

TEST REPORT

Report No.	SST240723002EF03		
Applicant:	SHENZHEN ELECTRON TECHNOLOGY CO., LTD.		
Address of Applicant:	Bld.2, Yingfeng Industrial Zone, Tantou Community, Songgang Street, Bao'an, Shenzhen, China.		
Product Name:	Android Tablet		
Trade Mark:	1		
Standard(s):	FCC CFR Title 47 Part 15 Subpart E Section 15.247		
FCC ID:	2ABC5-E0070		
Test Report Form No:	SST-RD-7.5-02-E01(A/0)		
Date of sample receipt:	2024/7/31		
Date of Test:	2024/7/31 - 2024/8/23		
Date of report issued:	2024/8/27		

*The equipment complies with the requirements according to the standard(s) or Specification above, it is applicable only to the tested sample identified in the report.

*The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Version	Description	Date of Issue
V1.0	Original	2024/8/27

2 Contents

		Page	Э
1	COV	/ER PAGE	1
2	CON	NTENTS	3
3	TES	T SUMMARY	1
4	MEA	ASUREMENT UNCERTAINTY	1
5	GEN	IERAL INFORMATION	5
ļ	5.1 5.2	CLIENT INFORMATION	5
	5.3 5.4	TEST MODE(S)	
	5.5 5.6	DESCRIPTION OF SUPPORT UNITS	
	5.7 5.8	ANTENNA INFORMATION	
6		HNICAL REQUIREMENT AND MEASUREMENT DATA	3
	6.1	GENERALLY REQUIREMENT	
	6.2 6.3	DUTY CYCLE	-
	6.4	CHANNEL BANDWIDTH	-
	6.5 6.6	POWER SPECTRAL DENSITY 12 CONDUCTED EMISSION 13	
	6.7 6.8	RADIATED SPURIOUS EMISSION 14 CONDUCTED EMISSIONS 18	
7	TES	T SETUP PHOTO	
8		CONSTRUCTIONAL DETAILS	
AN	NEX A	TEST INSTRUMENTS LIST	2

3 Test Summary

Test items	Basics standards	Result
Antenna requirement	FCC part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	FCC part 15.207	Pass
Conducted Peak Output Power	FCC part 15.247 (b)(3)	Pass
Channel Bandwidth & 99% OCB	FCC part 15.247 (a)(2)	Pass
Power Spectral Density	FCC part 15.247 (e)	Pass
Band Edge	FCC part 15.247(d)	Pass
Spurious Emission	FCC part 15.205/15.209	Pass

Notes:

1: NA =Not Applicable

2: Determining compliance based on the results of the compliance measurement, not taking into account measurement uncertainty. If necessary, the applicant shall informing test lab in advance 3: Additions, Deviations and Exclusions from Standards: None.

4 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Item	Uncertainty (±) (k=2, 95%)		
Output Power, Conducted	0.54		
Power Spectral Density, Conducted	1.2	28	
Spurious Emissions, Conducted	1.2	28	
Radiated Emissions(<1GHz)	9kHz~30MHz	2.6	
Radiated Emissions(<tghz)< td=""><td>30MHz~1GHz</td><td>5.08</td></tghz)<>	30MHz~1GHz	5.08	
	1GHz~6GHz	4.02	
Radiated Emissions(>1GHz)	6GHz~18GHz	4.62	
	18GHz~40GHz	4.7	
Occupied Bandwidth	1.14		
Conducted Emissions—AC mains	9kHz~150KHz	1.76	
Conducted Emissions—AC mains	150kHz~30MHz	2.52	
Conducted Emissions—Telecom	2.0	64	

