|                                                                                                                                                                                                                                                             | B U F<br>V E F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                             | FCC Test Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Report No.:                                                                                                                                                                                                                                                 | •<br>RF171017E05A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -                                                                                                                                                                                                                                                           | 2ABC8-PP300V50SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                             | DT8050A-SN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Received Date:                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                             | Jan. 02 to 11, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                             | Mar. 27, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Applicant:                                                                                                                                                                                                                                                  | Honeywell Security Sensor CoE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Address:                                                                                                                                                                                                                                                    | 2 Corporate Center Dr. Melville New York 11747 United States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Issued By:                                                                                                                                                                                                                                                  | Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch<br>Hsin Chu Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Lab Address:                                                                                                                                                                                                                                                | E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,<br>Taiwan R.O.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Test Location:                                                                                                                                                                                                                                              | E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,<br>Taiwan R.O.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FCC Registration / Designation Number:                                                                                                                                                                                                                      | 723255 / TW2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                             | Testing Laborat<br>2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| v with our prior written permission. The<br>port are not indicative or representative<br>ss specifically and expressly noted.<br>vided to us. You have 60 days from<br>vever, that such notice shall be in writt<br>Il constitute your unqualified acceptar | copying or replication of this report to or for any other person or entity, or use of our name or trademark, is per<br>his report sets forth our findings solely with respect to the test samples identified herein. The results set forth<br>e of the quality or characteristics of the lot from which a test sample was taken or any similar or identical p<br>Our report includes all of the tests requested by you and the results thereof based upon the information th<br>date of issuance of this report to notify us of any material error or omission caused by our negligence, pro-<br>ing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribe<br>to e of the completeness of this report, the tests conducted and the correctness of the report contents. Unless s<br>thas been explicitly taken into account to declare the compliance or non-compliance to the specification. The |



### Table of Contents

| R | Release Control Record 3                           |                                                                                                                                                                                                                                                             |                              |  |  |  |
|---|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|
| 1 | С                                                  | ertificate of Conformity                                                                                                                                                                                                                                    | 4                            |  |  |  |
| 2 | S                                                  | ummary of Test Results                                                                                                                                                                                                                                      | 5                            |  |  |  |
|   | 2.1<br>2.2                                         | Measurement Uncertainty<br>Modification Record                                                                                                                                                                                                              |                              |  |  |  |
| 3 | G                                                  | eneral Information                                                                                                                                                                                                                                          | 6                            |  |  |  |
|   | 3.1<br>3.2<br>3.2.1<br>3.3<br>3.4<br>3.4.1<br>3.5  | General Description of EUT<br>Description of Test Modes<br>Test Mode Applicability and Tested Channel Detail<br>Duty Cycle of Test Signal<br>Description of Support Units<br>Configuration of System under Test<br>General Description of Applied Standards | 7<br>8<br>. 10<br>11<br>. 12 |  |  |  |
| 4 | Т                                                  | est Types and Results                                                                                                                                                                                                                                       | .14                          |  |  |  |
|   | 4.1.2<br>4.1.3<br>4.1.4                            | Radiated Emission and Bandedge Measurement<br>Limits of Radiated Emission and Bandedge Measurement<br>Test Instruments<br>Test Procedures<br>Deviation from Test Standard                                                                                   | . 14<br>. 16<br>. 18<br>. 19 |  |  |  |
|   | 4.1.6                                              | Test Setup<br>EUT Operating Conditions<br>Test Results                                                                                                                                                                                                      | . 21                         |  |  |  |
|   | 4.2<br>4.2.1                                       | Conducted Emission Measurement<br>Limits of Conducted Emission Measurement<br>Test Instruments                                                                                                                                                              | 26<br>26                     |  |  |  |
|   | 4.2.4                                              | Test Procedures<br>Deviation from Test Standard<br>Test Setup                                                                                                                                                                                               | . 27                         |  |  |  |
|   | 4.2.6                                              | EUT Operating Conditions<br>Test Results                                                                                                                                                                                                                    | . 27<br>. 28                 |  |  |  |
|   | 4.3.2                                              | Limits of 20dB bandwidth Measurement<br>Test Instruments<br>Test Procedures                                                                                                                                                                                 | . 30                         |  |  |  |
|   | 4.3.5<br>4.3.6                                     | Deviation from Test Standard<br>Test Setup<br>EUT Operating Conditions                                                                                                                                                                                      | . 30<br>. 30                 |  |  |  |
|   |                                                    | Test Results                                                                                                                                                                                                                                                |                              |  |  |  |
| 5 |                                                    | ictures of Test Arrangements                                                                                                                                                                                                                                |                              |  |  |  |
| Α | Appendix – Information of the Testing Laboratories |                                                                                                                                                                                                                                                             |                              |  |  |  |



| Issue No.         Description         Date Issued           RF171017E05A         Original release.         Mar. 27, 2019 |              | Re          | ease Control Rec | cord |               |
|--------------------------------------------------------------------------------------------------------------------------|--------------|-------------|------------------|------|---------------|
| RF171017E05A     Original release.                                                                                       | Issue No.    | Description |                  |      | Date Issued   |
|                                                                                                                          | RF171017E05A |             |                  |      | Mar. 27, 2019 |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
|                                                                                                                          |              |             |                  |      |               |
| Poport No · DE171017E05A Dago No 2 / 22 Deport Format Version: 6 1 1                                                     |              |             |                  |      |               |



### 1 Certificate of Conformity

| Product:       | Infrared microwave sensor                      |  |
|----------------|------------------------------------------------|--|
| Brand:         | Honeywell                                      |  |
| Test Model:    | DT8050A-SN                                     |  |
| Sample Status: | ENGINEERING SAMPLE                             |  |
| Applicant:     | Honeywell Security Sensor CoE                  |  |
| Test Date:     | Jan. 02 to 11, 2019                            |  |
| Standards:     | 47 CFR FCC Part 15, Subpart C (Section 15.245) |  |
|                | ANSI C63.10: 2013                              |  |

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

| Prepared by : | Cindy Hsin / Specialist | , Date: | Mar. 27, 2019 |  |
|---------------|-------------------------|---------|---------------|--|
| Approved by : | May Chen / Manager      | , Date: | Mar. 27, 2019 |  |



### 2 Summary of Test Results

| 47 CFR FCC Part 15, Subpart C (SECTION 15.245) |                                                   |      |                                                                                         |  |  |  |  |
|------------------------------------------------|---------------------------------------------------|------|-----------------------------------------------------------------------------------------|--|--|--|--|
| FCC<br>Clause                                  | Test Item Result Remarks                          |      |                                                                                         |  |  |  |  |
| 15.207                                         | AC Power Conducted Emission                       | PASS | Meet the requirement of limit.<br>Minimum passing margin is -33.96dB<br>at 19.91016MHz. |  |  |  |  |
| 15.245                                         | 15.245 Radiated Emission Test                     |      | Meet the requirement of limit<br>Minimum passing margin is -5.1dB at<br>10500.00MHz     |  |  |  |  |
| 15.215 (c)                                     | 15.215 (c)20dB Bandwidth15.203Antenna Requirement |      | Meet the requirement of limit                                                           |  |  |  |  |
| 15.203                                         |                                                   |      | No antenna connector is used.                                                           |  |  |  |  |

### 2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

| Measurement                        | Frequency      | Expanded Uncertainty<br>(k=2) (±) |
|------------------------------------|----------------|-----------------------------------|
| Conducted Emissions at mains ports | 150kHz ~ 30MHz | 1.84 dB                           |
|                                    | 30MHz ~ 1GHz   | 5.33 dB                           |
| Radiated Emissions                 | 1GHz ~ 6GHz    | 5.10 dB                           |
| Raulateu Emissions                 | 6GHz ~ 18GHz   | 4.85 dB                           |
|                                    | 18GHz ~ 40GHz  | 5.24 dB                           |

### 2.2 Modification Record

There were no modifications required for compliance.



