

Page 1 of 61

Report No.: 1610100395RFC-1

FCC TEST REPORT

Product

: WiFi and Bluetooth Enabled On/Off Switch

Trade mark

iDevices In-wall Switch

Model/Type reference

IDEV0008

Report Number

: 1610100395RFC-1

Date of Issue

: October 18, 2016

FCC ID

2ABDJ-SWITCH8

Test Standards

47 CFR Part 15 Subpart C (2015)

Test result

PASS

Prepared for:

iDevices, LLC

136 Simsbury Road, Bldg. 12, Avon, CT 06001, USA

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Tested by:

ester

Reviewed by:

Date:

.lim Long

Senior Supervisor

Leo Lai

Senior Supervisor

Approved by:

Billy Li

Technical Director

RionTrus

*Certified

Page 2 of 61

Report No.: 1610100395RFC-1

Version

Version No. Date		Description
V1.0	October 18, 2016	Original

Page 3 of 61

Report No.: 1610100395RFC-1

Content

			raye
1	GEN	ERAL INFORMATION	4
	1.1	CLIENT INFORMATION	4
	1.2	GENERAL DESCRIPTION OF EUT	
	1.3	PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
	1.4	DESCRIPTION OF SUPPORT UNITS	
	1.5	TEST LOCATION	
	1.6	DEVIATION FROM STANDARDS	
	1.7	ABNORMALITIES FROM STANDARD CONDITIONS	
	1.8	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	1.9	MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
2		T SUMMARY	
3	EQU	IPMENT LIST	8
4	TEST	T REQUIREMENT	g
-	4.1	TEST SETUP	
	4.1	4.1.1 For Conducted test setup	
		4.1.2 For Radiated Emissions test setup	
		4.1.3 For Conducted Emissions test setup	
	4.2	TEST ENVIRONMENT	
	4.3	SYSTEM TEST CONFIGURATION	
	4.4	TEST CONDITION	
		4.4.1 Test channel	
		4.4.2 Test mode	
		4.4.3 Duty Cycle	11
5	RAD	IO TECHNICAL REQUIREMENTS SPECIFICATION	15
	5.1	ANTENNA REQUIREMENT	1.5
	5.2	CONDUCTED PEAK OUTPUT POWER	
	5.3	6DB BANDWIDTH	
	5.4	POWER SPECTRAL DENSITY	24
	5.5	CONDUCTED OUT OF BAND EMISSION	31
	5.6	RADIATED SPURIOUS EMISSIONS	
	5.7	BAND EDGE MEASUREMENTS (RADIATED)	53
ΑP	PEND	IX 1 PHOTOGRAPHS OF TEST SETUP	59
ΔΡ	PEND	IX 2 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	61
<i>^</i> \1	110	IX ET HOTOGRAFIE OF LOT CONCINCOTIONAL DETAILS	V I

Page 4 of 61 Report No.: 1610100395RFC-1

1 General Information

1.1 Client Information

Applicant:	iDevices, LLC	
Address of Applicant:	dress of Applicant: 136 Simsbury Road, Bldg. 12, Avon, CT 06001, USA	
Manufacturer:	iDevices, LLC	
Address of Manufacturer:	1/F, Houtex Industial Building, E16 Hung To Road, Kwun Tung, Kawloon, Hong Kong	

1.2 General Description of EUT

Product Name:	WiFi and Bluetoot	WiFi and Bluetooth Enabled On/Off Switch			
Model No.(EUT):	IDEV0008	IDEV0008			
Add Mode No.:	N/A	N/A			
Trade Mark:	iDevices In-wall S	iDevices In-wall Switch			
EUT Supports Radios application:	Bluetooth V4.0 BLE only Wlan 2.4GHz 802.11b/g/n(HT20) 2.4GHz Wireless				
Power Supply:	AC adapter	N/A			
	Charging Dock:	N/A			
	Battery:	N/A			
USB Micro-B Plug cable:	e: N/A				
Sample Received Date:	October 8, 2016				
Sample tested Date:	October 8, 2016 to October 12, 2016				

1.3 Product Specification subjective to this standard

Operation Frequency:	BLE: 2402MHz ~ 2480MHz
	802.11b/g/n(HT20): 2412MHz to 2462MHz
Channel Numbers:	BLE: 40 Channels
	802.11b/g/n(HT20): 11 Channels
Channel Separation:	2MHz step for BLE
	5MHz step for WiFi
Transmit Data Rate:	BLE: 1MHz
	802.11b:1M/ 2M/ 5.5M/ 11M bps
	802.11g:6M/ 9M/ 12M/ 18M/ 24M/ 36M/ 48M/ 54M bps
	802.11n(HT20): up to MCS7(65Mbps)
Type of Modulation:	BLE: GFSK
	802.11b:DSSS(CCK, DQPSK, DBPSK)
	802.11g:OFDM(64QAM, 16QAM, QPSK, BPSK)
	802.11n(HT20): OFDM (64QAM, 16QAM, QPSK, BPSK)
Sample Type:	Mobile production
	BLE: 2dBm
Test Power Grade:	802.11b: 17dBm(declared by the manufacturer)
Tool Towor Grado.	802.11g: 15dBm(declared by the manufacturer)
	802.11n(HT20): 15dBm(declared by the manufacturer)
Test Software of EUT:	Provided by the manufacturer
Antenna Type:	Chain 0: PIFA antenna for BLE Chain 1: PIFA antenna for WiFi

Page 5 of 61 Report No.: 1610100395RFC-1

Antenna Gain:	Chain 0: 3.3 dBi gain Chain 1: 3.3 dBi gain
Normal Test voltage:	120V~60Hz
Extreme Test voltage:	90~280Vac (declared by the manufacturer)
Operating Temperature:	-20°C to +50°C (declared by the manufacturer)

Wi-Fi B, G, N (HT20)

The sample supplied operated on 11 channels, normally at 2412 - 2462 MHz for transceiver. The channel is separated by 5 MHz channel spacing.

Bluetooth 4.0 BLE

The sample supplied operated on 40 channels, nominally at 2402 -2480 MHz for transceiver. The channel is separated by 2 MHz channel spacing.

1.4 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Brand	Model No. Certification		Supplied by
Laptop	Lenovo	E450	FCC ID and DOC	UnionTrust
2) Cable				

Cable No.	Description	Connector Type	Cable Type/Length	Supplied by
1	Antenna cable	SMA	0.2m(Shielded)	UnionTrust
2	USB Cable	USB	1.2m(shielded)	UnionTrust

1.5 Test Location

All tests were performed at:

Compliance Certification Services (Shenzhen) Inc.

No.10-1 Mingkeda Logistics Park, No.18 Huanguan South RD. Guan lan Town, Baoan Distr, Shenzhen, Guangdong, China.

Compliance Certification Services (Shenzhen) Inc. has been accepted by the FCC, the FCC Registration Number is 441872.

Tested by: Darry Wu

1.6 Deviation from Standards

None.

1.7 Abnormalities from Standard Conditions

None

1.8 Other Information Requested by the Customer

None.

Page 6 of 61 Report No.: 1610100395RFC-1

1.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	±6.3 x 10 ⁻⁸
2	RF power, conducted	±0.52 dB
2	Spurious emissions, radiated (Below 1GHz)	±5.3 dB
3	Spurious emissions, radiated (Above 1GHz)	±5.1 dB
4	Conduction emission (9KHz~150KHz)	±3.8 dB
4	Conduction emission (150KHz~30MHz)	±3.4 dB
5	Temperature	±0.64 °C
6	Humidity	±2.8 %
7	Supply voltages	±0.49 %

Page 7 of 61 Report No.: 1610100395RFC-1

2 Test Summary

Tests for radiated and conducted emissions were performed. All measurements were performed according to the 2013 version of ANSI C63.10

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	KDB 558074 D01 v03r05 Section 9.1.2	PASS
6dB Bandwidth	47 CFR Part 15 Subpart C Section KDB 558074 D01 v03r05 Section 8.1		PASS
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	KDB 558074 D01 v03r05 Section 10.2	PASS
Conducted Out of Band Emission	47 CFR Part 15 Subpart C Section 15.247(d)	KDB 558074 D01 v03r05 Section 11	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Band Edge Measurements (Radiated)	47 CFR Part 15 Subpart C Section 15.205/15.209	KDB 558074 D01 v03r05 Section 12.1	PASS

Remark:

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel.

N/A: Not application,

1. This EUT is powered by batteries, it need remove the battery from the EUT when charging, and it doesn't transmitting while charging.

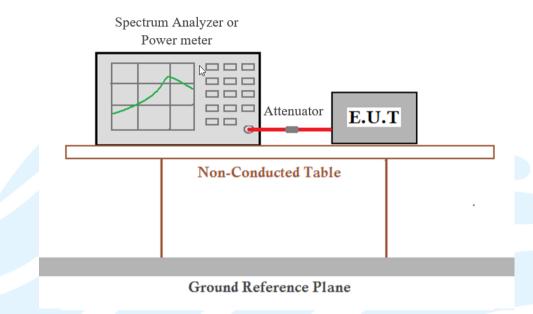
Page 8 of 61 Report No.: 1610100395RFC-1

3 Equipment List

Conducted Emission test					
Equipment Manufacturer Mode No. Serial Cal. Due date Number (mm-dd-yyy					Cal. Interval
EMI Test Receiver	R&S	ESCI	100783	02-21-2017	1 Year
L.I.S.N	R&S	ENV216	101543-WX	02-21-2017	1 Year

3m (Semi-Anechoic Chamber)						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Due date (mm-dd-yyyy)	Cal. Interval	
PSA Series Spectrum Analyzer	Agilent	E4446A	US44300399	02-20-2017	1 Year	
Turn Table	N/A	N/A	N/A	N.C.R	N.C.R	
Controller	Sunol Sciences	SC104V	022310-1	N.C.R	N.C.R	
Controller	СТ	N/A	N/A	N.C.R	N.C.R	
Bilog Antenna	SCHAFFNER	CBL6143	5063	02-21-2017	1 Year	
Horn Antenna	SCHWARZBECK	BBHA9120	D286	02-20-2017	1 Year	
Loop Antenna	COM-POWER	AL-130	121044	02-20-2017	1 Year	
High Noise Amplifier	Agilent	8449B	3008A01838	02-21-2017	1 Year	
Horn Antenna	Schwarzbeck	BBHA9120	D286	02-21-2017	1 Year	
Temp. / Humidity Meter	Anymetre	JR913	N/A	02-21-2017	N.C.R	
Antenna Tower	SUNOL	TLT2	N/A	N.C.R	N.C.R	
Test S/W	FARAO	O LZ-RF / CCS-SZ-3A2				

Conducted RF test						
Equipment Manufacturer Mode No. Serial Number Cal. Due date (mm-dd-yyyy) Interven						
Spectrum Analyzer	Agilent	N9010A	MY52221469	02-21-2017	1 Year	
Power Meter	Agilent	ML2495A	1204003	02-21-2017	1 Year	



Page 9 of 61 Report No.: 1610100395RFC-1

4 Test Requirement

4.1 Test setup

4.1.1 For Conducted test setup

4.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

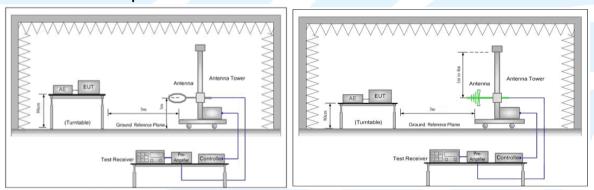


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

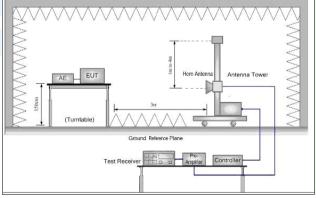
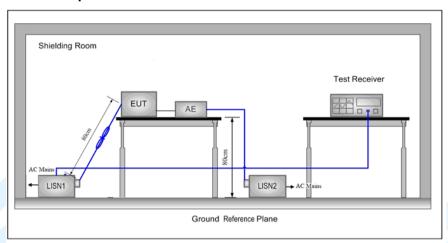



Figure 3. Above 1GHz

4.1.3 For Conducted Emissions test setup

Conducted Emissions setup

Report No.: 1610100395RFC-1

4.2 Test Environment

Operating Environment:	
Temperature:	25.0 °C
Humidity:	53 % RH
Atmospheric Pressure:	99.95mbar

4.3 System Test Configuration

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 120V~60Hz. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

Frequency Band	Mode	Antenna Port	Worst-case Orientation
2.4 GHz	BLE	Chain 0	X-Portrait
2.4 GHz	WiFi	Chain 1	X-Portrait