5 General Information

5.1 Client Information

Applicant: Address of applicant:	SHENZHEN ELECTRON TECHNOLOGY CO., LTD. Bld.2, Yingfeng Industrial Zone, Tantou Community, Songgang Street, Bao'an, Shenzhen, China.
Manufacturer: Address of	Same as applicant
Manufacturer:	Same as applicant
Factory:	Same as applicant
Address of Factory:	Same as applicant
Manufacturer:	Street, Bao'an, Shenzhen, China.
Address of	Same as applicant
Manufacturer:	Same as applicant
Factory:	Same as applicant

5.2 General Description of EUT

Product Name:	Android Tablet				
Model No.:					
	WF3205T				
Test Model:	WF3205T				
Test sample(s) ID:	24072300201				
Sample(s) Status:	Continuously transmitter				
S/N:	1				
Hardware version:	1				
Software version:					
Operation Frequency:	2412MHz~2462MHz				
Technic and Modulation:	802.11b: DSSS 802.11g/802.11n: OFDM 802.11ax: OFDMA				
Supported bandwidth:	20MHz				
Antenna gain:	Refer to section 5.7 for details				
Power supply:	Adapter 1: SWITCH MODE POWER SUPPLY Model: S065-1A120500B3 Input: AC 200~250V, 50/60Hz, 1.5A Output: DC 12V, 5A, 60W Adapter 2: SWITCH ADAPTER Model No.: FJ-SW20171205000 INPUT: AC 100-240V, 50/60Hz, 1.5A MAX OUTPUT: DC 12V, 5.0A, 60.0W				

Both two adapters were test and found to compliance with relevant requirement, adapter 1(the worst condition) test result report.

5.3 Test mode(s)

Mode 1:	continuously transmitting, with its lowest data rate which emit the max power level
Mode 2:	
Mode 3:	

Channel list for 802.11							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

5.4 Test Facility

	FCC Accredited Lab
The test facility is recognized, certified, or accredited by these organizations:	Test Firm Registration Number: 638130
	Designation Number: CN1359 IC Registration Lab
	CAB Identifier No. CN0154
	A2LA Accreditation Lab
	Certificate No.:7057.01

	Name
GuangDong Set Sail Testing Co., Ltd. Test Performed at: Address	
	China

5.5 Description of Support Units

Device Type	Brand	Model	Series No.	Note
Notebook PC	HP	ZHAN 66P		

5.6 Additional Instructions

Test Software	Special test command used
Power level setup	Default

5.7 Antenna Information

Ant	Manufacturer	Model	Antenna Type	Antenna Gain (dBi)	Note
1	Shenzhen Yishengbang Technology	/	/	2.06	WiFi
2	Co., Ltd	/	/	2.96	WiFi, BT

All above information provided by the applicant which is fully responsible for those information.

5.8 Others

The laboratory responsible for all the information provided in the report, except those information provided by the applicant.

The applicant shall fully responsible for the information they provided.

The report would be invalid without a stamp of test laboratory and the signatures of compiler and approver. The laboratory has not been responsible for the sampling stage; the test report merely corresponds to the test sample received.

Any objection to the test report shall submitted to the test laboratory within 15 days from the date of receipt of the report.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

6 Technical Requirement and Measurement Data

6.1 Generally requirement

15.203 requirement:

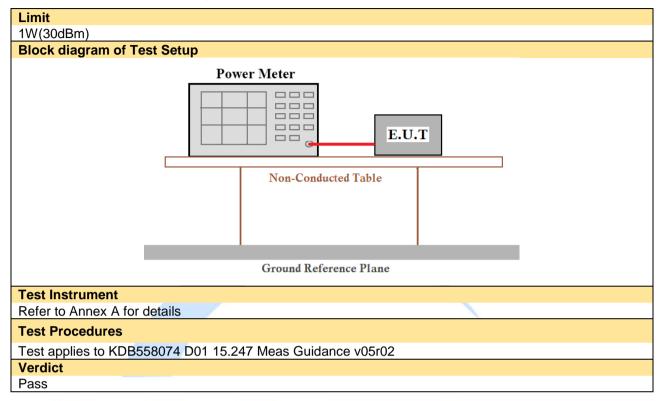
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