### 3 General Information

### 3.1 General Description of EUT

| Product             | Infrared microwave sensor           |
|---------------------|-------------------------------------|
| Brand               | Honeywell                           |
| Test Model          | DT8050A-SN                          |
| Status of EUT       | ENGINEERING SAMPLE                  |
| Power Supply Rating | DC 9~13V, 15mA                      |
| Modulation Type     | pulse                               |
| Carrier Frequency   | 10.525GHz                           |
| Number of Channel   | 1                                   |
| Antenna Type        | Integral PCB antenna with 7dBi gain |
| Antenna Connector   | NA                                  |
| Accessory Device    | NA                                  |
| Data Cable Supplied | NA                                  |

Note:

- 1. This report is prepared for FCC class II permissive change. The difference compared with the Report No.: RF171017E05 design is as the following information:
  - The FET electrical characteristics are quite closed, yet there are some difference in component shape and dimension.
  - Detail change list as refer as below, Confirmed RF circuit and performance are no changed:
     1. Replace NE4210S01(300-06289) with CE3512K2(300-09313)
    - 2. Replace DR(300-06688) with DR(300-08959)
    - 3. Replace Resistor 21ohm(5-108-2212-00) with 33ohm(RJ6-3301)
    - 4. PCB minor changed (replace PCB footprint of NE4210S01 with CE3512K2')
    - More detailed information, please refer to CI2PC request form.
- 2. According to above condition, all test items need to be performed. And all data were verified to meet the requirements.
- 3. From the power supply, the worse case was found in voltage: **DC 9V**. Therefore only the test data of the mode was recorded in this report.
- 4. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.



# 3.2 Description of Test Modes

1 channel is provided for test:

| Channel | Frequency  |
|---------|------------|
| 1       | 10.525 GHz |

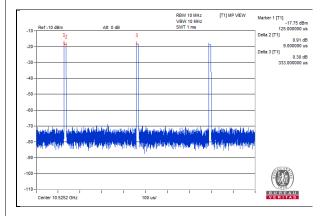


### 3.2.1 Test Mode Applicability and Tested Channel Detail

| EUT<br>CONFIGURE                                                                                                                                                                                                                                                                                           | APPLICABLE TO                                                                                                                                                                                   |                                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                       |                                                                                                                                                   |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| MODE                                                                                                                                                                                                                                                                                                       | RE≥1G                                                                                                                                                                                           | RE<1G                                                                                                                                                                                                  | PLC                                                                                                                                            | BW                                                                                                                    | DESCRIPTION                                                                                                                                       |  |  |  |  |
| -                                                                                                                                                                                                                                                                                                          | $\checkmark$                                                                                                                                                                                    | $\checkmark$                                                                                                                                                                                           | $\checkmark$                                                                                                                                   | $\checkmark$                                                                                                          | -                                                                                                                                                 |  |  |  |  |
| here                                                                                                                                                                                                                                                                                                       | RE≥1G: Radiate                                                                                                                                                                                  |                                                                                                                                                                                                        | ove 1GHz & R                                                                                                                                   | E<1G: Radiated                                                                                                        | I Emission below 1GHz                                                                                                                             |  |  |  |  |
| Bandedge Measurement<br>PLC: Power Line Conducted Emission BW: 20dB Bandwidth Measurement                                                                                                                                                                                                                  |                                                                                                                                                                                                 |                                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                       |                                                                                                                                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                       |                                                                                                                                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                       |                                                                                                                                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                       |                                                                                                                                                   |  |  |  |  |
| Radiated E                                                                                                                                                                                                                                                                                                 | mission Test                                                                                                                                                                                    | (Above 1GH                                                                                                                                                                                             | <u> Hz):</u>                                                                                                                                   |                                                                                                                       |                                                                                                                                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                            | n has haan co                                                                                                                                                                                   | nducted to c                                                                                                                                                                                           | latarmina tha                                                                                                                                  | worst-case r                                                                                                          | node from all possible combinations                                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                       | s (if EUT with antenna diversity                                                                                                                  |  |  |  |  |
| architect                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                 | ,                                                                                                                                                                                                      |                                                                                                                                                |                                                                                                                       | ,                                                                                                                                                 |  |  |  |  |
|                                                                                                                                                                                                                                                                                                            | g channel(s)                                                                                                                                                                                    |                                                                                                                                                                                                        | elected for th                                                                                                                                 | e final test as                                                                                                       | listed below.                                                                                                                                     |  |  |  |  |
| TESTE                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                 |                                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                       |                                                                                                                                                   |  |  |  |  |
| CHANN                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                 |                                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                       |                                                                                                                                                   |  |  |  |  |
| 1                                                                                                                                                                                                                                                                                                          | puls                                                                                                                                                                                            | se                                                                                                                                                                                                     |                                                                                                                                                |                                                                                                                       |                                                                                                                                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                       |                                                                                                                                                   |  |  |  |  |
| Radiated Emission Test (Below 1GHz):                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                 |                                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                       |                                                                                                                                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                            | 11331011 1031                                                                                                                                                                                   | (Delow IGF                                                                                                                                                                                             | <u>iz):</u>                                                                                                                                    |                                                                                                                       |                                                                                                                                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                                                                                                                                        |                                                                                                                                                | worst-case r                                                                                                          | node from all possible combinations                                                                                                               |  |  |  |  |
| 🛛 Pre-Sca                                                                                                                                                                                                                                                                                                  | n has been co                                                                                                                                                                                   | onducted to c                                                                                                                                                                                          | determine the                                                                                                                                  |                                                                                                                       | node from all possible combinations<br>s (if EUT with antenna diversity                                                                           |  |  |  |  |
| X Pre-Sca                                                                                                                                                                                                                                                                                                  | n has been co<br>available mo                                                                                                                                                                   | onducted to c                                                                                                                                                                                          | determine the                                                                                                                                  |                                                                                                                       | node from all possible combinations<br>s (if EUT with antenna diversity                                                                           |  |  |  |  |
| Pre-Sca<br>between<br>architect                                                                                                                                                                                                                                                                            | n has been co<br>available mo                                                                                                                                                                   | onducted to c<br>dulations, da                                                                                                                                                                         | determine the<br>ata rates and                                                                                                                 | antenna port                                                                                                          | s (if EUT with antenna diversity                                                                                                                  |  |  |  |  |
| Pre-Sca<br>between<br>architect                                                                                                                                                                                                                                                                            | n has been co<br>available mo<br>ure).<br>g channel(s) v                                                                                                                                        | onducted to c<br>dulations, da<br>was (were) s                                                                                                                                                         | determine the<br>ata rates and                                                                                                                 | antenna port                                                                                                          | s (if EUT with antenna diversity                                                                                                                  |  |  |  |  |