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000MHz. The resolution is 1 MHz or greater for frequencies above 1000MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Page 11 of 61 Report No.: 1610100395RFC-1

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.4 Test Condition

4.4.1 Test channel

Tv/Dv	RF Channel			
1X/KX	Low(L)	Middle(M)	High(H)	
2402MHz 2400 MHz	Channel 1	Channel 20	Channel 40	
2402NITZ ~2400 NITZ	2402MHz	2440MHz	2480MHz	
2442MHz 2462 MHz	Channel 1	Channel 6	Channel 11	
2412MHZ ~2462 MHZ	2412MHz	2437MHz	2462MHz	
	Tx/Rx 2402MHz ~2480 MHz 2412MHz ~2462 MHz	2402MHz ~2480 MHz 2402MHz ~2480 MHz 2402MHz Channel 1 Channel 1	Tx/Rx Low(L) Middle(M) 2402MHz ~2480 MHz Channel 1 Channel 20 2402MHz 2440MHz 2412MHz ~2462 MHz Channel 1 Channel 6	

Transmitting mode:

Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

4.4.2 Test mode

Pre-scan under all rate at lowest channel

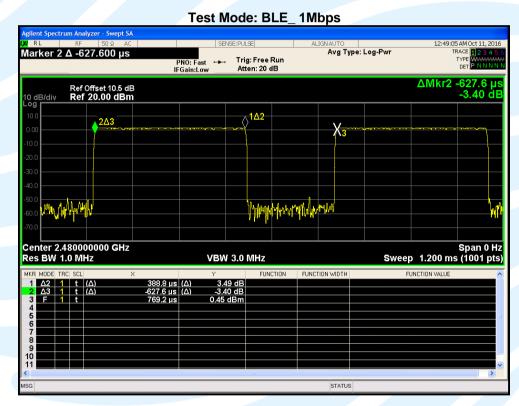
Channel/	Maximum Conducted Average Power (Measured Value)							
Frequency (MHz)		(dBm)						
Chain 0_802.11b	Chain 0_802.11b							
Data Rate (Mbps)	•	1	2	2	5	.5	1	1
1(2412)	16	.99	17	.30	17	.29	17.	.31
Chain 0_802.11g								
Data Rate (Mbps)	6	9	12	18	24	36	48	54
1(2412)	15.55	15.79	15.79	15.79	15.79	15.76	15.68	15.82
Chain 0_802.11n(HT	20)							
Data Rate (Mbps)	MCS 0	MCS 1	MCS 2	MCS 3	MCS 4	MCS 5	MCS 6	MCS 7
1(2412)	15.60	15.74	15.64	15.70	15.57	15.44	15.70	15.70

So, the worst-case data rates see table below:

Mode	Worst-case data rates
BLE	1 Mbps
802.11b	11 Mbps
802.11g	54 Mbps
802.11n HT20	MCS 1(13Mbps)

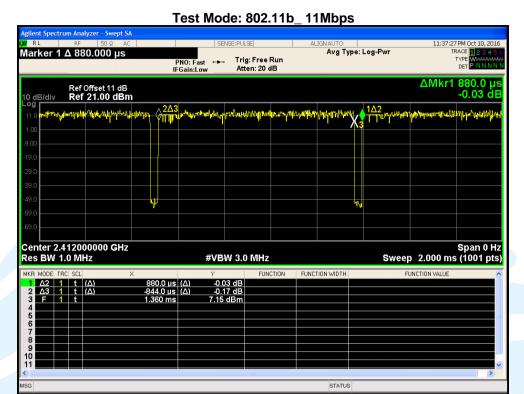
Page 12 of 61

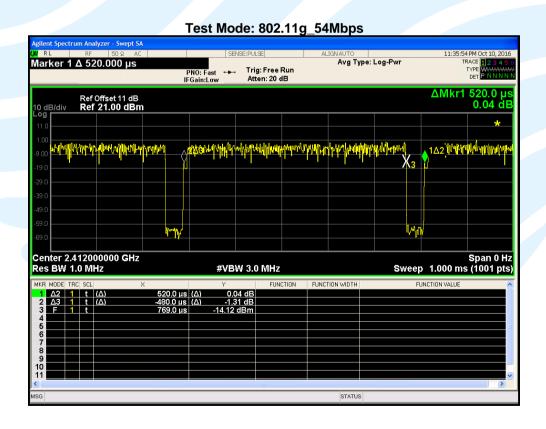
Report No.: 1610100395RFC-1

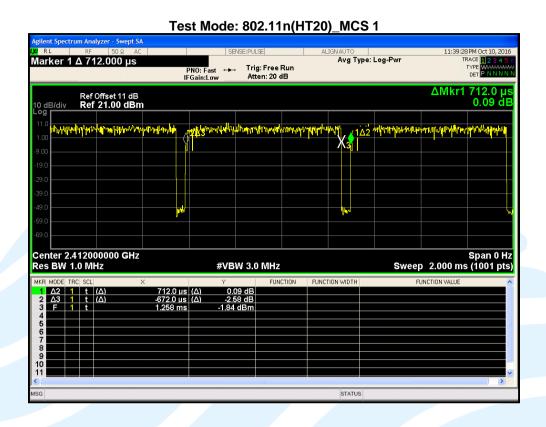

4.4.3 Duty Cycle

Mode	Data rates (Mbps)	On Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)
BLE	1	0.389	0.628	0.62	62	2.08	2.6
802.11b	11	0.844	0.880	0.96	96	0.18	1.2
802.11g	54	0.480	0.520	0.92	92	0.35	2.1
802.11n(HT20)	13	0.672	0.712	0.94	94	0.25	1.5

Remark:


- 1) Duty cycle= On Time/ Period
- 2) Duty Cycle factor = 10 * log(1/ Duty cycle)


The test plot as follows:



Page 15 of 61 Report No.: 1610100395RFC-1

5 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
3	KDB 558074 D01 DTS Meas Guidance v03r05	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247
4	KDB 662911 D01 Multiple Transmitter Output v02r01	Emissions Testing of Transmitters with Multiple Outputs in the Same Band

5.1 Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:			
Both antenna in the interior of th	equipment and no co	nsideration of replace	ment.

5.2 Conducted Peak Output Power

Test Requirement: 47 CFR Part 15 Subpart C Section 15.247 (b)(3)

Test Method: KDB 558074 D01 v03r05 Section 9.1.2 & Section 9.2.3

Limit: For systems using digital modulation in the 2400-2483.5 MHz bands: 1 Watt.

Test Procedure: 1. The output from the transmitter was connected to an attenuator and

then to the input of the the power meter.

2. Measure out each test modes' peak or average output power, record

the power level.

Note: The cable loss and attenuator loss were offset into measure device as

an amplitude offset.

Test Setup: Refer to section 4.1.1 for details.

Instruments Used: Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

Test Data:

Page 16 of 61

61 Report No.: 1610100395RFC-1

Maximum Conducted Power:

	Channel/	Data Rate	Maximum Conduc	eted Power (dBm)
Mode Frequency (MHz)		(Mbps)	Peak Power	Average Power
	1(2402)		2.11	2.01
BLE	20(2440)	1	2.07	1.95
	40(2480)		2.14	2.06
	1(2412)		19.53	17.31
802.11b	6(2437)	11	19.85	17.64
	11(2462)		19.76	17.46
	1(2412)		23.90	15.82
802.11g	6(2437)	54	23.39	16.10
	11(2462)		23.21	15.93
000.44	1(2412)		23.80	15.74
802.11n	6(2437)	MCS1	23.65	15.78
(HT20)	11(2462)		23.41	15.86

Remark:

- 1. All the data attached was use the worst case data rate.
- 2. Power with Duty Factor = Measured Power + Duty Cycle Factor

Page 17 of 61 Report No.: 1610100395RFC-1

5.3 6dB Bandwidth

Test Requirement: 47 CFR Part 15 Subpart C Section 15.247 (a)(2)

Test Method: KDB 558074 D01 v03r05 Section 8.1

Limit: For direct sequence systems, the minimum 6dB bandwidth shall be at least

500kHz

Test Procedure: The output from the transmitter was connected to an attenuator and then to

the input of the spectrum analyzer.

Use the following spectrum analyzer settings:

a) Set RBW = 100 kHz.

b) Set the video bandwidth (VBW) ≥ 3 x RBW.

c) Detector = Peak.

d) Trace mode = max hold.

e) Sweep = auto couple.

f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The cable loss and attenuator loss were offset into measure device as

an amplitude offset.

Test Setup: Refer to section 4.1.1 for details.

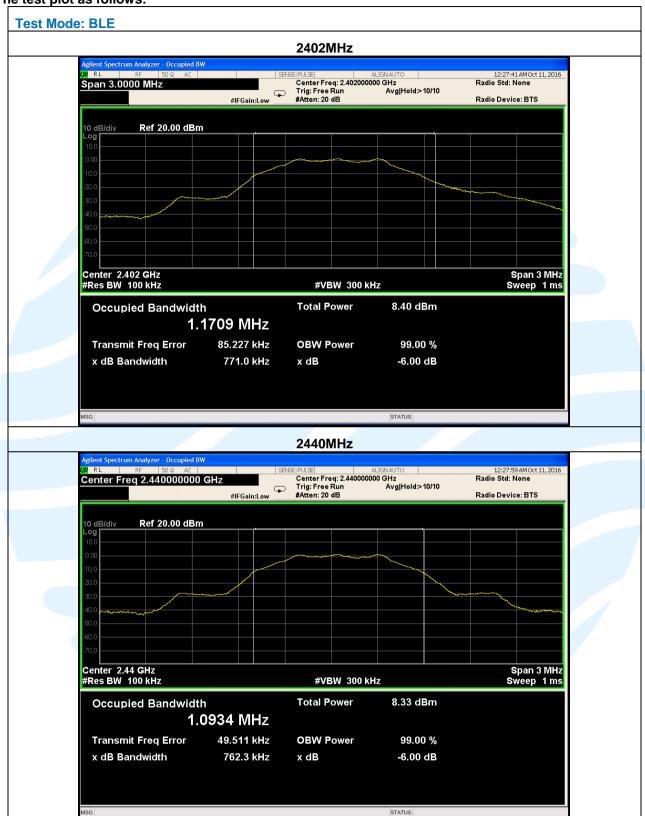
Instruments Used: Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

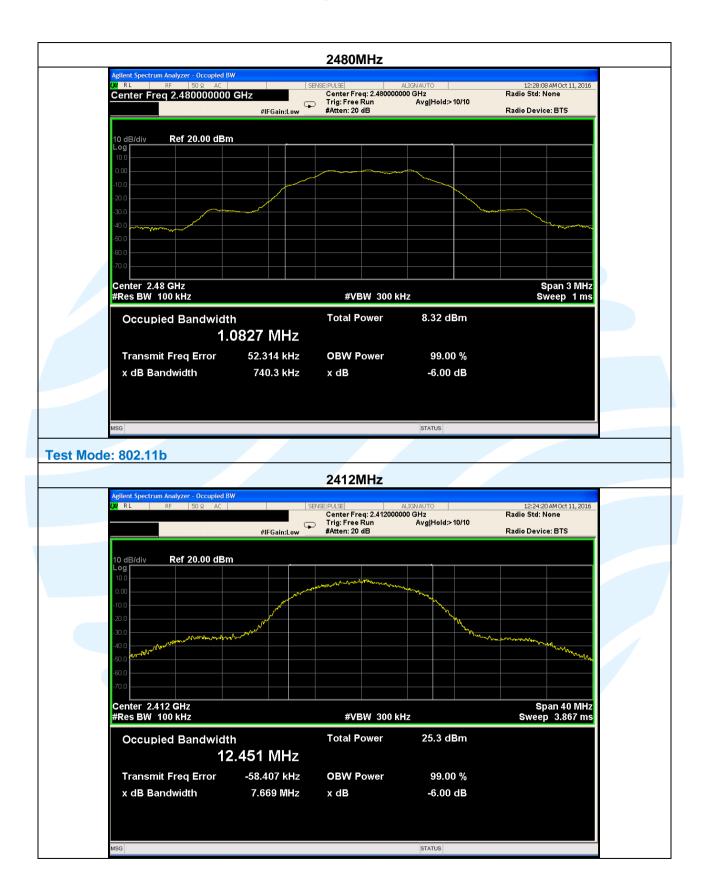
Test Data:

Occupied Bandwidth:

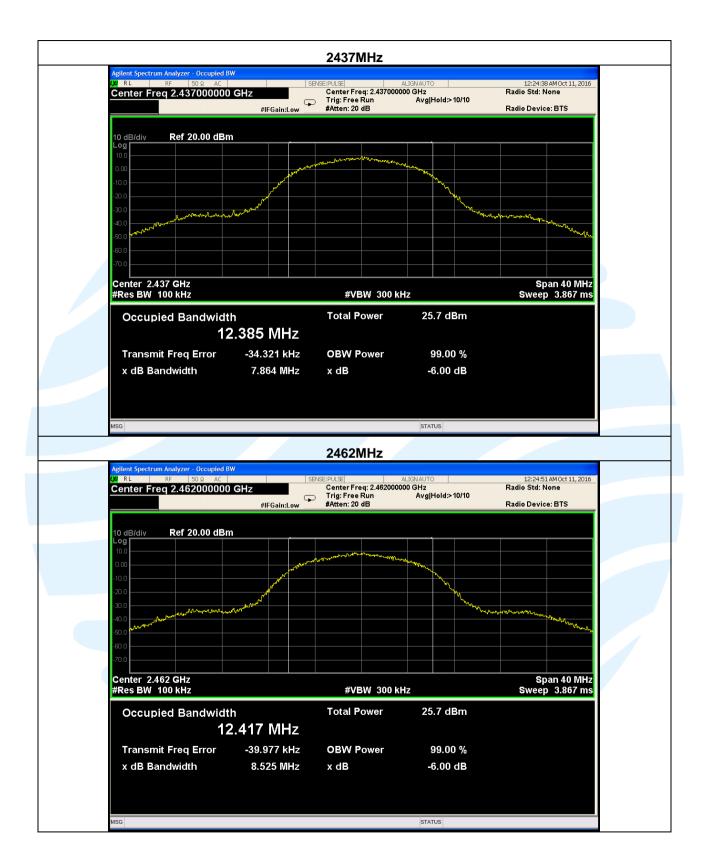

Cocapioa Dallall	Occupica Banawiani.						
Mode	Channel Frequency (MHz)	6 dB Bandwidth (MHz)	99% Bandwidth (MHz)	6 dB Bandwidth Limit	Result (Pass / Fail)		
	1(2402)	0.7710	1.1709	> 500 kHz	Pass		
BLE	20(2440)	0.7623	1.0934	> 500 kHz	Pass		
	40(2480)	0.7403	1.0827	> 500 kHz	Pass		
	1 (2412)	7.669	12.451	> 500 kHz	Pass		
802.11b	6 (2437)	7.864	12.385	> 500 kHz	Pass		
	11 (2462)	8.525	12.417	> 500 kHz	Pass		
	1 (2412)	15.16	16.323	> 500 kHz	Pass		
802.11g	6 (2437)	15.17	16.320	> 500 kHz	Pass		
_	11 (2462)	15.40	16.327	> 500 kHz	Pass		
802.11n (HT20)	1 (2412)	16.03	17.496	> 500 kHz	Pass		
	6 (2437)	15.16	17.494	> 500 kHz	Pass		
(11120)	11 (2462)	16.06	17.494	> 500 kHz	Pass		

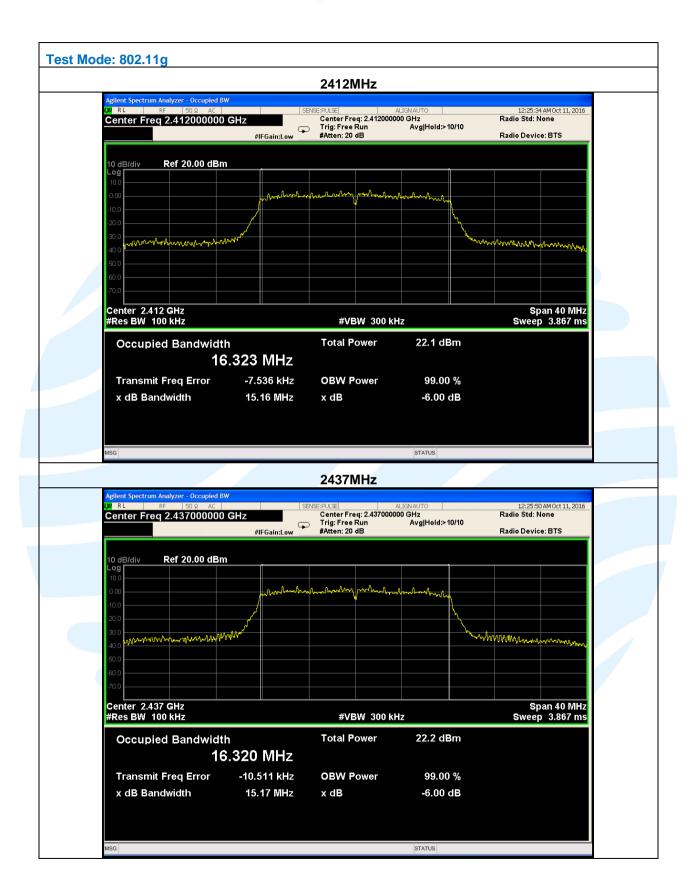
Remark:

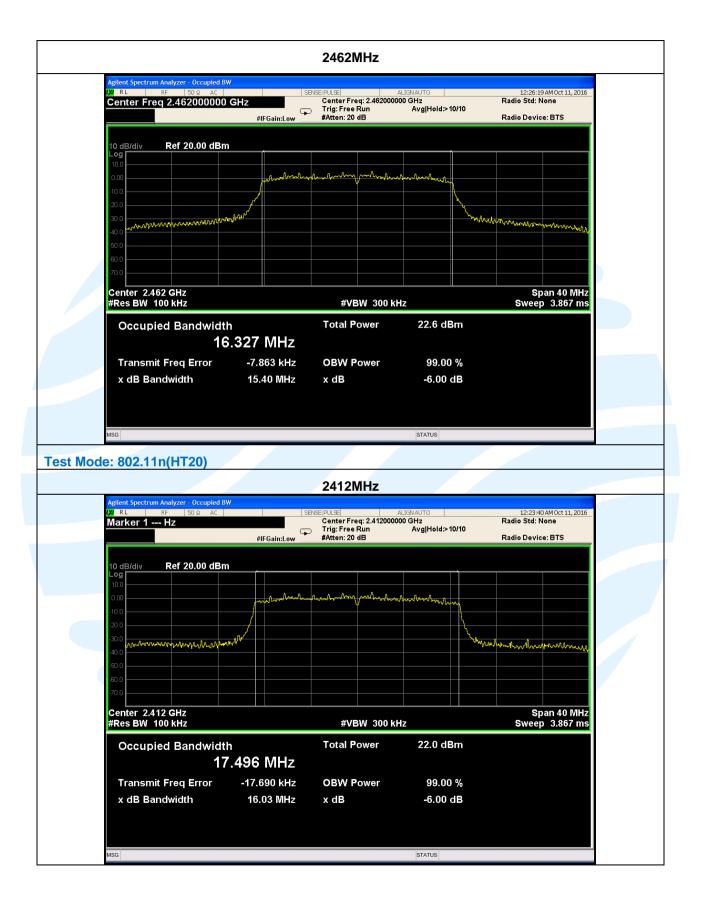
All the data attached was use the worst case data rate.

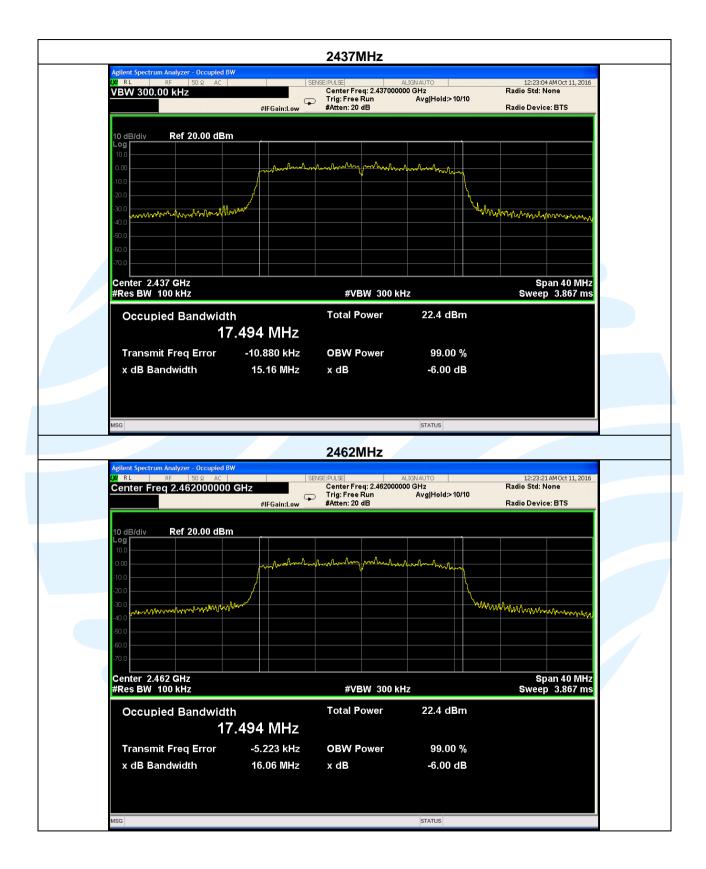


The test plot as follows:









Page 24 of 61 Report No.: 1610100395RFC-1

5.4 Power Spectral Density

Test Requirement: 47 CFR Part 15 Subpart C Section 15.247 (e) **Test Method:** KDB 558074 D01 v03r05 Section 10.2

Limit: For digitally modulated systems, the power spectral density conducted from

the intentional radiator to the antenna shall not be greater than 8dBm in any

3kHz band during any time interval of continuous transmission.

Test Procedure: The output from the transmitter was connected to an attenuator and then to

the input of the spectrum analyzer.

Use the following spectrum analyzer settings:

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5 times the DTS bandwidth.

c) Set the RBW to: 3 kHz ≤ RBW ≤ 100 kHz.

d) Set the VBW \geq 3 x RBW.

e) Detector = peak.

f) Sweep time = auto couple.

g) Trace mode = max hold.

h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

 j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.1.1 for details.

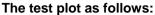
Instruments Used: Refer to section 3 for details

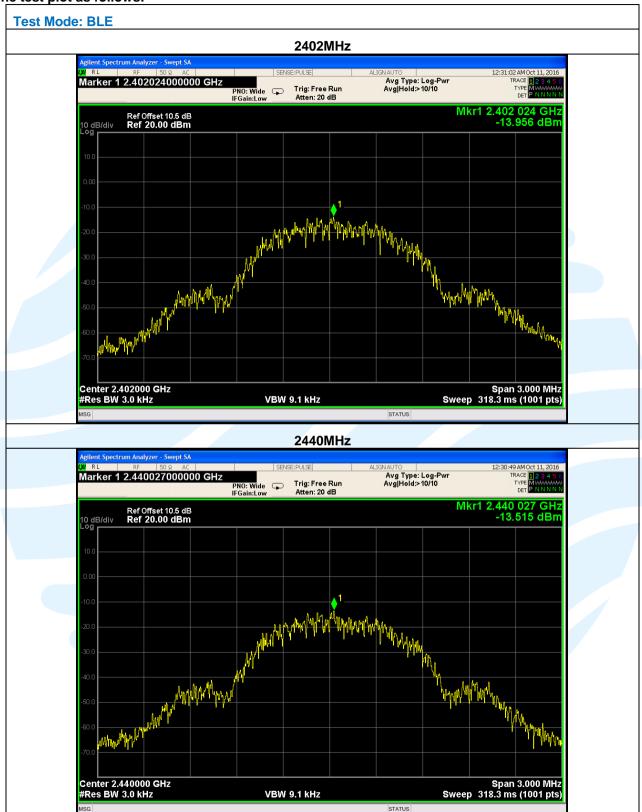
Test Mode: Transmitter mode

Test Results: Pass

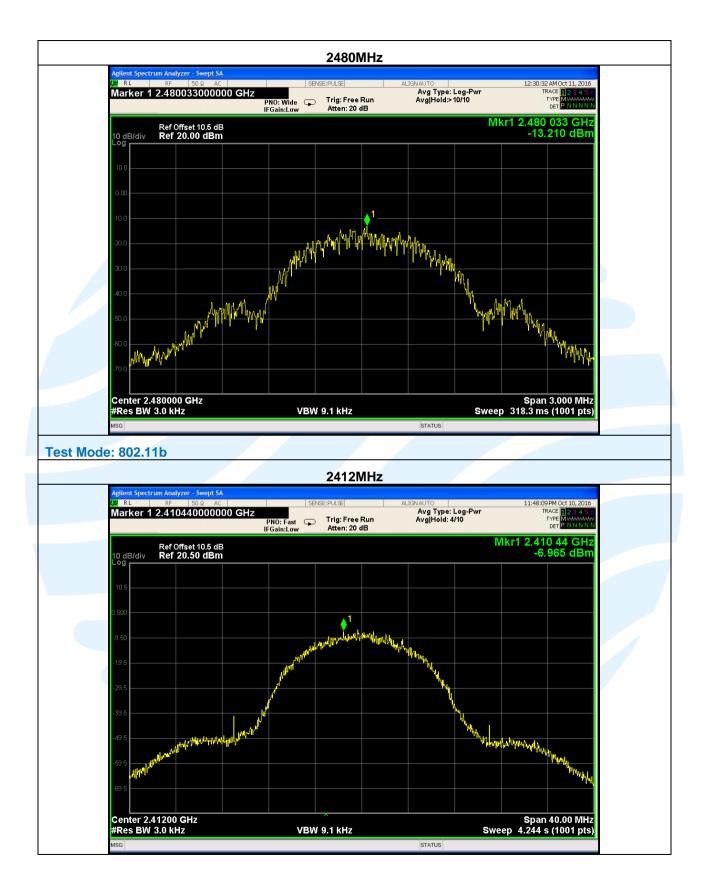
Test Data:

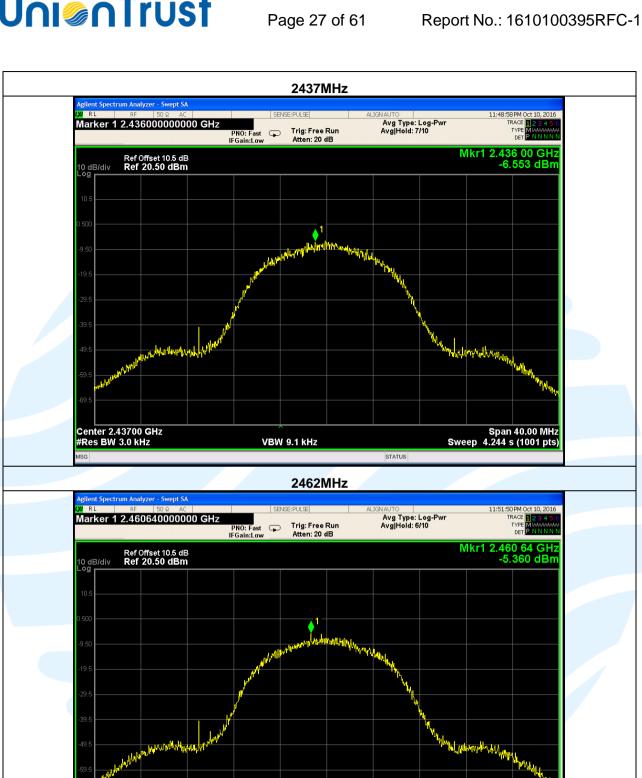
Test Data:


	Channel/		PSD Limit	Result
Mode	Frequency	PSD (dBm)	(dBm)	(Pass / Fail)
	(MHz)		(,	(* 3337 ; 334)
	1(2402)	-14.0	8	Pass
BLE	20(2440)	-13.5	8	Pass
	40(2480)	-13.2	8	Pass
	1 (2412)	-7.0	8	Pass
802.11b	6 (2437)	-6.6	8	Pass
	11 (2462)	-5.4	8	Pass
	1 (2412)	-11.0	8	Pass
802.11g	6 (2437)	-9.9	8	Pass
	11 (2462)	-10.0	8	Pass
902 11n	1 (2412)	-10.0	8	Pass
802.11n (HT20)	6 (2437)	-10.7	8	Pass
(11120)	11 (2462)	-9.7	8	Pass

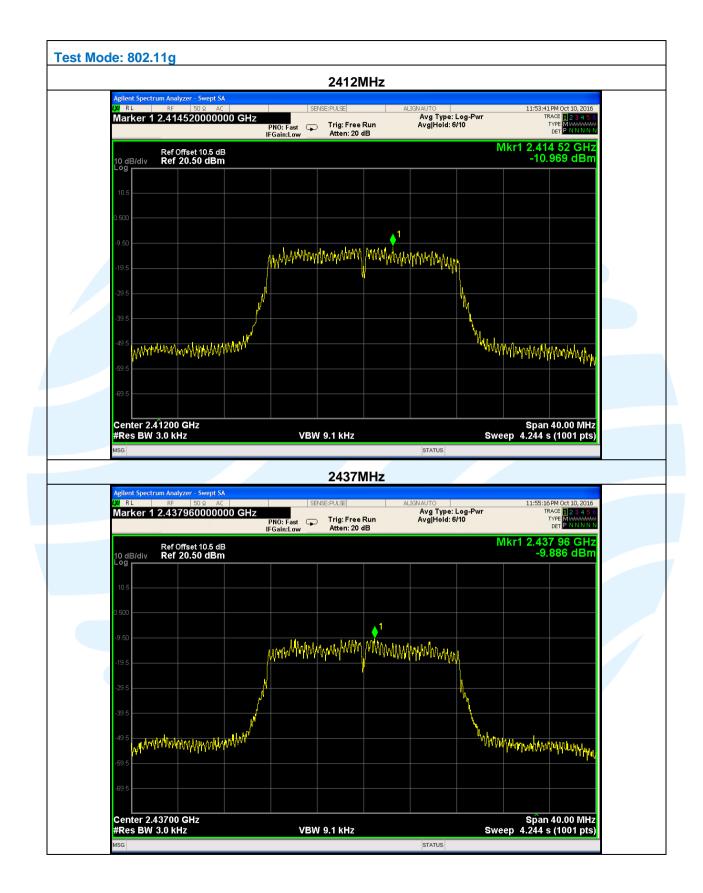

Remark:

1. All the data attached was use the worst case data rate.

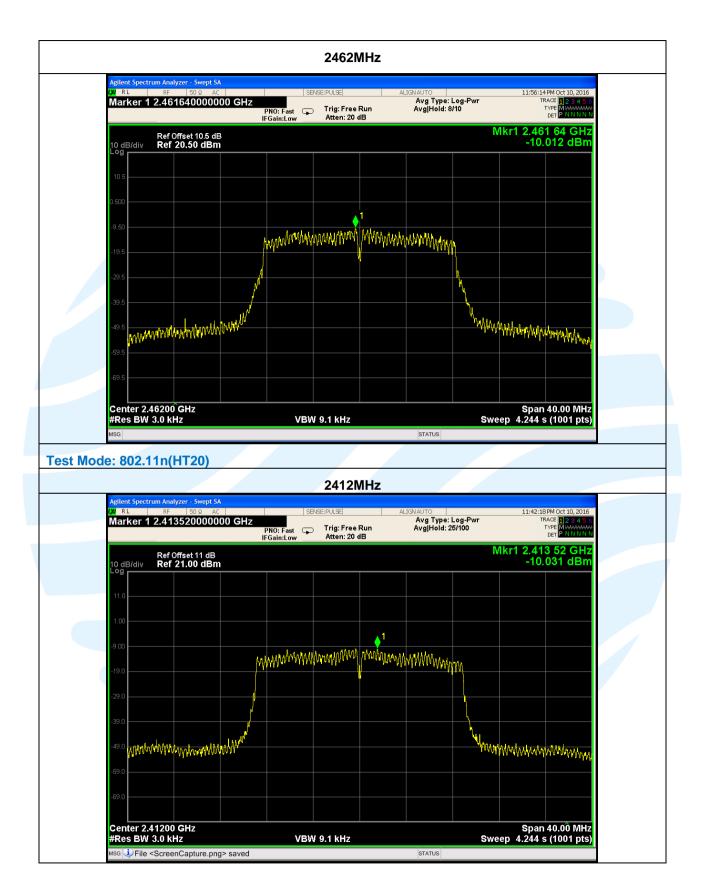

Page 25 of 61 Report No.: 1610100395RFC-1

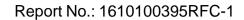


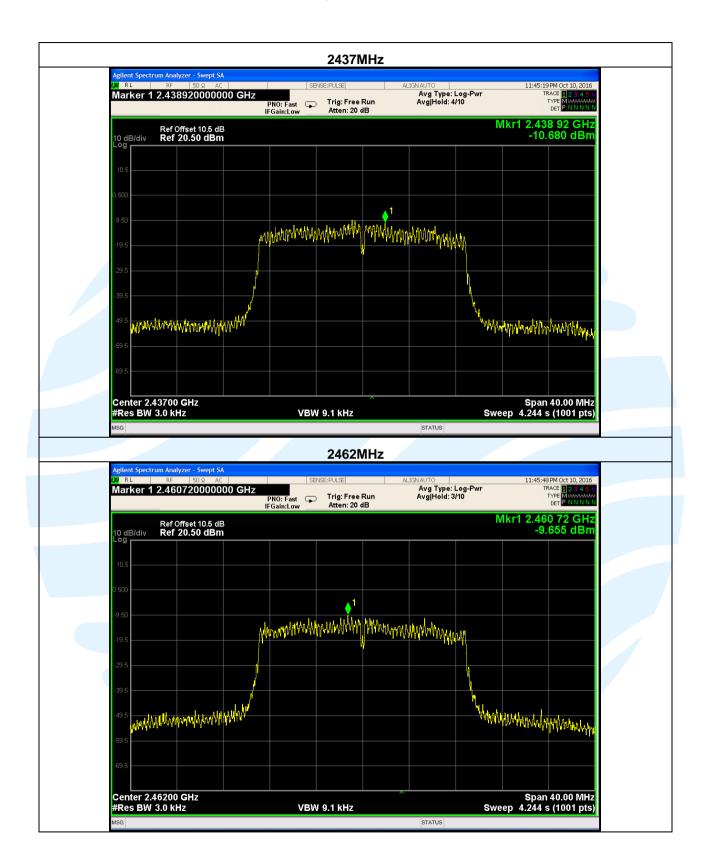
Page 26 of 61 Report No.: 1610100395RFC-1



Center 2.46200 GHz #Res BW 3.0 kHz


VBW 9.1 kHz


Span 40.00 MHz 4.244 s (1001 pts)



Page 31 of 61 Report No.: 1610100395RFC-1

5.5 Conducted Out of Band Emission

Test Requirement: 47 CFR Part 15 Subpart C Section 15.247(d)

Test Method: KDB 558074 D01 v03r05 Section 11

Limit: In any 100kHz bandwidth outside the frequency bands in which the spread

spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the

desired power.

Test Procedure: The output from the transmitter was connected to an attenuator and then to

the input of the spectrum analyzer.

Use the following spectrum analyzer settings:

Step 1: Measurement Procedure REF

a) Set instrument center frequency to DTS channel center frequency.

- b) Set the span to ≥ 1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW ≥ 3 x RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.
- Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Step 2: Measurement Procedure OOBE

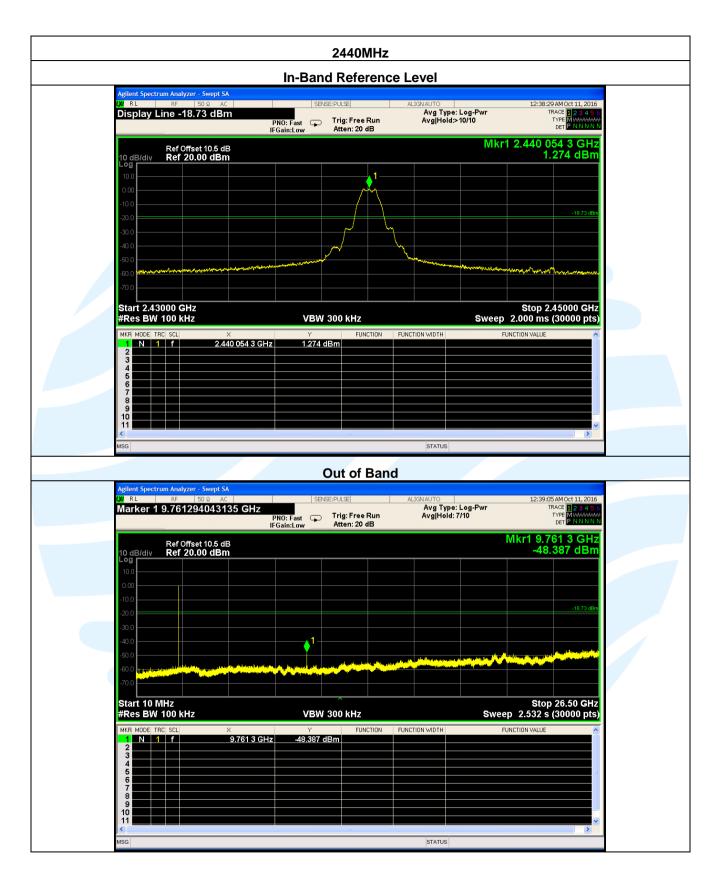
- a) Set RBW = 100 kHz.
- b) Set VBW ≥ 300 kHz.
- c) Detector = peak.
- d) Sweep = auto couple.
- e) Trace Mode = max hold.
- f) Allow trace to fully stabilize.
- g) Use the peak marker function to determine the maximum amplitude level.

