23-2012	Limit Di	stance (m):	3					
PreAmp:	PRE145014	12-16-2012.txt		Test Di	stance (m):	3					
F	PreAmp Use	ed? (Y or N):	Ν	Voltage/	Frequency:	Battery	powered	Freque	ncy Range:	See Fr	equency
	Net = Rea	ding (dBuV/ı	m) + Antenn	a Factor (dl	B1/m) + Cat	ole Loss (dB) - Preamp	Factor (dB)	- Distance F	actor (dB)	
Peak: I	PK Quasi-P	eak: QP Av	erage: AVG	RMS: RMS	S; NF = Nois	se Floor, RB	= Restricte	d Band; Bar	ndwidth den	oted as RB	W/VBW
	Ant.			Antenna	Cable	Pre-amp	Distance				
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth
Туре	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB	
		No	ote: Upper E	and Edge C	compliance,	Integrated t	o 1 MHz RE	3W Equivale	nt		-
PK	Н	2484.000	25.10	28.56	6.04	0.00	0.00	59.69	74.00	-14.31	500kHz/3MHz
AVG	Н	2484.000	-0.08	28.56	6.04	0.00	0.00	34.51	54.00	-19.49	500kHz/3MHz
						-					
			UL	2							
Те	st Personn	el: Vathar	na Ven 🍏	V			Te	est Date:	09/14/2012	2	
Supervisir	ng/Reviewii	ng									
(M/bor	Enginee	er:									
(WHE	e Applicabl		Part 15 Sub	nart C							
Prod	uct Standar	d: 15.247	2: IC RSS-2	247			Tes	t Levels:	See sectio	n 9.3	
l	nput Voltag	e: 3V Fre	sh battery								
Pretest V	/erification	w/				Am	bient Temp	perature:	24 °C		
Ambie	ent Signals	or					Relative H	lumidity:	49 %		
	BB Sourc	e: Ambie	ent						10001		
						Atm	iospneric P	ressure:	1009 mbar	S	

Deviations, Additions, or Exclusions: None

10 Transmitter Radiated Spurious Emissions

10.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, *KDB 558074*, ANSI C63.10:2013, and RSS-247.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1

GHz) < U_{CISPR} (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF +	CF - AG
Where	FS = Field Strength in $dB\mu V/m$
	RA = Receiver Amplitude (including preamplifier) in $dB\mu V$
	CF = Cable Attenuation Factor in dB
	AF = Antenna Factor in dB
	AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dB μ V/m

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μ V NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF – AG = 52.0 + 7.4 + 1.6 – 29.0 = 32.0 UF = $10^{(32 \text{ dB}\mu\text{V}/20)}$ = 39.8 $\mu\text{V/m}$

10.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
'DAV003	Weather Station	Davis Instruments	7400	PE80529A39A	08/17/2011	09/17/2012
'145128	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	08/23/2011	09/23/2012
'ROS001	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	02/10/2012	02/10/2013
'REA004	3GHz High Pass Filter	Reactel, Inc	7HSX-3G/18G-S11	06-1	11/30/2011	11/30/2012
'REA006	18GHz High Pass Filter	Reactel, Inc	7HS-18G/40G K11	(06)1	08/08/2012	08/08/2013
'145-410	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	09/04/2011	10/04/2012
'145-416	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	09/04/2011	10/04/2012
'CBL030	High Frequency Cable 40GHz	Megaphase	TM40 K1K1 80	CBL030	02/08/2012	02/08/2013
'MEG005	High Frequency Cable	Megaphase	TM40-K1K1-197	8148601-001	02/07/2012	02/07/2013
'PRE8	PREAMPLFIER 1- 40 GHz	MITEQ	NSP4000-NF	507145	01/26/2012	01/26/2013
'145003	Preamplifier (150 KHz to 1.3 GHz)	Hewlett Packard	8447D	2443A04077	10/04/2011	10/04/2012
'145014	Preamplifier (1 GHz to 26.5 GHz)	Hewlett Packard	8449B	3008A00232	12/16/2011	12/16/2012
'145034	BiLog Antenna (30 MHz to 1GHz)	Schaffner Chase EMC	CBL6111C	2564	02/07/2012	02/07/2013
'HORN2	HORN ANTENNA	EMCO	3115	9602-4675	10/24/2011	10/24/2012
'EMC04	ANTENNA, RIDGED GUIDE, 18-40 GHZ	EMCO	3116	2090	02/08/2012	02/08/2013

