

Report No .: Page 1 of 60 18220WC40042204 FCC ID: 2ABC5-E0062

FCC Report Test

Applicant	SHENZHEN ELECTRON TECHNOLOGY CO.,LTD.
Address	Bld.2, Yingfeng Industrial Zone, Tantou Community, Songgang Street, Bao'an, Shenzhen, China.
Product Name	Smart Home botek Anbotek
Report Date	Jun. 24, 2024

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755-26066440 Fax:(86)0755-26014772 Email:service@anbotek.com

Hotline 400-003-0500 www.anbotek.com.cn

aboratory Limited

FCC ID: 2ABC5-E0062

Page 2 of 60

Contents

1. General Information	Ando		bole but		3
 General Information 1.1. Client Information 1.2. Description of Device (EUT 1.3. Auxiliary Equipment Used I 1.4. Operation channel list 1.5. Description of Test Modes 1.6. Measurement Uncertainty 1.7. Test Summary 1.8. Description of Test Facility 1.9. Disclaimer 		anal and	et provinsion of the second se		3 9 9 0 1
2 Conducted Emission at AC power	r line	Anbai	Anbotek Ar		- 1
 1.9. Disclaimer		nborat	Andraich		1 5 5
3. Duty Cycle	pnb	Anborek An	port All		1
3.2. Test Setup 3.3. Test Data	tek Anbotek		n potek Ari		1 P
4. Maximum conducted output powe 4.1. EUT Operation	cotek Anbore	Andrakek	Robotek		20
4 2 Test Setup				200	۲
 4.3. Test Data 5. Power spectral density 5.1. EUT Operation 	Anbotek	Anbo. A.	npatek Anbore		1
5.2 Test Setun	N. N.			25	5
5.3. Test Data6. Emission bandwidth and occupied6.1. EUT Operation	d bandwidth	ren Anbr	K. Dribotek		3
6.1. EUT Operation 6.2. Test Setup 6.3. Test Data			······		3
7. Band edge emissions (Radiated) 7.1. EUT Operation	et Anbotek	Anbo' P	nboxek pob)
7.2. Test Setup 7.3. Test Data	1114 1000	ex			2 3
8. Band edge emissions (Conducted 8.1. EUT Operation	(k	potek Anbo	tex		3
8 2 Test Setup	- 0V-				2
 8.3. Test Data 9. Undesirable emission limits (belown 9.1. EUT Operation	w 1GHz)	hnboter k hnbotek	Antorok Antorok	44 46	1 5

Shenzhen Anbotek Compliance Laboratory Limited					
Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community,					
Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.					
Tel:(86)0755-26066440 Fax:(86)0755-26014772 Email:service@anbotek.com					

Report No.: 18220WC40042204	FCC ID: 2ABC5-E0062	Page 3 of 60
9.2. Test Setup 9.3. Test Data	And And And	
10. Undesirable emission limits (above 1GHz)	And houst Andrek Ar	
10.1. EUT Operation 10.2. Test Setup	oter Ann Annotek	
10.3. Test Data	nbo hotek Anbotek Anbotek	
APPENDIX I TEST SETUP PHOTOGRAPH APPENDIX II EXTERNAL PHOTOGRAPH APPENDIX III INTERNAL PHOTOGRAPH		

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

	nbotek Anbote. And hotek	
	anbotek Anbote. And hotek	
220WC40042204	FCC ID: 2ABC5-E0062	Page 4 of 60
A botek Anbote	And otek Anborek Anbo	
All above TES	T REPORT	
: SHENZHEN ELE	CTRON TECHNOLOGY CO.,LTD.	
: SHENZHEN ELE	CTRON TECHNOLOGY CO.,LTD.	
: Smart Home	Anbetek Anbotek Anbotek	
: SMT156		
o. : SMT97, SMT101	ek sooten Anbe	
: N/A		
SMT156:		
	2A hotek Anboten And	K aboten Al
	5A rek aboten And	
	ak Anbo. A. abotek A	
	220WC40042204 TES : SHENZHEN ELE : SHENZHEN ELE : SHENZHEN ELE : SMATHOME : SMT156 DC INPUT: 12V=2 POE INPUT: 48V= SMT97/SMT101: DC INPUT: 12V=1 POE INPUT: 48V= 47 CFR Part 15E	220WC40042204 CC DE CERES-E0062 TESTEREPORT SHENZHEN ELECTRON TECHNOLOGY CO.,LTD. SHENZHEN ELECTRON TECHNOLOGY CO.,LTD. SMAT Home SMT156 N/A SMT156: DC Input: 12V= 2A POE Input: 48V= SMT97/SMT101:

KDB 789033 D02 General UNII Test Procedures New Rules v02r01 The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:

Mar.	12,	2024

Date of Test:

Prepared By:

Mar. 12, 2024 to May 21, 2024

sian

D. br.

(Ella Liang)

Idward por

(Edward Pan)

Shenzhen Anbotek Compliance Laboratory Limited

Approved & Authorized Signer:

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

Report No.: 18220WC40042204 FCC ID: 2ABC5-E0062 Page 5 of 60

Revision History

Report Ver	sion	Description			Issued Date			
R00	botek Ant	otek	Original Issue.	Inbotek	Aupote.	Jun. 24,	2024	Anbote
k Anbor A	Anbotek	Anboten	Anto	Anbotek	K Anbo	botek pi	Anbotek	Anb
on Antoriek	Anboten	Anbore	k Anbotek	Anbore	A A	Anbotek	Anboten	9 //

Anbc

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: 2ABC5-E0062

1. General Information

1.1. Client Information

Applicant	:	SHENZHEN ELECTRON TECHNOLOGY CO., LTD.		
Address	:	Bld.2, Yingfeng Industrial Zone, Tantou Community, Songgang Street, Bao'an, Shenzhen, China.		
Manufacturer	and sold and and sold and so			
Address	:	Bld.2, Yingfeng Industrial Zone, Tantou Community, Songgang Street, Bao'an, Shenzhen, China.		
Factory	SHENZHEN ELECTRON TECHNOLOGY CO., LTD.			
Address	:	Bld.2, Yingfeng Industrial Zone, Tantou Community, Songgang Street, Bao'an, Shenzhen, China.		

1.2. Description of Device (EUT)

Product Name	:	Smart Home
Test Model No.	:	SMT156 Andrea Andrea Andrea Andrea
Reference Model No.	:	SMT97, SMT101 (Note: According to the model differences on page 7, we prepare "SMT156" for all tests, and prepared SMT97, SMT101 for conducted emission and radiated spurious emissions (below 1GHz) difference testing.)
Trade Mark	:	N/A Anbotek Anbotek Anbotek Anbotek Anbotek A
Test Power Supply	:	DC 12V from adapter input AC 120V/60Hz
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
RF Specification		
Operation Frequency	:	802.11a/n(HT20)/ac(VHT20)/ax(HEW20): U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 3: 5745MHz to 5825MHz; 802.11n(HT40)/ac(VHT40)/ax(HEW40): U-NII Band 1: 5190MHz to 5230MHz; U-NII Band 3: 5755MHz to 5795MHz; 802.11ac(VHT80)/ax(HEW80): U-NII Band 1: 5210MHz; U-NII Band 3: 5775MHz
Number of Channel	:	802.11a/n(HT20)/ac(VHT20)/ax(HEW20): U-NII Band 1: 4; U-NII Band 3: 5; 802.11n(HT40)/ac(VHT40)/ax(HEW40): U-NII Band 1: 2; U-NII Band 3: 2;

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

Report No.: 18220WC40042204 FC0

FCC ID: 2ABC5-E0062

Page 7 of 60

		802.11ac(VHT80)/ax(HEW80): U-NII Band 1: 1; U-NII Band 3: 1
Modulation Type	:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM); 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM); 802.11ax: OFDMA (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM)
Antenna Type	:	FPC Antenna
Antenna Gain(Peak)	:	Wi-Fi 5.2G: 2.08dBi Wi-Fi 5.8G: 1.7dBi
Remark:	fice	ation are provided by customer

(1) All of the RF specification are provided by customer.(2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Model differences

١.	Model allerences	Por V	NOTE: AND	ek opor pri k
	Model	Display screen	Input	Adapter
		size		
	All	oten And	tek nbor	Manufacturer: SHENZHEN FUJIA
y.	Anbore An	ek botek	DC Input: 12V2A	APPLIANCE CO., LTD.
	SMT156	15.6-inch	POE Input: 48V-	Model No.: FJ-SW126G1202000U
C	ten Anbe	hotek Anbor	POE Input. 46V	Input: 100-240V~50/60Hz 0.6A Max
	tek aboten	And	otek Anbor P	Output: 12V-2A
2	SMT97	9.7-inch	botek	Manufacturer: SHENZHEN FUJIA
	poter SIVIT 97 And	9.7-11011	DC Input:	APPLIANCE CO., LTD.
	All pote	Anbo	12V1.5A	Model No.: FJ-SW126G1201500U
	SMT101	10.1-inch	POE Input: 48V-	Input: 100-240V~50/60Hz 0.6A Max
2	hotek Anb	Di Ali	aboter And	Output: 12V= 1.5A

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

Report No.: 18220WC40042204 FCC ID: 2ABC5-E0062 Page 8 of 60

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.
Annotek / Anboten	Anb-botek/ Anbotek	Anbo, Anbotek	Anboter And And

1.4. Operation channel list

Operation Band: U-NII Band 1

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel Ma	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	38	5190	And 42	5210 potek
40	5200	ootek 46 Anbou	5230	Anboter Ant	botek / Anbot
lek 44.00ter	5220	Anbotek / Anbo	stek / abotek	Anbgran	Ant hotely Ant
botek 48 Anbote	5240	Anbotek An	sol handor	ak Moore	Annyolek

Operation Band: U-NII Band 3

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
otek 149 nbotek	5745	151 Anto	5755	155	5775
hotek 153 Anbott	5765	159	5795	otek Anborek	Anbo
hot 157 Ant	5785	k hotek	Anbore An	botek Anbotel	And
161	5805 Ano	otek Inbotek	Anbor	abotek Anbr	ren Anbo
165	5825	wotek / Anbotek	Aporto	All Alexandre	nboten / Anbo

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: 2ABC5-E0062

Page 9 of 60

1.5. Description of Test Modes

Pretest Modes	Descriptions
Anbotek K Anbotek TM1 Anbotek Anbotek	Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
otek Anbore Antorek Anborek Antorek Anborek	Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Anbotek TM3 Anbotek Anb	Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
nbotek Anbotek Anbotek	Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

1.6. Measurement Uncertainty

Parameter	Uncertainty		
Conducted emissions (AMN 150kHz~30MHz)	3.4dB		
Conducted Output Power	0.76dB		
Power Spectral Density	0.76dB		
Occupied Bandwidth	925Hz		
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB		
Radiated emissions (Below 30MHz)	3.53dB		
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB		

level using a coverage factor of k=2.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: 2ABC5-E0062

Page 10 of 60

1.7. Test Summary

Test Items	Test Modes	Status
Conducted Emission at AC power line	Mode1,2,3,4	AntProtek
Duty Cycle	Mode1,2,3,4	P
Maximum conducted output power	Mode1,2,3,4	PAR
Power spectral density	Mode1,2,3,4	P P
Emission bandwidth and occupied bandwidth	Mode1,2,3,4	Pek
Band edge emissions (Radiated)	Mode1,2,3,4	Anbo P tek
Band edge emissions (Conducted)	Mode1,2,3,4	P
Undesirable emission limits (below 1GHz)	Mode1,2,3,4	Pano
Undesirable emission limits (above 1GHz)	Mode1,2,3,4	P An
Note: P: Pass N: N/A, not applicable	Anbotek Anbotek A	Anbotek Anbotek

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: 2ABC5-E0062

Page 11 of 60

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited. 1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- 1. The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
 - 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
 - 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: 2ABC5-E0062

Page 12 of 60

1.10. Test Equipment List

Conducted	Emission	at AC	power line
-00			· .

~0~		DIT DIT.		<u> </u>		
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
× 1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-01-18	2025-01-17
otek 2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2024-01-17	2025-01-16
3 of	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A N/A	Avootek	Anboitek
4	EMI Test Receiver	Rohde & Schwarz	ESPI3	100926	2023-10-12	2024-10-11
	N 101	P.V.	1977		~~ NO	p.

