

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC159818 Page: 1 of 46

FCC Radio Test Report FCC ID: 2ABES-KR7013

Original Grant

Report No.	: TB-FCC159818
Applicant	: Pathway Innovations and Technologies, Inc
Equipment Under	Test (EUT)
EUT Name	: G-BOOK
Model No.	: KR7013
Serial Model No.	: KR0512, G-BOOK, G1300
Brand Name	: HoverCam
Receipt Date	: 2018-04-14
Test Date	: 2018-04-15 to 2018-04-21
Issue Date	: 2018-04-23
Standards	: FCC Part 15: 2017, Subpart C(15.247)
Test Method	: ANSI C63.10: 2013
Conclusions	: PASS
	In the configuration tested, the EUT complied with the standards specified above,

Test/Witness Engineer Engineer Supervisor

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CONT	FENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	9
2.	TEST SUMMARY	10
3.	TEST EQUIPMENT	11
4.	CONDUCTED EMISSION TEST	12
	4.1 Test Standard and Limit	
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	13
	4.5 Test Da5ta	
5.	RADIATED EMISSION TEST	14
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 EUT Operating Condition	17
	5.5 Test Data	17
6.	RESTRICTED BANDS REQUIREMENT	18
	6.1 Test Standard and Limit	18
	6.2 Test Setup	18
	6.3 Test Procedure	
	6.4 EUT Operating Condition	
	6.5 Test Data	19
7.	BANDWIDTH TEST	20
	7.1 Test Standard and Limit	
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 EUT Operating Condition	
	7.5 Test Data	
8.	PEAK OUTPUT POWER TEST	21
	8.1 Test Standard and Limit	
	8.2 Test Setup	

		6
	8.3 Test Procedure	
	8.4 EUT Operating Condition	21
	8.5 Test Data	
9.	POWER SPECTRAL DENSITY TEST	22
	9.1 Test Standard and Limit	22
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 EUT Operating Condition	
	9.5 Test Data	
10.	ANTENNA REQUIREMENT	23
	10.1 Standard Requirement	23
	10.2 Antenna Connected Construction	23
	10.3 Result	23
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	24
ATT	ACHMENT B RADIATED EMISSION TEST DATA	
ATT	ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA	
ATT	ACHMENT D BANDWIDTH TEST DATA	41
ATT	ACHMENT E PEAK OUTPUT POWER TEST DATA	
ATT	ACHMENT F POWER SPECTRAL DENSITY TEST DATA	45

Report No.: TB-FCC159818 Page: 4 of 46

Revision History

Report No.	Version	Description	Issued Date
TB-FCC159818	Rev.01	Initial issue of report	2018-04-23
and!			E CON
B	1022	A LUMAN DE	
1033		LEON BURNESS	6000
TO -		THE TOP	7 10-2
	000		
and the second		TODI TODI	Contraction of the second
and the		TOBS TUD	
		BU ROW	U COL
AL LE		TOP TO THE	
			Contra L
		DOUB TO BE	63 6

1. General Information about EUT

1.1 Client Information

Applicant		Pathway Innovations and Technologies, Inc		
Address	:	985 Pacific Heights Blvd., Suite 100, San Diego, CA 92121, USA		
Manufacturer	-	henZhen Kerun Visual Technology Co., LTD		
Address	:	AUnit A, F/11, Bldg.1, Senyang Electronic Technology Park, Tianliao Community, Guangming High Tech Zone, Guangming New District, Shenzhen, China		

1.2 General Description of EUT (Equipment Under Test)

EUT Name		G-BOOK			
Models No.	:	KR7013, KR0512, G-BOOK, G1300			
Model Difference	:	All these models are identical in the same PCB, layout and electrical circuit, the only difference is appearance color.			
a up	1	Operation Frequency:	Bluetooth 4.2(BLE): 2402MHz~2480MHz		
		Number of Channel:	Bluetooth 4.2(BLE): 40 channels see note(3)		
Product	-	RF Output Power:	-0.714dBm Conducted Power		
Description		Antenna Gain:	4.5dBi FPC Antenna		
	-	Modulation Type:	GFSK		
	3	Bit Rate of Transmitter:	1Mbps(GFSK)		
Power Supply					
Power Rating		AC/DC Adapter: Input: 100~240V/50~60Hz 0.35A(Max) Output: 5V 2A DC 3.7V by 7000mAh Li-ion battery			
Software Version	:	Q410801620180409 V2.0 Please refer to the User's Manual			
Hardware Version					
Connecting I/O Port(S)	-				

Note:

This Test Report is FCC Part 15.247 for Bluetooth BLE, the test procedure follows the FCC KDB 558074 D01 DTS Means Guidance v04.

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (2) Antenna information provided by the applicant.
- (3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

1.3 Block Diagram Showing the Configuration of System Tested

Mode 1

EUT

1.4 Description of Support Units

The EUT has been tested as an independent unit.

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For	Conducted Test
Final Test Mode	Description
Mode 1	TX Mode

For	Radiated Test
Final Test Mode	Description
Mode 2	TX Mode
Mode 3	TX Mode (Channel 00/20/39)

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

1	Test Software Version	N/A		
	Frequency	2402 MHz	2442MHz	2480 MHz
	BLE GFSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})	
	Level Accuracy:		
Conducted Emission	9kHz~150kHz	±3.42 dB	
	150kHz to 30MHz	±3.42 dB	
Radiated Emission	Level Accuracy:	±4.60 dB	
Radiated Emission	9kHz to 30 MHz	±4.00 0B	
Radiated Emission	Level Accuracy:	±4.40 dB	
Radiated Emission	30MHz to 1000 MHz	±4:40 0B	
Redicted Emission	Level Accuracy:	14 20 dB	
Radiated Emission	Above 1000MHz	±4.20 dB	