Reference to the appendix II for details



6.2 Duty Cycle

Limit
Report for use
Block diagram of Test Setup
Spectrum Analyzer E.U.T Non-Conducted Table
Ground Reference Plane
Test Instrument
Refer to Annex A for details
Test Procedures
The transmitter output connected to the Spectrum Analyzer. Test according to Procedure 6.0)b in KDB 558074 v05r02. 1.RBW=8 MHz(the largest available value) 2.VBW=8 MHz(>RBW) 3.SPAN = 0 Hz 4.Detector = Peak 5.Number of points in sweep: 30001 6.Trace mode: Clear write 7.Measure T _{total} and T _{on} 8.Calculate Duty Cycle = T _{on} /T _{total} and Duty Cycle Factor = 10log(1/Duty Cycle) Verdict
Pass

6.3 Conducted Peak Output Power

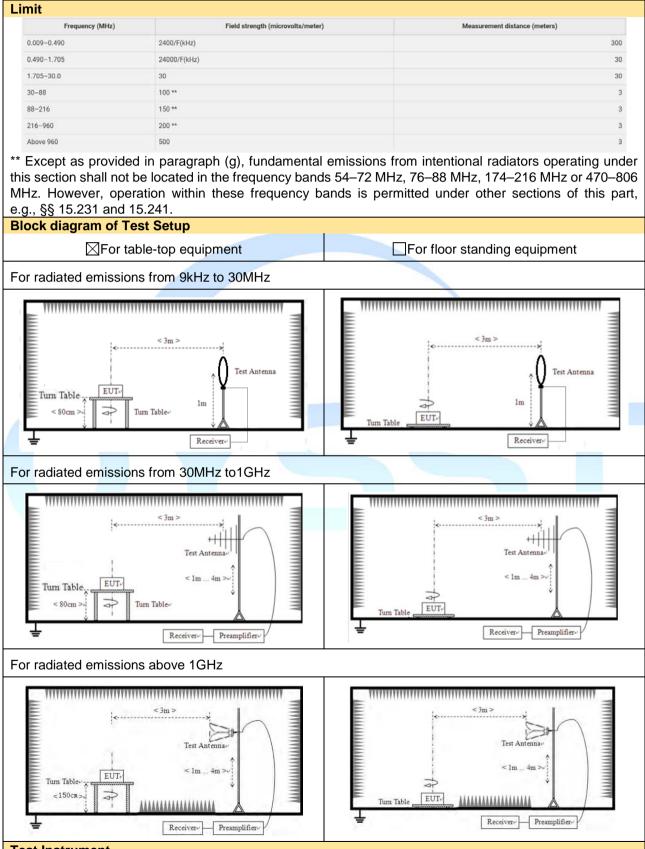
6.4 Channel Bandwidth

Limit
>500KHz
Block diagram of Test Setup
Spectrum Analyzer E.U.T Non-Conducted Table
Ground Reference Plane
Test Instrument Refer to Annex A for details
Test Procedures
Test applies to KDB558074 D01 15.247 Meas Guidance v05r02
Verdict
Pass

6.5 Power Spectral Density

Limit
8dBm/3kHz
Block diagram of Test Setup
Spectrum Analyzer E.U.T Non-Conducted Table
Ground Reference Plane
Test Instrument Refer to Annex A for details
Test Procedures
Test applies to KDB558074 D01 15.247 Meas Guidance v05r02
Pass

6.6 Conducted Emission


Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Block diagram of Test Setup
Spectrum Analyzer E.U.T Non-Conducted Table
Ground Reference Plane
Test Instrument
Refer to Annex A for details
Test Procedures
Test applies to KDB558074 D01 15.247 Meas Guidance v05r02
Verdict
Pass
Measurement Data: The detailed test data see Appendix

6.7 Radiated Spurious Emission

Test Instrument

GuangDong Set Sail Testing Co., Ltd.