| <ul> <li>Pre-Scal</li> <li>between</li> <li>architect</li> <li>Followin</li> </ul>                                                                                                                                                                                                                         | n has been co<br>available mo<br>ure).<br>g channel(s) v<br>D MODUL                                                                                                                             | onducted to c<br>dulations, da<br>was (were) s<br>ATION                                                                                                                                                | determine the<br>ata rates and                                                                                                                 | antenna port                                                                                                          | s (if EUT with antenna diversity                                                                                                                  |  |  |  |  |
| <ul> <li>Pre-Scal</li> <li>between</li> <li>architect</li> <li>Followin</li> <li>TESTE</li> </ul>                                                                                                                                                                                                          | n has been co<br>available mo<br>ure).<br>g channel(s) v<br>D MODUL                                                                                                                             | onducted to c<br>dulations, da<br>was (were) s<br>ATION                                                                                                                                                | determine the<br>ata rates and                                                                                                                 | antenna port                                                                                                          | s (if EUT with antenna diversity                                                                                                                  |  |  |  |  |
| <ul> <li>✓ Pre-Sca</li> <li>between</li> <li>architect</li> <li>✓ Followin</li> <li>TESTE</li> <li>CHANN</li> </ul>                                                                                                                                                                                        | n has been co<br>available mo<br>ure).<br>g channel(s) v<br>D MODUL<br>IEL TYF                                                                                                                  | onducted to c<br>dulations, da<br>was (were) s<br>ATION                                                                                                                                                | determine the<br>ata rates and                                                                                                                 | antenna port                                                                                                          | s (if EUT with antenna diversity                                                                                                                  |  |  |  |  |
| <ul> <li>Pre-Sca<br/>between<br/>architect</li> <li>Followin</li> <li>TESTE<br/>CHANN</li> <li>1</li> </ul>                                                                                                                                                                                                | n has been co<br>available mo<br>ure).<br>g channel(s) v<br>D MODUL<br>IEL TYF                                                                                                                  | onducted to c<br>dulations, da<br>was (were) s<br>ATION<br>PE                                                                                                                                          | determine the<br>ata rates and<br>elected for th                                                                                               | antenna port                                                                                                          | s (if EUT with antenna diversity                                                                                                                  |  |  |  |  |
| <ul> <li>Pre-Sca between architect</li> <li>Followin</li> <li>TESTE CHANN</li> <li>1</li> </ul>                                                                                                                                                                                                            | n has been co<br>available mo<br>ure).<br>g channel(s) v<br>D MODUL<br>IEL TYF<br>puts                                                                                                          | onducted to c<br>dulations, da<br>was (were) s<br>ATION<br>PE<br>se<br>Emission Te                                                                                                                     | determine the<br>ata rates and<br>elected for th                                                                                               | antenna ports                                                                                                         | s (if EUT with antenna diversity                                                                                                                  |  |  |  |  |
| <ul> <li>➢ Pre-Sca between architect</li> <li>➢ Followin</li> <li>☐ TESTE CHANN</li> <li>1</li> <li>Power Line</li> <li>➢ Pre-Sca</li> </ul>                                                                                                                                                               | n has been co<br>available mo<br>ure).<br>g channel(s) v<br>D MODUL<br>IEL TYF<br>puts<br>Conducted I<br>n has been co                                                                          | onducted to c<br>dulations, da<br>was (were) s<br>ATION<br><u>PE</u><br>se<br>Emission Te<br>onducted to c                                                                                             | determine the<br>ata rates and<br>elected for th<br>est:<br>determine the                                                                      | antenna ports<br>e final test as<br>worst-case r                                                                      | s (if EUT with antenna diversity<br>s listed below.<br>node from all possible combinations                                                        |  |  |  |  |
| <ul> <li>Pre-Scale</li> <li>between architect</li> <li>Followin</li> <li>TESTE</li> <li>CHANN</li> <li>1</li> </ul> Power Line Pre-Scale between                                                                                                                                                           | n has been co<br>available mo<br>ure).<br>g channel(s) v<br>D MODUL<br>IEL TYF<br>puls<br>Conducted I<br>n has been co<br>available mo                                                          | onducted to c<br>dulations, da<br>was (were) s<br>ATION<br><u>PE</u><br>se<br>Emission Te<br>onducted to c                                                                                             | determine the<br>ata rates and<br>elected for th<br>est:<br>determine the                                                                      | antenna ports<br>e final test as<br>worst-case r                                                                      | s (if EUT with antenna diversity                                                                                                                  |  |  |  |  |
| <ul> <li>Pre-Scale</li> <li>between architect</li> <li>Followin</li> <li>TESTE</li> <li>CHANN</li> <li>1</li> </ul> Power Line Pre-Scale between architect                                                                                                                                                 | n has been co<br>available mo<br>ure).<br>g channel(s) v<br>D MODUL<br>IEL TYF<br>puls<br>Conducted I<br>n has been co<br>available mo                                                          | onducted to c<br>dulations, da<br>was (were) s<br>ATION<br>PE<br>Se<br>Emission Te<br>onducted to c<br>dulations, da                                                                                   | determine the<br>ata rates and<br>elected for th<br>est:<br>determine the<br>ata rates and                                                     | antenna ports<br>e final test as<br>worst-case r<br>antenna ports                                                     | s (if EUT with antenna diversity<br>s listed below.<br>node from all possible combinations<br>s (if EUT with antenna diversity                    |  |  |  |  |
| <ul> <li>Pre-Scale</li> <li>between architect</li> <li>Followin</li> <li>TESTE</li> <li>CHANN</li> <li>1</li> </ul> Power Line Pre-Scale between architect                                                                                                                                                 | n has been co<br>available mo<br>ure).<br>g channel(s) v<br>D MODUL<br>EL TYF<br>puts<br>Conducted I<br>n has been co<br>available mo<br>ure).<br>g channel(s) v                                | onducted to c<br>dulations, da<br>was (were) s<br>ATION<br>PE<br>Se<br>Emission Te<br>onducted to c<br>dulations, da<br>was (were) s                                                                   | determine the<br>ata rates and<br>elected for th<br>est:<br>determine the<br>ata rates and                                                     | antenna ports<br>e final test as<br>worst-case r<br>antenna ports                                                     | s (if EUT with antenna diversity<br>s listed below.<br>node from all possible combinations<br>s (if EUT with antenna diversity                    |  |  |  |  |
| <ul> <li>Pre-Sca between architect</li> <li>Followin</li> <li>TESTE CHANN</li> <li>1</li> <li>Power Line</li> <li>Pre-Sca between architect</li> <li>Followin</li> </ul>                                                                                                                                   | n has been co<br>available mo<br>ure).<br>g channel(s) v<br>D MODUL<br>IEL TYF<br>puls<br>Conducted I<br>n has been co<br>available mo<br>ure).<br>g channel(s) v                               | enducted to c<br>dulations, da<br>was (were) s<br>ATION<br>PE<br>Se<br>Emission Te<br>onducted to c<br>dulations, da<br>was (were) s<br>ATION                                                          | determine the<br>ata rates and<br>elected for th<br>est:<br>determine the<br>ata rates and                                                     | antenna ports<br>e final test as<br>worst-case r<br>antenna ports                                                     | s (if EUT with antenna diversity<br>s listed below.<br>node from all possible combinations<br>s (if EUT with antenna diversity                    |  |  |  |  |
| <ul> <li>Pre-Sca<br/>between<br/>architect</li> <li>Followin</li> <li>TESTE<br/>CHANN</li> <li>1</li> <li>Power Line</li> <li>Pre-Sca<br/>between<br/>architect</li> <li>Followin</li> <li>TESTE</li> </ul>                                                                                                | n has been co<br>available mo<br>ure).<br>g channel(s) v<br>D MODUL<br>IEL TYF<br>puls<br>Conducted I<br>n has been co<br>available mo<br>ure).<br>g channel(s) v                               | enducted to c<br>dulations, da<br>was (were) s<br>ATION<br>PE<br>Se<br>Emission Te<br>onducted to c<br>dulations, da<br>was (were) s<br>ATION<br>PE                                                    | determine the<br>ata rates and<br>elected for th<br>est:<br>determine the<br>ata rates and                                                     | antenna ports<br>e final test as<br>worst-case r<br>antenna ports                                                     | s (if EUT with antenna diversity<br>s listed below.<br>node from all possible combinations<br>s (if EUT with antenna diversity                    |  |  |  |  |
| <ul> <li>Pre-Scale</li> <li>between architect</li> <li>Followin</li> <li>TESTE</li> <li>CHANN</li> <li>1</li> </ul> Power Line Pre-Scale between architect Followin TESTE CHANN                                                                                                                            | n has been co<br>available mo<br>ure).<br>g channel(s) v<br>D MODUL<br>IEL TYF<br>puts<br>Conducted I<br>n has been co<br>available mo<br>ure).<br>g channel(s) v<br>D MODUL<br>IEL TYF         | enducted to c<br>dulations, da<br>was (were) s<br>ATION<br>PE<br>Se<br>Emission Te<br>onducted to c<br>dulations, da<br>was (were) s<br>ATION<br>PE                                                    | determine the<br>ata rates and<br>elected for th<br>est:<br>determine the<br>ata rates and                                                     | antenna ports<br>e final test as<br>worst-case r<br>antenna ports                                                     | s (if EUT with antenna diversity<br>s listed below.<br>node from all possible combinations<br>s (if EUT with antenna diversity                    |  |  |  |  |
| <ul> <li>Pre-Scalbetween architect</li> <li>Followin</li> <li>TESTECHANN</li> <li>1</li> </ul> Power Line Pre-Scabetween architect Followin TESTECHANN 1                                                                                                                                                   | n has been co<br>available mo<br>ure).<br>g channel(s) v<br>D MODUL<br>IEL TYF<br>puts<br>Conducted I<br>n has been co<br>available mo<br>ure).<br>g channel(s) v<br>D MODUL<br>IEL TYF<br>puts | enducted to c<br>dulations, da<br>was (were) s<br>ATION<br>PE<br>Se<br>Emission Te<br>onducted to c<br>dulations, da<br>was (were) s<br>ATION<br>PE<br>Se                                              | determine the<br>ata rates and<br>elected for th<br>est:<br>determine the<br>ata rates and                                                     | antenna ports<br>e final test as<br>worst-case r<br>antenna ports                                                     | s (if EUT with antenna diversity<br>s listed below.<br>node from all possible combinations<br>s (if EUT with antenna diversity                    |  |  |  |  |
| <ul> <li>Pre-Scalbetween architect</li> <li>Followin</li> <li>TESTECHANN</li> <li>1</li> <li>Power Line</li> <li>Pre-Scalbetween architect</li> <li>Followin</li> <li>TESTECHANN</li> <li>1</li> </ul>                                                                                                     | n has been co<br>available mo<br>ure).<br>g channel(s) v<br>D MODUL<br>EL TYF<br>puts<br>Conducted I<br>n has been co<br>available mo<br>ure).<br>g channel(s) v<br>D MODUL<br>EL TYF<br>puts   | enducted to c<br>dulations, da<br>was (were) s<br>ATION<br>PE<br>Se<br>Emission Te<br>onducted to c<br>dulations, da<br>was (were) s<br>ATION<br>PE<br>Se<br>Se                                        | determine the<br>ata rates and<br>elected for th<br>est:<br>determine the<br>ata rates and<br>elected for th                                   | antenna ports<br>e final test as<br>worst-case r<br>antenna ports<br>e final test as                                  | s (if EUT with antenna diversity<br>s listed below.<br>node from all possible combinations<br>s (if EUT with antenna diversity<br>s listed below. |  |  |  |  |
| <ul> <li>Pre-Scalbetween architect</li> <li>Followin</li> <li>TESTECHANN</li> <li>1</li> <li>Power Line</li> <li>Pre-Scalbetween architect</li> <li>Followin</li> <li>TESTECHANN</li> <li>TESTECHANN</li> <li>1</li> <li>20dB Bandy</li> <li>Pre-Scalbetween architect</li> </ul>                          | n has been co<br>available mo<br>ure).<br>g channel(s) v<br>D MODUL<br>EL TYF<br>puts<br>Conducted I<br>n has been co<br>available mo<br>ure).<br>g channel(s) v<br>D MODUL<br>EL TYF<br>puts   | enducted to c<br>dulations, da<br>was (were) s<br>ATION<br>PE<br>Se<br>Emission Te<br>onducted to c<br>dulations, da<br>was (were) s<br>ATION<br>PE<br>Se<br>enducted to c                             | determine the<br>ata rates and<br>elected for th<br>est:<br>determine the<br>ata rates and<br>elected for th                                   | antenna ports<br>e final test as<br>worst-case r<br>antenna ports<br>e final test as<br>worst-case r                  | s (if EUT with antenna diversity<br>s listed below.<br>node from all possible combinations<br>s (if EUT with antenna diversity<br>s listed below. |  |  |  |  |
| <ul> <li>Pre-Sca<br/>between<br/>architect</li> <li>Followin</li> <li>TESTE<br/>CHANN</li> <li>1</li> <li>Power Line</li> <li>Pre-Sca<br/>between<br/>architect</li> <li>Followin</li> <li>TESTE<br/>CHANN</li> <li>TESTE<br/>CHANN</li> <li>1</li> <li>20dB Bandy</li> <li>Pre-Sca<br/>between</li> </ul> | n has been co<br>available mo<br>ure).<br>g channel(s) v<br>D MODUL<br>EL TYF<br>puls<br>Conducted I<br>n has been co<br>available mo<br>ure).<br>g channel(s) v<br>D MODUL<br>EL TYF<br>puls   | enducted to c<br>dulations, da<br>was (were) s<br>ATION<br>PE<br>Se<br>Emission Te<br>onducted to c<br>dulations, da<br>was (were) s<br>ATION<br>PE<br>Se<br>enducted to c                             | determine the<br>ata rates and<br>elected for th<br>est:<br>determine the<br>ata rates and<br>elected for th                                   | antenna ports<br>e final test as<br>worst-case r<br>antenna ports<br>e final test as<br>worst-case r                  | s (if EUT with antenna diversity<br>s listed below.<br>node from all possible combinations<br>s (if EUT with antenna diversity<br>s listed below. |  |  |  |  |
| <ul> <li>Pre-Scale</li> <li>between architect</li> <li>Followin</li> <li>TESTE</li> <li>CHANN</li> <li>1</li> </ul> Power Line <ul> <li>Pre-Scale</li> <li>between architect</li> <li>Followin</li> <li>TESTE</li> <li>CHANN</li> <li>1</li> </ul>                                                         | n has been co<br>available mo<br>ure).<br>g channel(s) v<br>D MODUL<br>EL TYF<br>puls<br>Conducted I<br>n has been co<br>available mo<br>ure).<br>g channel(s) v<br>D MODUL<br>EL TYF<br>puls   | enducted to c<br>dulations, da<br>was (were) s<br>ATION<br>PE<br>Se<br>Emission Te<br>onducted to c<br>dulations, da<br>was (were) s<br>ATION<br>PE<br>Se<br>rement:<br>onducted to c<br>dulations, da | determine the<br>ata rates and<br>elected for th<br>est:<br>determine the<br>ata rates and<br>elected for th<br>determine the<br>ata rates and | antenna ports<br>e final test as<br>worst-case r<br>antenna ports<br>e final test as<br>worst-case r<br>antenna ports | s (if EUT with antenna diversity<br>s listed below.<br>node from all possible combinations<br>s (if EUT with antenna diversity<br>s listed below. |  |  |  |  |