Note: The cable loss and attenuator loss were offset into measure device as

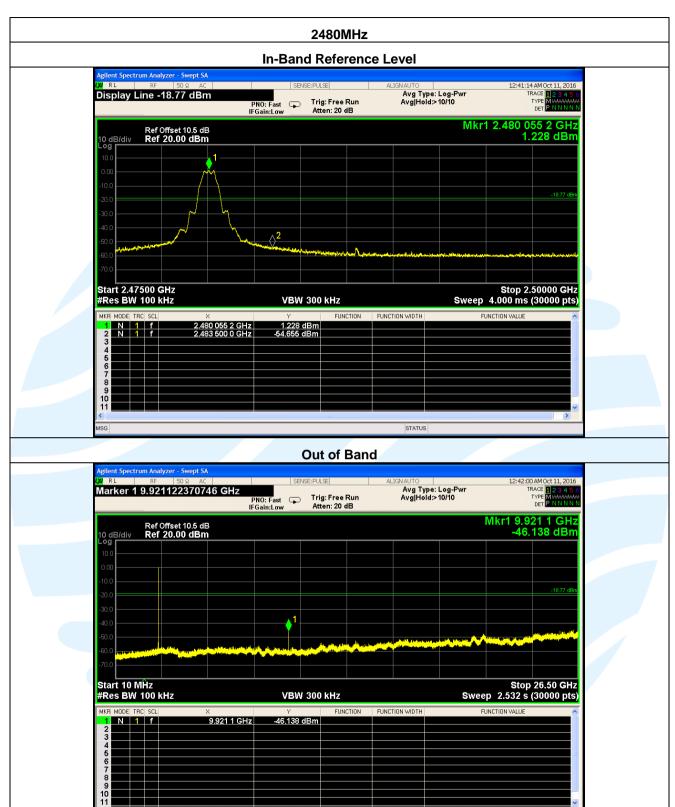
an amplitude offset.

Test Setup: Refer to section 4.1.1 for details.

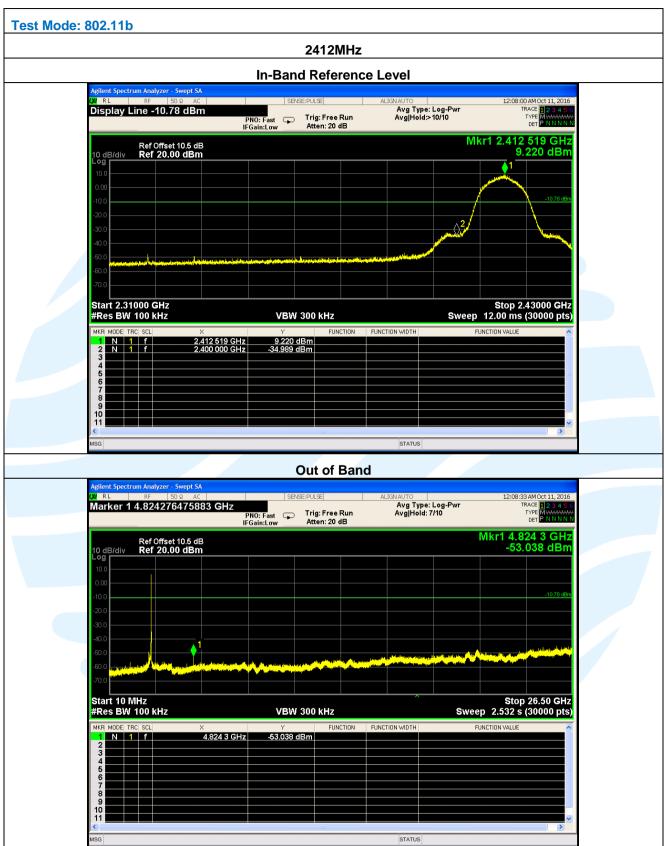
Instruments Used: Refer to section 3 for details

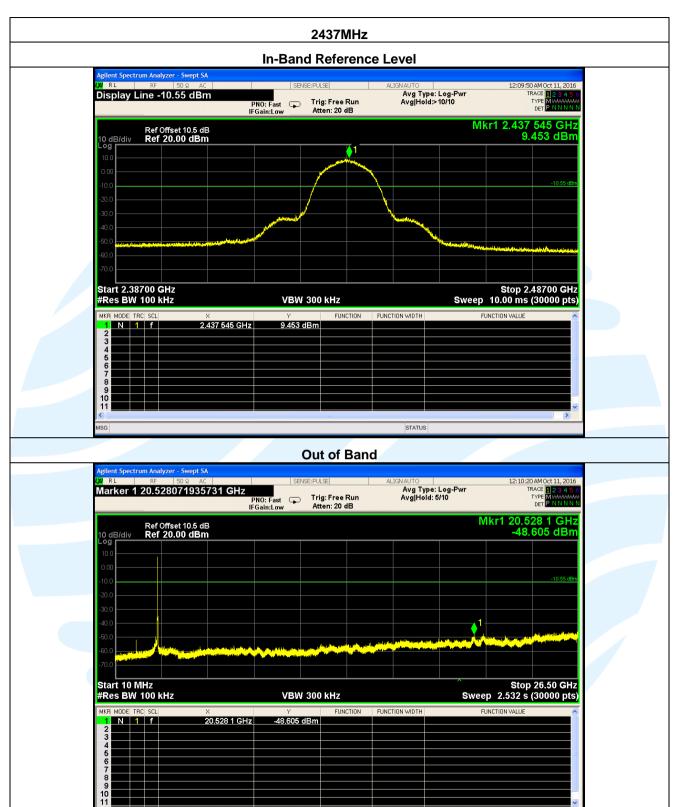

Test Mode: Transmitter mode

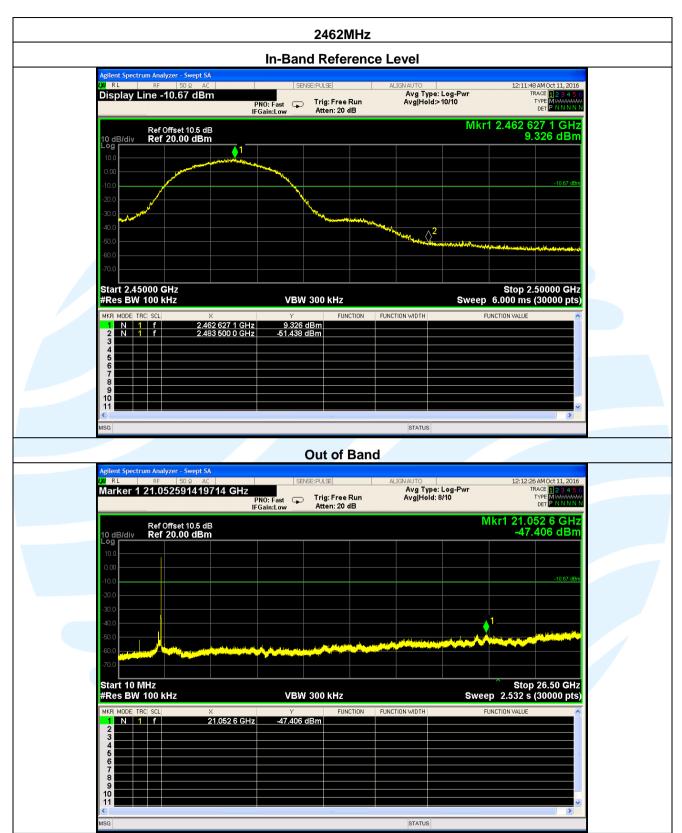
Test Results: Pass

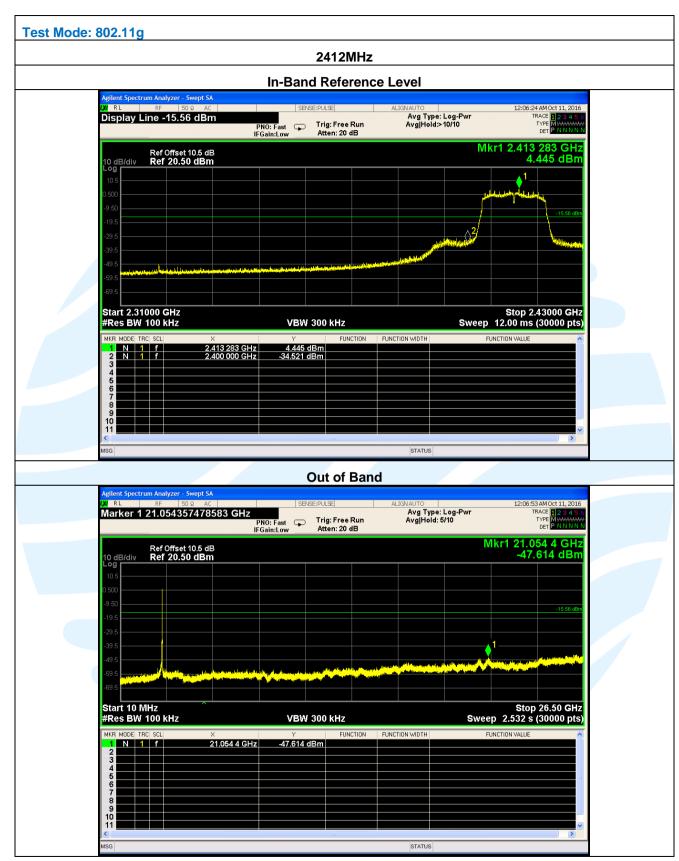


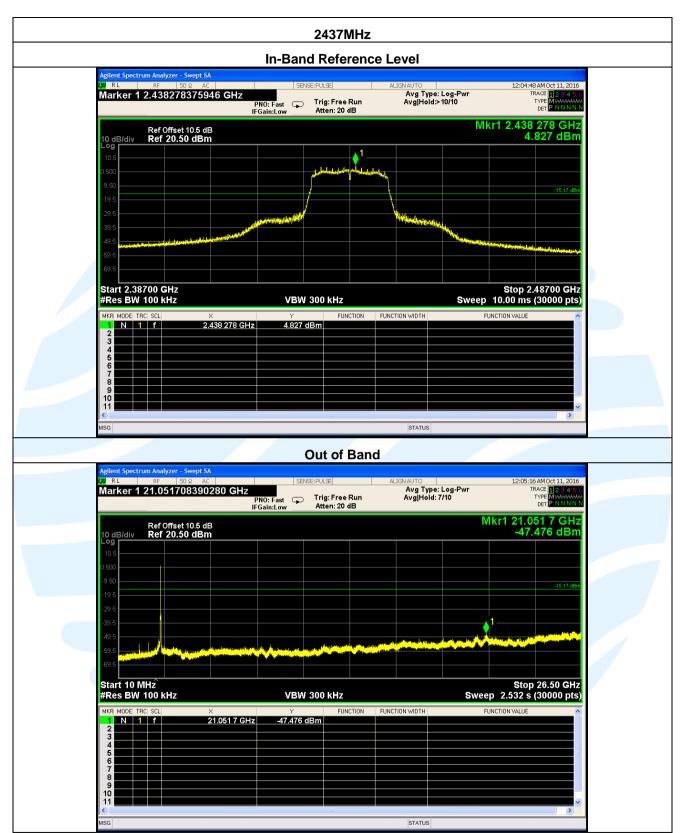
The test plot as follows: **Test Mode: BLE** 2402MHz **In-Band Reference Level** Avg Type: Log-Pwr Avg|Hold:>10/10 Display Line -18.77 dBm PNO: Fast Trig: Free Run IFGain:Low Atten: 20 dB Ref Offset 10.5 dB Ref 20.00 dBm 1.232 dBm Start 2.31000 GHz #Res BW 100 kHz Stop 2.41000 GHz Sweep 10.00 ms (30000 pts) VBW 300 kHz FUNCTION WIDTH 2.402 056 GHz 2.400 000 GHz 1.232 dBm -50.269 dBm **Out of Band** ::34:28 AM Oct 11, 2016 TRACE 1 2 3 4 5 6 TYPE M Marker 1 9.606763892130 GHz Avg Type: Log-Pwr Avg|Hold: 7/10 PNO: Fast Trig: Free Run IFGain:Low Atten: 20 dB Mkr1 9.606 8 GHz -47.872 dBm Stop 26.50 GHz Sweep 2.532 s (30000 pts) Start 10 MHz #Res BW 100 kHz VBW 300 kHz FUNCTION WIDTH -47.872 dBm