Tested 08/28/2015

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	10/06/2014	10/06/2015
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/14/2015	03/14/2016
ROS001'	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	06/04/2015	06/04/2016
REA004'	3GHz High Pass Filter	Reactel, Inc	7HSX-3G/18G-S11	06-1	12/30/2013	12/30/2015
REA006'	18GHz High Pass Filter	Reactel, Inc	7HS-18G/40G K11	(06)1	08/28/2014	08/28/2016
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	10/04/2014	10/04/2015
CBLHF2012						
-2M-2'	2m 9kHz-40GHz Coaxial Cable - SET2	Huber & Suhner	SF102	252675002	02/05/2015	02/05/2016
CBLHF2012						
-5M-2'	5m 9kHz-40GHz Coaxial Cable - SET2	Huber & Suhner	SF102	252676002	02/05/2015	02/05/2016
PRE9'	100MHz-40GHz Preamp	MITEQ	NSP4000-NFG	1260417	09/06/2013	09/06/2014
145014'	Preamplifier (1 GHz to 26.5 GHz)	Hewlett Packard	8449B	3008A00232	05/13/2015	05/13/2016
ETS001'	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	01/14/2015	01/14/2016
EMC04'	ANTENNA, RIDGED GUIDE, 18-40 GHZ	EMCO	3116	2090	04/07/2015	04/07/2016

Software Utilized:

Name	Manufacturer	Version
C5	Teseq	Build 5.26.00.3

Name	Manufacturer	Version
EMI Boxborough.xls	Intertek	08/27/2010

10.3 Results:

The sample tested was found to Comply.

FCC Part 15.247(d) & RSS-247 – Non Restricted Band Radiated Spurious/Harmonics Limits

In any 100 kHz bandwidth outside the frequency band, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) and RSS-Gen Section 7.2.5 Table 5 is not required. In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a) and RSS-Gen Section 7.2.2 Table 3, must also comply with the radiated emission limits specified in 15.209(a) and IC RSS-Gen Section 7.2.5 Table 5).

FCC Part 15.209(a) & RSS-210 A8.5 & RSS-Gen Section 7.2.5 Table 5 – Restricted Band Radiated Spurious/Harmonics Limits

Frequency	Field Strength		Test Distance
(MHz)	μV/m	dBµV/m	(meters)
30–88	100	40.00	3
88–216	150	43.52	3
216–960	200	46.02	3
Above 960	500	53.98	3

10.4 Setup Photographs:

Intertek

30-1000MHz

Report Number: 102172761BOX-001

Intertek

18-25GHz Hand scans

10.5 Plots/Data:

Spurious Emissions 30-1000MHz

 Test Information
 Additional Information

 Test Details
 User Entry
 Additional Information

 Test:
 Radiated - FCC15 Class B @ 10m
 Additional Information

 Project:
 Mirccore (IgeaCare_G100357410)
 Fest Notes:

 Test Notes:
 1009mB, CH11_Tx mode
 Femperature:

 Yeadeg
 24 deg
 Femperature:
 50mB

 Tested by:
 Vathana Ven
 Fested by:
 Test Started:

Prescan Emission Graph

Emissions Test Data

•

macez. Measureu	Quasi Peak								
Frequency	Leve	A E	DA+CI	Limit	Margin	Hor (),	Azimuth (deg)	Mast Heigh	RBW
(Hz)	(dBuV/m)	AF	FATUL	(dBuV/m)	(dBuV/m)	Ver ()	(Deg)	(m)	(Hz)
256.465531267 M	10.23	13.676	-24.137	35.540	-25.31	1	144	1.05	120 k
125.755711477 M	9.07	11.276	-25.023	33.040	-23.97		360	1.98	120 k
436.040681216 M	14.24	17.079	-23.922	35.540	-21.30		333	2.17	120 k
39.668737541 M	10.50	14.199	-26.081	29.540	-19.04		360	2.69	120 k
536.137274962 M	18.83	21.227	-23.981	35.540	-16.71		360	4.00	120 k
30.170140337 M	14.92	18.981	-26.114	29.540	-14.62	1	357	2.56	120 k