| TESTED  | MODULATION |
|---------|------------|
| CHANNEL | TYPE       |
| 1       | pulse      |




# Test Condition:

| APPLICABLE TO | ENVIRONMENTAL CONDITIONS | INPUT POWER           | TESTED BY     |
|---------------|--------------------------|-----------------------|---------------|
| RE≥1G         | 24deg. C, 71%RH          | DC 9V                 | Robert Cheng  |
| RE<1G         | 25deg. C, 70%RH          | DC 9V                 | Robert Cheng  |
| PLC           | 24deg. C, 74%RH          | 120Vac, 60Hz (system) | Andy Ho       |
| BW            | 25deg. C, 60%RH          | DC 9V                 | Anderson Chen |



# 3.3 Duty Cycle of Test Signal

# Duty cycle = 0.009 ms/0.333 ms = 0.027





# 3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| ID | Product         | Brand                                | Model No. | Serial No. | FCC ID | Remarks         |
|----|-----------------|--------------------------------------|-----------|------------|--------|-----------------|
| A  | DC Power Supply | GOOD WILL<br>INSTRUMENT CO.,<br>LTD. | GPC-3030D | 7700087    | NA     | Provided by Lab |

Note:

1. All power cords of the above support units are non-shielded (1.8m).

| ID | Descriptions | Qty. | Length (m) | Shielding (Yes/No) | Cores (Qty.) | Remarks         |
|----|--------------|------|------------|--------------------|--------------|-----------------|
| 1  | DC Cable     | 1    | 2          | No                 | 0            | Provided by Lab |

# 3.4.1 Configuration of System under Test

For conducted emission test:

For other Test:



# 3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.245) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.



### 4 Test Types and Results

### 4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

According to 15.245 the field strength of emissions from intentional radiators operated under these frequencies bands shall not exceed the following:

| Fundamental Frequency<br>(MHz) | Field Strength of Fundamental (dBuV/m) |         |  |  |
|--------------------------------|----------------------------------------|---------|--|--|
| (                              | Peak                                   | Average |  |  |
|                                | 147.9                                  | 127.9   |  |  |
| 10500 ~10550                   | Field Strength of Harmonics (dBuV/m)   |         |  |  |
|                                | 107.9                                  | 87.9    |  |  |

Harmonic emissions in the restricted bands at and above 17.7 GHz shall not exceed the following field strength limits:

| Application                                                                                                                                                                | Field Strength of Harmonics<br>(dBuV/m) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Field disturbance sensors operating in the 24075-24175 MHz band and for Other field disturbance sensors designed for use only within a building or to open building doors. | 87.9                                    |
| All other field disturbance sensors                                                                                                                                        | 77.5                                    |

Note: Field disturbance sensors designed to be used in motor vehicles or aircraft must include features to prevent continuous operation unless their emissions in the restricted bands, other than the second and third harmonics from devices operating in the 24075-24175 MHz band, fully comply with the limits given in Section15.209.

- (1) Field strength limits are specified at a distance of 3 meters.
- (2) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.



Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

| Frequencies<br>(MHz) | Field strength<br>(microvolts/meter) | Measurement distance<br>(meters) |
|----------------------|--------------------------------------|----------------------------------|
| 0.009-0.490          | 2400/F(kHz)                          | 300                              |
| 0.490-1.705          | 24000/F(kHz)                         | 30                               |
| 1.705-30.0           | 30                                   | 30                               |
| 30-88                | 100                                  | 3                                |
| 88-216               | 150                                  | 3                                |
| 216-960              | 200                                  | 3                                |
| Above 960            | 500                                  | 3                                |

### NOTE:

1. The lower limit shall apply at the transition frequencies.

- 2. Emission level  $(dBuV/m) = 20 \log Emission level (uV/m)$ .
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.



### 4.1.2 Test Instruments

| Below 40GHz test:               |                      |                |                |                 |  |  |
|---------------------------------|----------------------|----------------|----------------|-----------------|--|--|
| <b>DESCRIPTION &amp;</b>        |                      |                | CALIBRATED     | CALIBRATED      |  |  |
| MANUFACTURER                    | MODEL NO.            | SERIAL NO.     | DATE           | UNTIL           |  |  |
| Test Receiver                   | N9038A               | MY54450088     | July 05, 2018  | July 04, 2019   |  |  |
| Keysight                        | NSUJUA               | 1011 344 30000 | July 03, 2010  | July 04, 2019   |  |  |
| Pre-Amplifier                   | EMC001340            | 980142         | Feb. 09, 2018  | Feb. 08, 2019   |  |  |
| EMCI                            |                      |                |                |                 |  |  |
| Loop Antenna<br>Electro-Metrics | EM-6879              | 269            | Sep. 07, 2018  | Sep. 06, 2019   |  |  |
| RF Cable                        | NA                   | LOOPCAB-001    | Jan. 15, 2018  | Jan. 14, 2019   |  |  |
| RF Cable                        | NA                   | LOOPCAB-001    | Jan. 15, 2018  | Jan. 14, 2019   |  |  |
| Pre-Amplifier                   |                      |                | Jan. 13, 2010  | Jan. 14, 2013   |  |  |
| Mini-Circuits                   | ZFL-1000VH2B         | AMP-ZFL-01     | Oct. 30, 2018  | Oct. 29, 2019   |  |  |
| Trilog Broadband Antenna        |                      |                |                |                 |  |  |
| SCHWARZBECK                     | VULB 9168            | 9168-406       | Nov. 22, 2018  | Nov. 21, 2019   |  |  |
| RF Cable                        | 8D                   | 966-4-1        | Mar. 21, 2018  | Mar. 20, 2019   |  |  |
| RF Cable                        | 8D                   | 966-4-2        | Mar. 21, 2018  | Mar. 20, 2019   |  |  |
| RF Cable                        | 8D                   | 966-4-3        | Mar. 21, 2018  | Mar. 20, 2019   |  |  |
| Fixed attenuator                | UNAT-5+              | PAD-3m-4-01    | Sep. 27, 2018  | Sep. 26, 2019   |  |  |
| Mini-Circuits                   | UNALIST              | FAD-311-4-01   | Sep. 27, 2010  | Sep. 20, 2019   |  |  |
| Horn_Antenna                    | BBHA 9120D           | 9120D-783      | Nov. 25, 2018  | Nov. 24, 2019   |  |  |
| SCHWARZBECK                     | BB1// 0120D          | 51200 700      | 1101. 20, 2010 | 1101. 2 1, 2010 |  |  |
| Pre-Amplifier                   | ZVA-183-S+           | AMP-ZVA-03     | May 10, 2018   | May 09, 2019    |  |  |
| Mini-Circuits                   |                      |                |                | -               |  |  |
| RF Cable                        | EMC104-SM-SM-1200    | 160923         | Jan. 29, 2018  | Jan. 28, 2019   |  |  |
| RF Cable                        | EMC104-SM-SM-2000    | 150318         | Jan. 29, 2018  | Jan. 28, 2019   |  |  |
| RF Cable                        | EMC104-SM-SM-5000    | 150321         | Jan. 29, 2018  | Jan. 28, 2019   |  |  |
| Pre-Amplifier                   | EMC184045SE          | 980387         | Jan. 29, 2018  | Jan. 28, 2019   |  |  |
| EMCI                            |                      |                |                | -               |  |  |
| Horn_Antenna<br>SCHWARZBECK     | BBHA 9170            | BBHA9170608    | Nov. 25, 2018  | Nov. 24, 2019   |  |  |
| RF Cable                        | EMC102-KM-KM-1200    | 160925         | Jan. 29, 2018  | Jan. 28, 2019   |  |  |
| Software                        | ADT_Radiated_V8.7.08 | NA             | NA             | NA              |  |  |
| Boresight Antenna Tower &       |                      |                |                |                 |  |  |
| Turn Table                      | MF-7802BS            | MF780208530    | NA             | NA              |  |  |
| Max-Full                        |                      | 100200000      |                |                 |  |  |
| Noto                            | 1                    |                | 1              |                 |  |  |

### Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in 966 Chamber No. 4.