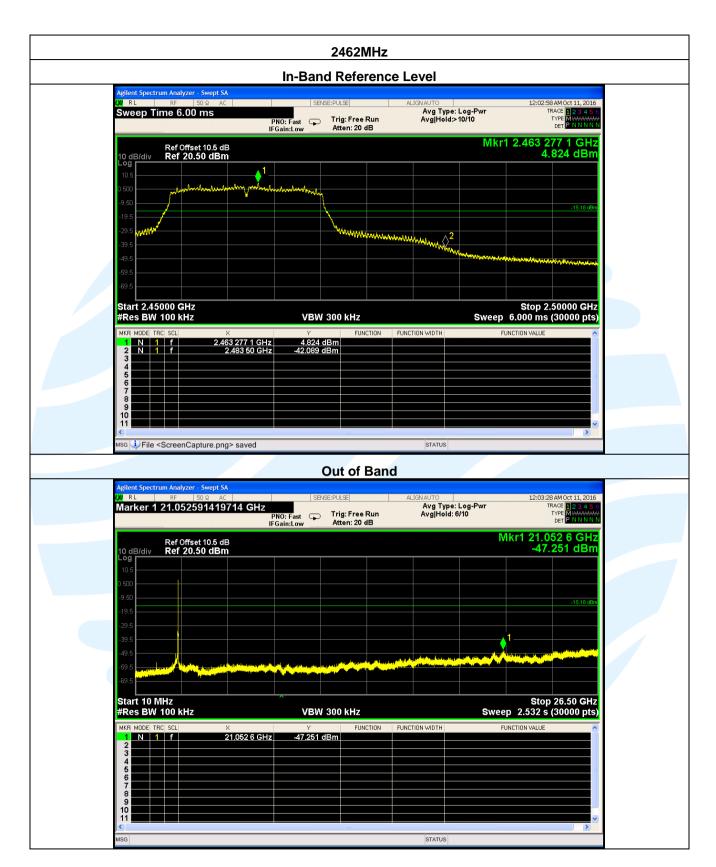


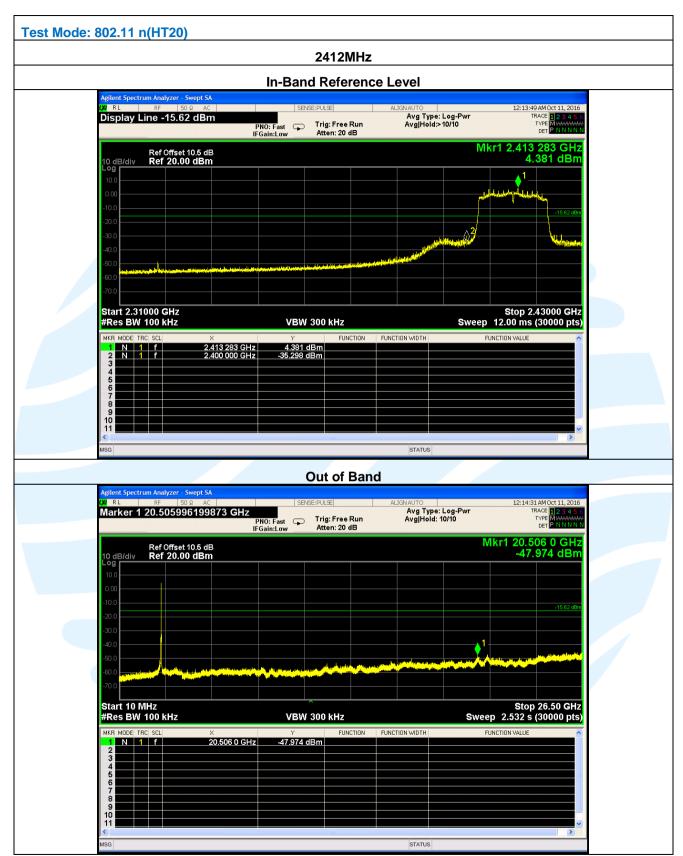


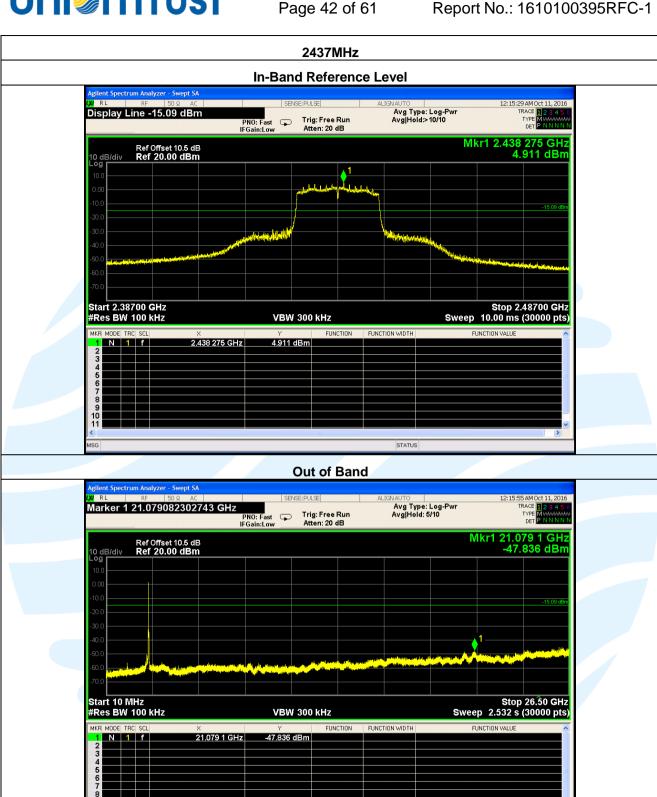


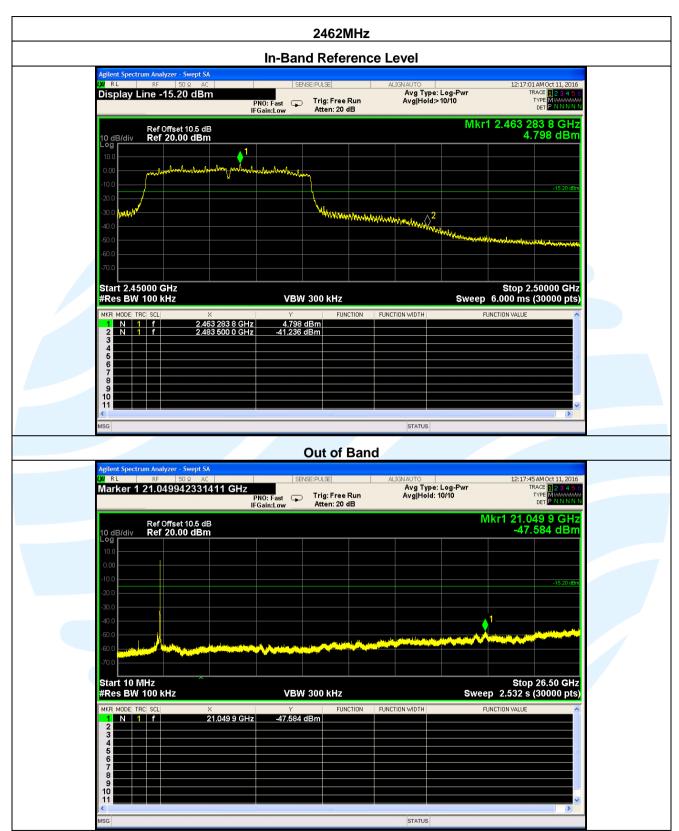












Page 44 of 61 Report No.: 1610100395RFC-1

5.6 Radiated Spurious Emissions

Test Requirement: Test Method:

Limit:

47 CFR Part 15 Subpart C Section 15.205/15.209

ANSI C63.10

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	1	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Remark:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

The emissions were measured using the following resolution bandwidths:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above IGHZ	Peak	1MHz	10Hz	Average

Harmonic and Spurious emissions that were identified as coming from the EUT were checked in Peak and in Average Mode. The high frequency, which started from 10 to26.5GHz, which above 10GHz are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured was not reported.

Peak measurements and average measurements are made. All emissions were determined to have a peak-to-average ratio of less than 20dB.

Page 45 of 61 Report No.: 1610100395RFC-1

Test Procedure:

Below 1GHz test procedure as below:

- a) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f) Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel

Above 1GHz test procedure as below:

- g) Different between above is the test site, change from Semi-Anechoic Chamber to fully Anechoic Chamber change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h) Test the EUT in the lowest channel, the Highest channel
- i) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j) Repeat above procedures until all frequencies measured was complete.

Test Setup:

Refer to section 4.1.2 for details.

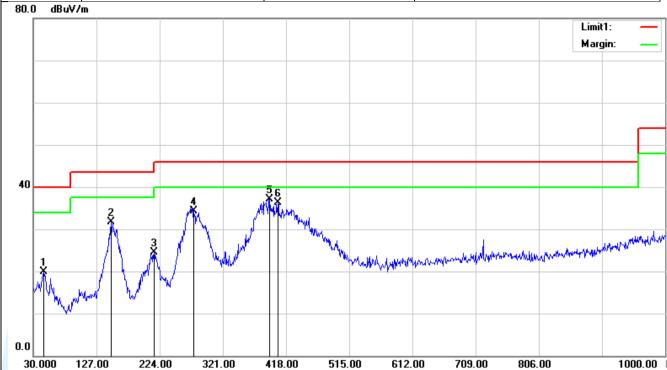
Instruments Used:

Refer to section 3 for details

Test Mode:

Transmitter mode

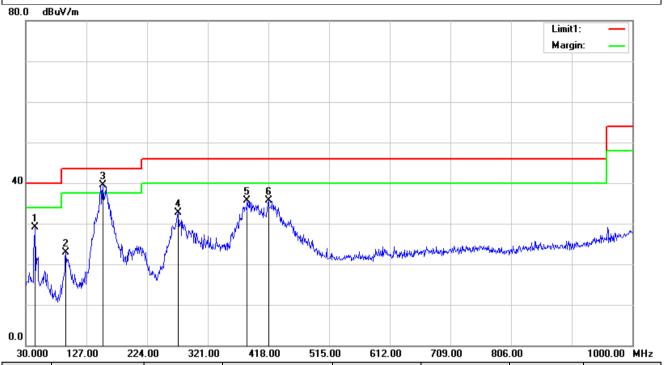
Test Results:


Pass

Test Data:

Radiated Emission Test Data (Below 1 GHz Worst Case):

Mode 802.11b		Antenna	Chain 0					
Channel	1	Ant. Polar.	Horizontal					
80.0 dBuV/m								



.No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	46.4900	31.91	-11.93	19.98	40.00	-20.02	QP
2	149.3100	43.52	-11.87	31.65	43.50	-11.85	QP
3	215.2700	35.68	-11.13	24.55	43.50	-18.95	QP
4	276.3800	44.15	-9.87	34.28	46.00	-11.72	QP
5*	392.7800	45.64	-8.48	37.16	46.00	-8.84	QP
6	405.3900	44.86	-8.59	36.27	46.00	-9.73	QP

Page 47 of 61

Mode	802.11b	Antenna	Chain 0
Channel	1	Ant. Polar.	Vertical

.No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	44.5500	40.90	-11.73	29.17	40.00	-10.83	QP
2	94.0200	37.64	-14.71	22.93	43.50	-20.57	QP
3*	153.1900	51.31	-11.83	39.48	43.50	-4.02	QP
4	273.4700	42.67	-10.02	32.65	46.00	-13.35	QP
5	384.0500	44.13	-8.36	35.77	46.00	-10.23	QP
6	418.0000	44.37	-8.60	35.77	46.00	-10.23	QP

Page 48 of 61

Report No.: 1610100395RFC-1

Radiated Emission Test Data (Above 1GHz Worst Case):

Mode	BLE	Antenna	Chain 0
Channel	1	Ant. Polar.	Horizontal

.No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1*	1765.000	53.55	-6.35	47.20	74.00	-26.80	peak
2	2161.000	45.88	-4.12	41.76	74.00	-32.24	peak
3	2557.000	45.73	-2.16	43.57	74.00	-30.43	peak
4	2836.000	43.35	-1.66	41.69	74.00	-32.31	peak
5	3151.000	43.47	-1.11	42.36	74.00	-31.64	peak
6	4672.000	42.54	3.91	46.45	74.00	-27.55	peak