Issued: 09/04/2015

Azimuth Plots

Azimuth (Degrees)

Intertek

Turntable Plot (39.668737541 MHz)

Level (dBuV/m)

3.5 3 2.5 2 1.5 Height (m) 0 20 40 Level (dBuV/m) 60 80

Height Plot (30.170140337 MHz)

All Polarities

Azimuth (Degrees)

Turntable Plots

4

All Polarities

Azimuth (Degrees)

All Polarities

All Polarities

Azimuth (Degrees)

Level (dBuV/m)

All Polarities

Report Number: 102172761BOX-001

Issued: 09/04/2015

Test Information Test Details Test: Project: Test Notes: Temperature: Humidity: Tested by: Test Started:

User Entry Radiated - FCC15 Class B @ 10m (Mircom) IgeaCare_G100357410 1009mB, CH18_Tx mode 24 deg 50mB Vathana Ven 15 Sep 2012 00 : 30

Prescan Emission Graph

Swept Peak Data

Swept Quasi Peak Data

Swept Average Data

Intertek

Measured Peak Value

Measured Quasi Peak Value

Measured Average Value

Maximum Value of Mast and Turntable

Emissions Test Data

Trace2:	Measured	Quasi Peak	
-			

Frequency	Level	^ E	DV+CI	Limit	Margin	Hor (),	Azimuth (deg)	Mast Height	RBW
(Hz)	(dBuV/m)	AF	FATUL	(dBuV/m)	(dBuV/m)	Ver ()	(Deg)	(m)	(Hz)
256.141883804 M	9.92	13.637	-24.137	35.540	-25.62		300	1.35	120 k
407.925650902 M	13.41	16.359	-23.905	35.540	-22.13	Í	203	4.00	120 k
960.373347148 M	24.92	24.615	-22.403	43.540	-18.62	Í	315	3.68	120 k
540.135871661 M	19.60	21.992	-23.978	35.540	-15.94		180	2.99	120 k
31.766934148 M	14.26	18.093	-26.109	29.540	-15.28		237	3.52	120 k
30.0 M	15.15	19.100	-26.115	29.540	-14.39		229	2.29	120 k

Additional Information

Issued: 09/04/2015

Azimuth Plots

All Polarities

Azimuth (Degrees)

Intertek

Level (dBuV/m)

All Polarities

All Polarities

Azimuth (Degrees)

Level (dBuV/m)

All Polarities

Report Number: 102172761BOX-001

Intertek

All Polarities

Azimuth (Degrees)

Level (dBuV/m)

All Polarities

Report Number: 102172761BOX-001

Issued: 09/04/2015

Test Information Test Details Test: Project: Test Notes: Temperature: Humidity: Tested by: Test Started:

User Entry Radiated - FCC15 Class B @ 10m Mircom (IgeaCare_G100357410) 1009mB, CH26_Tx mode 24 deg 50mB Vathana Ven 16 Sep 2012 10 : 52

Prescan Emission Graph

Swept Peak Data

Swept Quasi Peak Data

Swept Average Data

Intertek

Measured Peak Value

Measured Quasi Peak Value

Measured Average Value

• Maximum Value of Mast and Turntable

Emissions Test Data

Trace2: I	Measured Quasi Peak	
E	L av val	

	Quasi i cak								
Frequency	Level		PA+CI	Limit	Margin	Hor (),	Azimuth (deg)	Mast Height	RBW
(Hz)	(dBuV/m)	A	FATUL	(dBuV/m)	(dBuV/m)	Ver ()	(Deg)	(m)	(Hz)
259.582564671 M	10.34	14.050	-24.132	35.540	-25.20		160	2.37	120 k
974.652304635 M	25.55	25.000	-22.370	43.540	-17.99		7	4.00	120 k
573.626051838 M	17.66	19.845	-24.008	35.540	-17.88		198	1.46	120 k
541.505611309 M	19.51	21.910	-23.977	35.540	-16.03		0	1.56	120 k
31.982565411 M	14.06	18.007	-26.108	29.540	-15.48		278	3.92	120 k
846.578156637 M	22.59	23.337	-23.026	35.540	-12.95		0	4.00	120 k