Report No.: TB-FCC159818 Page: 9 of 46

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

TOBY

Report No.: TB-FCC159818 Page: 10 of 46

2. Test Summary

Standard S	Section	Test Hom	ludement	Demerk
FCC IC		Test Item	Judgment	Remark
15.203		Antenna Requirement	PASS	N/A
15.207(a)	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A
15.205&15.247(d)	RSS-GEN 7.2.2	Band-Edge & Unwanted Emissions into Restricted Frequency	PASS	N/A
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	PASS	N/A
15.247(b)(3)	RSS 247 5.4 (4)	Conducted Max Output Power	PASS	N/A
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	PASS	N/A
15.205, 15.209&15.247(d)	RSS 247 5.5	Transmitter Radiated Spurious &Unwanted Emissions into Restricted Frequency	PASS	N/A

3. Test Equipment

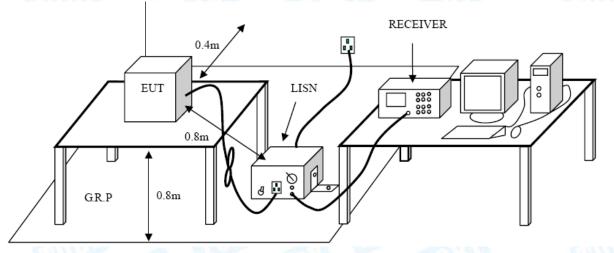
Conducted Emiss	ion Test	-			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 20, 2017	Jul. 19, 2018
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 20, 2017	Jul. 19, 2018
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 20, 2017	Jul. 19, 2018
LISN	Rohde & Schwarz	ENV216	101131	Jul. 20, 2017	Jul. 19, 2018
Radiation Emissic	on Test				-
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 20, 2017	Jul. 19, 2018
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 20, 2017	Jul. 19, 2018
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.16, 2018	Mar. 15, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.16, 2018	Mar. 15, 2019
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 03, 2017	Jul. 02, 2018
Pre-amplifier	Sonoma	310N	185903	Mar.16, 2018	Mar. 15, 2019
Pre-amplifier	HP	8449B	3008A00849	Mar.16, 2018	Mar. 15, 2019
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.16, 2018	Mar. 15, 2019
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducte	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 20, 2017	Jul. 19, 2018
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 20, 2017	Jul. 19, 2018
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Oct. 26, 2017	Oct. 25, 2018
Vector Signal Generator	Agilent	N5182A	MY50141294	Oct. 26, 2017	Oct. 25, 2018
Analog Signal Generator	Agilent	N5181A	MY50141953	Oct. 26, 2017	Oct. 25, 2018
	DARE !! Instruments	RadiPowerRPR3006W	17100015SNO26	Oct. 26, 2017	Oct. 25, 2018
PE Dower Sereer	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO29	Oct. 26, 2017	Oct. 25, 2018
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO31	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO33	Oct. 26, 2017	Oct. 25, 2018

4. Conducted Emission Test

- 4.1 Test Standard and Limit
 - 4.1.1Test Standard FCC Part 15.207
 - 4.1.2 Test Limit

Conducted	Emission	Test Limit
-----------	----------	-------------------

Ereguenev	Maximum RF Line Voltage (dBµV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Da5ta

Please refer to the Attachment A.

5. Radiated Emission Test

- 5.1 Test Standard and Limit
 - 5.1.1 Test Standard
 - FCC Part 15.247(d)
 - 5.1.2 Test Limit

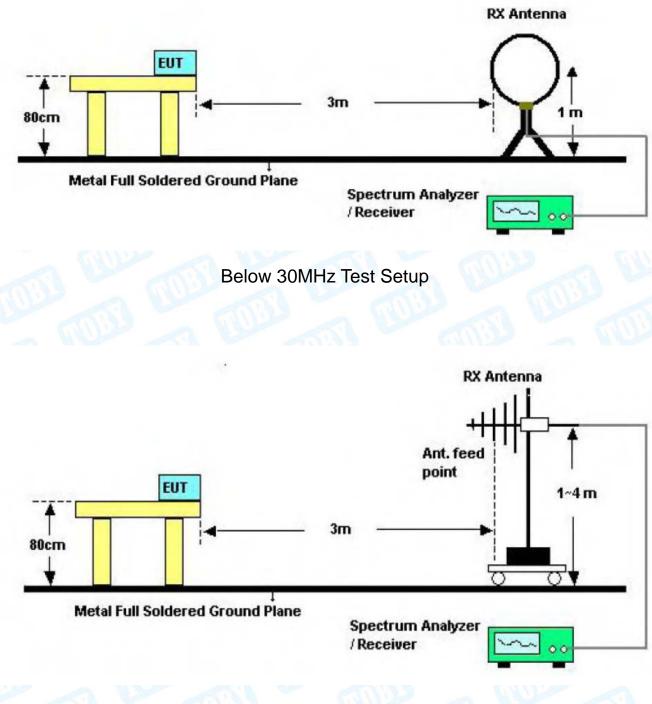
Radiated Emission Limits (9kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

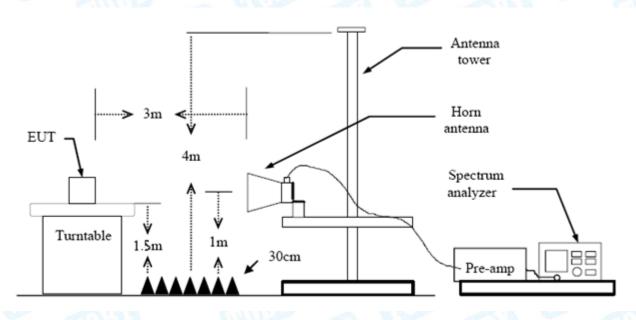
Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Meters(at 3m)			
(MHz)	Peak (dBuV/m)	Average (dBuV/m)		
Above 1000	74	54		

Note:


(1) The tighter limit applies at the band edges.