Powe Emise	num conducted outp r spectral density sion bandwidth and c edge emissions (Co	occupied bandwidth			Anbotek Anbotek	
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 1	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	potekN/A Anbo	2023-10-16	2024-10-15
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2023-10-20	2024-10-19
3 3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
Anbo 4	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-02-22	2025-02-21
5	Oscilloscope	Tektronix	MDO3012	C020298	2023-10-12	2024-10-11
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2024-02-04	2025-02-03

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: 2ABC5-E0062

Page 13 of 60

		Anbora	Ano	Anbotek	Anbo, potek
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2024-01-17	2025-01-16
Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	And	Anbotek
Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2023-10-12	2024-10-11
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2023-05-25	2024-05-24
	sirable emission limi Equipment EMI Test Receiver EMI Preamplifier Double Ridged Horn Antenna EMI Test Software EZ-EMC Horn Antenna Spectrum Analyzer	EMI Test ReceiverRohde & SchwarzEMI PreamplifierSKET ElectronicDouble Ridged Horn AntennaSCHWARZBECKEMI Test Software EZ-EMCSHURPLEHorn AntennaA-INFOSpectrum AnalyzerRohde & Schwarz	sirable emission limits (above 1GHz)EquipmentManufacturerModel No.EMI Test ReceiverRohde & SchwarzESR26EMI PreamplifierSKET ElectronicLNPA- 0118G-45Double Ridged Horn AntennaSCHWARZBECKBBHA 9120DEMI Test Software EZ-EMCSHURPLEN/AHorn AntennaA-INFOLB-180400- KFSpectrum AnalyzerRohde & SchwarzFSV40-NAmplifierTalent MicrowaveTLLA18G40	sirable emission limits (above 1GHz)EquipmentManufacturerModel No.Serial No.EMI Test ReceiverRohde & SchwarzESR26101481EMI PreamplifierSKET ElectronicLNPA- 0118G-45SKET-PA- 002Double Ridged Horn AntennaSCHWARZBECKBBHA 9120D02555EMI Test Software EZ-EMCSHURPLEN/AN/AHorn AntennaA-INFOLB-180400- KF101792Spectrum AnalyzerRohde & SchwarzFSV40-N101792	sirable emission limits (above 1GHz)EquipmentManufacturerModel No.Serial No.Last Cal.EMI Test ReceiverRohde & SchwarzESR261014812024-01-23EMI PreamplifierSKET ElectronicLNPA- 0118G-45SKET-PA- 0022024-01-17Double Ridged Horn AntennaSCHWARZBECKBBHA 9120D025552022-10-16EMI Test Software EZ-EMCSHURPLEN/AN/A/Horn AntennaA-INFOLB-180400- KFJ21106062 82023-10-12Spectrum AnalyzerRohde & SchwarzFSV40-N1017922023-05-26AmplifierTalent MicrowaveTLLA18G40 TLLA18G40230228022023-05-25

Undesirable emission limits (below 1GHz)

Under North						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
<u>,</u> 2	Pre-amplifier	SONOMA	310N	186860	2024-01-17	2025-01-16
34	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
Antore	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2023-10-12	2024-10-11
5 nb	EMI Test Software EZ-EMC	SHURPLE	N/A N/A	N/Anbot	ek Anbor	k Anbotek

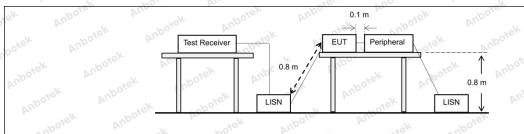
Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: 2ABC5-E0062

Page 14 of 60

2. Conducted Emission at AC power line


Test Requirement:	47 CFR Part 15.207(a)		
Arr. sek abover	Frequency of emission (MHz)	Conducted limit (dBµV)	boten Aup
Anbor	al unboten And	Quasi-peak	Average
K- botek Anbo	0.15-0.5	66 to 56*	56 to 46*
Test Limit:	0.5-5 And States	56	46 boten Int
otek Anbois Ali	5-30 And And	60 Lotek Anbor	50
stek unbotek	*Decreases with the logarithm of th	ne frequency.	Anbo
Test Method:	ANSI C63.10-2020 section 6.2	Anbo kek nbot	ek Anbore

2.1. EUT Operation

Operating Environment:

Operating Envir	onment: And stek unbotek Anbot At hotek Anbote And
Ant Anbotek	1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
Anbotek Anb	2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Test mode:	3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Anbotek Anbo	4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

2.2. Test Setup

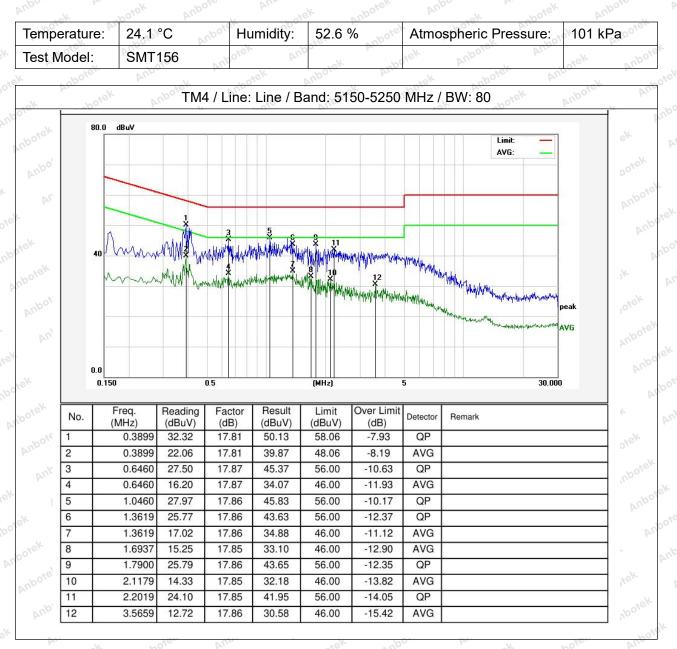
Anbo

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755-26066440 Fax:(86)0755-26014772 Email:service@anbotek.com

Hotline 400-003-0500 www.anbotek.com.cn

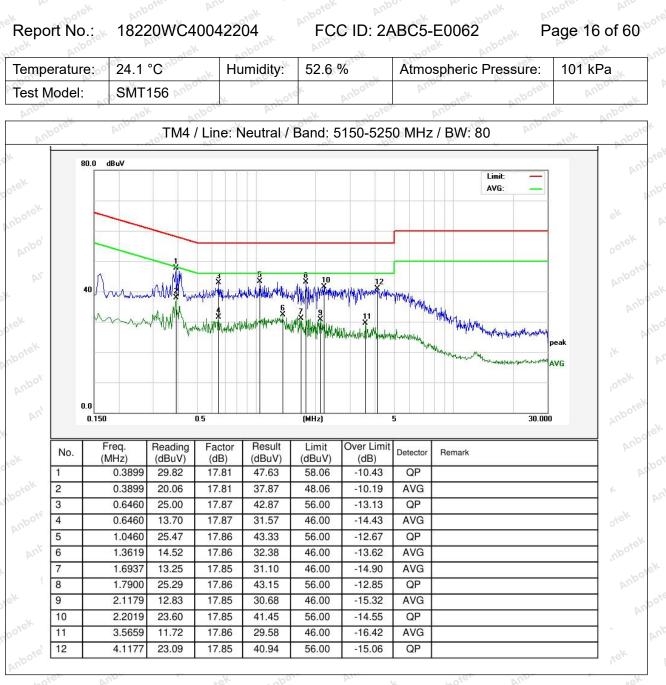
Anb



FCC ID: 2ABC5-E0062

Page 15 of 60

2.3. Test Data



Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

Note: Only record the worst data (802.11ax(HEW80)) in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

Anbotek Product Safety

mper	ature: 24	.1 °C ^{nbo}	Hu	umidity:	52.6 %	Á	tmosph	eric Pressur	e: 10)1 kPa
est Mo	D/.	1T97 pol	oter l	PUD	×	botek	Anboi	N IN	otek	Anboten
npol			botek	Aupor.	1 P1	oten	NUpo	ter And	- el ^k	botel
Anbo	Helt Anbe		M4 / Line	e: Line / E	Band: 515	50-5250 N	MHz / B\	W: 80	nbore	K Ann
	80.0 dBuV							τ.		
									nit: - /6: -	
			-							
										1
	1						-			
	40 MM	3	4	Ş	8					_
	an at	minut	hardfreezen	MANANANA	W44 10					
	man	Mahara Bolk	5	Z.	9 11	Among I		a deserve a serve	1	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	March and a start of the start	MMM PROFILE				A LAND AND A LAND		
			and and		The A	and the series	international and a second and a	lymphiller and	herenerally	auto
					and the second of the second s	Normal Marked Var 12	monormalista	lower and and	hunnyunder	peak
					and the second of the second s	12	holes and the last	Marken and	harppendet	
					and the second of	12 12	here and the second	and the second second	hearpart	peak
					and the second	12 12	holy and a second	and the second	hennynauth	
	0.0					12 12	holanoopo	an an an an an an	hannann	AVG
	0.0		0.5		(MHz)	12 una de la constantina	5	and the second	here of a state of the second se	
No.	0.150 Freq.	Reading	Factor	Result (dBuV)	(MHz)	Over Limi	5	Remark	10000000000000000000000000000000000000	AVG
	0.150			Result (dBuV) 42.48	(MHz)		5 +	-Antone Marine	30 31	AVG
No. 1	0.150 Freq. (MHz)	Reading (dBuV)	Factor (dB)	(dBuV)	(MHz) Limit (dBuV)	Over Limi (dB)	5 t Detector	-Antone Marine	30	AVG
No. 1 2	0.150 Freq. (MHz) 0.2100	Reading (dBuV) 24.65	Factor (dB) 17.83	(dBuV) 42.48	(MHz) Limit (dBuV) 63.20	Over Limi (dB) -20.72	5 t Detector QP	-Antone Marine	30	AVG
No. 1 2	0.150 Freq. (MHz) 0.2100 0.4420	Reading (dBuV) 24.65 23.49	Factor (dB) 17.83 17.83	(dBuV) 42.48 41.32	(MH2) Limit (dBuV) 63.20 57.02	Over Limi (dB) -20.72 -15.70	5 5 t Detector QP QP	-Antone Marine	30	AVG
No. 1 2 3	0.150 Freq. (MHz) 0.2100 0.4420 0.4620	Reading (dBuV) 24.65 23.49 13.02	Factor (dB) 17.83 17.83 17.83	(dBuV) 42.48 41.32 30.85	(MHz) Limit (dBuV) 63.20 57.02 46.66	Over Limi (dB) -20.72 -15.70 -15.81	5 5 T Detector QP QP AVG	-Antone Marine	30	AVG
No. 1 2 3 4 5	0.150 Freq. (MHz) 0.2100 0.4420 0.4620 0.5980	Reading (dBuV) 24.65 23.49 13.02 20.98	Factor (dB) 17.83 17.83 17.83 17.83	(dBuV) 42.48 41.32 30.85 38.84	(MHz) Limit (dBuV) 63.20 57.02 46.66 56.00	Over Limi (dB) -20.72 -15.70 -15.81 -17.16	t Detector QP AVG QP	-Antone Marine	30	AVG
No. 1 2 3 4 5 6	0.150 Freq. (MHz) 0.2100 0.4420 0.4620 0.5980 0.7780	Reading (dBuV) 24.65 23.49 13.02 20.98 12.83	Factor (dB) 17.83 17.83 17.83 17.83 17.86 17.86	(dBuV) 42.48 41.32 30.85 38.84 30.69	(MHz) Limit (dBuV) 63.20 57.02 46.66 56.00 46.00	Over Limi (dB) -20.72 -15.70 -15.81 -17.16 -15.31	5 5 QP QP AVG QP AVG	-Antone Marine	30	AVG
No. 1 2 3 4 5 6 7	0.150 Freq. (MHz) 0.2100 0.4420 0.4620 0.5980 0.7780 1.2380	Reading (dBuV) 24.65 23.49 13.02 20.98 12.83 22.54	Factor (dB) 17.83 17.83 17.83 17.86 17.86 17.86	(dBuV) 42.48 41.32 30.85 38.84 30.69 40.38	(MHz) Limit (dBuV) 63.20 57.02 46.66 56.00 46.00 56.00	Over Limi (dB) -20.72 -15.70 -15.81 -17.16 -15.31 -15.62	5 5 T Detector QP QP AVG QP AVG QP	-Antone Marine	30	AVG
No. 1 2 3 4 5 6 7 8	0.150 Freq. (MHz) 0.2100 0.4420 0.4620 0.5980 0.7780 1.2380 1.2980	Reading (dBuV) 24.65 23.49 13.02 20.98 12.83 22.54 12.79	Factor (dB) 17.83 17.83 17.83 17.83 17.86 17.86 17.84 17.84	(dBuV) 42.48 41.32 30.85 38.84 30.69 40.38 30.63	(MHz) Limit (dBuV) 63.20 57.02 46.66 56.00 46.00 56.00 46.00	Over Limi (dB) -20.72 -15.70 -15.81 -17.16 -15.31 -15.62 -15.37	5 Detector QP QP AVG QP AVG QP AVG	-Antone Marine	30	AVG
No. 1 2 3 4	0.150 Freq. (MHz) 0.2100 0.4420 0.4620 0.5980 0.7780 1.2380 1.2980 1.6220	Reading (dBuV) 24.65 23.49 13.02 20.98 12.83 22.54 12.79 20.44	Factor (dB) 17.83 17.83 17.83 17.86 17.86 17.86 17.84 17.84	(dBuV) 42.48 41.32 30.85 38.84 30.69 40.38 30.63 38.28	(MHz) Limit (dBuV) 63.20 57.02 46.66 56.00 46.00 56.00 46.00 56.00	Over Limi (dB) -20.72 -15.70 -15.81 -17.16 -15.31 -15.62 -15.37 -17.72	5 Detector QP AVG QP AVG QP AVG QP AVG QP	-Antone Marine	30	AVG
No. 1 2 3 4 5 6 7 8 9	0.150 Freq. (MHz) 0.2100 0.4420 0.4420 0.4620 0.5980 0.7780 1.2380 1.2380 1.2980 1.6220 1.7420	Reading (dBuV) 24.65 23.49 13.02 20.98 12.83 22.54 12.79 20.44 10.63	Factor (dB) 17.83 17.83 17.83 17.86 17.86 17.84 17.84 17.84 17.84	(dBuV) 42.48 41.32 30.85 38.84 30.69 40.38 30.63 38.28 28.47	(MHz) (MHz) Limit (dBuV) 63.20 57.02 46.66 56.00 46.00 56.00 46.00 56.00 46.00	Over Limi (dB) -20.72 -15.70 -15.81 -17.16 -15.31 -15.62 -15.37 -17.72 -17.53	5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-Antone Marine	30	AVG

