

TEST REPORT

Report No. Applicant: Address of Applicant:	SST240923018EF06 SHENZHEN ELECTRON TECHNOLOGY CO., LTD. Bld.2, Yingfeng Industrial Zone, Tantou Community, Songgang Street, Bao'an, Shenzhen, China.		
Product Name:	Android Tablet		
Trade Mark:			
Standard(s): FCC ID:	FCC CFR Title 47 Part 15.225		
	2ABC5-E0075		
Test Report Form No:	SST-RD-7.5-02-E01(A/0)		
Date of sample receipt:	2024/9/23		
Date of Test:	2024/9/23 - 2024/10/28		
Date of report issued:	2024/10/31		

*The equipment complies with the requirements according to the standard(s) or Specification above, it is applicable only to the tested sample identified in the report.

Prepared by:

Reviewed by:

Approved by:

*The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: SST240923018EF06

Revision History

Version	Description	Date of Issue
V1.0	Original	2024/10/31

2	Cor	ntents	
1	COV	/ER PAGE	1
2	CON	NTENTS	3
3	TES	ST SUMMARY	4
4	ME/	ASUREMENT UNCERTAINTY	4
5	GEN	NERAL INFORMATION	5
	5.1 5.2 5.3 5.4 5.5 5.6	CLIENT INFORMATION	5 6 6 6
6	TEC	CHNICAL REQUIREMENT AND MEASUREMENT DATA	
	6.1 6.2 6.3 6.4 6.5	GENERALLY REQUIREMENT CONDUCTED EMISSION RADIATED EMISSION EMISSION BANDWIDTH FREQUENCY TOLERANCE	8 . 11 . 16
7	TES	ST SETUP PHOTO	. 18
8	EUT	CONSTRUCTIONAL DETAILS	. 18
A	NNEX A	ATEST INSTRUMENTS LIST	19

3 Test Summary

Test items	Basics standards	Result
Conducted Emission	FCC Part 15.207	Pass
Radiated Emissions	FCC Part 15.225	Pass
Emission bandwidth	FCC part 15.215	Report only
Frequency tolerance	FCC Part 15.225	Pass
Antenna requirement	FCC Part 15.203	Pass

Notes:

1: NA =Not Applicable

2: Determining compliance based on the results of the compliance measurement, not taking into account measurement uncertainty. If necessary, the applicant shall informing test lab in advance

3: Additions, Deviations and Exclusions from Standards: None.

4 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Item	Uncertainty (±) (k=2, 95%)		
Output Power, Conducted	0.54		
Power Spectral Density, Conducted	1.28		
Spurious Emissions, Conducted	1.:	28	
Radiated Emissions(<1GHz)	9kHz~30MHz	2.6	
Radiated Emissions(<10112)	30MHz~1GHz	5.08	
	1GHz~6GHz	4.02	
Radiated Emissions(>1GHz)	6GHz~18GHz	4.62	
	18GHz~40GHz	4.7	
Occupied Bandwidth	1.14		
Conducted Emissions—AC mains	9kHz~150KHz	1.76	
Conducted Emissions—AC mains	150kHz~30MHz	2.52	
Conducted Emissions—Telecom	2.64		

5 General Information

5.1 Client Information

Applicant: Address of applicant:	SHENZHEN ELECTRON TECHNOLOGY CO., LTD. Bld.2, Yingfeng Industrial Zone, Tantou Community, Songgang Street, Bao'an, Shenzhen, China.
Manufacturer:	Same as applicant
Address of Manufacturer:	Same as applicant
Factory: Address of Factory:	Same as applicant Same as applicant

Product Name:	Android Tablet			
Model No.:	WF2188T, FA2188T			
Test model:	WF2188T			
Test sample(s) ID:	24092301801			
Sample(s) Status:	Normal without modified			
Operation Frequency:	13.56MHz			
Modulation Type:	ASK			
Power supply:	Adapter 1: Model: FJ-GN636S1203000N Input: AC 100-240V, 50/60Hz Output: DC 12V, 3A			
	Adapter 2: Model: FJ-SW20261203000 Input: AC 100-240V, 50/60Hz Output: DC 12V, 3A			