Additional Information

Issued: 09/04/2015

Azimuth Plots

Azimuth (Degrees)

Turntable Plot (259.582564671 MHz)

Level (dBuV/m)

3.5 3 2.5 2 1.5 Height (m) 1 0 20 40 Level (dBuV/m) 60 80

Height Plot (31.982565411 MHz)

All Polarities

Azimuth (Degrees)

4

Intertek

Report Number: 102172761BOX-001

Issued: 09/04/2015

4

3.5

Height Plot (541.505611309 MHz)

All Polarities

Azimuth (Degrees)

Intertek

Level (dBuV/m)

All Polarities

All Polarities

Azimuth (Degrees)

All Polarities

Tx Spurious Emissions above 1 GHz

Radiated Emissions

Company:	Company: Mircom Technologies Ltd.					Antenna & Cables: HF Bands: N, LF, HF, SHF								
Model #:	NC-220							Antenna: ETS001 01-14-16.txt ETS001 01-14-16.txt						
Serial #:	A00068						Cable(s):	145-416 3m Track B 1-1	5GHz Cable 10-04-15.txt	NONE.				
Engineers:	Vathana Ve	en			Location:	10M	Barometer:	DAV004		Filter:	REA004			
Project #:	G10217950	05	Date(s):	08/28/15										
Standard:	FCC Part 1	5 Subpart C	15.247				Temp/Humic	lity/Pressure:	21 deg C	51%	1011 mB			
Receiver:	R&S ESI (1	45-128) 03-	14-2016	Limit Di	stance (m):	3								
PreAmp:	145014 05-	-13-16.txt		Test Di	stance (m):	3								
F	PreAmp Use	ed? (Y or N):	Y	Voltage/	Frequency:	Battery	powered	Freque	ncy Range:	1-25	GHz			
	Net = Rea	iding (dBuV/r	m) + Antenn	a Factor (dl	B1/m) + Cal	ole Loss (dB) - Preamp	Factor (dB)	- Distance F	actor (dB)				
Peak: F	PK Quasi-P	eak: QP Ave	erage: AVG	RMS: RMS	S; NF = Nois	se Floor, RB	= Restricte	d Band; Bar	ndwidth den	oted as RB	W/VBW			
	Ant.			Antenna	Cable	Pre-amp	Distance							
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth			
Туре	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB		FCC	IC	Harmonic?
	Note:	Spurious Er	nissions Re	ference. Fu	ndamental f	requencies	(modulated)	at 3 meters	with no pre	e-amp				
			CH1	1 - 2405MH	lz, No pre-a	mp, Worst-o	ase Orienta	ation						
PK	Н	2405.000	45.00	31.97	5.87	0.00	0.00	82.84	-	-	100/300 kHz			
PK	V	2405.000	44.58	31.97	5.87	0.00	0.00	82.42	-	-	100/300 kHz			
			CH1	8 - 2440MH	z, No pre-a	mp, Worst-o	ase Orienta	ation						
PK	Н	2440.000	44.71	32.11	5.92	0.00	0.00	82.74	-	-	100/300 kHz			
PK	V	2440.000	44.20	32.11	5.92	0.00	0.00	82.23	-	-	100/300 kHz			
			CH2	6 - 2480MH	z, No pre-a	mp, Worst-o	ase Orienta	ation						
PK	Н	2480.000	46.29	32.26	5.98	0.00	0.00	84.53	-	-	100/300 kHz			
PK	V	2480.000	46.44	32.26	5.98	0.00	0.00	84.68	-	-	100/300 kHz			
			CH11 - 2	2405MHz, S	purious Em	issions from	1-18GHz, I	REA004						