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

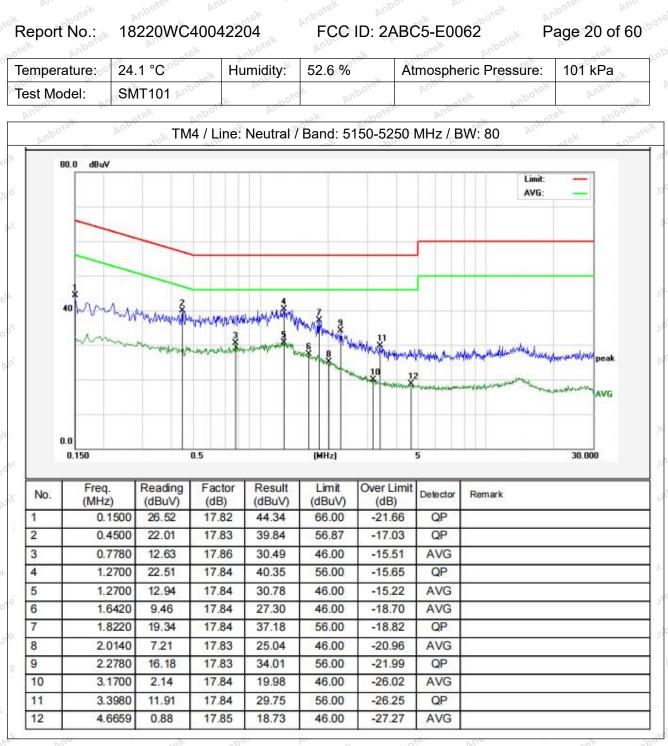
emper	ature: 24	l.1 °C ^{nbox}	Hu	umidity:	52.6 %	A	tmosphe	eric Pressure:	101 kPa
est Mo	odel: SI	ИТ97	, o,	Al.	K AN	boter	Anb	ek abotek	Anbor
VUpo,-	P.I.	Met	anboten	Aup	.e.K	abotek	Aupo,	- psi	itek anboiei
Anbo	Her Ant	TM	4 / Line:	Neutral /	Band: 51	150-5250	MHz / B	W: 80	stek unbo
	80.0 dBuV								
								Limit: AVG:	-
								AYU:	
	-								
									-
	4				_				
	40 Ann	2×		6 X	8				
		1 Marshall	or flipplus Autor	NIM ANALAN IN	When & 11				
	mm	Munu al	*	Summer 1	7. 114	12		and the second	A
			or any the second	allowed - A	10 × ×	Mailoni Sermach	mananan ina	and the second and the second	had advantation peak
			an a	walked - Pr	**************************************		mananan an	and and an an an and a second and and a second and and a s	hundrid which peak
	0.0		0.5	ware a	(MHz)		nandraanin sa	ant and an an an and a second and and a second and a second	Andrew Monte peak
				alveland A			ananan in sin	den en de la contra	Avylow Webp peak
No.	0.150 Freq.	Reading	0.5 Factor	Result	(MHz)	Over Limi	5	Remark	Andrew Wester peak
	0.150	Reading (dBuV)	0.5		(MHz)	the management of the second	5	Remark	Anglow Week AVG 30.000
No.	0.150 Freq. (MHz)	Reading (dBuV) 23.75	0.5 Factor (dB)	Result (dBuV)	(MHz)	Over Limi (dB)	5 t Detector	Remark	Avaluation (AVG
No.	0.150 Freq. (MHz) 0.2380	Reading (dBuV) 23.75 22.95	0.5 Factor (dB) 17.83	Result (dBuV) 41.58	(MHz) Limit (dBuV) 62.16	Over Limi (dB) -20.58	5 t Detector QP	Remark	Averal AVG 30.000
No. 1 2	0.150 Freq. (MHz) 0.2380 0.4500	Reading (dBuV) 23.75 22.95 12.25	0.5 Factor (dB) 17.83 17.83	Result (dBuV) 41.58 40.78	(MHz) (MHz) Limit (dBuV) 62.16 56.87	Over Limi (dB) -20.58 -16.09	5 5 t Detector QP QP	Remark	Avandraha Markara peak AVG 30.000
No. 1 2 3	0.150 Freq. (MHz) 0.2380 0.4500 0.4500	Reading (dBuV) 23.75 22.95 12.25 12.60	0.5 Factor (dB) 17.83 17.83 17.83	Result (dBuV) 41.58 40.78 30.08	(MHz) (MHz) Limit (dBuV) 62.16 56.87 46.87	Over Limi (dB) -20.58 -16.09 -16.79	5 T Detector QP QP AVG	Remark	Avylun Webr peak
No. 1 2 3 4	0.150 Freq. (MHz) 0.2380 0.4500 0.4500 0.7780	Reading (dBuV) 23.75 22.95 12.25 12.60 13.04	0.5 Factor (dB) 17.83 17.83 17.83 17.83	Result (dBuV) 41.58 40.78 30.08 30.46	(MHz) (MHz) Limit (dBuV) 62.16 56.87 46.87 46.87 46.00	Over Limi (dB) -20.58 -16.09 -16.79 -15.54	5 T Detector QP QP AVG AVG	Remark	Anglow Week AVG 30.000
No. 1 2 3 4 5	0.150 Freq. (MHz) 0.2380 0.4500 0.4500 0.4500 0.7780 1.3380	Reading (dBuV) 23.75 22.95 12.25 12.60 13.04 22.99	0.5 Factor (dB) 17.83 17.83 17.83 17.83 17.86 17.84	Result (dBuV) 41.58 40.78 30.08 30.46 30.88	(MHz) (MHz) Limit (dBuV) 62.16 56.87 46.87 46.00 46.00	Over Limi (dB) -20.58 -16.09 -16.79 -15.54 -15.12	5 T Detector QP QP AVG AVG AVG	Remark	Avaluation (AVG
No. 1 2 3 4 5 6	0.150 Freq. (MHz) 0.2380 0.4500 0.4500 0.7780 1.3380 1.3540	Reading (dBuV) 23.75 22.95 12.25 12.60 13.04 22.99 10.29	0.5 Factor (dB) 17.83 17.83 17.83 17.83 17.86 17.84	Result (dBuV) 41.58 40.78 30.08 30.46 30.88 40.83	(MHz) (MHz) Limit (dBuV) 62.16 56.87 46.87 46.00 46.00 56.00	Over Limi (dB) -20.58 -16.09 -16.79 -15.54 -15.12 -15.17	5 T Detector QP QP AVG AVG AVG AVG QP	Remark	Averal AVG 30.000
No. 1 2 3 4 5 6 7	0.150 Freq. (MHz) 0.2380 0.4500 0.4500 0.7780 1.3380 1.3540 1.6460	Reading (dBuV) 23.75 22.96 12.25 12.60 13.04 22.99 10.29 19.34	0.5 Factor (dB) 17.83 17.83 17.83 17.83 17.86 17.84 17.84 17.84	Result (dBuV) 41.58 40.78 30.08 30.46 30.88 40.83 28.13	(MHz) (MHz) Limit (dBuV) 62.16 56.87 46.87 46.00 46.00 56.00 46.00	Over Limi (dB) -20.58 -16.09 -16.79 -15.54 -15.12 -15.17 -17.87	t Detector QP QP AVG AVG AVG AVG AVG	Remark	Averal AVG 30.000
No. 1 2 3 4 5 6 7 8	0.150 Freq. (MHz) 0.2380 0.4500 0.4500 0.4500 0.7780 1.3380 1.3380 1.3540 1.6460 1.9740	Reading (dBuV) 23.75 22.95 12.25 12.60 13.04 22.99 10.29 10.29 19.34 8.10	0.5 Factor (dB) 17.83 17.83 17.83 17.83 17.84 17.84 17.84 17.84 17.83	Result (dBuV) 41.58 40.78 30.08 30.46 30.88 40.83 28.13 37.17	(MHz) (MHz) Limit (dBuV) 62.16 56.87 46.87 46.00 46.00 56.00 46.00 56.00	Over Limi (dB) -20.58 -16.09 -15.54 -15.12 -15.17 -17.87 -18.83	t Detector QP QP AVG AVG AVG AVG QP AVG QP	Remark	Averal AVG 30.000
No. 1 2 3 4 5 6 7 8 9	0.150 Freq. (MHz) 0.2380 0.4500 0.4500 0.4500 0.7780 1.3380 1.3540 1.6460 1.9740 1.9860	Reading (dBuV) 23.75 22.95 12.25 12.60 13.04 22.99 10.29 19.34 8.10 5.86	0.5 Factor (dB) 17.83 17.83 17.83 17.83 17.84 17.84 17.84 17.84 17.83	Result (dBuV) 41.58 40.78 30.08 30.46 30.88 40.83 28.13 37.17 25.93	(MHz) (MHz) (MHz) (dBuV) 62.16 56.87 46.87 46.87 46.00 46.00 56.00 46.00 56.00 46.00	Over Limi (dB) -20.58 -16.09 -16.79 -15.54 -15.12 -15.17 -17.87 -18.83 -20.07	5 Detector QP AVG AVG AVG AVG QP AVG QP AVG QP AVG	Remark	Avid AVG 30.000

Note: Only record the worst data (802.11ax(HEW80)) in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