3. The CANADA Site Registration No. is 20331-2

4. Loop antenna was used for all emissions below 30 MHz.

5. Tested Date: Jan. 02 to 04, 2019



| Above 40GHz test:<br>DESCRIPTION &                                                         |           |             | CALIBRATED    | CALIBRATED    |
|--------------------------------------------------------------------------------------------|-----------|-------------|---------------|---------------|
| MANUFACTURER                                                                               | MODEL NO. | SERIAL NO.  | DATE          | UNTIL         |
| Spectrum Analyzer<br>Agilent                                                               | E4446A    | MY48250254  | Nov. 14, 2018 | Nov. 13, 2019 |
| *Harmonic Mixer (33~55GHz)<br>OML                                                          | M22HWD    | 110215-1    | Oct. 17, 2017 | Oct. 16, 2019 |
| *Horn Antenna (33~55GHz)<br>OML                                                            | M22RH     | 110215-1    | Oct. 17, 2017 | Oct. 16, 2019 |
| *Harmonic Mixer (50~75GHz)<br>OML                                                          | M15RH     | 110215-1    | Oct. 17, 2017 | Oct. 16, 2019 |
| *Horn Antenna (50~75GHz)<br>OML                                                            | M15HWD    | 110215-1    | Oct. 17, 2017 | Oct. 16, 2019 |
| *Diplexer<br>EMCI                                                                          | DPL26     | DPL26_01    | Oct. 17, 2017 | Oct. 16, 2019 |
| *Diplexer<br>EMCI                                                                          | DPL26     | DPL26_02    | Oct. 17, 2017 | Oct. 16, 2019 |
| *Precision 30dB Attenuator<br>Keysight                                                     | 11708A    | MY55260015  | Oct. 17, 2017 | Oct. 16, 2019 |
| *Zero-Bias Detector (50~75GHz)<br>Vdi                                                      | WR15ZBD   | WR15R5 1-30 | Oct. 17, 2017 | Oct. 16, 2019 |
| *WR15CH Conical Horn<br>Keysight                                                           | WR15CH    | WR15CH-01   | Oct. 17, 2017 | Oct. 16, 2019 |
| *WR10CH Conical Horn<br>Keysight                                                           | WR10CH    | WR10CH-01   | Oct. 17, 2017 | Oct. 16, 2019 |
| *Millimeter-Wave Signal<br>Generator Frequency Extension<br>Module (50~75 GHz)<br>Keysight | E8257DV15 | US54250106  | Oct. 17, 2017 | Oct. 16, 2019 |
| PSG analog signal generator<br>Keysight                                                    | E8257D    | MY53401987  | June 26, 2018 | June 25, 2019 |
| Antenna Tower & Turn Table<br>CT                                                           | NA        | NA          | NA            | NA            |

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. \*The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. The test was performed in 966 Chamber No. 4.

- 4. The FCC Site Registration No. is 966073.
- 5. The VCCI Site Registration No. is G-137.
- 6. The CANADA Site Registration No. is IC 7450H-2.
- 7. Tested Date: Jan. 04, 2019



### 4.1.3 Test Procedures

### For Radiated emission: Below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

### NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

### For Radiated emission: 30MHz ~ 18GHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

### Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Peak detection (PK) at frequency from 1GHz to 18GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency from 1GHz to 18GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.



### For Radiated emission: Above 18GHz

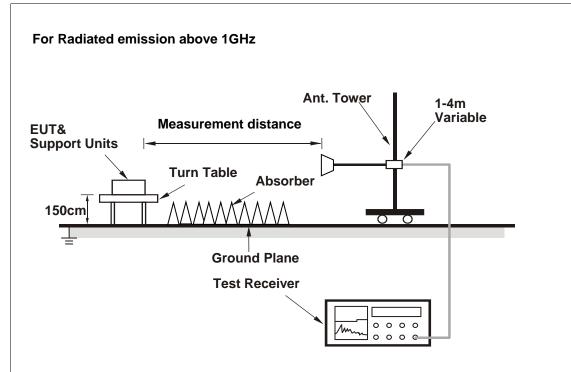
External harmonic mixers are utilized.

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meters chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The distance at which limits are typically specified is 3 meter; however, closer measurement distances may be utilized.
- c. Begin handheld measurements with the test antenna (horn) at a distance of 1 meter from the EUT, in a horizontally polarized position. Slowly adjust its position, entirely covering the plane 1 meter from the EUT.
- d. Repeat (b) with the horn in a vertically polarized position.
- e. If the emission cannot be detected at 1 meter, reduce the RBW in order to increase system sensitivity. Note the value. If the emission still cannot be detected, move the horn closer to the EUT, noting the distance at which a measurement is made.
- f. Note the maximum level indicated on the Spectrum Analyzer.
- g. Based on the distance at which the measurement was made and the calculated distance to the edge of the far field, determine the appropriate distance attenuation factor. Apply this factor to the calculated field strength in order to determine the equivalent field strength at the distance at which the regulatory limit is specified. Compare to the appropriate limits
- h. Repeat (a) (f) for every emission that must be measured, up through the required frequency range of investigation

### NOTE:

- 1. The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Peak detection (PK).
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV).

### 4.1.4 Deviation from Test Standard


No deviation.



#### 4.1.5 Test Setup

# For Radiated emission below 30MHz 1, m EUT& 3m **Support Units Turn Table** 80cm 00 **Ground Plane Test Receiver** 0 0 0 0 M 0 0 0 G For Radiated emission 30MHz to 1GHz Ant. Tower 1-4m Variable 3m EUT& Support Units Turn Table 80cm 0 0 \_ **Ground Plane Test Receiver** 0 0 0 0 m 0 0 0 0





For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

Set the EUT under transmission / receiver condition continuously at specific channel frequency.



### 4.1.7 Test Results

# Above 1GHz Data :

| CHANNEL         | TX Channel 1 | DETECTOR | Peak (PK)    |
|-----------------|--------------|----------|--------------|
| FREQUENCY RANGE | 1GHz ~ 18GHz | FUNCTION | Average (AV) |

|     | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M |                               |                   |                |                          |                            |                        |                                |
|-----|-----------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|
| NO. | FREQ.<br>(MHz)                                      | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN<br>(dB) | ANTENNA<br>HEIGHT<br>(m) | TABLE<br>ANGLE<br>(Degree) | RAW<br>VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) |
| 1   | 10500.00                                            | 59.4 PK                       | 74.0              | -14.6          | 1.42 H                   | 88                         | 45.7                   | 13.7                           |
| 2   | 10500.00                                            | 48.9 AV                       | 54.0              | -5.1           | 1.42 H                   | 88                         | 35.2                   | 13.7                           |
| 3   | *10525.20                                           | 113.4 PK                      | 147.9             | -34.5          | 1.42 H                   | 88                         | 99.6                   | 13.8                           |
| 4   | *10525.20                                           | 111.1 AV                      | 127.9             | -16.8          | 1.42 H                   | 88                         | 97.3                   | 13.8                           |
| 5   | 10550.00                                            | 59.1 PK                       | 74.0              | -14.9          | 1.42 H                   | 88                         | 45.3                   | 13.8                           |
| 6   | 10550.00                                            | 48.8 AV                       | 54.0              | -5.2           | 1.42 H                   | 88                         | 35.0                   | 13.8                           |
|     |                                                     | ANTENNA                       |                   | ( & TEST DI    | STANCE: V                | ERTICAL A                  | Т 3 М                  |                                |
| NO. | FREQ.<br>(MHz)                                      | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN<br>(dB) | ANTENNA<br>HEIGHT<br>(m) | TABLE<br>ANGLE<br>(Degree) | RAW<br>VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) |
| 1   | 10500.00                                            | 59.1 PK                       | 74.0              | -14.9          | 1.65 V                   | 100                        | 45.4                   | 13.7                           |
| 2   | 10500.00                                            | 48.3 AV                       | 54.0              | -5.7           | 1.65 V                   | 100                        | 34.6                   | 13.7                           |
| 3   | *10525.20                                           | 98.7 PK                       | 147.9             | -49.2          | 1.65 V                   | 100                        | 84.9                   | 13.8                           |
| 4   | *10525.20                                           | 97.4 AV                       | 127.9             | -30.5          | 1.65 V                   | 100                        | 83.6                   | 13.8                           |
| 5   | 10550.00                                            | 58.4 PK                       | 74.0              | -15.6          | 1.65 V                   | 100                        | 44.6                   | 13.8                           |
| 6   | 10550.00                                            | 48.2 AV                       | 54.0              | -5.8           | 1.65 V                   | 100                        | 34.4                   | 13.8                           |
|     |                                                     |                               |                   |                |                          |                            |                        |                                |

### **REMARKS:**

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " \* ": Fundamental frequency.