101, No.19, Tianxin Hudie 1st Road, Huangjiang Town, Dongguan, Guangdong, China Tel: (86)-0769-26622875 Email: sst@sstesting.cn

Report No.: SST240723002EF03

I

Refer to Annex A for details

Test Procedures
Test applies to KDB558074 D01 15.247 Meas Guidance v05r02 & C63.10
Verdict
Pass

Note: The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o), the test result no need to reported.

Note2: For those undesirable emission (in the Restricted Bands and out-of-band spurious) above 1GHz, According to KDB 558074 and ANSI C63.10 subclause 11, as an alternative, antenna-port conducted measurements in conjunction with cabinet emissions tests will be permitted to demonstrate compliance.

Horizontal

Horizontal

Horizontal

Horizontal

Horizontal

PASS

PASS

PASS

PASS

PASS

Test mo	de		Mode 1		Polarity		Horizontal	
Test volt	age	;	AC 120V/	60Hz	Temp. /H	lum.	25 °C/60%	, D
	90							
	80							
	70							
	60							
[m//u	50							F
Leve[dEµV/m]	40							
Ľ	30					1 3		N.
	20			A.A.M	MM	Muniper anna	Antering bis anterior and a second	Alberto and a
	10	ideografilmicadations. Accounting	and the house and the second of the	wanter and the V	with a construction of the	Mulianania		
	0 30M			100M	I			 1G
		- QP Limit -	Horizontal PK		Frequency[Hz]			
		QP Detector						
		Freq.	Factor	QP Value	QP Limit	QP Margin		
N	О.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Polarity	Verdict
-	1	282.5787	14.74	32.18	46.00	13.82	Horizontal	PASS
				1				1

46.00

46.00

46.00

46.00

46.00

16.81

13.06

16.73

19.05

7.90

29.19

32.94

29.27

26.95

38.10

Note: Final Level =Receiver Read level + Factor Factor= Antenna Factor + Cable Loss – Preamplifier Factor Only the worst case report (802.11b 2462MHz ant 2)

15.86

16.71

19.24

20.87

25.68

329.997

375.0431

494.7189

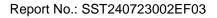
600.976

959.6451

2

3

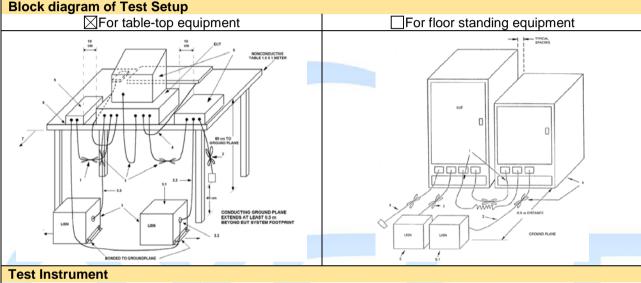
4


5

6

		Mode 1		Polarity		Vertical	
t voltag	е	AC 120V/	60Hz	Temp. /H	lum.	25 °C/60%	%
90, 80 70 60 50 50 40. 30 20 10 0. 30		///	100M	Frequency[Hz]	Jeffer Law Management		16
NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Polarity	Verdict
	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dB]		
1	[MHz] 109.7604	[dB] 12.53	[dBµV/m] 29.44	[dBµV/m] 43.50	[dB] 14.06	Vertical	PASS
	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dB]		
1 2	[MHz] 109.7604 124.962	[dB] 12.53 10.10	[dBµV/m] 29.44 28.43	[dBµV/m] 43.50 43.50	[dB] 14.06 15.07	Vertical Vertical	PASS PASS
1 2 3	[MHz] 109.7604 124.962 201.1209	[dB] 12.53 10.10 12.13	[dBµV/m] 29.44 28.43 26.83	[dBµV/m] 43.50 43.50 43.50	[dB] 14.06 15.07 16.67	Vertical Vertical Vertical	PASS PASS PASS
1 2 3 4	[MHz] 109.7604 124.962 201.1209 334.9505	[dB] 12.53 10.10 12.13 15.96	[dBµV/m] 29.44 28.43 26.83 28.72	[dBµV/m] 43.50 43.50 43.50 46.00	[dB] 14.06 15.07 16.67 17.28	Vertical Vertical Vertical Vertical	PASS PASS PASS PASS