Anbotek Product Safety


est Model	per contraction of the second	.1 °C	HU	umidity:	52.6 %	A	tmosphe	eric Press	sure:	101 k	Pa
upor at	: SN	/T101	DOL.	Du.	K Di	boten	AUD	ek .	abotek	P.C	100,00
7.9.1	- por	ntek.	Anborot	Ann	10.	botek	Aupo.			ek.	Anbore
Anbore	AUD	T Meters	M4 / Line	e: Line / E	Band: 515	50-5250 N	1Hz / BV	V: 80	And	- diek	Anbo
80.0	dBuV										5
									Limit: AVG:	_	
									1		
	-										
									_		
	1	2									
40	MAR	8		5	7						
10 M	an makant	and humphings	10 Marchald	Normation	Cati Lan 3						
-	alle.	2	4	5	North Contraction	j1					
1.0	- a north	- Month Martin	monting	a supplication of the	8 10	my Support the	A LINE CARL	manulations	Mar	and the second sec	
			8.9	1.12	TO CALL	1 200 4	developping .		and the state of t	Million of the local	peak
			20		and the second	my how how how how	developping .		- Marine	Sector and	peak
			2.5		a contraction of	12	nesterstaden	la martine of future and	manes -	and the second	peak AVG
					The second	new 12	randrija skradava	land and frequence	and when the	and the second	
						12 manufactures	numbra namatura	han an a	and and	and the second	
0.0						12 new manufacture	linnaging bar, ng pang mag	lan an a	and make	a normanda	AVG
0.0	0		0.5		(MHz)	12 12 12	2	to - and - and - and -	- Marine	and the second	AVG
0.15	Freq.	Reading	Factor	Result	(MHz)	Over Limit	5	Remark	and the second s	a normanda	AVG
0.150 No.				Result (dBuV) 43.43	(MHz)		5	ler - a ler a failean de l	ngune	a normanda	AVG
0.150 No. (Freq. MHz)	Reading (dBuV)	Factor (dB)	(dBuV)	(MHz) Limit (dBuV)	Over Limit (dB)	5 Detector	ler - a ler a failean de l	- Andrew	a normanda	AVG
0.150 No. (1 2	Freq. MHz) 0.1860 0.4580 0.4620	Reading (dBuV) 25.60 24.88 13.39	Factor (dB) 17.83 17.83 17.83	(dBuV) 43.43 42.71 31.22	(MHz) Limit (dBuV) 64.21	Over Limit (dB) -20.78 -14.02 -15.44	5 Detector QP QP AVG	ler - a ler a failean de l		a normanda	AVG
No. (1 2 3	Freq. MHz) 0.1860 0.4580	Reading (dBuV) 25.60 24.88	Factor (dB) 17.83 17.83	(dBuV) 43.43 42.71	(MHz) Limit (dBuV) 64.21 56.73	Over Limit (dB) -20.78 -14.02	5 Detector QP QP	ler - a ler a failean de l		a normanda	AVG
0.150 No. (1 2 3 4	Freq. MHz) 0.1860 0.4580 0.4620	Reading (dBuV) 25.60 24.88 13.39	Factor (dB) 17.83 17.83 17.83	(dBuV) 43.43 42.71 31.22	(MHz) Limit (dBuV) 64.21 56.73 46.66	Over Limit (dB) -20.78 -14.02 -15.44	5 Detector QP QP AVG	ler - a ler a failean de l		a normanda	AVG
0.150 No. (1 2 3 4 5	Freq. MHz) 0.1860 0.4580 0.4620 0.7780	Reading (dBuV) 25.60 24.88 13.39 12.73	Factor (dB) 17.83 17.83 17.83 17.83	(dBuV) 43.43 42.71 31.22 30.59	(MHz) Limit (dBuV) 64.21 56.73 46.66 46.00	Over Limit (dB) -20.78 -14.02 -15.44 -15.41	5 Detector QP QP AVG AVG	ler - a ler a failean de l	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	a normanda	AVG
0.150 No. (1 2 3 4 5 6	Freq. MHz) 0.1860 0.4580 0.4620 0.7780 1.2340	Reading (dBuV) 25.60 24.88 13.39 12.73 23.53	Factor (dB) 17.83 17.83 17.83 17.83 17.86 17.84	(dBuV) 43.43 42.71 31.22 30.59 41.37	(MHz) Limit (dBuV) 64.21 56.73 46.66 46.00 56.00	Over Limit (dB) -20.78 -14.02 -15.44 -15.41 -14.63	5 Detector QP QP AVG AVG QP	ler - a ler a failean de l		a normanda	AVG
0.150 No. (1 2 3 4 5 6 7	Freq. MHz) 0.1860 0.4580 0.4620 0.7780 1.2340 1.3660	Reading (dBuV) 25.60 24.88 13.39 12.73 23.53 12.92	Factor (dB) 17.83 17.83 17.83 17.83 17.86 17.84 17.84	(dBuV) 43.43 42.71 31.22 30.59 41.37 30.76	(MHz) Limit (dBuV) 64.21 56.73 46.66 46.00 56.00 46.00	Over Limit (dB) -20.78 -14.02 -15.44 -15.41 -14.63 -15.24	5 Detector QP QP AVG AVG QP AVG QP	ler - a ler a failean de l		a normanda	AVG
0.150 No. (1 2 3 4 5 6 7 8	Freq. MHz) 0.1860 0.4580 0.4620 0.7780 1.2340 1.3660 1.6500	Reading (dBuV) 25.60 24.88 13.39 12.73 23.53 12.92 20.11	Factor (dB) 17.83 17.83 17.83 17.83 17.86 17.84 17.84 17.84	(dBuV) 43.43 42.71 31.22 30.59 41.37 30.76 37.95	(MHz) Limit (dBuV) 64.21 56.73 46.66 46.00 56.00 46.00 56.00	Over Limit (dB) -20.78 -14.02 -15.44 -15.41 -14.63 -15.24 -15.24 -18.05	5 Detector QP AVG AVG QP AVG QP AVG QP	ler - a ler a failean de l		a normanda	AVG
0.150	Freq. MHz) 0.1860 0.4580 0.4620 0.7780 1.2340 1.3660 1.6500 1.8100	Reading (dBuV) 25.60 24.88 13.39 12.73 23.53 12.92 20.11 8.91	Factor (dB) 17.83 17.83 17.83 17.83 17.84 17.84 17.84 17.84	(dBuV) 43.43 42.71 31.22 30.59 41.37 30.76 37.95 26.75	(MHz) Limit (dBuV) 64.21 56.73 46.66 46.00 56.00 46.00 56.00 46.00	Over Limit (dB) -20.78 -14.02 -15.44 -15.41 -14.63 -15.24 -18.05 -19.25	5 Detector QP AVG AVG QP AVG QP AVG QP AVG	ler - a ler a failean de l		a normanda	AVG

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

Note: Only record the worst data (802.11ax(HEW80)) in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

Anbotek Product Safety

Report No.: 18220WC40042204

FCC ID: 2ABC5-E0062

3. Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2020 section 12.2 (b)
Anbotek Anbotek Anbotek	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value.
Procedure:	iii) Set VBW >= RBW. iv) Set detector = peak.
otek Anboten Anu obotek Anbotek I	v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

3.1. EUT Operation

Operating Envir	onment: Anboren Anboren Anboren Anboren Anboren Anboren
Anboten tek Anbotek	1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
Anbotek Anbote	2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Test mode:	3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Anbotek Anbotek	4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

3.2. Test Setup

	3.3. Test Dat Temperature:	a 25.3 °C	Humidity:	49 %	Atmospheric	Pressure: off	101 kPa	Hek .
nbo ta	ibotek Anto	tek Anboi	Anborek	Anbore	Antorek	Anbotek	Anboten	A1
otek		Ando		Spectrum A	nalyzer			Anbo

Please Refer to Appendix for Details.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: 2ABC5-E0062

Page 22 of 60

4. Maximum conducted output power

Procedure:	Refer to ANSI C63.10-2020 section 12.4
Test Method:	ANSI C63.10-2013, section 12.4
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbote ek Anbotek Anb	employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to- point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	However, fixed point-to-point U-NII devices operating in this band may
Test Limit:	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.
nbotek Anbotek	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Anbotek Anbo	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.
Test Requirement:	47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)

4.1. EUT Operation

Operating Envir	conment: at Anborek Anborek Anborek Anbor
ek Anboto potek Anbotek	1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
Anbotek Anbo Anbotek Ar	2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Test mode:	3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Anbotek Anbot Anbotek An	4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: 2ABC5-E0062 Page 23 of 60

4.2. Test Setup

Anbotek		EUT	Spec	trum Analyzer	Ar		Anbotek	
an- ak abotek	Anborc	A". "otek	Anboter	And	abotek	Anboten	Anbo	
			Yo.					

4.3. Test Data

Temperature:	25.3 °C	_*e ^k	Humidity:	49 %	Atmospheric Pressure:	101 kPa
	- No	~O.	[24]	_20.		V0.

Please Refer to Appendix for Details.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: 2ABC5-E0062

Page 24 of 60

5. Power spectral density

Test Requirement:	47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)
Anborek Anbor	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.
ntek Anbotek Ant	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Anbotek Anbotek	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.
Test Limit: Anborek Anborek Anborek	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power.
Anbotek Anbor Anbotek Anbotek Anbotek Anbotek Anbotek Anbote	Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Test Method:	ANSI C63.10-2020, section 12.6
AND DATE STREET	

5.1. EUT Operation

Operating Environment:

	A A A A A A A A A A A A A A A A A A A
k Anbotek	1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
ote: Ant Inbotek Anbo Anbotek Af	2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Test mode:	3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
nbotek Anbo	4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

Page 25 of 60 FCC ID: 2ABC5-E0062

5.2. Test Setup

	Anbotek		EUT	Spec	trum Analyzer	An		Anbotek	
<u></u>	ek Anbotek	Anborc	A". potek	Anboter	And	anbotek	Anboten	Anbo	

5.3. Test Data

Temperature:	25.3 °C	Humidity:	49 %	Atmospheric Pressure:	101 kPa
- AV	.V. 100.	lev.	_26.		~O.

Please Refer to Appendix for Details.

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755-26066440 Fax:(86)0755-26014772 Email:service@anbotek.com

Anbotek Product Safety

Report No.: 18220WC40042204 FCC ID: 2ABC5-E0062 Page 26 of 60

6. Emission bandwidth and occupied bandwidth

U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.	
Test Requirement:	
U-NII 3, U-NII 4: 47 CFR Part 15.407(e)	notek Anbor
U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.	
Test Limit: U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 the minimum 6 dB bandwidth of U-NII devices shall be at least	
Test Method: ANSI C63.10-2020, section 6.9 & 12.5 KDB 789033 D02, Clause C.2	
Emission bandwidth:	
a) Set RBW = approximately 1% of the emission bandwidth.	or to
b) Set the VBW > RBW.	
c) Detector = peak.	
d) Trace mode = max hold.	
 e) Measure the maximum width of the emission that is 26 dB of peak of the emission. 	lown from the
Compare this with the RBW setting of the instrument. Readjus repeat measurement	t RBW and
as needed until the RBW/EBW ratio is approximately 1%.	
Occupied bandwidth:	
a) The instrument center frequency is set to the nominal EUT of	channel center
frequency. The	
frequency span for the spectrum analyzer shall be between 1. 5.0 times the OBW.	5 times and
b) The nominal IF filter bandwidth (3 dB RBW) shall be in the r	ange of 1% to
Procedure: and VBW shall be approximately three times the RBW, unless specified by the	otherwise
applicable requirement.	
c) Set the reference level of the instrument as required, keepir from exceeding the	ng the signal
maximum input mixer level for linear operation. In general, the spectral envelope	peak of the
shall be more than [10 log (OBW/RBW)] below the reference lo	evel Specific
guidance is given	abotek An
in 4.1.5.2.	Antek
 d) Step a) through step c) might require iteration to adjust with specified range. 	
e) Video averaging is not permitted. Where practical, a sample single sweep mode	e detection and
shall be used. Otherwise, peak detection and max hold mode	(until the trace
stabilizes) shall be	
And And used. And And And And And And And And	
f) Use the 99% power bandwidth function of the instrument (if	available) and

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

g) If the instrument does not have a 99% power bandwidth function, then the trace data points are

Page 27 of 60

recovered and directly summed in linear power terms. The recovered amplitude data points,

beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached;

that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the

total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is

the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument

display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may

be reported in addition to the plot(s).