| CHANNEL         | TX Channel 1 | DETECTOR | Peak (PK)    |
|-----------------|--------------|----------|--------------|
| FREQUENCY RANGE | 18GHz ~53GHz | FUNCTION | Average (AV) |

|     | ANTENNA POLARITY: HORIZONTAL |                               |                   |                |                          |                            |                        |                                |
|-----|------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|
| NO. | FREQ.<br>(MHz)               | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN<br>(dB) | ANTENNA<br>HEIGHT<br>(m) | TABLE<br>ANGLE<br>(Degree) | RAW<br>VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) |
| 1   | 21050.40                     | 49.1 PK                       | 97.5              | -48.4          | 1.65 H                   | 100                        | 59.7                   | -10.6                          |
| 2   | 21050.40                     | 46.4 AV                       | 77.5              | -31.1          | 1.65 H                   | 100                        | 57.0                   | -10.6                          |
| 3   | 31575.60                     | 46.8 PK                       | 97.5              | -50.7          | 1.44 H                   | 77                         | 55.4                   | -8.6                           |
| 4   | 31575.60                     | 45.4 AV                       | 77.5              | -32.1          | 1.44 H                   | 77                         | 54.0                   | -8.6                           |
|     |                              |                               | ANTEN             | NA POLARI      | TY: VERTIC               | AL                         |                        |                                |
| NO. | FREQ.<br>(MHz)               | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN<br>(dB) | ANTENNA<br>HEIGHT<br>(m) | TABLE<br>ANGLE<br>(Degree) | RAW<br>VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) |
| 1   | 21050.40                     | 48.1 PK                       | 97.5              | -49.4          | 1.50 V                   | 140                        | 58.7                   | -10.6                          |
| 2   | 21050.40                     | 45.4 AV                       | 77.5              | -32.1          | 1.50 V                   | 140                        | 56.0                   | -10.6                          |
| 3   | 31575.60                     | 46.8 PK                       | 97.5              | -50.7          | 1.45 V                   | 241                        | 55.4                   | -8.6                           |
| 4   | 31575.60                     | 45.1 AV                       | 77.5              | -32.4          | 1.45 V                   | 241                        | 53.7                   | -8.6                           |

### **REMARKS:**

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

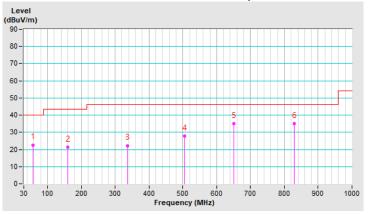
4. Margin value = Emission Level – Limit value

5. Measurements made at 1 meter distance. Test value converted to account for 3-meter measurement distance.



**Below 1GHz Data:** 

| CHANNEL         | TX Channel 1 | DETECTOR | Quesi Besk (OD) |
|-----------------|--------------|----------|-----------------|
| FREQUENCY RANGE | 9kHz ~ 1GHz  | FUNCTION | Quasi-Peak (QP) |


|     | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M |                               |                   |                |                          |                            |                        |                                |  |  |  |
|-----|-----------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|--|
| NO. | FREQ.<br>(MHz)                                      | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN<br>(dB) | ANTENNA<br>HEIGHT<br>(m) | TABLE<br>ANGLE<br>(Degree) | RAW<br>VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) |  |  |  |
| 1   | 56.32                                               | 22.7 QP                       | 40.0              | -17.3          | 1.11 H                   | 200                        | 31.2                   | -8.5                           |  |  |  |
| 2   | 160.14                                              | 21.2 QP                       | 43.5              | -22.3          | 1.65 H                   | 185                        | 29.0                   | -7.8                           |  |  |  |
| 3   | 335.75                                              | 22.3 QP                       | 46.0              | -23.7          | 1.42 H                   | 100                        | 29.0                   | -6.7                           |  |  |  |
| 4   | 505.85                                              | 27.9 QP                       | 46.0              | -18.1          | 1.65 H                   | 100                        | 30.5                   | -2.6                           |  |  |  |
| 5   | 651.45                                              | 35.0 QP                       | 46.0              | -11.0          | 1.42 H                   | 100                        | 34.7                   | 0.3                            |  |  |  |
| 6   | 829.80                                              | 35.1 QP                       | 46.0              | -10.9          | 1.65 H                   | 100                        | 32.1                   | 3.0                            |  |  |  |

### **REMARKS:**

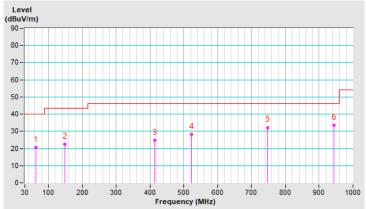
1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



| CHANNEL         | TX Channel 1 | DETECTOR |                 |
|-----------------|--------------|----------|-----------------|
| FREQUENCY RANGE | 9kHz ~ 1GHz  | FUNCTION | Quasi-Peak (QP) |


|     | ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M |                               |                   |                |                          |                            |                        |                                |  |  |  |
|-----|---------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|--|
| NO. | FREQ.<br>(MHz)                                    | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN<br>(dB) | ANTENNA<br>HEIGHT<br>(m) | TABLE<br>ANGLE<br>(Degree) | RAW<br>VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) |  |  |  |
| 1   | 62.31                                             | 20.4 QP                       | 40.0              | -19.6          | 1.65 V                   | 241                        | 29.4                   | -9.0                           |  |  |  |
| 2   | 147.42                                            | 22.4 QP                       | 43.5              | -21.1          | 1.65 V                   | 100                        | 30.5                   | -8.1                           |  |  |  |
| 3   | 414.65                                            | 24.6 QP                       | 46.0              | -21.4          | 1.65 V                   | 302                        | 29.5                   | -4.9                           |  |  |  |
| 4   | 523.65                                            | 28.1 QP                       | 46.0              | -17.9          | 1.65 V                   | 100                        | 30.5                   | -2.4                           |  |  |  |
| 5   | 747.95                                            | 32.2 QP                       | 46.0              | -13.8          | 1.65 V                   | 142                        | 30.1                   | 2.1                            |  |  |  |
| 6   | 943.42                                            | 33.5 QP                       | 46.0              | -12.5          | 1.21 V                   | 331                        | 28.9                   | 4.6                            |  |  |  |

### **REMARKS**:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.





### 4.2 Conducted Emission Measurement

### 4.2.1 Limits of Conducted Emission Measurement

|                 | Conducted Limit (dBuV) |         |  |  |  |
|-----------------|------------------------|---------|--|--|--|
| Frequency (MHz) | Quasi-peak             | Average |  |  |  |
| 0.15 - 0.5      | 66 - 56                | 56 - 46 |  |  |  |
| 0.50 - 5.0      | 56                     | 46      |  |  |  |
| 5.0 - 30.0      | 60                     | 50      |  |  |  |

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

### 4.2.2 Test Instruments

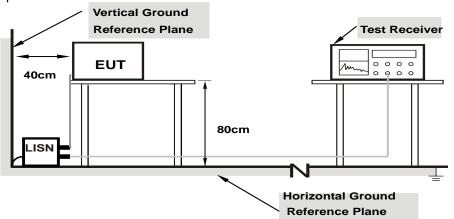
| DESCRIPTION &<br>MANUFACTURER                                      | MODEL NO.               | SERIAL NO. | CALIBRATED<br>DATE | CALIBRATED<br>UNTIL |
|--------------------------------------------------------------------|-------------------------|------------|--------------------|---------------------|
| Test Receiver<br>R&S                                               | ESCS 30                 | 847124/029 | Oct. 24, 2018      | Oct. 23, 2019       |
| Line-Impedance<br>Stabilization Network (for<br>EUT)<br>R&S        | ESH3-Z5                 | 848773/004 | Oct. 22, 2018      | Oct. 21, 2019       |
| Line-Impedance<br>Stabilization Network<br>(for Peripheral)<br>R&S | ENV216                  | 100072     | June 04, 2018      | June 03, 2019       |
| 50 ohms Terminator                                                 | N/A                     | 3          | Oct. 22, 2018      | Oct. 21, 2019       |
| RF Cable                                                           | 5D-FB                   | COCCAB-001 | Sep. 28, 2018      | Sep. 27, 2019       |
| Fixed attenuator<br>EMCI                                           | STI02-2200-10           | 003        | Mar. 16, 2018      | Mar. 15, 2019       |
| Software<br>BVADT                                                  | BVADT_Cond_<br>V7.3.7.4 | NA         | NA                 | NA                  |

Note:

1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Conduction 1.