5.2 General Description of EUT

List adapters were test and compliance with relevant requirement, the worst condition report(Adapter 1)

5.3 Test mode(s)

Mode 1:	Continuously transmitting
Mode 2:	
Mode 3:	
Mode 4:	
Mode 5:	

5.4 Test Facility

	FCC Accredited Lab
The test facility is	Test Firm Registration Number: 638130 Designation Number: CN1359
recognized, certified, or accredited by these organizations:	IC Registration Lab
	CAB Identifier No.CN0154
these organizations.	A2LA Accreditation Lab
	Certificate No.:7057.01

	Name
	GuangDong Set Sail Testing Co., Ltd.
Test Performed at:	Address
	101, No.19, Tianxin Hudie 1st Road, Huangjiang Town, Dongguan, Guangdong, China

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number
/	/	/	/
			/

5.6 Others

The laboratory responsible for all the information provided in the report, except those information provided by the applicant.

The applicant shall fully responsible for the information they provided.

The report would be invalid without a stamp of test laboratory and the signatures of compiler and approver. The laboratory has not been responsible for the sampling stage; the test report merely corresponds to the test sample received.

Any objection to the test report shall submitted to the test laboratory within 15 days from the date of receipt of the report.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

6 Technical Requirement and Measurement Data

6.1 Generally requirement

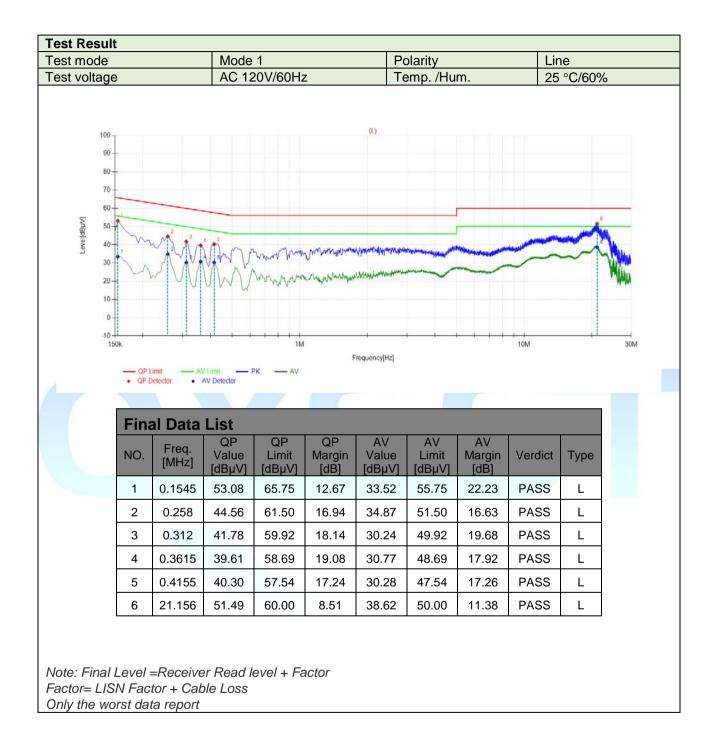
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

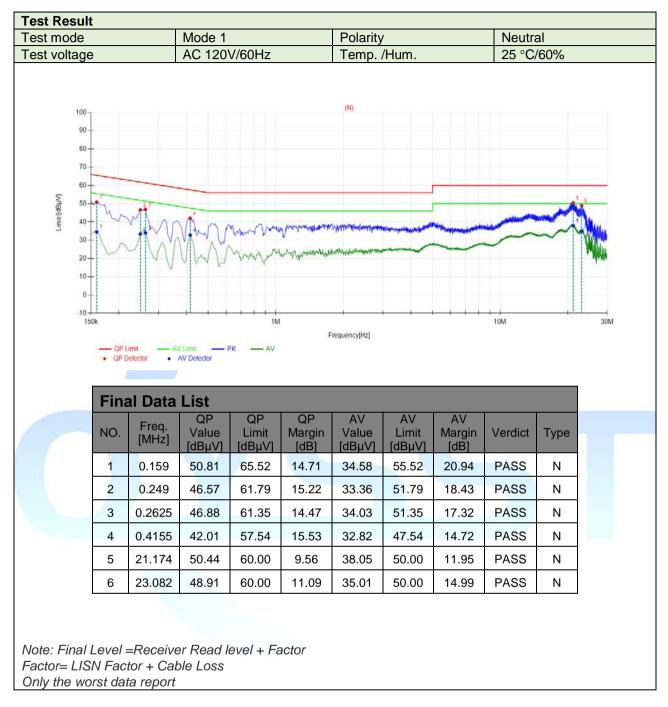
EUT Antenna:

The antenna of EUT is permanently attached

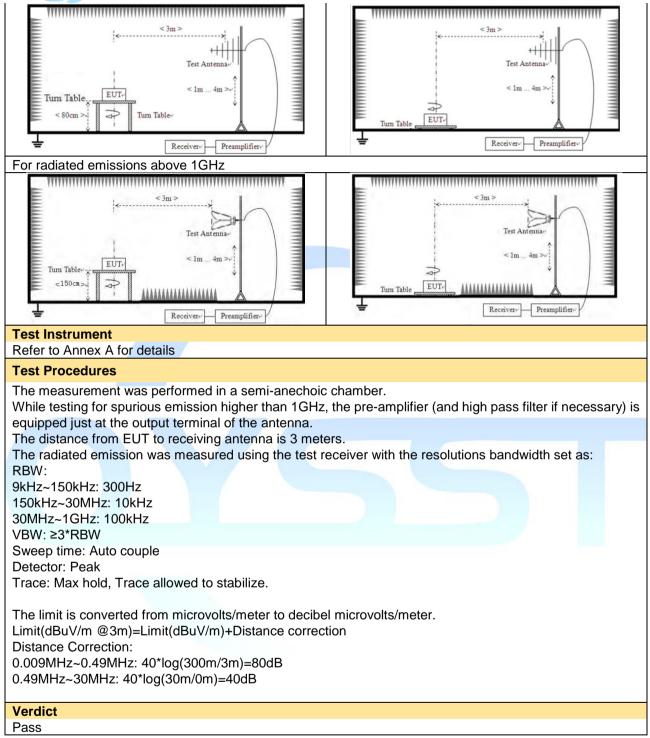
6.2 Conducted Emission


Limit				
		A (dBµV)	⊠Class B (dBµV)	
Frequency (MHz)	Quasi-peak	Average	Quasi-peak	Average
0.15~0.50	79	66	66 to 56*	56 to 46*
0.50~5.0	73	60	56	46
5.0~30	73	60	60	50
*Decreases with the loga If the limit for the measur detector, the equipment receiver with an average	ement with the aver under test shall be detector need not be	age detector is met deemed to meet bo	5	• •
Measured Frequency Ra	ange			
150kHz ~ 30MHz				
Block diagram of Test S				
For table-	top equipment		For floor standing	
For table-top equipment				ge
Test Instrument Refer to Annex A for details				
Test Procedures				
The measurement was performed levels of ac pe			the radio-noise volta	age from the voltage

Measured levels of ac power-line conducted emission shall be the radio-noise voltage from the voltage probe, where permitted, or across the 50 Ω LISN port (to which the EUT is connected), as terminated into a 50 Ω EMI receiver or spectrum analyzer. All radio-noise voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord or calibrated extension cord by the use of mating plugs and receptacles on the EUT and LISN, if used. The manufacturer shall test equipment with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended. For measurements using a LISN, the 50 Ω measuring port is terminated into a 50 Ω EMI receiver or spectrum analyzer. All other ports are terminated into 50 Ω loads.


Table top devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of table top or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.