Mode	BLE	Antenna	Chain 0
Channel	20	Ant. Polar.	Horizontal

.No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1288.000	48.07	-7.47	40.60	74.00	-33.40	peak
2	1756.000	47.44	-6.36	41.08	74.00	-32.92	peak
3	2107.000	45.99	-4.41	41.58	74.00	-32.42	peak
4	2494.000	45.20	-2.29	42.91	74.00	-31.09	peak
5	3628.000	44.34	0.02	44.36	74.00	-29.64	peak
6*	4825.000	42.21	4.41	46.62	74.00	-27.38	peak

Mode	BLE	Antenna	Chain 0
Channel	40	Ant. Polar.	Horizontal

.No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1396.000	49.01	-7.07	41.94	74.00	-32.06	peak
2	1756.000	49.67	-6.36	43.31	74.00	-30.69	peak
3	2548.000	44.91	-2.17	42.74	74.00	-31.26	peak
4	3079.000	44.28	-1.23	43.05	74.00	-30.95	peak
5	3925.000	42.89	1.27	44.16	74.00	-29.84	peak
6*	4843.000	41.19	4.47	45.66	74.00	-28.34	peak

Page 49 of 61

Mode	802.11b	Antenna	Chain 1
Channel	1	Ant. Polar.	Horizontal

.No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1000.0000	48.42	-9.36	39.06	74.00	-34.94	peak
2	1279.000	48.37	-7.50	40.87	74.00	-33.13	peak
3	2233.000	45.01	-3.72	41.29	74.00	-32.71	peak
4	2962.000	43.73	-1.43	42.30	74.00	-31.70	peak
5	3916.000	43.42	1.24	44.66	74.00	-29.34	peak
6*	4825.000	47.24	4.41	51.65	74.00	-22.35	peak

Mode	802.11b	Antenna	Chain 1
Channel	6	Ant. Polar.	Horizontal

.No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1117.000	47.93	-8.11	39.82	74.00	-34.18	peak
2	1216.000	49.04	-7.73	41.31	74.00	-32.69	peak
3	2125.000	48.86	-4.31	44.55	74.00	-29.45	peak
4	3250.000	44.72	-0.94	43.78	74.00	-30.22	peak
5*	4870.000	44.60	4.56	49.16	74.00	-24.84	peak
6	6454.000	42.29	6.82	49.11	74.00	-24.89	peak

Mode	802.11b	Antenna	Chain 1
Channel	11	Ant. Polar.	Horizontal

.No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1234.000	50.20	-7.67	42.53	74.00	-31.47	peak
2	1765.000	49.54	-6.35	43.19	74.00	-30.81	peak
3	2251.000	45.36	-3.62	41.74	74.00	-32.26	peak
4	2611.000	44.39	-2.06	42.33	74.00	-31.67	peak
5	3250.000	44.82	-0.94	43.88	74.00	-30.12	peak
6*	4420.000	42.17	3.07	45.24	74.00	-28.76	peak

Page 50 of 61

Mod	le	802.11g		Ant	enna		Chain 1			
Chani	nel	1		Ant.	Polar.		Horizontal			
	·		·		·					
.No.	Frequency	Reading	Correct	Correct Result		Limit	Margin	Remark		
	(MHz)	(dBuV)	Factor(dB/m)		(dBuV/m)	(dBuV/m)	(dB)			
1	1387.000	47.11	-7.11		40.00	74.00	-34.00	peak		
2	2134.000	45.25	-4.27		40.98	74.00	-33.02	peak		
3	2575.000	46.21	-2.12		44.09	74.00	-29.91	peak		
4	3691.000	41.89	0.29		42.18	74.00	-31.82	peak		
5	4807.000	41.75	4.35		46.10	74.00	-27.90	peak		
6*	5482.000	41.98	5.84		47.82	74.00	-26.18	peak		

Mod	е	802.11g	Ar	Antenna		Chain 1			
Chani	nel	6	Ant	. Polar.		Horizontal			
.No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark		
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)			
1	1261.000	48.33	-7.57	40.76	74.00	-33.24	peak		
2	1828.000	46.72	-6.09	40.63	74.00	-33.37	peak		
3	2566.000	45.96	-2.14	43.82	74.00	-30.18	peak		
4	3682.000	43.98	0.25	44.23	74.00	-29.77	peak		
5	4375.000	42.67	2.91	45.58	74.00	-28.42	peak		
6*	4870.000	43.35	4.56	47.91	74.00	-26.09	peak		

Mod	е	802.11g	Antenna		Chain 1		
Chanı	nel	11		Ant. Polar.		Horizontal	
.No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m) (dBuV/m)	(dBuV/m)	(dB)	
1	1315.000	47.35	-7.37	39.98	74.00	-34.02	peak
2	1594.000	52.21	-6.71	45.50	74.00	-28.50	peak
3	1801.000	47.31	-6.26	41.05	74.00	-32.95	peak
4	2161.000	46.14	-4.12	42.02	74.00	-31.98	peak
5	3691.000	44.19	0.29	44.48	74.00	-29.52	peak
6*	4933.000	42.11	4.76	46.87	74.00	-27.13	peak

4456.000

Page 51 of 61

Report No.: 1610100395RFC-1

Mod	е	802.11n	An	tenna	Chain 1			
Chani	nel	1	Ant.	Polar.		Horizontal		
					_		1	
.No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	1216.000	47.80	-7.73	40.07	74.00	-33.93	peak	
2	1747.000	50.85	-6.38	44.47	74.00	-29.53	peak	
3	2233.000	46.37	-3.72	42.65	74.00	-31.35	peak	
4	2548.000	45.04	-2.17	42.87	74.00	-31.13	peak	
5	2827.000	44.40	-1.67	42.73	74.00	-31.27	peak	
6*	4825.000	43.78	4.41	48.19	74.00	-25.81	peak	
Mod	е	802.11n	An	tenna	Chain 1			
Chanı	nel	6	Ant.	Polar.		Horizontal		
.No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	1108.000	48.72	-8.14	40.58	74.00	-33.42	peak	
2	1756.000	47.63	-6.36	41.27	74.00	-32.73	peak	
3	2233.000	45.93	-3.72	42.21	74.00	-31.79	peak	
4	2503.000	45.86	-2.25	43.61	74.00	-30.39	peak	
4 5	2503.000 3295.000	45.86 43.21	-2.25 -0.86	43.61 42.35	74.00 74.00	-30.39 -31.65	peak peak	

Mod	e	802.11n		Antenna			Chain 1			
Chan	nel	11		Ant.	Polar.		Horizontal			
						_				
.No.	Frequency	Reading	C	orrect	Resu	lt	Limit		Margin	Remark
	(MHz)	(dBuV)	Fact	tor(dB/m)	(dBuV/	m)	(dBuV/n	n)	(dB)	
1	1234.000	46.97		-7.67	39.30)	74.00		-34.70	peak
2	2035.000	48.22		-4.81	43.4	1	74.00		-30.59	peak
3	2575.000	44.86		-2.12	42.74	4	74.00		-31.26	peak
4	3214.000	43.48		-1.00	42.48	8	74.00		-31.52	peak
5	4798.000	41.54		4.32	45.86	6	74.00		-28.14	peak
6*	4933.000	42.53		4.76	47.29	9	74.00		-26.71	peak

45.59

74.00

-28.41

peak

3.20

42.39

Page 52 of 61 Report No.: 1610100395RFC-1

Note:

- 1) Through Pre-scan transmitting mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 54Mbpsof rate is the worst case of 802.11g; MCS 1 of rate is the worst case of 802.11n(HT20), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading Correct Factor
 - Correct Factor = Preamplifier Factor Antenna Factor Cable Factor
- Scan from 9KHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low, the amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 4) Since peak data above 1GHz are lower the average limit, so the average data are pass, no need for testing.

Page 53 of 61 Report No.: 1610100395RFC-1

5.7 Band Edge Measurements (Radiated)

Test Requirement: 47 CFR Part 15 Subpart C Section 15.205/15.209

Test Method:

KDB 558074 D01 v03r05 Section 12.1

Limit:

Frequency	Limit (dBµV/m @3m)	Remark
30MHz-88MHz	40.0	Quasi-peak Value
88MHz-216MHz	43.5	Quasi-peak Value
216MHz-960MHz	46.0	Quasi-peak Value
960MHz-1GHz	54.0	Quasi-peak Value
Above 1GHz	54.0	Average Value
Above 1GHZ	74.0	Peak Value

Test Procedure:

Radiated band edge measurements at 2390MHz and 2483MHz were made with the unit transmitting in the low end of the channel range and the high end closest to the restricted bands respectively. The emissions were made on the 966 Semi-Chamber. Use (resolution bandwidth (RBW) = 1 MHz, video bandwidth (VBW) = 3 MHz for peak levels and RBW = 1 MHz and VBW = 10 Hz or 1/T for average levels).

- 1. Use radiated spurious emission test procedure described in 5.6 clause. The transmitter output (antenna port) was connected to the test receiver.
- 2. Set the PK and AV limit line.
- 3. Record the fundamental emission and emissions out of the band-edge.
- 4. Determine band-edge compliance as required.

Test Setup: Refer to section 4.1.2 for details.

Instruments Used: Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

Test Data:

Mode	BLE	An	itenna	Chain 0			
Channel	1	Ant	. Polar.	Horizontal			
	Detector: Peak			Detector: AV			
Keysight Spectrum Analyzer - Swept S RL RF 50 0 C Display Line 74.00 dB	CC CORREC SENSE:INT ALIGN AUTO/NO Avg T	RF 07:21:05 PM 0c11, 2016 ype: Log-Pwr TRACE 103 4 5 6 id:>100/100 tree New New New New New New New New New N	□ Keysight Spectrum Analyzer - Swept SA □ RL RF 50 Ω DC CORREC ■ Marker 1 2.4021000000000 GHz	SENSE:INT ALIGN AUTO/NO RF	07:19:10 PM Oct 11, 2016 : Log-Pwr TRACE 13345 >100/100 TIPE REM		
Ref Offise to 0 de la company	#VBW 3.0 MHz 2.402.4 GHz 91.511 dBW		Ref Cff 10 dB July 10	40.309 dBuV	Mkr1 2.402 1 GHz 90.888 dBµV 1 2 Stop 2.41000 GHz Sweep 26.00 ms (1001 pts)		
Frequenc	y Peak level	Peak Limit	AV level	AV Limit			
(MHz)	(dBuv/m)	(dBuv/m)	(dBuv/m)	(dBuv/m)	Conclusion		
2390	50.56	74	40.31	54	Pass		

Frequency

(MHz)

2483.5

Peak level

(dBuv/m)

59.59

Mode **BLE Antenna** Chain 0 Channel 1 Ant. Polar. Vertical **Detector: Peak Detector: AV** Avg Type: Log-Pwr Avg|Hold:>100/100 Avg Type: Log-Pwi Avg|Hold:>100/100 Trig: Free Run st Trig: Free Run Ref Offset 10 dB Ref 116.99 dBµV Ref Offset 10 dB Ref 116.99 dBµV 2.479 725 GHz 2.483 500 GHz 95.710 dBµ 58.594 dBµ 2.480 125 GHz 2.483 500 GHz 94.966 dBµ 41.295 dBµ

AV level

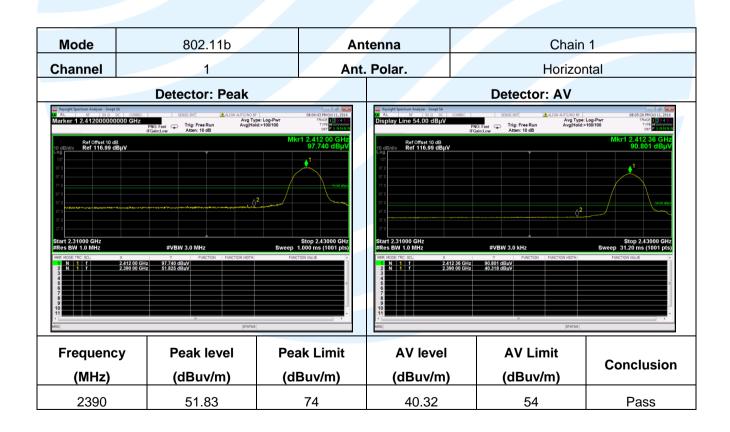
(dBuv/m)