6 dB emission bandwidth:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3 >= RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.1. EUT Operation

Operating Environment:

	onnent An
Anbotek An Anbotek A	1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
Anboi Anbotek Anbotek	2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Test mode:	3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Anbotek Anbotek	4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: 2ABC5-E0062 Page 28 of 60

6.2. Test Setup

Anbotek		EUT	Spe	ctrum Analyzer	Þ		Anbotek	
ek potek	Anborc	A''.	Anboter	Aup-	botek	Anboten	Ant	
			Mo.					

6.3. Test Data

Temperature:	25.3 °C	Humidity:	49 %	Atmospheric Pressure:	101 kPa
- AV	.V. 10'	12×1	_101		~O.

Please Refer to Appendix for Details.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: 2ABC5-E0062

Page 29 of 60

7. Band edge emissions (Radiated)

k wotek	47 OED Davit 45 407(h	X(4) pole pro	-X	stek Aupo
nboten Anbe	47 CFR Part 15.407(b			
st Requirement:	47 CFR Part 15.407(b			
Anbo. A.	47 CFR Part 15.407(b)(10)	Anbo	. otek an
Anbotek Ant	For transmitters opera of the 5.15-5.35 GHz b			
ek nboten	For transmitters opera	ting solely in the 5.72	5-5.850 GHz ba	nd: Anbe
ek potek	All emissions shall be) **	
por An. otek	above or below the ba			
abotek Anbu	above or below the ba			
An-	edge increasing linear			
Aupor Ar.	below the band edge,			
abotek Anb	increasing linearly to a	- OV	4 vo0 v	
Ann	MHz Mbo	MHz	MHz M	GHz
anborc P	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
k botek	¹ 0.495-0.505	16.69475-	608-614	5.35-5.46
poten And	sotek Anbor	16.69525	boten Ano	
Anbotek Anboter	2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75
hotek Anbore	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
Ant	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
Anbore An	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5
And	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
st Limit:	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4
aboten Anbe	6.31175-6.31225	123-138	2200-2300	14.47-14.5
tek aboten	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
Anbo, Anbo	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4
Ann	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
Anbore Ar	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
k notek	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
And k	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
tek nboten	12.57675-12.57725	322-335.4	3600-4400	(²)
WO	12.0101012.01120			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz

²Above 38.6

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

p.v.	omissions. The provision	ns in § 15.35apply to these measur	omonto nooter
	emissions. The provision	ins in § 15.55appiy to these measur	ements.
	-Anboy his wotek	Anbote Ant	otek Anbu
		where in this subpart, the emission	
	following table:	not exceed the field strength levels	s specified in the
Am.		otek polo All	Anboten Anb
	Frequency (MHz)	Field strength	Measurement distance
	he herek	(microvolts/meter)	(meters)
	0.009-0.490	2400/F(kHz)	300
Anbo	0.490-1.705	2400/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3rek Anbore
	88-216	150 **	3
	216-960	200 **	30010K Anto
	Above 960	500	3
		paragraph (g), fundamental emiss	ione from
		erating under this section shall not b	
		MHz, 76-88 MHz, 174-216 MHz or	
		in these frequency bands is permit	
		., §§ 15.231 and 15.241.	lou unuor outorer
	In the emission table ab	ove the tighter limit applies at the t	hand edges
	31 . OV	ove, the tighter limit applies at the t	
	The emission limits show	wn in the above table are based on	measurements
	The emission limits show employing a CISPR qua	wn in the above table are based on si-peak detector except for the free	measurements quency bands 9–
	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar	wn in the above table are based on isi-peak detector except for the free nd above 1000 MHz. Radiated emis	measurements quency bands 9– ssion limits in
	The emission limits shown employing a CISPR qua 90 kHz, 110–490 kHz are these three bands are b	wn in the above table are based on si-peak detector except for the free	measurements quency bands 9– ssion limits in
Anbotek Anbotek Anto	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are b detector.	wn in the above table are based on isi-peak detector except for the free nd above 1000 MHz. Radiated emis ased on measurements employing	measurements quency bands 9– ssion limits in
Anborek Anbor Anborek Ant Anborek Mit	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are b detector. ANSI C63.10-2020, sec	wn in the above table are based on isi-peak detector except for the free nd above 1000 MHz. Radiated emis	measurements quency bands 9– ssion limits in
Method:	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are b detector. ANSI C63.10-2020, sec Above 1GHz:	wn in the above table are based on isi-peak detector except for the free ad above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7	measurements quency bands 9– ssion limits in an average
Anborek Anborek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are b detector. ANSI C63.10-2020, sec Above 1GHz: a. For above 1GHz, the	wn in the above table are based on isi-peak detector except for the free ad above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rot	measurements quency bands 9– ssion limits in an average tating table 1.5
Method:	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz are these three bands are b detector. ANSI C63.10-2020, sec Above 1GHz: a. For above 1GHz, the meters above the groun	wn in the above table are based on isi-peak detector except for the free and above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rot d at a 3 meter fully-anechoic chaml	measurements quency bands 9– ssion limits in an average tating table 1.5 ber. The table wa
Method: Micore	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz are these three bands are b detector. ANSI C63.10-2020, sec Above 1GHz: a. For above 1GHz, the meters above the groun	wn in the above table are based on isi-peak detector except for the free ad above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rot	measurements quency bands 9– ssion limits in an average tating table 1.5 ber. The table wa
Anborek Anbore Anborek Anti Method: Notek Anborek Anbore Anborek Anbore	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are b detector. ANSI C63.10-2020, sec Above 1GHz: a. For above 1GHz, the meters above the groun rotated 360 degrees to o b. The EUT was set 3 m	wn in the above table are based on isi-peak detector except for the free and above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rot d at a 3 meter fully-anechoic cham determine the position of the highes neters away from the interference-re	measurements quency bands 9– ssion limits in an average tating table 1.5 ber. The table wa st radiation. eceiving antenna,
Anborek Anbor Anborek Ant Anborek Ant Method; podek Anborek Anborek Anborek Anborek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are b detector. ANSI C63.10-2020, sec Above 1GHz: a. For above 1GHz, the meters above the groun rotated 360 degrees to o b. The EUT was set 3 m	wn in the above table are based on isi-peak detector except for the free ad above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rot d at a 3 meter fully-anechoic chamil determine the position of the highes	measurements quency bands 9– ssion limits in an average tating table 1.5 ber. The table wa st radiation. eceiving antenna,
Anborek Anbor Anborek Ant Anborek Ant Method: noorek Sorek Anborek Anborek Anborek Anborek Anborek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are b detector. ANSI C63.10-2020, sec Above 1GHz: a. For above 1GHz, the meters above the groun rotated 360 degrees to o b. The EUT was set 3 m which was mounted on the	wn in the above table are based on isi-peak detector except for the free and above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rot d at a 3 meter fully-anechoic cham determine the position of the highes neters away from the interference-re	tating table 1.5 ber. The table wast radiation. eceiving antenna, a tower.
Method:	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are b detector. ANSI C63.10-2020, sec Above 1GHz: a. For above 1GHz, the meters above the groun rotated 360 degrees to o b. The EUT was set 3 m which was mounted on to c. The antenna height is ground to determine the	wn in the above table are based on isi-peak detector except for the free and above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rot d at a 3 meter fully-anechoic cham determine the position of the highes neters away from the interference-re- the top of a variable-height antenna s varied from one meter to four meter maximum value of the field strengt	measurements quency bands 9– ssion limits in an average tating table 1.5 ber. The table wa st radiation. eceiving antenna, a tower. ers above the th. Both horizonta
Method: offer	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are b detector. ANSI C63.10-2020, sec Above 1GHz: a. For above 1GHz, the meters above the groun rotated 360 degrees to o b. The EUT was set 3 m which was mounted on to c. The antenna height is ground to determine the	wn in the above table are based on isi-peak detector except for the free and above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rot d at a 3 meter fully-anechoic cham determine the position of the highes neters away from the interference-re- the top of a variable-height antenna s varied from one meter to four meter	measurements quency bands 9– ssion limits in an average tating table 1.5 ber. The table wa st radiation. eceiving antenna, a tower. ers above the th. Both horizonta
Method:	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are b detector. ANSI C63.10-2020, sec Above 1GHz: a. For above 1GHz, the meters above the groun rotated 360 degrees to o b. The EUT was set 3 m which was mounted on to c. The antenna height is ground to determine the and vertical polarization	wn in the above table are based on isi-peak detector except for the free ad above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rot d at a 3 meter fully-anechoic cham determine the position of the highes neters away from the interference-re the top of a variable-height antenna s varied from one meter to four meter maximum value of the field strengt s of the antenna are set to make th	tating table 1.5 ber. The table wast radiation. ecciving antenna, a tower. ers above the th. Both horizonta e measurement.
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are b detector. ANSI C63.10-2020, sec Above 1GHz: a. For above 1GHz, the meters above the groun rotated 360 degrees to o b. The EUT was set 3 m which was mounted on the c. The antenna height is ground to determine the and vertical polarization d. For each suspected e	wn in the above table are based on isi-peak detector except for the free and above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rot d at a 3 meter fully-anechoic cham determine the position of the highes neters away from the interference-re- the top of a variable-height antenna s varied from one meter to four meter maximum value of the field strengt	tating table 1.5 ber. The table wast radiation. ecciving antenna, a tower. ers above the th. Both horizonta e measurement. its worst case
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are b detector. ANSI C63.10-2020, sec Above 1GHz: a. For above 1GHz, the meters above the groun rotated 360 degrees to o b. The EUT was set 3 m which was mounted on to c. The antenna height is ground to determine the and vertical polarization d. For each suspected e and then the antenna was	wn in the above table are based on isi-peak detector except for the free and above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rot d at a 3 meter fully-anechoic cham determine the position of the highes neters away from the interference-re- the top of a variable-height antenna s varied from one meter to four meter maximum value of the field strengt s of the antenna are set to make the emission, the EUT was arranged to	tating table 1.5 ber. The table wast radiation. eceiving antenna, a tower. ers above the th. Both horizonta e measurement. its worst case 4 meters (for the
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are b detector. ANSI C63.10-2020, sec Above 1GHz: a. For above 1GHz, the meters above the groun rotated 360 degrees to o b. The EUT was set 3 m which was mounted on to c. The antenna height is ground to determine the and vertical polarization d. For each suspected e and then the antenna wa test frequency of below	wn in the above table are based on isi-peak detector except for the free and above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rot d at a 3 meter fully-anechoic cham determine the position of the highes neters away from the interference-re- the top of a variable-height antenna a varied from one meter to four meter maximum value of the field strengt s of the antenna are set to make the emission, the EUT was arranged to as tuned to heights from 1 meter to	tating table 1.5 ber. The table wast radiation. eceiving antenna, a tower. ers above the th. Both horizonta e measurement. its worst case 4 meters (for the heights 1 meter)
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are b detector. ANSI C63.10-2020, sec Above 1GHz: a. For above 1GHz, the meters above the groun rotated 360 degrees to o b. The EUT was set 3 m which was mounted on to c. The antenna height is ground to determine the and vertical polarization d. For each suspected e and then the antenna wa test frequency of below	wn in the above table are based on isi-peak detector except for the free and above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rot d at a 3 meter fully-anechoic cham determine the position of the highes neters away from the interference-re- the top of a variable-height antenna a varied from one meter to four meter maximum value of the field strengt s of the antenna are set to make the emission, the EUT was arranged to as tuned to heights from 1 meter to 30MHz, the antenna was tuned to height	tating table 1.5 ber. The table wast radiation. eceiving antenna, a tower. ers above the th. Both horizonta e measurement. its worst case 4 meters (for the heights 1 meter)
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are b detector. ANSI C63.10-2020, sec Above 1GHz: a. For above 1GHz, the meters above the groun rotated 360 degrees to o b. The EUT was set 3 m which was mounted on to c. The antenna height is ground to determine the and vertical polarization d. For each suspected e and then the antenna wa test frequency of below and the rotatable table v maximum reading.	wn in the above table are based on isi-peak detector except for the free ad above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rot d at a 3 meter fully-anechoic cham determine the position of the highes heters away from the interference-re the top of a variable-height antenna s varied from one meter to four meter maximum value of the field strengt s of the antenna are set to make the emission, the EUT was arranged to as tuned to heights from 1 meter to 30MHz, the antenna was tuned to h was turned from 0 degrees to 360 d	tating table 1.5 ber. The table wast radiation. ecciving antenna, a tower. ers above the th. Both horizonta e measurement. its worst case 4 meters (for the heights 1 meter) legrees to find the
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are b detector. ANSI C63.10-2020, sec Above 1GHz: a. For above 1GHz, the meters above the groun rotated 360 degrees to o b. The EUT was set 3 m which was mounted on to c. The antenna height is ground to determine the and vertical polarization d. For each suspected e and then the antenna was test frequency of below and the rotatable table v maximum reading. e. The test-receiver system	wn in the above table are based on isi-peak detector except for the free and above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rot d at a 3 meter fully-anechoic cham determine the position of the highes neters away from the interference-re- the top of a variable-height antenna s varied from one meter to four meter maximum value of the field strengt s of the antenna are set to make the emission, the EUT was arranged to as tuned to heights from 1 meter to 30MHz, the antenna was tuned to I was turned from 0 degrees to 360 d	tating table 1.5 ber. The table wast radiation. ecciving antenna, a tower. ers above the th. Both horizonta e measurement. its worst case 4 meters (for the heights 1 meter) legrees to find the
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are b detector. ANSI C63.10-2020, sec Above 1GHz: a. For above 1GHz, the meters above the groun rotated 360 degrees to o b. The EUT was set 3 m which was mounted on to c. The antenna height is ground to determine the and vertical polarization d. For each suspected e and then the antenna wa test frequency of below and the rotatable table v maximum reading. e. The test-receiver syst Bandwidth with Maximu	wn in the above table are based on isi-peak detector except for the free and above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rot d at a 3 meter fully-anechoic cham determine the position of the highes neters away from the interference-re- the top of a variable-height antenna a varied from one meter to four meter maximum value of the field strengt s of the antenna are set to make the emission, the EUT was arranged to as tuned to heights from 1 meter to 30MHz, the antenna was tuned to H was turned from 0 degrees to 360 d tem was set to Peak Detect Function m Hold Mode.	measurements quency bands 9– ssion limits in an average tating table 1.5 ber. The table wa st radiation. eceiving antenna, a tower. ers above the th. Both horizonta e measurement. its worst case 4 meters (for the heights 1 meter) legrees to find the on and Specified
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are b detector. ANSI C63.10-2020, sec Above 1GHz: a. For above 1GHz, the meters above the groun rotated 360 degrees to o b. The EUT was set 3 m which was mounted on t c. The antenna height is ground to determine the and vertical polarization d. For each suspected e and then the antenna wa test frequency of below and the rotatable table v maximum reading. e. The test-receiver syst Bandwidth with Maximu f. If the emission level of	wn in the above table are based on isi-peak detector except for the free and above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rot d at a 3 meter fully-anechoic cham determine the position of the highes neters away from the interference-re- the top of a variable-height antenna a varied from one meter to four meter maximum value of the field strengt s of the antenna are set to make the emission, the EUT was arranged to as tuned to heights from 1 meter to 30MHz, the antenna was tuned to 1 was turned from 0 degrees to 360 d tem was set to Peak Detect Function m Hold Mode. f the EUT in peak mode was 10dB	tating table 1.5 ber. The table wast radiation. eceiving antenna, a tower. ers above the th. Both horizonta e measurement. its worst case 4 meters (for the heights 1 meter) legrees to find the on and Specified lower than the
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are b detector. ANSI C63.10-2020, sec Above 1GHz: a. For above 1GHz, the meters above the groun rotated 360 degrees to o b. The EUT was set 3 m which was mounted on to c. The antenna height is ground to determine the and vertical polarization d. For each suspected e and then the antenna wa test frequency of below and the rotatable table v maximum reading. e. The test-receiver syst Bandwidth with Maximu f. If the emission level of limit specified, then test	wn in the above table are based on si-peak detector except for the free above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rot d at a 3 meter fully-anechoic cham determine the position of the highes neters away from the interference-re- the top of a variable-height antenna a varied from one meter to four meter maximum value of the field strengt s of the antenna are set to make the emission, the EUT was arranged to as tuned to heights from 1 meter to 30MHz, the antenna was tuned to H was turned from 0 degrees to 360 d tem was set to Peak Detect Function m Hold Mode. f the EUT in peak mode was 10dB ing could be stopped and the peak	tating table 1.5 ber. The table wast radiation. eceiving antenna, a tower. ers above the th. Both horizonta e measurement. its worst case 4 meters (for the heights 1 meter) legrees to find the on and Specified lower than the values of the EU
Method: Minorek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are b detector. ANSI C63.10-2020, sec Above 1GHz: a. For above 1GHz, the meters above the groun rotated 360 degrees to o b. The EUT was set 3 m which was mounted on c. The antenna height is ground to determine the and vertical polarization d. For each suspected e and then the antenna wa test frequency of below and the rotatable table v maximum reading. e. The test-receiver syst Bandwidth with Maximu f. If the emission level of limit specified, then testi would be reported. Other	wn in the above table are based on isi-peak detector except for the free and above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rot d at a 3 meter fully-anechoic cham determine the position of the highes neters away from the interference-re- the top of a variable-height antenna a varied from one meter to four meter maximum value of the field strengt s of the antenna are set to make the emission, the EUT was arranged to as tuned to heights from 1 meter to 30MHz, the antenna was tuned to 1 was turned from 0 degrees to 360 d tem was set to Peak Detect Function m Hold Mode. f the EUT in peak mode was 10dB	measurements quency bands 9– ssion limits in an average tating table 1.5 ber. The table wast radiation. eceiving antenna, a tower. ers above the th. Both horizonta e measurement. its worst case 4 meters (for the heights 1 meter) legrees to find the on and Specified lower than the values of the EU ave 10dB margin
otek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek K Anbotek Anbotek Anbotek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are b detector. ANSI C63.10-2020, sec Above 1GHz: a. For above 1GHz, the meters above the groun rotated 360 degrees to o b. The EUT was set 3 m which was mounted on c. The antenna height is ground to determine the and vertical polarization d. For each suspected e and then the antenna wa test frequency of below and the rotatable table v maximum reading. e. The test-receiver syst Bandwidth with Maximu f. If the emission level of limit specified, then testi would be reported. Other	wn in the above table are based on isi-peak detector except for the free ad above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rot d at a 3 meter fully-anechoic chaml determine the position of the highes heters away from the interference-re- the top of a variable-height antenna s varied from one meter to four meter maximum value of the field strengt s of the antenna are set to make the emission, the EUT was arranged to as tuned to heights from 1 meter to 30MHz, the antenna was tuned to I was turned from 0 degrees to 360 d tem was set to Peak Detect Function m Hold Mode. f the EUT in peak mode was 10dB ing could be stopped and the peak erwise the emissions that did not ha	measurements quency bands 9– ssion limits in an average tating table 1.5 ber. The table was st radiation. eceiving antenna a tower. ers above the th. Both horizonta e measurement. its worst case 4 meters (for the heights 1 meter) legrees to find the on and Specified lower than the values of the EU ave 10dB margin