(2) Emission Level (dBuV/m)=20log Emission Level (uV/m)


Report No.: TB-FCC159818 Page: 15 of 46

5.2 Test Setup

Below 1000MHz Test Setup

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

Report No.: TB-FCC159818 Page: 17 of 46

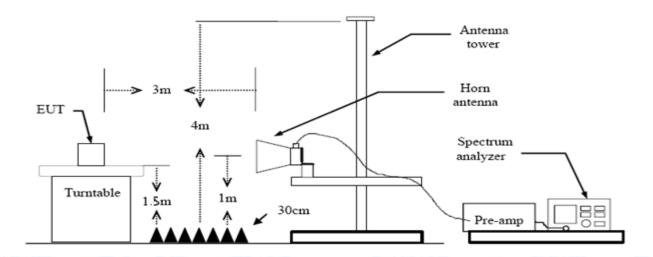
5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.



6. Restricted Bands Requirement

- 6.1 Test Standard and Limit
 - 6.1.1 Test Standard
 - FCC Part 15.247(d) FCC Part 15.205
 - 6.1.2 Test Limit

Restricted Frequency	Distance Meters(at 3m)		
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)	
2310 ~2390	74	54	
2483.5 ~2500	74	54	

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector

mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

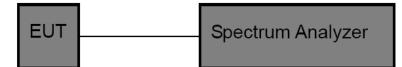
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values. Please refer to the Attachment C.



7. Bandwidth Test

- 7.1 Test Standard and Limit
 - 7.1.1 Test Standard
 - FCC Part 15.247 (a)(2)
 - 7.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-247						
Test Item	Test Item Limit Frequency Range(MH					
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5				

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.

7.5 Test Data

Please refer to the Attachment D.



8. Peak Output Power Test

- 8.1 Test Standard and Limit
 - 8.1.1 Test Standard
 - FCC Part 15.247 (b)(3)
 - 8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-247					
Test Item Limit Frequency Range(MHz					
Peak Output Power	1 Watt or 30 dBm	2400~2483.5			

8.2 Test Setup

8.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to section 9.1.1 of KDB 558074 D01 DTS Meas Guidance v04.

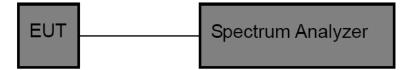
- (1) Set the RBW≥DTS Bandwidth
- (2) Set VBW≥3*RBW
- (3) Set Span≥3*RBW
- (4) Sweep time=auto
- (5) Detector= peak
- (6) Trace mode= maxhold.
- (7) Allow trace to fully stabilize, and then use peak marker function to determine the peak amplitude level.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

8.5 Test Data

Please refer to the Attachment E.



9. Power Spectral Density Test

- 9.1 Test Standard and Limit
 - 9.1.1 Test Standard
 - FCC Part 15.247 (e)
 - 9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)					
Test Item Limit Frequency Range(MHz)					
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5			

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v04.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz
- (5) Set the VBW to: 10 kHz
- (6) Detector: peak
- (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

9.5 Test Data

Please refer to the Attachment F.

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard

FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 4.5dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

10.3 Result

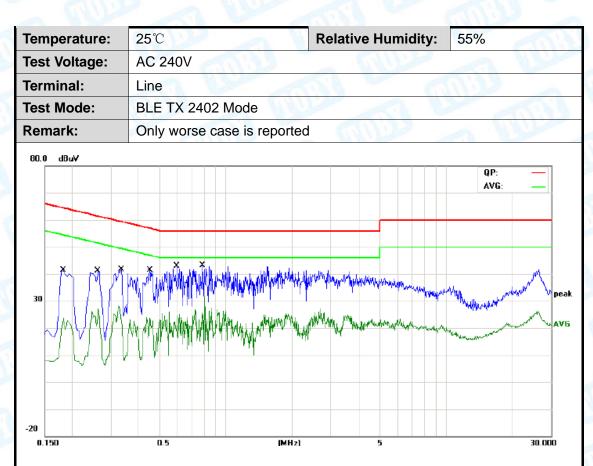
The EUT antenna is a FPC Antenna. It complies with the standard requirement.

Antenna Type				
	Permanent attached antenna			
a lun	Unique connector antenna			
	Professional installation antenna			

Attachment A-- Conducted Emission Test Data

TOBY

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V		Com Star
Terminal:	Line		
Test Mode:	BLE TX 2402 Mode		A WULL
Remark:	Only worse case is repo	orted	81
80.0 dBu∀			
			QP: AVG:
× N M		A Marth Aliesta Marthan	M
30	- hall to find the state of the	and the second	yre there where the
30			Mart War all Aller
		V We Martin Martin Martin Martin Martin	and the second of the second o
	in the second	, الألب	and the second s
	~ V Y I		
20			
0.150	0.5	[MHz] 5	30.000


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1819	27.27	9.58	36.85	64.39	-27.54	QP
2	0.1819	8.55	9.58	18.13	54.39	-36.26	AVG
3	0.2620	28.43	9.59	38.02	61.36	-23.34	QP
4	0.2620	14.34	9.59	23.93	51.36	-27.43	AVG
5	0.3339	27.35	9.59	36.94	59.35	-22.41	QP
6	0.3339	10.87	9.59	20.46	49.35	-28.89	AVG
7	0.4500	26.78	9.60	36.38	56.87	-20.49	QP
8	0.4500	11.06	9.60	20.66	46.87	-26.21	AVG
9	0.5980	28.11	9.60	37.71	56.00	-18.29	QP
10	0.5980	12.14	9.60	21.74	46.00	-24.26	AVG
11 *	0.7820	28.81	9.61	38.42	56.00	-17.58	QP
12	0.7820	14.43	9.61	24.04	46.00	-21.96	AVG

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V	nue	
Terminal:	Neutral		139
Test Mode:	BLE TX 2402 Mode		
Remark:	Only worse case is reported	MUDD	2
80.0 dBuV 30 -20 0.150	0.5 [MH2]		QP: AVG: peak AVG