The bandwidth of the test receiver is set at 9 kHz. **Verdict**



6.3 Radiated Emission

.imit							
undamental Emissio	n.						
Frequency(I		Limit at 30	m (dBuV/	m)	Limit at 3m (dBuV/m)		
13.110 – 13	<i>'</i>	40.5			80.5		
13.410 - 13			0.5		90.5		
13.553 – 13			4.0		124.0		
13.567 – 13			0.5		90.5		
13.710 – 14			0.5		80.5		
Spurious emissions:							
Frequency (MHz)		Field strength (microvolts/mete	r)		Measurement distance (meters)		
0.009-0.490	2400/F(kHz)		.,		weasurement distance (meters)	00	
0.490-1.705	24000/F(kHz)					30	
1.705-30.0	30					30	
30-88	100 **					3	
88-216	150 **					3	
216-960	200 **					3	
Above 960	500					3	
his section shall not l //Hz. However, oper 9.g., §§ 15.231 and 1	be located in th ration within th 5.241.	e frequency band	ds 54–72	MHz, 76-	ntentional radiators operating un -88 MHz, 174–216 MHz or 470– under other sections of this p	806	
his section shall not I /IHz. However, oper e.g., §§ 15.231 and 1 Aeasured Frequenc	be located in th ration within th 5.241. cy Range	ne frequency band nese frequency b	ds 54–72 bands is	MHz, 76-	-88 MHz, 174–216 MHz or 470– under other sections of this p	806	
his section shall not I /IHz. However, oper 9.g., <u>§§</u> 15.231 and 1 /Ieasured Frequence Highest frequency generat	be located in th ration within th 5.241. cy Range	e frequency band	ds 54–72 bands is	MHz, 76- permitted	-88 MHz, 174–216 MHz or 470–	806	
his section shall not I AHz. However, oper e.g., §§ 15.231 and 1 Aeasured Frequency Highest frequency generate Below 1.705	be located in th ration within th 5.241. cy Range	ne frequency band nese frequency b	ds 54–72 bands is	MHz, 76- permitted	-88 MHz, 174–216 MHz or 470– under other sections of this p	806	
his section shall not I AHz. However, oper e.g., §§ 15.231 and 1 Aeasured Frequence Highest frequency generate Below 1.705 1.705-108	be located in th ration within th 5.241. cy Range	ne frequency band nese frequency b	ds 54–72 bands is	MHz, 76- permitted 30. 1000.	-88 MHz, 174–216 MHz or 470– under other sections of this p	80	
his section shall not I AHz. However, oper e.g., §§ 15.231 and 1 Aeasured Frequence Highest frequency generate Below 1.705 1.705-108 108-500	be located in th ration within th 5.241. cy Range	ne frequency band nese frequency b	ds 54–72 bands is	MHz, 76- permitted 30. 1000. 2000.	-88 MHz, 174–216 MHz or 470– under other sections of this p	80	
his section shall not I AHz. However, oper e.g., §§ 15.231 and 1 Aeasured Frequence Highest frequency generate Below 1.705 1.705-108	be located in th ration within th 5.241. cy Range	ne frequency band nese frequency b	ds 54–72 bands is	MHz, 76- permitted 30. 1000. 2000. 5000.	-88 MHz, 174–216 MHz or 470– under other sections of this p	806	
his section shall not I AHz. However, oper e.g., §§ 15.231 and 1 Aeasured Frequence Highest frequency generate Below 1.705 1.705-108 108-500 500-1000 Above 1000	be located in th ration within th 5.241. cy Range ed or used in the device or on	ne frequency band nese frequency b	ds 54–72 bands is	MHz, 76- permitted 30. 1000. 2000. 5000.	-88 MHz, 174–216 MHz or 470– under other sections of this p	806	
his section shall not I AHz. However, oper e.g., §§ 15.231 and 1 Aeasured Frequence Highest frequency generate Below 1.705 1.705-108 108-500 500-1000 Above 1000 Block diagram of Te	be located in th ration within th 15.241. cy Range ed or used in the device or on	ne frequency band nese frequency b which the device operates or tun	ds 54–72 bands is	MHz, 76- permitted 30. 1000. 2000. 5000. 5th harmonic of	-88 MHz, 174–216 MHz or 470– under other sections of this p Upper frequency of measurement range (MHz) the highest frequency or 40 GHz, whichever is lower.	806	
his section shall not I AHz. However, oper e.g., §§ 15.231 and 1 Aeasured Frequence Highest frequency generate Below 1.705 1.705-108 108-500 500-1000 Above 1000 Block diagram of Te	be located in the ration within the 15.241. cy Range ed or used in the device or on est Setup uble-top equipm	ne frequency band nese frequency b which the device operates or turn	ds 54–72 bands is	MHz, 76- permitted 30. 1000. 2000. 5000. 5th harmonic of	-88 MHz, 174–216 MHz or 470– under other sections of this p	806	
his section shall not I AHz. However, oper e.g., §§ 15.231 and 1 Aeasured Frequency Highest frequency generate Below 1.705 1.705-108 108-500 500-1000 Above 1000 Block diagram of Te Sor radiated emission	et st Setup ble-top equipm hble-top equipm s from 9kHz to s 3m > 1m Tum Table-	ne frequency band nese frequency b which the device operates or turn nent o 30MHz	ds 54–72 pands is es (MHz)	MHz, 76- permitted	-88 MHz, 174–216 MHz or 470– under other sections of this p Upper frequency of measurement range (MHz) the highest frequency or 40 GHz, whichever is lower.	80	
his section shall not I AHz. However, oper e.g., §§ 15.231 and 1 Aeasured Frequency Highest frequency generate Below 1.705 1.705-108 108-500 500-1000 Above 1000 Block diagram of Te Sor radiated emission	ed or used in the device or on est Setup able-top equipments from 9kHz to st Setup able-top equipments from 9kHz to https://www.setup.org www.setup.org www.setup.org"/>www.se	ne frequency band hese frequency b which the device operates or turn nent o 30MHz	ds 54–72 pands is es (MHz)	MHz, 76- permitted	-88 MHz, 174–216 MHz or 470– under other sections of this p Upper frequency of measurement range (MHz) the highest frequency or 40 GHz, whichever is lower. floor standing equipment	80	