41.30

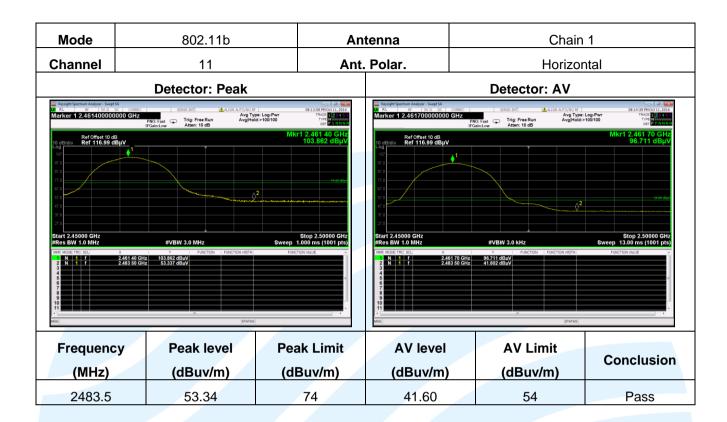
AV Limit

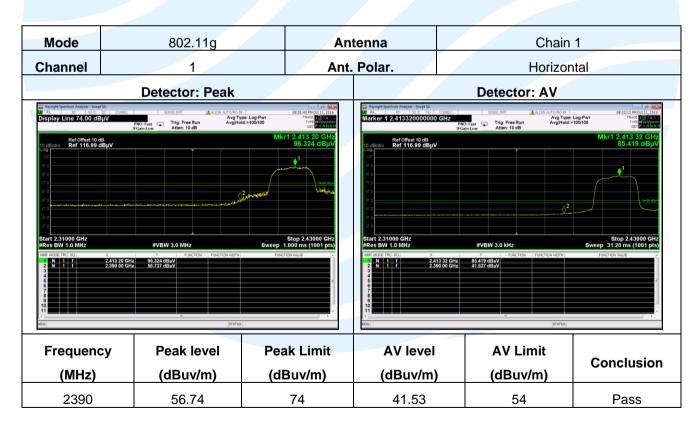
(dBuv/m)

54

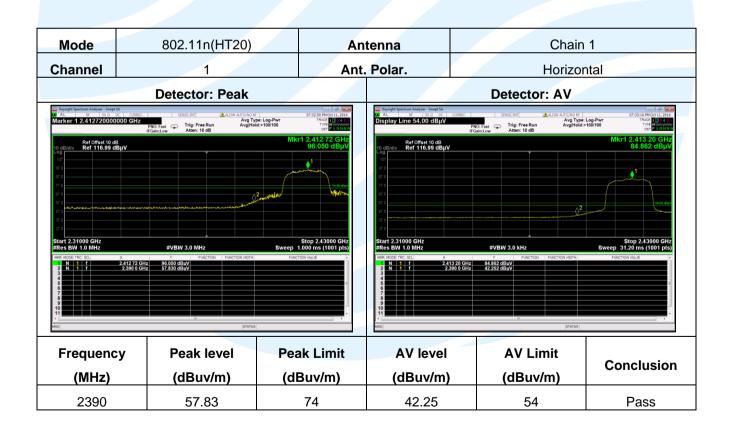

Conclusion

Pass


Peak Limit


(dBuv/m)

74


Page 55 of 61

Page 56 of 61 Report No.: 1610100395RFC-1

Mode	802.11g	An	tenna	Chain 1					
Channel	Channel 11 Ar			t. Polar. Horizontal					
	Detector: Peak		Detector: AV						
Keynglet Spectnum Analyzer - Sue So C	DC CORREC SENSE:INT ALIGN AUTONOM PNO: Fast Free Run Avg Ho IFGain:Low Atten: 10 dB Processing Avg Ho ALIGN AUTONOM Avg Ho Avg H	05.43 PM 011,30 Pm 1976 153 PM	Ecyclyld Spectrum Analyzer - Snept SA RL 107 90 20 20 COMME Display Line 54.00 dBpV Ref Offset 10 dB Ref Offset 10 dB Ref 116.99 dBpV	SENSE.INTI A ALION AUTONO 69 PNO: Fast Trig: Free Run Avg Fol IFGaint.low Attent: 10 dB	075219 Mod 11, 2016 be: Log-Pwr 17000 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
810 Start 2.45000 GHz	1								
#Res BW 1.0 MHz WAY MODEL THE SELL AN 1 1 7 A N 1 7 A N 1 7 B	#VBW 3.0 MHz 2.460 50 GHz	Stop 2,50000 GHz Sweep 1,000 ms (1001 pts)	Start 2.45000 GHz #Res BW 1.0 MHz N	#VBW 3.0 kHz Y FUNCTION FUNCTION MOTH- 142	Stop 2.50000 GHz Sweep 13.00 ms (1001 pts)				
Frequence (MHz)	Peak level (dBuv/m)	Peak Limit (dBuv/m)	AV level (dBuv/m)	AV Limit (dBuv/m)	Conclusion				
2483.5			46.89	54	Pass				

Page 57 of 61 Report No.: 1610100395RFC-1

Mode	802.11n(HT20) Ar	ntenna	Chain 1			
Channel	11	Ant	t. Polar. Horizontal				
	Detector: Peak	Ţ.	Detector: AV				
	DC CORREC SENSE:INT ALIGN AUTO	NO RF 0748.33 PM Oct 11, 2016 g Type: Log-Pwr j Hold:>100/100 DET 1798	Keysight Spectrum Analyzer - Swept SA RL RF S0 Ω DC CORRE Marker 1 2.4611000000000 GHz	PNO: Fast Trig: Free Run FGsinct.ow Atten: 10 dB	Aug Type: Log-Pwr Avg Hold:>100H00 Avg Type: Log-Pwr Avg Hold:>100H00 Def P		
Ref Offset 10 c	ii damedii	Mkr1 2.462 25 GHz 101.138 dBµV	Ref Offset 10 dB 10 dB/div Ref 116.99 dBμV	IFOSIILLOW PAGE TO GE	Mkr1 2.461 10 GHz 90.514 dBµV		
97.0	1		107				
77.0	Secretary Control of the Control of	74 90 dQyy	87.0				
67.0 57.0	And the state of t	my of the second of the fill of the second	57.0		\$4.00 dBys		
47.0 37.0			47.0		V		
27.0 27.0 Start 2.45000 GHz		Stop 2.50000 GHz	270 270 Start 2.45000 GHz		Stop 2.50000 GHz		
#Res BW 1.0 MHz	#VBW 3.0 MHz X Y FUNCTION FUNCTION N	Stop 2,50000 GHz Sweep 1,000 ms (1001 pts) OTH FUNCTION WAUE	Start 2.45000 GHz		Stop 2,50000 GHz Sweep 13.00 ms (1001 pts) TIDNINGTH FUNCTION WAUE		
		Sweep 1.000 ms (1001 pts)	Start 2.45000 GHz #Res BW 1.0 MHz wor Mode Tro Sci. 2.45110 2. N 1 f 2.45150	Y FUNCTION FUNC	Stop 2.50000 GHz Sweep 13.00 ms (1001 pts)		
#Res BW 1.0 MHz	X Y FUNCTION FUNCTION W	Sweep 1.000 ms (1001 pts)	#Res BW 1.0 MHz	Y FUNCTION FUNC	Stop 2.50000 GHz Sweep 13.00 ms (1001 pts)		
#Res BW 1.0 MHz	X Y FUNCTION FUNCTION W	Sweep 1.000 ms (1001 pts)	#Res BW 1.0 MHz	Y FUNCTION FUNC	Stop 2.50000 GHz Sweep 13.00 ms (1001 pts)		
#Res BW 1.0 MHz MKR MODE TRC SCL N 1 f	2 462 25 GHz 19138 dBW	Sweep 1.000 ms (1001 pts)	#Res BW 1.0 MHz	Y FUNCTION FUNC	Stop 2.50000 GHz Sweep 13.00 ms (1001 pts)		
MKR MODE TRC SCL	2 462 25 GHz 19138 dBW	Sweep 1.000 ms (1001 pts) PUNCTON VALUE	#Res BW 1.0 MHz	Hz. 98 14 dBW/ Hz. 48 397 dB/V	Stop 2,50000 GHz Sweep 13.00 ms (1001 pts) TON MOTH AMICTON VALUE		
#Res BW 1.0 MHz MKR MODE TRC SCL N 1 f	2 482 25 GHz 101 13 dB _W FUNCTION FUNCTION M 2 483 50 GHz 65.777 dB _W	Sweep 1.000 ms (1001 pts) PUNKTION VALUE	#Res BW 1.0 MHz	Y FUNCTION FUNC	Stop 2.50000 GHz Sweep 13.00 ms (1001 pts) FUNCTION VALUE		
#Res BW 1.0 MHz	2 482 25 GHz 101 13 dB _W FUNCTION FUNCTION M 2 483 50 GHz 65.777 dB _W	Sweep 1.000 ms (1001 pts) PUNCTON VALUE	#Res BW 1.0 MHz N	Hz. 98 14 dBW/ Hz. 48 397 dB/V	Stop 2.50000 GHz Sweep 13.00 ms (1001 pts) FUNCTION VALUE Conclusion		

Note:

- 1) Through Pre-scan transmitting mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 54Mbpsof rate is the worst case of 802.11g; MCS1 of rate is the worst case of 802.11n(HT20), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading Correct Factor

 Correct Factor = Preamplifier Factor Antenna Factor Cable Factor

Page 58 of 61 Report No.: 1610100395RFC-1

5.8 Conducted Emissions

Test Requirement: 47 CFR Part 15C Section 15.207

Test Method: ANSI C63.10 **Test Frequency Range:** 150KHz to 30MHz

Limit:

Test Procedure:

Fraguency range (MHz)	Limit (dBµV)			
Frequency range (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Test frequency range :150KHz-30MHz

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Test Setup: Refer to section 4.1.3 for details.

Pass

Instruments Used: Refer to section 3 for details

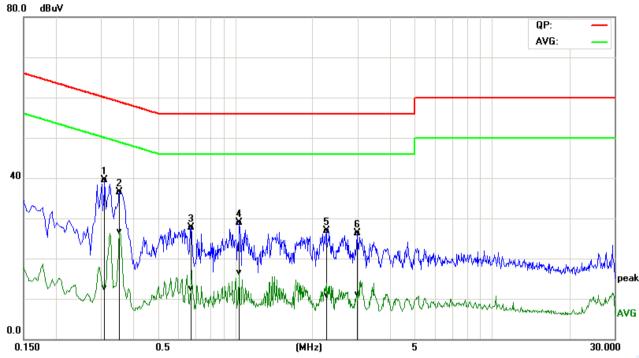
Test Mode: Transmitter mode

Measurement Data

Test Results:

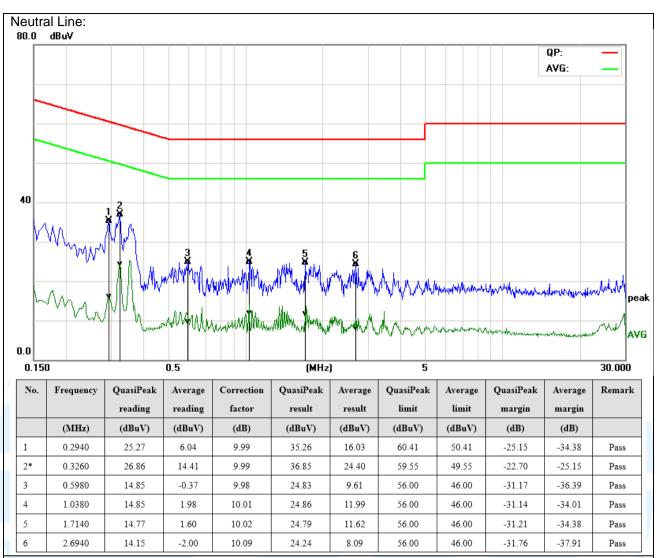
An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.



Page 59 of 61

Report No.: 1610100395RFC-1


Test plot as follows(Worst Case):

802.11b Live Line:

No.	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1*	0.3100	29.53	2.85	9.93	39.46	12.78	59.97	49.97	-20.51	-37.19	Pass
2	0.3540	26.48	16.68	9.93	36.41	26.61	58.87	48.87	-22.46	-22.26	Pass
3	0.6740	17.71	2.60	9.99	27.70	12.59	56.00	46.00	-28.30	-33.41	Pass
4	1.0380	18.82	6.49	10.01	28.83	16.50	56.00	46.00	-27.17	-29.50	Pass
5	2.2700	16.93	0.89	10.05	26.98	10.94	56.00	46.00	-29.02	-35.06	Pass
6	2.9900	16.24	1.05	10.12	26.36	11.17	56.00	46.00	-29.64	-34.83	Pass

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss

Page 61 of 61 Report No.: 1610100395RFC-1

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

See test photographs attached in Appendix 1 for the actual connections between Product and support equipment.

APPENDIX 2 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS

Refer to Appendix 2 for EUT external and internal photographs.

*** End of Report ***

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of UnionTrust, this report can't be reproduced except in full.