No. N	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1900	27.92	9.65	37.57	64.03	-26.46	QP
2	0.1900	11.36	9.65	21.01	54.03	-33.02	AVG
3	0.2580	28.18	9.60	37.78	61.49	-23.71	QP
4	0.2580	14.36	9.60	23.96	51.49	-27.53	AVG
5	0.3300	28.97	9.57	38.54	59.45	-20.91	QP
6	0.3300	15.21	9.57	24.78	49.45	-24.67	AVG
7	0.4300	26.67	9.58	36.25	57.25	-21.00	QP
8	0.4300	11.02	9.58	20.60	47.25	-26.65	AVG
9	0.5420	26.22	9.58	35.80	56.00	-20.20	QP
10	0.5420	7.96	9.58	17.54	46.00	-28.46	AVG
11 *	0.8139	27.71	9.59	37.30	56.00	-18.70	QP
12	0.8139	11.19	9.59	20.78	46.00	-25.22	AVG

		Reading	Correct	Measure-			
No. Mk.	Freq.	Level	Factor	ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1819	27.27	9.58	36.85	64.39	-27.54	QP
2	0.1819	8.55	9.58	18.13	54.39	-36.26	AVG
3	0.2620	28.43	9.59	38.02	61.36	-23.34	QP
4	0.2620	14.34	9.59	23.93	51.36	-27.43	AVG
5	0.3339	27.35	9.59	36.94	59.35	-22.41	QP
6	0.3339	10.87	9.59	20.46	49.35	-28.89	AVG
7	0.4500	26.78	9.60	36.38	56.87	-20.49	QP
8	0.4500	11.06	9.60	20.66	46.87	-26.21	AVG
9	0.5980	28.11	9.60	37.71	56.00	-18.29	QP
10	0.5980	12.14	9.60	21.74	46.00	-24.26	AVG
11 *	0.7820	28.81	9.61	38.42	56.00	-17.58	QP
12	0.7820	14.43	9.61	24.04	46.00	-21.96	AVG

Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	AC 240V	RUUS	
Terminal:	Neutral		139
Test Mode:	BLE TX 2402 Mode		(Ba
Remark:	Only worse case is reported		2 119
80.0 dBuV 30		Why you when the week when a second	QP: AVG: http://www.mail.org/action/org/action/ peak
-20	0.5 (MHz)	5	30.000

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1900	27.92	9.65	37.57	64.03	-26.46	QP
2		0.1900	11.36	9.65	21.01	54.03	-33.02	AVG
3		0.2580	28.18	9.60	37.78	61.49	-23.71	QP
4		0.2580	14.36	9.60	23.96	51.49	-27.53	AVG
5		0.3300	28.97	9.57	38.54	59.45	-20.91	QP
6		0.3300	15.21	9.57	24.78	49.45	-24.67	AVG
7		0.4300	26.67	9.58	36.25	57.25	-21.00	QP
8		0.4300	11.02	9.58	20.60	47.25	-26.65	AVG
9		0.5420	26.22	9.58	35.80	56.00	-20.20	QP
10		0.5420	7.96	9.58	17.54	46.00	-28.46	AVG
11	*	0.8139	27.71	9.59	37.30	56.00	-18.70	QP
12		0.8139	11.19	9.59	20.78	46.00	-25.22	AVG

Attachment B-- Radiated Emission Test Data

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB Below the permissible value has no need to be reported.

30MHz~1GHz

Tempe	rature	e:	25	5℃				61		Rela	tive H	lumic	litv:	5	5%	1		
Test V				С 3	.7V	8						3						
Ant. P			Н	oriz	ont	al	7	-				-	(1)				6	2
Test M	ode:		Bl	E.	ГΧ	240	2 M	ode	32		4	618	120		-			Ż
Remar	k:		0	nly	wo	rse	case	e is rep	orted	1				5	10	Z		2
30	3uV/m			M	4	 		a daula	La Maria		Z X	3 ×	F	• CC 15C		adiatio gin -6 5 ×		
30.000	40	50	06	0 7	70 8	30			(MHz)			300	400	500	600	700	100	0.000
No	. Mk		Fre	·	F	Le	iding vel		orrect actor	m	asure ient	Li	mit		/er			
			MHz	_			Bu∨		B/m		3uV/m		3uV/m		В		tector	
1			7.88				.50		1.86		2.64	4	3.50		0.86	· ·	eak	
2		23	9.98	374		53	.49	-18	8.59	3	4.90	4	6.00	-11	1.10	р	eak	
3	İ	33	6.03	351		57	.43	-1	5.46	4	1.97	4	6.00	-4	.03	р	eak	
4		52	8.24	158		49	.30	-1(0.14	3	9.16	4	6.00	-6	.84	р	eak	
5	ļ.	72	1.72	259		49	.48	-7	.10	4	2.38	4	6.00	-3	.62	р	eak	
6	*	86	6.08	378		49	.06	-6	.26	4	2.80	4	6.00	-3	.20	р	eak	