Only the worst case repor (802.11b 2462MHz ant 2)



6.8 Conducted Emissions

Limit		
Frequency (MHz)	Quasi-peak	Average
0.15~0.50	66 to 56*	56 to 46*
0.50~5.0	56	46
5.0~30	60	50
*Decreases with the logarithm of the	frequency	

*Decreases with the logarithm of the frequency.

If the limit for the measurement with the average detector is met when using a receiver with a quasi-peak detector, the equipment under test shall be deemed to meet both limits and the measurement using the receiver with an average detector need not be carried out

Refer to Annex A for details

Test Procedures

The measurement was performed in a shield room.

Measured levels of ac power-line conducted emission shall be the radio-noise voltage from the voltage probe, where permitted, or across the 50 Ω LISN port (to which the EUT is connected), as terminated into a 50 Ω EMI receiver or spectrum analyzer. All radio-noise voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord or calibrated extension cord by the use of mating plugs and receptacles on the EUT and LISN, if used. The manufacturer shall test equipment with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended. For measurements using a LISN, the 50 Ω measuring port is terminated into a 50 Ω EMI receiver or spectrum analyzer. All other ports are terminated into 50 Ω loads.

Table top devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.

The bandwidth of the test receiver is set at 9 kHz. Verdict Pass

Fest mode			Mode 1			Polarity			Line		
Fest voltage			AC 120\	//60Hz		Temp. /	Hum.		25 °C/	60%	
100 90 80 70						(L)					
60 50 30 20 10 -	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m	And And	www.www.	Artonaljeti kneg	where a week had		~	1		
	Fina		W Detector	< <u> </u>	Fr	equency[Hz]					
1	NO.	Freq. [MHz]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	Туре	
	1	0.15	55.98	66.00	10.02	34.75	56.00	21.25	PASS	L	
	2	0.1635	53.36	65.28	11.92	33.71	55.28	21.57	PASS	L	
	3	13.344	49.47	60.00	10.53	36.45	50.00	13.55	PASS	L	
	4	13.488	48.89	60.00	11.11	37.96	50.00	12.04	PASS	L	
	5	13.632	49.25	60.00	10.75	37.06	50.00	12.94	PASS	L	
	6	13.8255	50.16	60.00	9.84	38.48	50.00	11.52	PASS	L	
lote: Final Le	evel	=Receive	r Read le	vel + Fa	ctor						

est mode			Mode 1			Polarity			Neutra	al	
Fest voltage			AC 120\	//60Hz		Temp. /	Hum.		25 °C/	60%	
100 - 90 - 80 - 70 - 60 - 50 - 30 - 20 - 10 -		hundy	Mun	mar line line	have supplicy how we	(N)	Lipeline A colo	~			
0 -10- 150	- QP • QP		VUmt PI	1M	Fr	equency[Hz]			10M		30M
-	1 1110		QP	QP	QP	AV	AV	AV			
	NO.	Freq. [MHz]	Value [dBµV]	Limit [dBµV]	Margin [dB]	Value [dBµV]	Limit [dBµV]	Margin [dB]	Verdict	Туре	
	1	0.15	57.40	66.00	8.60	34.75	56.00	21.25	PASS	N	
	2	0.1635	54.84	65.28	10.44	33.16	55.28	22.12	PASS	N	
	3	13.4025	50.06	60.00	9.94	38.64	50.00	11.36	PASS	N	
	4	13.542	50.55	60.00	9.45	39.10	50.00	10.90	PASS	N	
	5	13.6275	49.99	60.00	10.01	39.15	50.00	10.85	PASS	N	
	6	13.704	51.66	60.00	8.34	38.55	50.00	11.45	PASS	N	
L											
Note: Final I		=Receive tor + Cab		evel + Fa	ctor						

Report No.: SST240723002EF03

7

Test Setup Photo Reference to the appendix I for details.