3. Tested Date: Jan. 05, 2019




### 4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.
- 4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup



Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

### 4.2.6 EUT Operating Conditions

Same as 4.1.6.

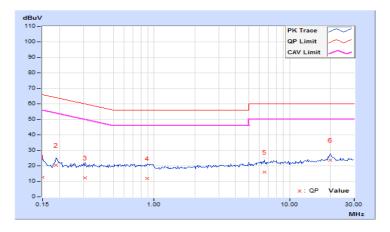


### 4.2.7 Test Results

| Phase     Line (L)     Detector Function     Quasi-Peak (QP) /<br>Average (AV) |
|--------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------|

|    | Phase Of Power : Line (L) |                      |       |                |       |                 |       |            |           |        |  |
|----|---------------------------|----------------------|-------|----------------|-------|-----------------|-------|------------|-----------|--------|--|
| No | Frequency                 | Correction<br>Factor |       | g Value<br>uV) |       | on Level<br>uV) |       | nit<br>uV) | Maı<br>(d | -      |  |
|    | (MHz)                     | (dB)                 | Q.P.  | AV.            | Q.P.  | AV.             | Q.P.  | AV.        | Q.P.      | AV.    |  |
| 1  | 0.15000                   | 10.02                | 2.71  | -3.93          | 12.73 | 6.09            | 66.00 | 56.00      | -53.27    | -49.91 |  |
| 2  | 0.18906                   | 10.04                | 10.30 | 1.23           | 20.34 | 11.27           | 64.08 | 54.08      | -43.74    | -42.81 |  |
| 3  | 0.31016                   | 10.06                | 2.06  | -8.57          | 12.12 | 1.49            | 59.97 | 49.97      | -47.85    | -48.48 |  |
| 4  | 0.88828                   | 10.10                | 1.72  | -9.61          | 11.82 | 0.49            | 56.00 | 46.00      | -44.18    | -45.51 |  |
| 5  | 6.51172                   | 10.37                | 5.73  | -9.82          | 16.10 | 0.55            | 60.00 | 50.00      | -43.90    | -49.45 |  |
| 6  | 19.91016                  | 11.07                | 12.45 | 4.97           | 23.52 | 16.04           | 60.00 | 50.00      | -36.48    | -33.96 |  |

### **Remarks:**


1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level – Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value



| Phase Neutral (N)            |           |                      |                           | Det    | ector Fund | ction            | Quasi-Po<br>Average | eak (QP) /<br>(AV) | 1              |        |
|------------------------------|-----------|----------------------|---------------------------|--------|------------|------------------|---------------------|--------------------|----------------|--------|
| Phase Of Power : Neutral (N) |           |                      |                           |        |            |                  |                     |                    |                |        |
| No                           | Frequency | Correction<br>Factor | Reading Value E<br>(dBuV) |        |            | on Level<br>BuV) | Limit<br>(dBuV)     |                    | Margin<br>(dB) |        |
|                              | (MHz)     | (dB)                 | Q.P.                      | AV.    | Q.P.       | AV.              | Q.P.                | AV.                | Q.P.           | AV.    |
| 1                            | 0.15000   | 9.93                 | 3.03                      | -3.49  | 12.96      | 6.44             | 66.00               | 56.00              | -53.04         | -49.56 |
| 2                            | 0.18906   | 9.94                 | 10.26                     | 1.31   | 20.20      | 11.25            | 64.08               | 54.08              | -43.88         | -42.83 |
| 3                            | 0.39219   | 9.96                 | 9.93                      | -13.88 | 19.89      | -3.92            | 58.02               | 48.02              | -38.13         | -51.94 |
| 4                            | 0.68906   | 9.97                 | 10.35                     | -13.85 | 20.32      | -3.88            | 56.00               | 46.00              | -35.68         | -49.88 |
| 5                            | 7.55078   | 10.27                | 7.95                      | -12.00 | 18.22      | -1.73            | 60.00               | 50.00              | -41.78         | -51.73 |
| 6                            | 19.63672  | 10.85                | 8.92                      | 0.83   | 19.77      | 11.68            | 60.00               | 50.00              | -40.23         | -38.32 |

### **Remarks:**

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value





### 4.3 20dB bandwidth Measurement

### 4.3.1 Limits of 20dB bandwidth Measurement

According to 15.215(c), the requirement is to ensure the 20dB bandwidth of the emission, or whatever bandwidth may otherwise be specified, is contained within the frequency band designated in the rule section under which the equipment is operated.

### 4.3.2 Test Instruments

| DESCRIPTION &<br>MANUFACTURER | MODEL NO. | SERIAL NO. | CALIBRATED<br>DATE | CALIBRATED<br>UNTIL |
|-------------------------------|-----------|------------|--------------------|---------------------|
| Spectrum Analyzer<br>R&S      | FSV40     | 100964     | June 20, 2018      | June 19, 2019       |

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. Tested date: Jan. 11, 2019

### 4.3.3 Test Procedures

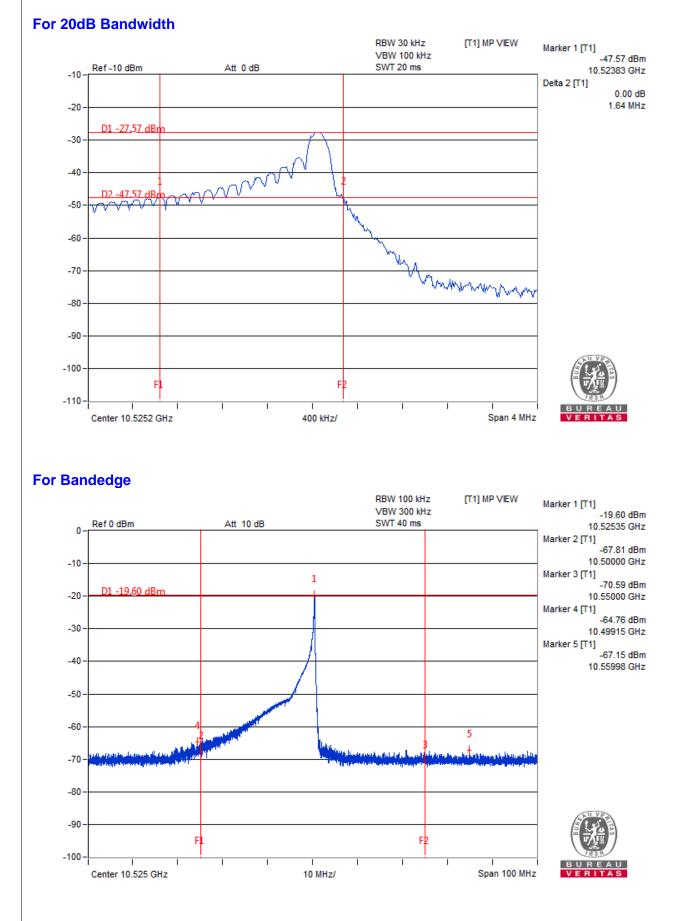
The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 kHz RBW and 100 kHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span from band edge. The bandedge was measured and recorded.

### 4.3.4 Deviation from Test Standard

No deviation

### 4.3.5 Test Setup




### 4.3.6 EUT Operating Conditions

Set the EUT under transmission / receiver condition continuously.



### 4.3.7 Test Results





### 5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).



### Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----