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: 2ABC5-E0062

channel.

h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

i. Repeat above procedures until all frequencies measured was complete. Remark:

1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

7.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

Anbotek

Product Safety

Report No.:

7.2. Test Setup

18220WC40042204

>

>

EUT &

Peripheral

1.5 m

3 m

Test Receiver

Test table & Turntable

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com Hotline 400–003–0500 www.anbotek.com.cn

Page 32 of 60

FCC ID: 2ABC5-E0062

≻

P

Pre-Amplifier

VVVV

1~4m Variable

<

AAAA

 \leq

FCC ID: 2ABC5-E0062

Page 33 of 60

7.3. Test Data

	1		0.1.	- Q.N.		V
	2010	00-		1	DV.	°°°
Temperatu	re 25.3 °C	PAT L HI	midity.	49 %	Atmospheric Pressure	· 101 kPa
remperatu	10. 20.0 0	Ni IG	many.	-5 /0 p	7 anospherie i ressure	
	The second secon		- CVY			

	TM1 / Band <mark>: 5150-5250 MHz</mark> / BW: 20 / L											
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector					
5150.00	36.80	o ^{tek} 15.99 Anb	52.79	68.20	-15.41	Notek H	pot ^{er} Peak Ant					
5150.00	38.84	15.99	54.83	68.20	-13.37	V	Peak					
5150.00	26.79	15.99	42.78	54.00	-11.22	And H tek	AVG					
5150.00	28.79	15.99	44.78	54.00	-9.22	ANV Jek	AVG					

TM1 / Band: 5150-5250 MHz / BW: 20 / H

Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	37.30	16.43	53.73	68.20	-14.47	H	Peak
5250.00	40.13	16.43	56.56	68.20	-11.64	And Vek	Peak
5250.00	28.56	16.43	44.99	54.00	-9.01	Ant	AVG
5250.00	29.52	16.43	45.95	54.00	-8.05	K/poren	AVG
Domork: 1	Dooult-Dood		- Par	K bore	PUP		Sk Upo,

Remark: 1. Result=Reading + Factor

TM2 / Band: 5150-5250 MHz / BW: 20 / L

Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	35.81	15.99	51.80	68.20	-16.40	Hootek	Peak
5150.00	37.16	15.99	53.15	68.20	-15.05	K V nbote	Peak
5150.00	26.53	15.99 Moon	42.52	otek 54.00 moo	-11.48	H H	ote ^k AVG prib ⁰
5150.00	27.54	o ^{se 1} 5.99 km	43.53	54.00	10.47 An	V	AVG

TM2 / Band: 5150-5250 MHz / BW: 20 / H

~	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
200	5250.00	37.60	16.43	54.03	68.20	-14.17	K H botel	Peak
ote	5250.00	38.67	16.43	55.10	68.20	-13.10	V	rek Peak noo
	5250.00	27.62	16.43	o ^{tel} 44.05 pm ^o	54.00	ore -9.95 pr	H Ant	AVG
100	5250.00	29.02	16.43	45.45	54.00	-8.55	nboter V A	AVG

Remark: 1. Result=Reading + Factor

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: 2ABC5-E0062

Page 34 of 60

Report No.: 18220WC40042204

He.	-bote. Au		and: 5450 51			-bote.	Ane
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	2 50 MHz / BV Limit (dBuV/m)	V: 40 / L Over limit (dB)	Antenna Pol.	Detector
5150.00	36.28	15.99	52.27	68.20	-15.93	K Hanbote	Peak
5150.00	× 38.14	15.99	54.13	68.20 ⁰⁰¹	-14.07	otek V Anto	Peak
5150.00	26.83	o ^{tek} 15.99 An ^b	42.82	54.00	-11.18	H	AVG M
5150.00	28.66	15.99	44.65	54.00	-9.35	V	AVG
	L ball		and ELEO E			Land	

TM2 / Band: 5150-5250 MHz / BW: 40 / H

Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	37.95	16.43	54.38	68.20	-13.82	tek H unbot	Peak
5250.00	36.86	o ^{ven} 16.43 pr ^{oc}	53.29	68.20	oten-14.91 ^{AnD}	V	pote ^k Peak M th
5250.00	28.08	16.43	44.51	54.00	-9.49	Moor H	AVG
5250.00	29.25	16.43	45.68	54.00	-8.32	AnbotV	AVG
Deve entry 4	Dooult-Doodi	1000°	Ha.	hore	PUL	Het	VUpo,

Remark: 1. Result=Reading + Factor

	TM3 / Band: 5150-5250 MHz / BW: 20 / L											
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector					
5150.00	36.72	15.99	52.71	68.20	-15.49	AnboteH	Peak					
5150.00	38.44	15.99	54.43	68.20	-13.77	Nek	Peak					
5150.00	26.44	15.99	42.43	54.00	-11.57	Hotek	AVG					
5150.00	28.57	15.99	44.56	54.00	-9.44	ek V nbote	AVG					

TM3 / Band: 5150-5250 MHz / BW: 20 / H

Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	37.76	16.43	54.19	68.20	-14.01	"Hono	Peak
5250.00	38.03	16.43	54.46	68.20	-13.74	Votek	Peak
5250.00	27.64	16.43	44.07	54.00	-9.93	H	AVG
5250.00	28.14	16.43	44.57°°°	54.00	-9.43 ·····	Arup-	AVG

Remark: 1. Result=Reading + Factor

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

Report No.	: 18220W	C40042204	4 ^A FC	C ID: 2ABC	C5-E0062	Page	: 35 of 60
	**	TM3 / B	and: 5150-5	250 MHz / BV	N: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	35.69	15.99	51.68	68.20	-16.52	Hay Ha	Peak
5150.00	36.20	15.99	52.19	68.20	-16.01	Vupor	Peak
5150.00	25.79	15.99	1.78 March 41.78	54.00	-12.22	otek H Anbo	AVG
5150.00	26.61	15.99	42.60	54.00	-11.40	nbotek V Ar	AVG
P		TM3 / B	and: 5150-5	250 MHz / BV	N· 40 / H		

TM3 / Band: 5150-5250 MHz / BW: 40 / H

Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	37.87	16.43	54.30	68.20	-13.90	Hupper	Peak
5250.00	37.06	16.43	53.49 mot	68.20	-14.71	rek V Anboi	Peak
5250.00	27.37	16.43 ^{MU}	43.80	54.00 M	-10.20	Lotek H An	AVG ANG
5250.00	27.21	16.43	43.64	54.00	-10.36	V	AVG
Remark 1 F	Result=Readin	ng + Eactor	aboro	Am	Lotek	Aupo	rek.