*:Maximum data x:Over limit !:over margin

Temperature:	25℃		R	elative Humi	dity:	55%	100
Test Voltage:	DC 3	.7V	30			-	Charles and the
Ant. Pol.	Vertic	al	-	112	GUI		
Test Mode:	BLE	TX 2402 Mo	de	1		A	RL
Remark:	Only	worse case	is reported	- MIL	2 _	$a \leq b$	y ser
30					2	2 15C 3M Radiat Margin -1 4 5 6 X X X	
Mar Market	had had	Muumunululu					
20	50 60 70		(MHz)	300	400	500 600 700	1000.00
20 40	Mary M		(MHz) Correct Factor	300 Measure- ment	400 ! Limit	500 600 700 Over	1000.00
20 40	50 60 70	Reading	Correct	Measure-			1000.00
20 30.000 40 No. Mk.	50 60 70 Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	Detector
²⁰ 30.000 40 No. Mk. 1 22	50 60 70 Freq. MHz	Reading Level dBuV	Correct Factor dB/m	Measure- ment dBuV/m	Limit dBuV/m	Over dB	Detector peak
²⁰ 30.000 40 No. Mk. 1 22 2 ! 33	50 60 70 Freq. MHz 5.3079	Reading Level dBuV 52.88	Correct Factor dB/m -19.30	Measure- ment dBuV/m 33.58	Limit dBuV/m 46.00	Over dB -12.42	
20 30.000 40 No. Mk. 1 22 2 ! 33 3 ! 43	50 60 70 Freq. MHz 5.3079 6.0351	Reading Level dBuV 52.88 58.85	Correct Factor dB/m -19.30 -15.46	Measure- ment dBuV/m 33.58 43.39	Limit dBuV/m 46.00 46.00	Over dB -12.42 -2.61	Detector peak peak peak
No. Mk. 1 22 2 ! 33 3 ! 43 4 * 52	50 60 70 Freq. MHz 5.3079 6.0351 2.5457	Reading Level dBuV 52.88 58.85 54.82	Correct Factor dB/m -19.30 -15.46 -12.78	Measure- ment dBuV/m 33.58 43.39 42.04	Limit dBuV/m 46.00 46.00 46.00	Over dB -12.42 -2.61 -3.96	Detector peak peak

*:Maximum data x:Over limit !:over margin

TOBY

Above 1GHz

Fem	perature:	25 ℃		Relative	e Humidity:	55%
fest	Voltage:	DC 3.7\				
Ant.	Pol.	Horizon	al	20182	~ 610	
est	Mode:	BLE Mo	de TX 2402	MHz	<u>au</u> ~	(MI) SP
Rem	ark:	No repo prescrib		ission which mor	e than 10 dB b	elow the
80.0) dBu¥/m					
					(RF) FCC P	ART 15C (PEAK)
	1					
	×				(RF) FCC	PART 15C (AVG)
	2 X					
30						
-20						
10	00.000 3550.00	6100.00 86	50.00 11200.00	13750.00 16300.00	18850.00 21400	.00 26500.00 M

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4802.605	45.91	13.43	59.34	74.00	-14.66	peak
2	*	4805.221	31.17	13.45	44.62	54.00	-9.38	AVG

Femperature	: :	25℃			Relativ	/e Humidity:	55%
est Voltage	:	DC 3.7	V			RUPS	
Ant. Pol.		Vertica	1 Be		12	6	0.22
est Mode:		BLE M	ode TX 2	402 MHz	z		-
Remark:			ort for the		on which m	ore than 10 dl	B below the
80.0 dBu∀/m						(BF) FC	C PART 15C (PEAK)
	2 X					(BE) I	CC PART 15C (AVG)
	1					(")	
	x						
30							
-20							

N	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4804.846	32.24	13.44	45.68	54.00	-8.32	AVG
2		4804.912	45.23	13.44	58.67	74.00	-15.33	peak

Femperat i	ure:	25° ℃			Relative	Humidity:	55%
est Volta	ge:	DC 3.7\			10	J.D	
Ant. Pol.		Horizon	tal	-	20 -	Im	1970
Fest Mode	: :	BLE Mo	de TX 24	42 MHz		av	
Remark:		No repo prescrib		emission	which more	than 10 dB	below the
80.0 dBuV/	'm					(25) 500	
						(HF) FUU	PART 15C (PEAK)
	2 X					(AF) FC	C PART 15C (AVG)
	1 X						
30							
-20							

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4883.427	31.77	13.92	45.69	54.00	-8.31	AVG
2		4884.306	44.44	13.92	58.36	74.00	-15.64	peak

Temp	perature:		25° ℃					Rela	ative H	lumidity:	55%	
Test	Voltage:		DC 3	8.7V	1003	30		-	19		-	A B
Ant. I	Pol.		Verti	cal	1		~	2.0		1	1915	
Test	Mode:		BLE	Mod	e TX 2	442 N	1Hz					
Rema	ark:				for the		sion	which	more t	han 10 dE	3 below	the
80.0	dBuV/m											
_										(RF) FCC	CPART 15C	(PEAK)
		2 X								(RF) FC	C PART 150	(AVG)
		1 X										
30												
-20												
1000	0.000 3550.00	61	00.00	8650	00 11	200.00	13750.	00 163	00.00 1	8850.00 214	00.00	26500.00 N

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4882.569	31.37	13.90	45.27	54.00	-8.73	AVG
2		4882.791	44.82	13.90	58.72	74.00	-15.28	peak

25 ℃			Relative Humi	idity:	55%	
DC 3.7\			All D	2		
Horizon	al	-		10.0	139	
BLE Mo	de TX 2480	MHz		0		621
		nission wh	ich more than	10 dB I	below the	e
				(RF) FCC F	Part 15C (Pe	EAK)
1						
×				(RF) FCC	PART 15C	VG)
2 X						
						26500.00 M
	Horizont BLE Mo No repo prescrib	Horizontal BLE Mode TX 2480 No report for the en prescribed limit.	Horizontal BLE Mode TX 2480 MHz No report for the emission wh prescribed limit.	Horizontal BLE Mode TX 2480 MHz No report for the emission which more than prescribed limit.	Horizontal BLE Mode TX 2480 MHz No report for the emission which more than 10 dB prescribed limit.	Horizontal BLE Mode TX 2480 MHz No report for the emission which more than 10 dB below th prescribed limit.