est mode		Mode 1		Temp. /Hur	m.	25 °C/60	0%
est voltage		AC 120V/60	OHz				
140 130 120 110 100 90 40 50 40 30 20			MM MMMMM	Manklinghaman			B.
10 0 9k		100k		1M		10M	301
0 9k	— QP Limit — Ve	100k ertical PK		1M Frequency[IIz]		10M	30
0 9k			Value [dBµV/m]		Margin [dB]	Detector	300 Verdict
0	GP Detector	Factor	Value	Frequency[Hz]			
ol 9k NO.	Freq. [MHz]	Factor [dB]	Value [dBµV/m]	Limit [dBµV/m]	[dB]	Detector	Verdict
0 9k NO. 	P Detector Freq. [MHz] 0.2159	Factor [dB] 20.33	Value [dBµV/m] 52.67	Limit [dBµV/m] 100.88	[dB] 48.21	Detector AV	Verdict PASS
0 9k NO. 1 2	OP Detector Freq. [MHz] 0.2159 0.5669	Factor [dB] 20.33 20.27	Value [dBµV/m] 52.67 44.33	Limit [dBµV/m] 100.88 72.53	[dB] 48.21 28.20	Detector AV QP	Verdict PASS PASS
0 9k NO. 1 2 3	CP Detector Freq. [MHz] 0.2159 0.5669 1.297	Factor [dB] 20.33 20.27 20.24	Value [dBµV/m] 52.67 44.33 36.09	Limit [dBµV/m] 100.88 72.53 65.35	[dB] 48.21 28.20 29.26	Detector AV QP QP	Verdict PASS PASS PASS

Note: Final Level =Receiver Read level + Factor Factor= Antenna Factor + Cable Loss – Preamplifier Factor Test result contains x,y,z axis