Remark: 1. Result=Reading + Factor

TM3 / Band: 5150-5250 MHz / BW: 80 / L

Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	o ^{rek} 35.90 M ^{bc}	15.99	51.89	68.20 M	-16.31	potek H Ant	Peak
5150.00	36.18	15.99	52.17	68.20	-16.03	V ^{rodno}	Peak
5150.00	26.31	15.99	42.30	54.00	-11.70	Hek	AVG
5150.00	26.65	15.99	42.64	54.00	-11.36	Votek	AVG

TM3 / Band: 5150-5250 MHz / BW: 80 / H

Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	38.04	16.43	54.47	68.20	-13.73	aboteH p	Peak
5250.00	37.24	16.43	53.67	68.20	-14.53	Ver	Peak
5250.00	28.48	16.43	44.91	54.00	-9.09	Ant H tek	AVG
5250.00	27.92	16.43	44.35	54.00	-9.65	AV	AVG

Remark: 1. Result=Reading + Factor

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

		TM4 / B	and: 5150-52	250 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.76	15.99	52.75	68.20	-15.45	HA Har	Peak
5150.00	38.79	15.99	54.78	68.20	-13.42	Vinbo	Peak
5150.00	26.75	15.99	12.74 March 42.74	54.00	-11.26 no	otek H Anbo	AVG
5150.00	28.75	15.99	44.74	54.00	-9.26	botek V Ar	AVG

Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	37.26	16.43	53.69	68.20	-14.51	Hup.	Peak
5250.00	40.07 40.07	16.43	× 56.50 00	68.20	-11.70	tek V Anbor	Peak
5250.00	28.51	16.43	44.94	o ^{te¹54.00 ph}	-9.06	Lotek H AN	OVE AVG AN
5250.00	29.48	16.43	45.91	54.00	-8.09	V	AVG

Remark: 1. Result=Reading + Factor

	TM4 / Band: 5150-5250 MHz / BW: 40 / L											
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector					
5150.00	35.78	15.99	51.77 Ani	68.20	-16.43	H H	Peak					
5150.00	37.12	15.99	53.11	68.20	-15.09	AnborV	Peak					
5150.00	26.50	15.99	42.49	54.00	-11.51	Anth	AVG					
5150.00	27.51	15.99	43.50	54.00	-10.50	Voore	AVG					

TM4 / Band:	5150-5250	MHz / BW	: 40 / H

Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	37.57	16.43	54.00	68.20	-14.20	Anbo' H	Peak
5250.00	38.64	16.43	55.07	68.20	-13.13	AnbV	Peak
5250.00	27.58	16.43	44.01	54.00	-9.99	Hotek	AVG
5250.00	28.97	16.43	45.40	54.00	-8.60	K V botel	AVG

Remark: 1. Result=Reading + Factor

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

		TM4 / E	Band: 5150-52	250 MHz / BV	V: 80 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.23	15.99	52.22	68.20	-15.98	H ^A	Peak
5150.00	38.10	15.99	54.09	68.20	+ -14.1100te	Vupor	Peak
5150.00	26.78	15.99	otek 42.77 Anbo	54.00	-11.23	otek H Anbo	AVG
5150.00	28.64	15.99	44.63	54.00	-9.37	nbotek V Ar	AVG
		TM4 / E	and: 5150-52	250 MHz / BV	V: 80 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	37.91	16.43	54.34	68.20	-13.86	Hup.	Peak
5250.00	36.84	16.43	53.27 pot	68.20	-14.93	rek V Anbo	Peak
5250.00	28.03	16.43 ^{MP}	44.46	54.00 M	-9.54	Lotek H An	AVG
5250.00	29.19	16.43	45.62	54.00	-8.38	V	AVG

Remark: 1. Result=Reading + Factor

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

Frequency

(MHz)

ng Factor () (dB/m) 16.37	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
16.37		600	No.		
10.57	54.67	68.20	-13.53	Ha Ha	Peak
16.37	56.10	68.20	-12.10	V upor	Peak
16.70	45.83 m	54.00		otek H Anbo	AVG
16.70	46.95	54.00 ^{MA}	-7.05	nbotek V Ar	AVG
3	3 16.70 5 16.70	3 16.70 45.83 5 16.70 46.95	3 16.70 45.83 54.00 5 16.70 46.95 54.00	3 16.70 45.83 54.00 -8.17	3 16.70 45.83 54.00 -8.17 H 5 16.70 46.95 54.00 -7.05 V

Reading
(dBuV)Factor
(dB/m)Result
(dBuV/m)Limit
(dBuV/m)Over limit
(dBuV/m)Antenna
Pol.39.2717.2156.4868.20-11.72H

5850.00	39.27	17.21	56.48	68.20	-11.72	Hur .	Peak
5850.00	39.66	17.21	6.87 mot	68.20	-11.33	rek V Anboi	Peak
5850.00	29.23	oten 17.21 Anu	46.44	54.00	-7.56	wotek H An	AVG AVG
5850.00	29.22	17.21 N	46.43	54.00	m ^{bot} -7.57	V.	AVG
19.	200°		and the second s	000	.0.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	No.

Remark: 1. Result=Reading + Factor

TM2 / Band: 5725-5850 MHz / BW: 20 / L Reading Over limit Frequency Factor Result Limit Antenna Detector (MHz) (dBuV) (dB/m)(dBuV/m) (dBuV/m) (dB) Pol. 17.05 5725.00 38.29 55.34 68.20 -12.86 Н Peak 38.90 68.20 V 5725.00 17.05 55.95 -12.25 Peak 17.05 54.00 H AVG 5725.00 27.67 44.72 -9.28 V 54.00 AVG 5725.00 28.23 17.05 45.28 -8.72

TM2 / Band: 5725-5850 MHz / BW: 20 / H

Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.51	17.21	54.72	68.20	-13.48	Anbo' H	Peak
5850.00	38.09	17.21	55.30	68.20	-12.90	AnbV	Peak
5850.00	27.82	17.21	45.03	54.00	-8.97	Hotek	AVG
5850.00	28.60	17.21	45.81	54.00	-8.19	V bote	AVG

Remark: 1. Result=Reading + Factor

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com Hotline 400–003–0500 www.anbotek.com.cn

Detector

Page 39 of 60

Report No.: 18220WC40042204

FCC ID: 2ABC5-E0062

	-0-		N	1 · · · · · · · · · · · · · · · · · · ·			
		TM2 / B	and: 5725-58	350 MHz / BV	V: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5725.00	37.87	17.05	54.92	68.20	-13.28	K Hunboten	Peak
5725.00	× 38.78 00 ¹¹	17.05	55.83	68.20 ⁶⁰	-12.37	otek V Anbo	Peak
5725.00	27.15	o ^{tek} 17.05 k ^{nb}	44.20	54.00	-9.80	Wotek H	bote ^k AVG Ant
5725.00	28.47	17.05	45.52	54.00	-8.48	V	AVG
		TM2 / B	and: 5725-58	350 MHz / BV	V: 40 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	38.23	17.21	55.44	68.20	-12.76	rek H anbot	Peak
5850.00	38.57	ot ^{ek} 17.21 pn ^{bC}	55.78	68.20	-12.42 ^{MD}	V	o ^{vex} Peak M ¹⁰

 5850.00
 28.41
 17.21
 45.62

 5850.00
 29.47
 17.21
 46.68

Remark: 1. Result=Reading + Factor

	TM3 / Band: 5725-5850 MHz / BW: 20 / L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5725.00	37.49	17.05	54.54	68.20	-13.66	AnboteH	Peak			
5725.00	37.58	17.05	54.63	68.20	-13.57	V. Vek	Peak			
5725.00	28.37	17.05	45.42	54.00	-8.58	Hotek	AVG			
5725.00	29.24	17.05	46.29	54.00	-7.71	K V nbote	AVG			

54.00

54.00

-8.38

-7.32

Н

v

AVG

AVG

TM3 / Band: 5725-5850 MHz / BW: 20 / H

Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	38.23	17.21	55.44	68.20	-12.76	"Hone	Peak
5850.00	39.09	17.21	56.30	68.20	-11.90	Votek	Peak
5850.00	28.08	17.21	45.29	54.00	-8.71	He	AVG
5850.00	29.20	17.21	46.41	54.00	-7.59 pote	A Nyupe	AVG

Remark: 1. Result=Reading + Factor

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

otek Anbo	: 18220W	stek sub	otek Anb	C ID: 2ABC	botek Ant	oter Asia	40 of 60
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5725.00	36.42	17.05	53.47	68.20	-14.73	HA.	Peak
5725.00	37.91	17.05	54.96	68.20	-13.24	V ^{upor}	Peak
5725.00	27.65	17.05	14.70 Me	54.00	-9.30	otek H Anbo	AVG
5725.00	28.33	17.05	45.38	54.00 M	-8.62	obotek V Ar	AVG

Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.76	17.21	54.97	68.20	-13.23	Hupper	Peak
5850.00	38.64	17.21	× 55.85 vo	68.20	-12.35	rek V Anboi	Peak
5850.00	27.77 M	o ^{ren} 17.21 ^{Anu}	44.98	54.00	-9.02	otek H An	Pote AVG And
5850.00	27.43	17.21	44.64	54.00	-9.36	V	AVG
Remark 1 F	Result=Readi	na + Eactor	aborto	P.m.	hotek	Aupo	-sek

TM3 / Band: 5725-5850 MHz / BW: 80 / L

Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5725.00	ote ^k 35.69 pr ^{b6}	17.05	52.74 M	68.20	-15.46	botek H Ant	Peak
5725.00	37.25	17.05	54.30	68.20	-13.90	V st odn	Peak
5725.00	26.76	17.05	43.81	54.00	-10.19	Hek	AVG
5725.00	27.28	17.05	44.33	54.00	-9.67	Votek	AVG

TM3 / Band: 5725-5850 MHz / BW: 80 / H

Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.81	17.21	55.02	68.20	-13.18	abote ^k H p	Peak
5850.00	38.06	17.21	55.27	68.20	-12.93	Ver	Peak
5850.00	28.26	17.21	45.47	54.00	-8.53	Ant H tek	AVG
5850.00	28.42	17.21	45.63	54.00	-8.37	AV	AVG

Remark: 1. Result=Reading + Factor

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755-26066440 Fax:(86)0755-26014772 Email:service@anbotek.com

		TM4 / B	and: 5725-58	50 MHz / BV	V: 20 / L		A
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5725.00	38.26	16.37	54.63	68.20	-13.57	HA HA	Peak
5725.00	39.68	16.37	56.05	68.20	-12.15	Vupo.	Peak
5725.00	29.10	16.70	45.80 Mod	54.00	-8.20	otek H Anbo	AVG
5725.00	30.22	16.70	46.92	54.00 ^M	-7.08	botek V An	AVG

Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	39.23	17.21	56.44	68.20	-11.76	Hupper	Peak
5850.00	39.61	17.21	56.82 mot	68.20	-11.38	rek V Anboi	Peak
5850.00	29.19	oten 17.21 Anv	46.40	54.00 M	-7.60	Lotek H An	PONE AVG AN
5850.00	29.19	17.21	46.40	54.00	-7.60 ×	V	AVG
Remark: 1. F	Result=Readi	ng + Factor	Anbore	Ann	abotek	Anbo	hotek.