РК	Н	4810.000	35.80	34.19	8.53	31.62	0.00	46.90	74.00	-27.10	1/3MHz	Noise Floor		
AVG	Н	4810.000	10.62	34.19	8.53	31.62	0.00	21.72	54.00	-32.28	1/3MHz	Noise Floor		
РК	Н	7215.000	24.72	35.68	10.62	31.08	0.00	39.94	62.84	-22.90	100/300kHz	Noise Floor		
РК	Н	9620.000	23.63	36.69	12.12	28.47	0.00	43.97	62.84	-18.87	100/300kHz	Noise Floor		
РК	Н	12025.000	36.00	38.81	12.17	24.91	0.00	62.06	74.00	-11.94	1/3MHz	Noise Floor		
AVG	Н	12025.000	10.82	38.81	12.17	24.91	0.00	36.88	54.00	-17.12	1/3MHz	Noise Floor		
РК	Н	14430.000	23.47	39.30	13.85	26.24	0.00	50.38	62.84	-12.46	100/300kHz	Noise Floor		
РК	Н	16835.000	25.82	41.41	16.52	26.75	0.00	57.00	62.84	-5.84	100/300kHz	Noise Floor		
			CH18 - 2	2440MHz, S	purious Em	issions from	1-18GHz, I	REA004				Noise Floor		
РК	Н	4880.000	36.63	34.16	8.65	31.60	0.00	47.83	74.00	-26.17	1/3MHz	Noise Floor		
AVG	Н	4880.000	11.45	34.16	8.65	31.60	0.00	22.65	54.00	-31.35	1/3MHz	Noise Floor		
РК	Н	7320.000	35.83	35.61	10.73	31.05	0.00	51.12	74.00	-22.88	1/3MHz	Noise Floor		
AVG	Н	7320.000	10.65	35.61	10.73	31.05	0.00	25.94	54.00	-28.06	1/3MHz	Noise Floor		
PK	Н	9760.000	23.90	36.85	12.38	28.26	0.00	44.87	62.74	-17.87	100/300kHz	Noise Floor		
PK	Н	12200.000	35.71	38.96	11.92	25.01	0.00	61.58	74.00	-12.42	1/3MHz	Noise Floor		
AVG	Н	12200.000	10.53	38.96	11.92	25.01	0.00	36.40	54.00	-17.60	1/3MHz	Noise Floor		
РК	Н	14640.000	23.98	39.64	14.03	26.35	0.00	51.30	62.74	-11.44	100/300kHz	Noise Floor		
РК	Н	17080.000	23.12	41.73	16.76	26.64	0.00	54.97	62.74	-7.77	100/300kHz	Noise Floor		
			CH26 - 2	2480MHz, S	purious Em	issions from	1-18GHz, I	REA004						
РК	Н	4960.000	38.43	34.24	8.78	31.58	0.00	49.87	74.00	-24.13	1/3MHz	Noise Floor		
AVG	Н	4960.000	13.25	34.24	8.78	31.58	0.00	24.69	54.00	-29.31	1/3MHz	Noise Floor		
РК	Н	7440.000	36.20	35.63	10.82	31.03	0.00	51.63	74.00	-22.37	1/3MHz	Noise Floor		
AVG	Н	7440.000	11.02	35.63	10.82	31.03	0.00	26.45	74.00	-47.55	1/3MHz	Noise Floor		
РК	Н	9920.000	25.91	37.01	12.51	28.02	0.00	47.40	64.53	-17.13	100/300kHz	Noise Floor		
РК	Н	12400.000	35.00	38.99	11.65	25.12	0.00	60.52	74.00	-13.48	1/3MHz	Noise Floor		
AVG	Н	12400.000	9.82	38.99	11.65	25.12	0.00	35.34	54.00	-18.66	1/3MHz	Noise Floor		
РК	Н	14880.000	24.63	39.76	14.49	26.48	0.00	52.39	64.53	-12.14	100/300kHz	Noise Floor		
РК	Н	17360.000	23.00	41.83	17.04	26.52	0.00	55.34	64.53	-9.19	100/300kHz	Noise Floor		

Average factor = 20*LOG((0.5511*10)/100) = 25.18 dB

Hand scans were performed from 18-25GHz at a distance of <1m, no emissions were detected above the measuring equipment noise floor.