Male In	AC 120V/		Temp. /H		25 °C/609	
Mulu la	www	MMMM	Mummuh	Marine Marine		
	Vertical PK	100M	Frequency[IIz]			16
			_			
	Factor [dB]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Polarity	Verdict
.4399	14.19	31.08	40.00	8.92	Vertical	PASS
1.0245	18.72	38.52	46.00	7.48	Vertical	PASS
0.2994	21.46	35.31	46.00	10.69	Vertical	PASS
2.314	22.83	37.63	46.00	8.37	Vertical	PASS
9.5981	23.99	35.54	46.00	10.46	Vertical	PASS
0.7536	24.96	39.02	46.00	6.98	Vertical	PASS
	Limit — Detector Treq. MHz] 0.4399 1.0245 0.2994 12.314 9.5981 0.7536	Freq. Factor [dB] 9.4399 14.19 1.0245 18.72 0.2994 21.46 2.314 22.83 9.5981 23.99	Linit Vertical PK Detector Freq. Factor [dB] QP Value [dBµV/m] 0.4399 14.19 31.08 1.0245 18.72 38.52 0.2994 21.46 35.31 12.314 22.83 37.63 9.5981 23.99 35.54	Freq. Factor QP Value QP Limit [dB] [dBµV/m] QP Limit [dBµV/m] 0.4399 14.19 31.08 40.00 1.0245 18.72 38.52 46.00 0.2994 21.46 35.31 46.00 2.314 22.83 37.63 46.00 9.5981 23.99 35.54 46.00	Linit Detector Vertical PK Frequency[ltz] Freq. Factor [dB] QP Value [dBµV/m] QP Limit [dBµV/m] QP Margin [dB] 0.4399 14.19 31.08 40.00 8.92 1.0245 18.72 38.52 46.00 7.48 0.2994 21.46 35.31 46.00 10.69 42.314 22.83 37.63 46.00 8.37 9.5981 23.99 35.54 46.00 10.46	Link Vertical PK Frequency[II2] Freq. Factor QP Value QP Limit QP Margin Polarity MHz] Factor [dB] QP Value QP Limit QP Margin Polarity 0.4399 14.19 31.08 40.00 8.92 Vertical 1.0245 18.72 38.52 46.00 7.48 Vertical 0.2994 21.46 35.31 46.00 10.69 Vertical 2.314 22.83 37.63 46.00 8.37 Vertical 9.5981 23.99 35.54 46.00 10.46 Vertical

Factor= Antenna Factor + Cable Loss – Preamplifier Factor Only the worst data report

6

742.314

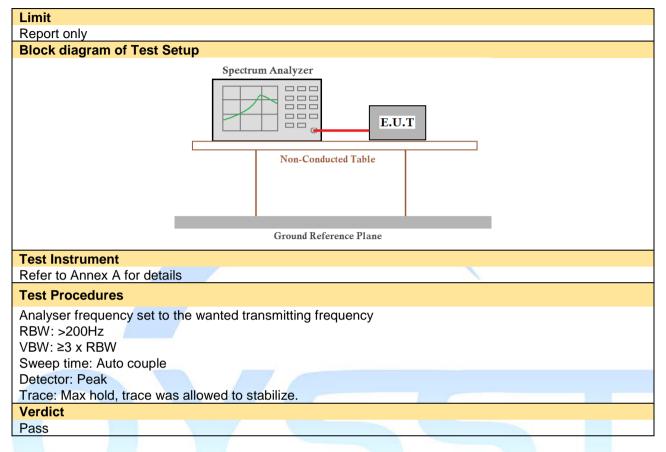
st moo	mode Mode 1			Polarity			
st volta	age	AC 120V/	60Hz	Temp. /H	lum.	25 °C/60%)
Level(dEµV/m)	90 80 70 60 50 40 30 20 10		1 Martin Martin		hallowed Maler	J. Marine Ma	
	0L	Horizontal PK	100M	Frequency[Hz]			 1G
C							
NC	D. Freq. [MHz]	Factor [dB]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Polarity	Verdict
	04 7400	10.42	28.93	43.50	14.57	Horizontal	
1	91.7102	10.42					PASS
1		8.99	33.42	43.50	10.08	Horizontal	PASS PASS
	2 148.5118			43.50 46.00	10.08 12.13	Horizontal Horizontal	
2	2 148.5118 3 222.8385	8.99	33.42				PASS
2	2 148.5118 3 222.8385 4 296.7935	8.99 12.83	33.42 33.87	46.00	12.13	Horizontal	PASS PASS

Note: Final Level =Receiver Read level + Factor Factor= Antenna Factor + Cable Loss – Preamplifier Factor Only the worst data report