NO.	. IVIK.	Freq.	Level	Factor	ment	LIIIIIU	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.085	45.48	14.36	59.84	74.00	-14.16	peak
2	*	4961.029	32.08	14.37	46.45	54.00	-7.55	AVG

Temperature	e:	25 ℃			Relat	ive Humidity	/: 55%	
Test Voltage):	DC 3.7	'V	132		RUPP		
Ant. Pol.		Vertica			120	6	60105	
Test Mode:		BLE M	ode TX	2480 MHz	1			100
Remark:			ort for t bed lim		n which m	ore than 10 o	dB below	the
80.0 dBuV/m								
						(RF)	FCC PART 150	C (PEAK)
	1							
	×					(AF	FCC PART 1	SC (AVG)
	2 X							
30								
20 1000.000 3550.0	00 61	00.00 8	650.00	11200.00 137	50.00 16300.	00 18850.00 2	21400.00	26500.00 MI
No. Mk.	Freq		ading evel	Correct Factor	Measure ment	- Limit	Over	
					ID Aller	dD. Aller		
	MHz	0	BuV	dB/m	dBuV/m	dBuV/m	dB I	Detector

14.36

54.00

46.35

-7.65

AVG

Emission Level= Read Level+ Correct Factor

31.99

4960.300

2

Attachment C-- Restricted Bands Requirement Test Data

Temperature:	: 25 ℃			Relative	Humidity:	55%	
Test Voltage:	DC 3.7	V		100	2		-
Ant. Pol.	Horizor	ntal		100		-	Un
Test Mode:	BLE M	ode TX 24	02 MHz	a U	-01	20	
Remark:	N/A		(III)		2 13		25
100.0 dBu¥/m							
							з Х
							4 X
					(BF) FC	CC PART 15C	PEAK)
							\mathbb{A}
					(DE)	FCC PART 15	
50					1		- prip)
						· [
					2	i	
0.0	0 2332.00	2342.00	2352.00 236	2.00 2372.0	0 2382.00 23	392.00	241
2312.000 2322.00	1 2332.00	2342.00	2332.00 236	2.00 2372.0	u 2382.uu 2:	532.00	241
No. Mk	From	Reading	Correct	Measure		Over	
No. Mk.	Freq.	Level	Factor	ment			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m		Detecto
	390.000	47.59	0.77	48.36		-25.64	peak
	390.000	33.02	0.77	33.79	54.00	-20.21	AVG
3 X 24	101.800	91.35	0.82	92.17	- Fundamental F	requency	eak
	102.000	83.55	0.82	84.37			AVG

4

		2/2		-			-				(ALL)	200	
Temp	peratu	re:	25°	С	21	-	Rel	ative	Humid	lity:	55%	-	
Test	Voltag	je:	DC	3.7V	117	(LB)		5	UP				
Ant.	Pol.		Ver	rtical	AP.		1			G	16/100		
Test	Mode	:	BLF	E Mode	э ТХ 2	402 MHz	<u>.</u>					AR	
Rema	ark:		N/A	٠ Z	5	3		ST.	ND.	2		and the	
100.0	dBu¥∕m												
												х Х	7
												4	-
										(RF) F	FCC PART 15C		_
_			_									<u>f∏</u>	
												/ \	
											FCC PART 15	C AVG)	
50											× /	+ -	
-						_					2	+ +	_
		+									×		<u> </u>
0.0 2312	2.000 232	22.00	2332.0	10 2342	2.00 7	2352.00 2	362.00	2372.00	0 2382	.00 2	2392.00	2412.00	0 MHz
NL	- ML	E			ading	Correc		easure	÷- Lin	nit	Over		
INC	o. Mk		req.		evel	Facto		nent					
			IHz		BuV	dB/m		BuV/m		uV/m		Detector	
1		2390).000	49).47	0.77	5	50.24	74	1.00	-23.76	peak	
2		2390).000	32	2.93	0.77	3	33.70	54	4.00	-20.30	AVG	
3	Х	2401	.800	93	3.54	0.82	9	94.36	Fundam	nental F	requency	peak	

83.75 Fundamental Frequency

AVG

Emission Level= Read Level+ Correct Factor

82.93

0.82

2402.100

em	perature:	25 ℃		Relati	ve Humidity:	55%
est	Voltage:	DC 3.7V			NUP	219
nt.	Pol.	Horizonta			61	139
est	Mode:	BLE Mod	e TX 2480 MI	Hz	AU	
lem	nark:	N/A				a luce
100.0) dBuV/m					
	1					
	× 2					
	Ā				(RF) FCC	PART 15C (PEAK)
_	3 X				(RF) FC	C PART 15C (AVG)
50						
0.0						

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Х	2479.700	87.02	1.15	88.17	Fundamental	Frequency	peak
2	*	2480.000	79.50	1.15	80.65	- Fundamenta	l Frequency	AVG
3		2483.500	54.29	1.17	55.46	74.00	-18.54	peak
4		2483.500	45.86	1.17	47.03	54.00	-6.97	AVG

4

								-
Temperature	e: 25℃	D P I		Relative H	umidity:	55%	-	
Test Voltage	: DC 3.	7V			0000		150	100
Ant. Pol.	Vertic	al			G	1111		
Test Mode:	BLE N	Node TX 24	480 MHz				-	
Remark:	N/A	and a		1100	200	-	Althe	
100.0 dBu¥/m								
50 50 50 50 50 50 50 50 50 50 50 50 50 5	3 X 4 X					FCC PART 15		
0.0								1
2470.000 2480	.00 2490.00	2500.00 2	2510.00 252	0.00 2530.00	2540.00	2550.00	2570.00	MHz
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
HQ. 111A.	MHz	dBuV		dBuV/m	dBuV/m	dB	Detector	
1 X 2	2479.700	92.19	dB/m 1.15			_		
					ndamental Fre	-	peak	
	2479.900	82.61	1.15		ndamental Fre		AVG	
3	2483.500	56.89	1.17	58.06	74.00	-15.94	peak	