Test Personnel:	Vathana Ven	Test Date:	08/28/2015
Engineer:			
(Where Applicable)	N/A		
	FCC Part 15 Subpart C		
Product Standard:	15.247; IC RSS-247	Test Levels:	See tables
Input Voltage:	3V Fresh battery		
Pretest Verification w/		Ambient Temperature:	21 °C
Ambient Signals or	Ameliant	Relative Humidity:	51 %
BB Source:	Ampient		
		Atmospheric Pressure:	1011 mbars

Deviations, Additions, or Exclusions: None

11 Digital Device and Receiver Radiated Spurious Emissions

11.1 Method

Tests are performed in accordance with CFR47 FCC Part 15 Subpart B 15.109, IC RSS-Gen Sections 7 & 6.0, IC ICES-003 Issue 5 August 2012.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz)

< U_{CISPR} (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

Intertek

CF - AG
FS = Field Strength in $dB\mu V/m$
RA = Receiver Amplitude (including preamplifier) in $dB\mu V$
CF = Cable Attenuation Factor in dB
AF = Antenna Factor in dB
AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dB μ V/m

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μ V NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 UF = $10^{(32 \text{ dB}\mu\text{V}/20)}$ = 39.8 $\mu\text{V/m}$

11.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
~145034	BiLog Antenna (30 MHz to 1GHz)	Schaffner Chase EMC	CBL6111C	2564	02/07/2012	02/07/2013
~145003	Preamplifier (150 KHz to 1.3 GHz)	Hewlett Packard	8447D	2443A04077	10/04/2011	10/04/2012
~145 128	EMI Test Receiver (20Hz - 40GHz)	Rohde & Schwarz	ESI	837771/027	08/23/2011	09/23/2012
	Cables 145-400 145-406 145-407 145-405 145-					
~145-410	403	Huber + Suhner	10m Track A Cables	multiple	09/04/2011	10/04/2012
~145-416	Cables 145-400 145-408 145-402 145-404	Huber + Suhner	3m Track B cables	multiple	09/04/2011	10/04/2012
~HORN2	HORN ANTENNA	EMCO	3115	9602-4675	10/24/2011	10/24/2012
~145 014	Preamplifier (1 GHz to 26.5 GHz)	Hewlett Packard	8449B	3008A00232	12/16/2011	12/16/2012
~DAV003	Weather Station	Davis Instruments	7400	PE80529A39A	08/17/2011	09/17/2012

Software Utilized:

Name	Manufacturer	Version
C5	Teseq	Build 5.26.00.3

11.3 Results:

Emissions must be below the general limits of FCC 15.109, IC ICES-003 Issue 5 August 2012, and IC RSS-Gen Issue 4 December 2010 Section 6.0 Table 2.

The sample tested was found to Comply.

11.4 Setup Photographs:

Intertek

Rx Spurious Emissions 30-1000MHz

11.5 Plots/Data:

Test Information
Test Details
Test:
Project:
Test Notes:
Temperature:
Humidity:
Tested by:
Test Started:

User Entry Radiated - FCC15 Class B @ 10m Mircom (IgeaCare_G100357410) 1009mB, Rx mode 24 deg 50% Vathana Ven 14 Sep 2012 23 : 11

Additional Information

Prescan Emission Graph

Swept Quasi Peak Data

Swept Average Data

- Measured Peak Value
- Measured Quasi Peak Value
- Measured Average Value
- Maximum Value of Mast and Turntable

Emissions Test Data

Trace2: Measured Qu	asi Peak
---------------------	----------

Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit (dBuV/m)	Margin (dBuV/m)	Hor (), Ver ()	Azimuth (deg) (Deg)	Mast Height (m)	RBW (Hz)
262.723046026 M	10.67	14.100	-24.127	35.540	-24.87		7	1.25	120 k
423.674148747 M	14.04	16.873	-23.914	35.540	-21.50	Í	59	2.88	120 k
968.737475359 M	25.49	24.949	-22.383	43.540	-18.05		128	1.34	120 k
33.373948345 M	13.42	17.250	-26.103	29.540	-16.12		49	3.86	120 k
539.565530868 M	19.52	21.913	-23.978	35.540	-16.02		104	2.47	120 k
30.044488978 M	15.00	19.069	-26.115	29.540	-14.54	1	359	2.66	120 k

Issued: 09/04/2015

Azimuth Plots

Azimuth (Degrees)

Turntable Plot (33.373948345 MHz)

Level (dBuV/m)

3.5 3 2.5 2 1.5 Height (m) 1 0 20 40 Level (dBuV/m) 60 80

Height Plot (30.044488978 MHz)