22.83

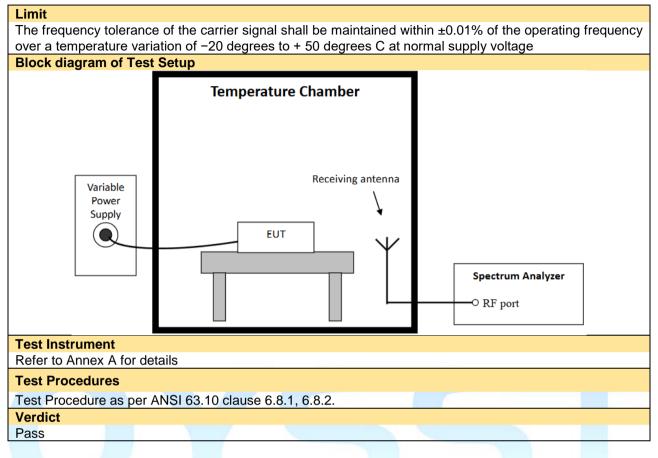
42.11

46.00


3.89

Horizontal

PASS


6.4 Emission Bandwidth

6.5 Frequency Tolerance

Test Result:

Nominal Freq.: 1	3.56MHz			
Voltage (Vac)	Temp (°C)	Measured Frequency (MHz)	Tolerance (%)	Limit (%)
	-20	13.5604	0.00295	
	-10	13.5604	0.00295	
	0	13.5598	-0.00147	
120	10	13.5598	-0.00147	±0.01
120	20	13.5602	0.001475	±0.01
	30	13.5605	0.003687	
	40	13.5597	-0.00221	
	50	13.5603	0.002212	

Nominal Freq.: 1	3.56MHz			
Voltage (Vac)	Temp (°C)	Measured Frequency (MHz)	Tolerance (%)	Limit (%)
102		13.5599	-0.00074	
120	20	13.5603	0.002212	±0.01
138		13.5601	0.000737	

Report No.: SST240923018EF06

7

Test Setup Photo Reference to the appendix I for details.

EUT Constructional Details 8

Reference to the **appendix II** for details.

Annex A -- Test Instruments list

Radiated Emiss	sion:					
Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. cycle	Cal.Date
SST-E-SAC001	3m Semi- Anechoic Chamber	BOST	966	/	3 years	2023.01.07
SST-E-SCC001	Control Room	BOST	333	/	3 years	2023.01.07
SST-E-SAC002	Breiband TRILOG Messantenne	Schwarzbeck	VULB 9162	00556	1 year	2024.04.20
SST-E-SAC004	Broad-band Horn Antenna	Schwarzbeck	BBHA 9120 D	02783	1 year	2024.04.16
SST-E-SCC003	EMI Test Receiver	R&S	ESU 8	100372	1 year	2024.04.16
SST-E-SCC004	Amplifier	Schwarzbeck	BBV 9744	00327	1 year	2024.04.16
SST-E-SCC015	Amplifie (1-18GHz)	TSTPASS	LNA10180G45	TSAM2303003	1 year	2024.04.16
SST-E-SCC016	Amplifier(40G)	RFsystem	TRLA- 180400G45B	23060801	1 year	2024.04.16
SST-E-SAC006	Broadband Horn Antenna (40G)	Schwarzbeck	BBHA9170	01306	1 year	2024.04.17
SST-E-RSC010	Spectrum analyzer	R&S	FSV40-N	/	1 year	2024.04.16
SST-E-SAC007	Loop Antenna	Schwarzbeck	FMZB 1513- 60B	1513-60B 044	1 year	2024.04.17
SST-E-SAC005	5W 6dB attenuator	1	DC-6GHz	1	Internal calibration	/
SST-E-EMC006	Thermohygrometer	КТЈ	TA218A	879030	1 year	2024.04.18
/	EMI Test Software	Tonscend	TS+	1	1	/

Conducted Emission							
Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. cycle	Cal.Date	
SST-E-CSC001	Shielding Room	BOST	854	/	3 years	2023.01.07	
SST-E-CSC002	EMI Test Receiver	R&S	ESR3	103057	1 year	2024.04.16	
SST-E-CSC003	LISN	R&S	ENV 216	102832	1 year	2024.04.16	
SST-E-CSC004	ISN	R&S	NTFM 8158	00347	1 year	2024.04.16	
SST-E-CSC007	Antenna port test assembly	/	DC-3GHz	/	Internal calibration	/	
SST-E-EMC011	Thermohygrometer	KTJ	TA218A	879036	1 year	2024.04.18	
/	EMI Test Software	Tonscend	TS+	/	/	/	

END OF REPORT