EUT Constructional Details 8 Reference to the **appendix II** for details.

Annex A -- Test Instruments list

Radiated Emission:							
Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. cycle	Cal.Date	
SST-E-SAC001	3m Semi- Anechoic Chamber	BOST	966	/	3 years	2023.01.07	
SST-E-SCC001	Control Room	BOST	333	/	3 years	2023.01.07	
SST-E-SAC002	Breiband TRILOG Messantenne	Schwarzbeck	VULB 9162	00556	1 year	2024.04.20	
SST-E-SAC004	Broad-band Horn Antenna	Schwarzbeck	BBHA 9120 D	02783	1 year	2024.04.16	
SST-E-SCC003	EMI Test Receiver	R&S	ESU 8	100372	1 year	2024.04.16	
SST-E-SCC004	Amplifier	Schwarzbeck	BBV 9744	00327	1 year	2024.04.16	
SST-E-SCC015	Amplifie (1-18GHz)	TSTPASS	LNA10180G45	TSAM2303003	1 year	2024.04.16	
SST-E-SCC016	Amplifier (40G)	RFsystem	TRLA- 180400G45B	23060801	1 year	2024.04.16	
SST-E-SAC006	Broadband Horn Antenna (40G)	Schwarzbeck	BBHA9170	01306	1 year	2024.04.17	
SST-E-RSC010	Spectrum analyzer	R&S	FSV40-N	/	1 year	2024.04.16	
SST-E-SAC007	Loop Antenna	Schwarzbeck	FMZB 1513- 60B	1513-60B 044	1 year	2024.04.17	
SST-E-SAC005	5W 6dB attenuator	/	DC-6GHz	/	Internal calibration	/	
SST-E-EMC006	Thermohygrometer	KTJ	TA218A	879030	1 year	2024.04.18	
1	EMI Test Software	Tonscend	TS+	/	/	/	

Conducted Emission							
Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. cycle	Cal.Date	
SST-E-CSC001	Shielding Room	BOST	854	/	3 year	2023.01.07	
SST-E-CSC002	EMI Test Receiver	R&S	ESR3	103057	1 year	2024.04.16	
SST-E-CSC003	LISN	R&S	ENV 216	102832	1 year	2024.04.16	
SST-E-CSC004	ISN	R&S	NTFM 8158	00347	1 year	2024.04.16	
SST-E-CSC007	Antenna port test assembly	/	DC-3GHz	/	Internal calibration	/	
SST-E-EMC011	Thermohygrometer	КТЈ	TA218A	879036	1 year	2024.04.18	
/	EMI Test Software	Tonscend	TS+	V4.0	/	/	

RF conducted						
Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. cycle	Cal.Date
SST-E-RSC001	Shielding Room	BOST	543	/	3 year	2023.01.07
SST-E-RSC007	Spectrum analyzer	keysight	N9020A	MY51280659	1 year	2024.04.16
SST-E-RSC008	Analog signal source	Agilent	N5181A	MY48180054	1 year	2024.04.16
SST-E-RSC009	Vector signal source	keysight	N5172B	MY57281610	1 year	2024.04.16
SST-E-EMC007	Thermohygrometer	КТЈ	TA218A	879032	1 year	2024.04.18
SST-E-RSC010	Spectrum analyzer	R&S	FSV40-N	/	1 year	2024.04.16
SST-E-RSC015- 1	Power meter 1	TST	TST V2	/	1 year	2024.04.16
/	Test Software	TST PASS	TST PASS	V2.0	/	/