All Polarities

Azimuth (Degrees)

Turntable Plots

4

Intertek

All Polarities

Azimuth (Degrees)

All Polarities

All Polarities

Azimuth (Degrees)

90

All Polarities

Rx Spurious Emissions 1-13GHz

Intertek

User Entry Radiated - FCC15 Class B @ 3m Mircom (IgeaCare_G100357410) 1009mB, Rx mode 24 deg 50% Vathana Ven 14 Sep 2012 22 : 31

Additional Information

Prescan Emission Graph

- Measured Peak Value
- Measured Quasi Peak Value
- Measured Average Value
- Maximum Value of Mast and Turntable

- Swept Peak Data
- ___ Swept Quasi Peak Data
- _____ Swept Average Data

Emissions Test Data Trace1: Measured Peak

Frequency (Hz) 1.187020708 G 2.113707415 G 3.149091516 G 5.264435537 G 11.277388109 G 6.770354041 G	Level (dBuV/m) 39.40 43.99 46.11 57.12 60.69 60.83	AF 25.590 27.607 30.677 33.730 38.813 35.066	PA+CL -29.785 -28.422 -27.234 -19.667 -19.902 -24.513	Limit (dBuV/m) 74.000 74.000 74.000 74.000 74.000 74.000	Margin (dBuV/m) -34.60 -30.01 -27.89 -16.88 -13.31 -13.17	Hor (), Ver () - - 	Azimuth (deg) (Deg) 0 332 28 183 158	Mast Height (m) 1.10 1.45 1.56 4.01 1.21 2.39	RBW (Hz) 1 M 1 M 1 M 1 M 1 M 1 M
Trace3: Measured	Average								
Frequency (Hz) 1.187020708 G 2.113707415 G	Level (dBuV/m) 25.80 29.74	AF 25.590 27.607	PA+CL -29.785 -28.422	Limit (dBuV/m) 54.000 54.000	Margin (dBuV/m) -28.20 -24.26	Hor (), Ver () 	Azimuth (deg) (Deg) 0 0	Mast Height (m) 1.10 1.45	RBW (Hz) 1 M 1 M
3.149091516 G 5.264435537 G 6.770354041 G 11.277388109 G	32.20 43.46 46.86 46.97	30.677 33.730 35.066 38.813	-27.234 -19.667 -24.513 -19.902	54.000 54.000 54.000 54.000	-21.80 -10.54 -7.14 -7.03	 	332 28 158 183	1.56 4.01 2.39 1.21	1 M 1 M 1 M 1 M

Issued: 09/04/2015

Azimuth Plots

Azimuth (Degrees)

Intertek

Turntable Plot (2.113707415 GHz)

Level (dBuV/m)

3.5 3 2.5 2 1.5 Height (m) 1 0 20 40 Level (dBuV/m) 80 60

Height Plot (1.187020708 GHz)

All Polarities

Azimuth (Degrees)

Turntable Plots

4

Report Number: 102172761BOX-001

Issued: 09/04/2015

All Polarities

Azimuth (Degrees)

Intertek

All Polarities

Report Number: 102172761BOX-001

Issued: 09/04/2015

All Polarities

Azimuth (Degrees)

Intertek

Azimuth (Degrees)

Test Personnel:	Vathana Ven
Supervising/Reviewing	
Engineer:	
(Where Applicable)	N/A
	FCC Part 15 Subpart B; IC
	RSS-247, IC RSS-Gen, IC
Product Standard:	ICES-003
Input Voltage:	3V Fresh battery
Pretest Verification w/	
Ambient Signals or	
BB Source:	Ambient

Deviations, Additions, or Exclusions: None

Test Date: 09/14/2012

Test Levels:	Class B
Ambient Temperature:	24 °C
Relative Humidity:	50 %
Atmospheric Pressure:	1009 mbars

12 Revision History

Revision Level	Date	Report Number	Prepared By	Reviewed By	Notes
0	09/27/2012	100334102BOX-026	VFV	ちろう	Original Issue
1	03/25/2015	100334102BOX-026a	VFV	KPS	Company name and model number changed
2	09/03/2015	102172761BOX-001	VIV		Added data above 1 GHz