Emission Level= Read Level+ Correct Factor

48.95

1.17

50.12

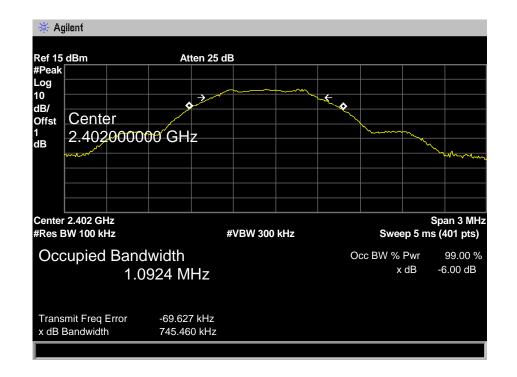
54.00

-3.88

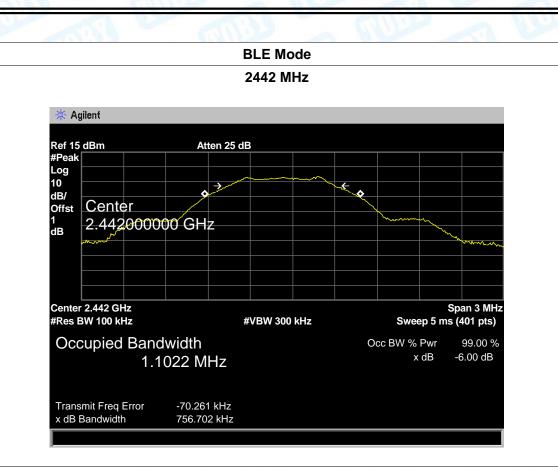
2483.500

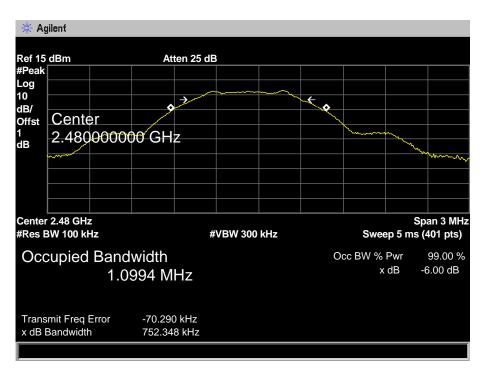
AVG

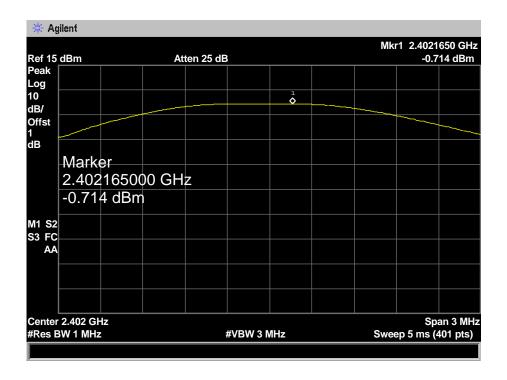
(2) Conducted Test


perature	: 2	25℃	CI ID	Relati	ve Humidity:	55%
Voltage:	Γ	DC 3.7V		1222	E	667
Mode:	E	BLE Mode	e TX 2402MHz	/ BLE Mo	de TX 2480MH	Ηz
ark:	1	The EUT	is programed ir	n continuo	ously transmittin	ng mode
🔆 Agil	ent					
Ref 15 c	Bm		Atten 25 dB		М	kr4 2.37150 GH -52.02 dBm
Peak Log						1
10						^
dB/ Offst	Displa	ay Line				
1 dB	-21.8() dBm				
ав DI					4	2 3
-21.8 dBm						
L Center 2	2.356 GH					Span 100 MF
#Res B\	N 100 kH	z		300 kHz		36 ms (401 pts)
Marker	Trace	e Type Freq	X Axis 2.40200 GHz		Amplitude -1.8 dBm	
1	(1)				-52.74 dBm	
1 2	(1)	Freq Freq	2.39000 GHz 2.40000 GHz			
1	(1) (1) (1) (1)	Freq Freq Freq	2.39000 GHz 2.40000 GHz 2.37150 GHz		-48.81 dBm -52.02 dBm	
		Freq	2.40000 GHz		-48.81 dBm	
1 2 3 4	ent	Freq	2.40000 GHz 2.37150 GHz		-48.81 dBm -52.02 dBm	kr1 2.48025 GH
	ent	Freq	2.40000 GHz		-48.81 dBm -52.02 dBm	kr1 2.48025 GH -2.162 dBm
1 2 3 4 Ref 15 o Peak Log	ent	Freq	2.40000 GHz 2.37150 GHz		-48.81 dBm -52.02 dBm	
1 2 3 4 Ref 15 o Peak Log 10 4B/	ent IBm _1	Freq Freq	2.40000 GHz 2.37150 GHz		-48.81 dBm -52.02 dBm	
1 2 3 4 Ref 15 o Peak Log 10 4B/	ent IBm _1	Freq Freq	2.40000 GHz 2.37150 GHz		-48.81 dBm -52.02 dBm	
1 2 3 4 Ref 15 o Peak Log 10 4P/	ent IBm ♪ Displa -22.16	Freq	2.40000 GHz 2.37150 GHz		-48.81 dBm -52.02 dBm	
1 2 3 4 2 3 4 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ent IBm _1	Freq Freq	2.40000 GHz 2.37150 GHz		-48.81 dBm -52.02 dBm	
1 2 3 4 4 8 4 8 4 8 4 8 15 c Peak Log 10 dB/ Offst 1 dB	ent IBm ♪ Displa -22.16	Ay Line	2.40000 GHz 2.37150 GHz		-48.81 dBm -52.02 dBm	
1 2 3 4 Ref 15 c Peak Log 10 dB/ Offst 1 dB DI -22.2	ent IBm ♪ Displa -22.16	Ay Line	2.40000 GHz 2.37150 GHz		-48.81 dBm -52.02 dBm	
1 2 3 4	ent IBm Ĵ Displa -22.1€ Ŝ	Freq Freq	2.40000 GHz 2.37150 GHz		-48.81 dBm -52.02 dBm M	-2.162 dBm
1 2 3 4	ent IBm Displa -22.10 2.526 GH W 100 kH	Freq Freq Ay Line ∂ dBm	2.40000 GHz 2.37150 GHz		-48.81 dBm -52.02 dBm M	-2.162 dBm
1 2 3 4 4 Ref 15 c Peak Log 10 dB/ Offst 1 dB DI -22,2 dBm Center 2 #Res BU Marker 1	ent IBm Displa -22.16 2.526 GH V 100 KH Trace (1)	Freq Freq Ay Line ∂ dBm ¢ z z z z z z z	2.40000 GHz 2.37150 GHz		-48.81 dBm -52.02 dBm M	-2.162 dBm
1 2 3 4 4 Ref 15 o Peak Log 10 dB/ Offst 1 dB DI -22.2 dBm Center 2 #Res BV	ent IBm Displa -22.16 2.526 GH W 100 kH Trace	Freq Freq Ay Line ∂ dBm	2.40000 GHz 2.37150 GHz		-48.81 dBm -52.02 dBm M	-2.162 dBm

