FCC ID: 2ABDZSMC85C

IEEE C95.1 KDB447498 D03 47 C.F.R. Part 1, Subpart I, Section 1.1310 47 C.F.R. Part 2, Subpart J, Section 2.1091

RF EXPOSURE REPORT

For

Smart Cloud Camera

Model: SMC-85C, TX-56

Trade Name: Technaxx, SALIX

Issued to

SALIX TECHNOLOGY CO., LTD. 5F, NO. 16, LANE 77, HSING AI RD., NEI-HU, TAIPEI 114, TAIWAN, R.O.C.

Issued by

Compliance Certification Services Inc.
No.11, Wugong 6th Rd., Wugu Dist.,
New Taipei City 24891, Taiwan. (R.O.C.)
http://www.ccsrf.com
service@ccsrf.com
Issued Date: September 24, 2015

Report No.: T150903D10-MF

Report No.: T150903D10-MF

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	September 24, 2015	Initial Issue	ALL	Doris Chu

TABLE OF CONTENTS

Report No.: T150903D10-MF

1.	LIMIT	. 4
2.	EUT SPECIFICATION	. 4
3.	TEST RESULTS	. 5
1	MAXIMUM PERMISSIRI E EXPOSURE	6

FCC ID: 2ABDZSMC85C Report No.: T150903D10-MF

1. LIMIT

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

2. EUT SPECIFICATION

EUT	Smart Cloud Camera					
Model	SMC-85C, TX-56					
Trade Name	Technaxx, SALIX					
Model Discrepancy	All the model number was just for marketing purpose only.					
Frequency band (Operating)						
Device category	☐ Portable (<20cm separation) ☐ Mobile (>20cm separation) ☐ Others					
Exposure classification	☐ Occupational/Controlled exposure (S = 5mW/cm²) ☐ General Population/Uncontrolled exposure (S=1mW/cm²)					
Antenna Specification	2.4GHz: Antenna Gain: -1.30 dBi (Numeric gain: 0.74)					
Maximum Average output power	IEEE 802.11b Mode: 15.51 dBm (35.563 mW) IEEE 802.11g Mode: 13.71 dBm (23.496 mW) IEEE 802.11n HT 20 Mode: 12.94 dBm (19.679 mW)					
Maximum Tune up Power	IEEE 802.11b Mode: 17.50 dBm (56.234 mW) IEEE 802.11g Mode: 15.50 dBm (35.481 mW) IEEE 802.11n HT 20 Mode: 14.50 dBm (28.184 mW)					
Evaluation applied	✓ MPE Evaluation*☐ SAR Evaluation☐ N/A					

FCC ID: 2ABDZSMC85C

3. TEST RESULTS

No non-compliance noted.

Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{377}$$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = *Distance in meters*

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{377d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d(cm) = d(m) / 100$$

Yields

$$S = \frac{30 \times (P/1000) \times G}{377 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where d = Distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

Report No.: T150903D10-MF

CC ID: 2ABDZSMC85C Report No.: T150903D10-MF

4. MAXIMUM PERMISSIBLE EXPOSURE

Substituting the MPE safe distance using d = 20 cm into Equation 1:

 $S = 0.000199 \times P \times G$

Where P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

IEEE 802.11b mode:

Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
1	2412	56.234	0.74	20	0.0083	1

IEEE 802.11g mode:

I	Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
	1	2412	35.481	0.74	20	0.0052	1

IEEE 802.11n HT20 mode:

Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
1	2412	28.184	0.74	20	0.0042	1