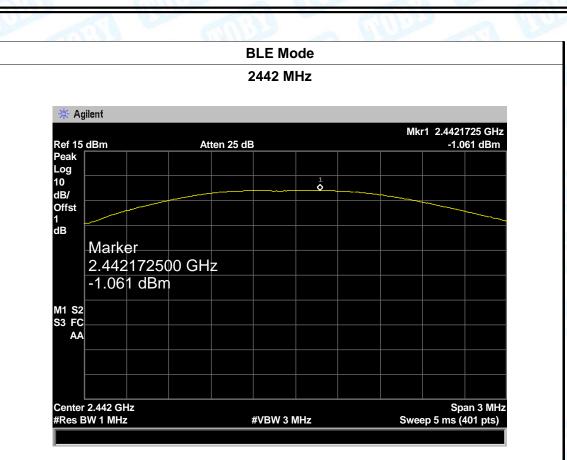
Attachment D-- Bandwidth Test Data


Temperature:	25 ℃		Relative Humidity:	55%				
Test Voltage:	DC 3.7V							
Test Mode:	BLE	BLE TX Mode						
Channel frequency		6dB Bandwidth	99% Bandwidth	Limit				
(MHz)		(kHz)	(kHz)	(kHz)				
2402		745.460	1092.4					
2442		756.702	1102.2	>=500				
2480		752.348	1099.4					
		DIEN	lodo	1				

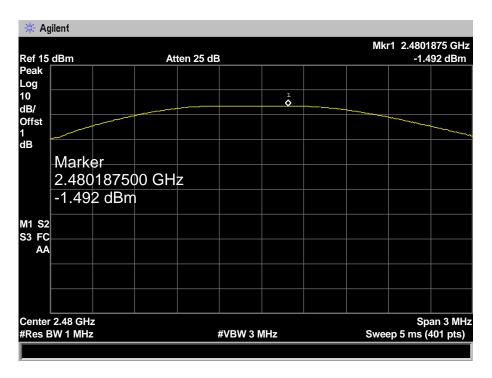



BLE Mode

2480 MHz

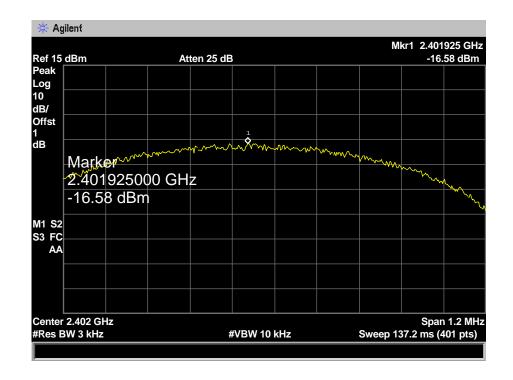

Attachment E-- Peak Output Power Test Data

Temperature:	25 ℃	Relative Humidity:		55%				
Test Voltage:	DC 3.7V							
Test Mode:	BLE TX Mode							
Channel frequency (MHz)		Test Result (dBm)		Limit (dBm)				
2402		-0.714						
2442		-1.061		30				
2480		-1.492						
		BLE Mode	9					
		2402 MHz	1					


TB-RF-074-1.0

BLE Mode

2480 MHz



Attachment F-- Power Spectral Density Test Data

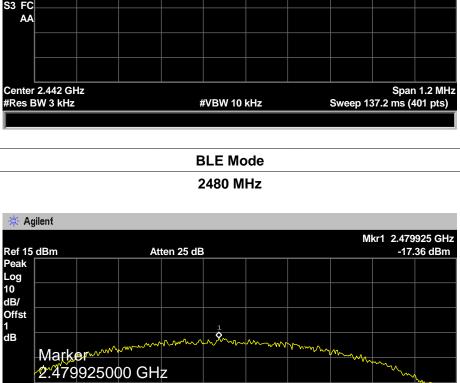
TOBY

Temperature:	25 ℃		Relative Humidity:		55%			
Test Voltage:	DC 3.7V							
Test Mode:	BLE TX Mode							
Channel Frequency		Power Density		Limi	Limit			
(MHz)		(dBm	ו)	(dBm)		Result		
2402		-16.5	8		8 PASS			
2442		-17.0	3	8				
2480		-17.3	6					
		BLE M	ode					
			-	-				

2402 MHz

TB-RF-074-1.0

Span 1.2 MHz Sweep 137.2 ms (401 pts)



#VBW 10 kHz

-17.36 dBm

M1 S2 S3 FC AA

Center 2.48 GHz #Res BW 3 kHz

Agilent Mkr1 2.441940 GHz Peak -17.03 dBm Peak -17.03 dBm 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0<

BLE Mode 2442 MHz

Report No.: TB-FCC159818 Page: 46 of 46