Remark: 1. Result=Reading + Factor

		TM4 / B	and: 5725-58	850 MHz / BV	V: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5725.00	38.24	17.05	55.29 Ant	68.20	12.91 M	H H	Peak
5725.00	38.85	17.05	55.90	68.20	-12.30	AnborV	Peak
5725.00	27.65	17.05	44.70	54.00	-9.30	Anth	AVG
5725.00	28.20	17.05	45.25	54.00	-8.75	Voore	AVG

TM4 /	Band:	5725-5850	MHz /	BW: 4	40	/ H
	Banan	01 20 0000				

Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.47	17.21	54.68	68.20	-13.52	Pupo, H b	Peak
5850.00	38.05	17.21	55.26	68.20	-12.94	AnbV	Peak
5850.00	27.76	17.21	44.97	54.00	-9.03	Hotek	AVG
5850.00	28.55	17.21	45.76	54.00	-8.24	K V botel	AVG

Remark: 1. Result=Reading + Factor

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755-26066440 Fax:(86)0755-26014772 Email:service@anbotek.com Anbotek

1 Ser Hotline of 400-003-0500 www.anbotek.com.cn

		TM4 / B	and: 5725-58	850 MHz / BV	V: 80 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5725.00	37.82	17.05	54.87	68.20	-13.33	H ^A	Peak
5725.00	38.73	17.05	55.78	68.20	-12.42	Vupor	Peak
5725.00	27.12	17.05	ptek 44.17 pnb ⁰	54.00	-9.83	otek H Anbo	AVG
5725.00	28.45	17.05	45.50	54.00	-8.50	nbotek V Ar	AVG
		TM4 / B	and: 5725-58	350 MHz / BV	V: 80 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	38.18	17.21	55.39	68.20	-12.81	, ^{do} H	Peak
5850.00	38.54	17.21	55.75 not	68.20	-12.45	rek V Anbo	Peak
5850.00	28.37	17.21	45.58	54.00 M ⁰	-8.42	Lotek H An	AVG
5850.00	29.43	17.21	46.64	54.00	-7.36	V	AVG

Shenzhen Anbotek Compliance Laboratory Limited

Remark: 1. Result=Reading + Factor

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: 2ABC5-E0062

Page 43 of 60

8. Band edge emissions (Conducted)

Test Requirement:	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2)
Anbotek Anbot	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
Test Limit:	For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
Anboir An.	Peak emission levels are measured by setting the instrument as follows: RBW = 1 MHz.
Test Method:	VBW ≥ [3 × RBW] Detector = peak.
otek Anbotek Anb	Sweep time = auto. Trace mode = max hold.

8.1. EUT Operation

Operating Env	vironment: http://www.context.
Anbotek Anbotek	1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
Test mode:	2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Anbotek Anbotek Anbotek	3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

8.2. Test Setup

10010			
Ch. K		EUT	Spectrum Analyzer
wo ^{yer}			epool and any 201
000-	Yo.		

8.3. Test Data

Temperature:	25.3 °C	Humidity:	49 %	Atmos	pheric Press	ure: 101 kPa
18. OUR	As.	~601	Pri V	- 0 ¹ 01	DUD	le de

Please Refer to Appendix for Details.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

Anbotek Product Safety

Report No.: 18220WC40042204

FCC ID: 2ABC5-E0062

Page 44 of 60

9. Undesirable emission limits (below 1GHz)

Test Requirement:	47 CER Port 15 407/b)(0)	Anboite Ant at	jotek Anbo
Test Requirement:	47 CFR Part 15.407(b)(9)	h. Antek Anbots, Ant	*ek sootek
Anbotek Anbore	Unwanted emissions below strength limits set forth in §	v 1 GHz must comply with the go § 15.209.	eneral field
	stek unboten Anb	ak botek Anbor	Al. otek
otek Anbotek An		here in this subpart, the emission of exceed the field strength level	
Anbotek Anbotek	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30 Anbor And	30 poter pri
	30-88	100 ** hotek Anbo	3 Minister
Test Limit:	88-216	150 **	3 Anb
	216-960	200 **	3 aboter
	Above 960	500 potek Anor	3
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	frequency bands 54-72 MH However, operation within sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi- 90 kHz, 110–490 kHz and these three bands are base	ting under this section shall not the Hz, 76-88 MHz, 174-216 MHz or these frequency bands is permit §§ 15.231 and 15.241. e, the tighter limit applies at the in the above table are based or peak detector except for the free above 1000 MHz. Radiated emi- ed on measurements employing	470-806 MHz. ted under other band edges. measurements quency bands 9– ssion limits in
Test Method:	detector.	0 12 7 4 12 7 5	Anbor Ar.
Test Method.	ANSI C63.10-2020, section	11 12.7.4, 12.7.5	Anbo. A.
Anbotek Anbotek A Anbotek Anbotek A Anbotek Anbotek	meters above the ground a was rotated 360 degrees to b. The EUT was set 3 or 10	JT was placed on the top of a rot at a 3 meter semi-anechoic chan o determine the position of the h 0 meters away from the interfere ted on the top of a variable-heigl	nber. The table ighest radiation. ence-receiving
Procedure:	c. The antenna height is va ground to determine the m	aried from one meter to four met aximum value of the field streng of the antenna are set to make th	ers above the th. Both horizontal
Anbotek Anbotek Anbotek Anbotek Anbotek	d. For each suspected emi and then the antenna was test frequency of below 30	ission, the EUT was arranged to tuned to heights from 1 meter to MHz, the antenna was tuned to s turned from 0 degrees to 360 c	its worst case 4 meters (for the heights 1 meter)
	Bandwidth with Maximum	.V	Anboten Anb
Ant hotek An		e EUT in peak mode was 10dB could be stopped and the peak	

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755-26066440 Fax:(86)0755-26014772 Email:service@anbotek.com

FCC ID: 2ABC5-E0062

Page 45 of 60

would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using quasi-peak method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middle channel, the Highest channel.

h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

i. Repeat above procedures until all frequencies measured was complete. Remark:

1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Above 1GHz:

a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middle channel, the Highest channel.

h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

i. Repeat above procedures until all frequencies measured was complete. Remark:

1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: 2ABC5-E0062

Page 46 of 60

2. Th wi sp be 3. lin en ab en mu 4.

2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

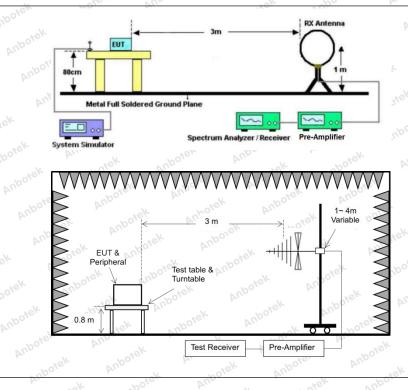
4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

9.1. EUT Operation

Operating Environment: 1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. Test mode: 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com



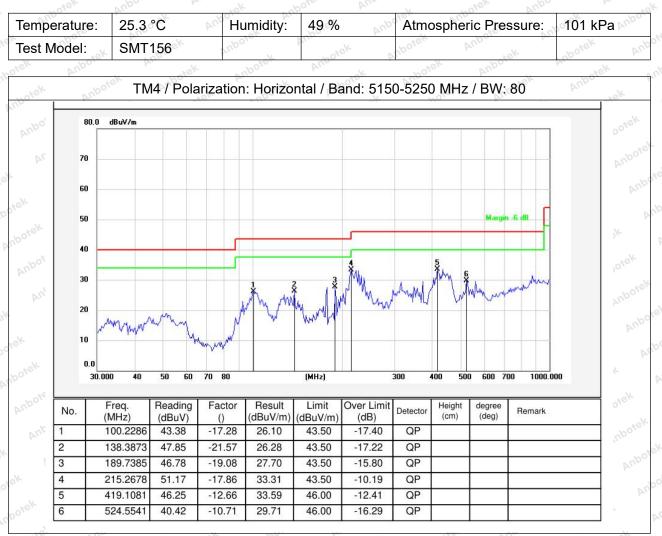
FCC ID: 2ABC5-E0062

Page 47 of 60

9.2. Test Setup

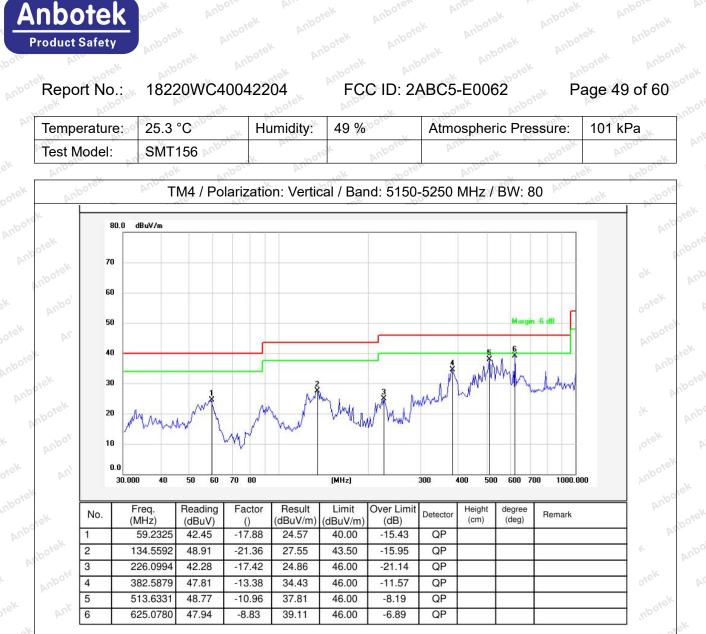
Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com



FCC ID: 2ABC5-E0062 Page 48 of 60

9.3. Test Data


The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755-26066440 Fax:(86)0755-26014772 Email:service@anbotek.com

Note: Only record the worst data (802.11ax(HEW80)) in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

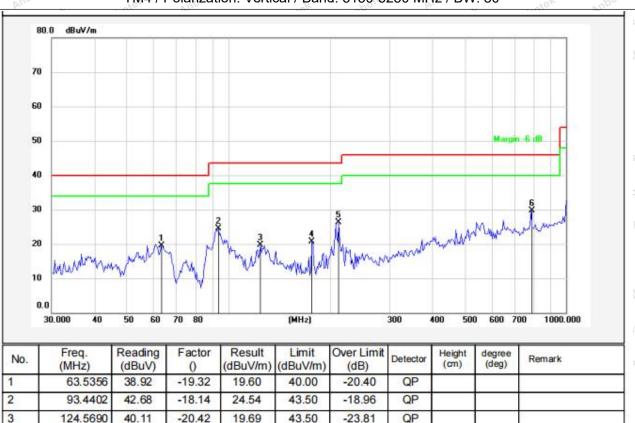
Anbotek Product Safety

Anbo

erature:	25.3 °C	H	lumidity:	49 %	otek	Atmospł	neric Pr	essure:	101 kPa
D., .	SMT97	nboter	AUD	et .	nbotek	Pupo.	. e.K	pr	Anboter
<u> </u>	otek	Anboren	Pupo		abotek	AUD	010	61,	otek unboten
oter 1	TM4 / F	Polarizati	on: Horizo	ontal / Ba	nd: 5150	-5250 N	1Hz / B	W: 80	ek bo
00.0		011.		- 0.2	~10 [~]				····
80.0 dBu¥/m					1				
10									
<i>.</i>					-				
50					-	_			
									-
50								Margin	1-6 dB
10		1	_						
30							6		
					*	× r	Mun	the stars	www.when
20			-	3	Montel	m Man	-W-A	and and a set	
M.M.M	mamanth	as d	Annon	Mymen hor	1000				
		mann							
0.0									
30.000 4	10 50 60	70 80		(MHz)		300	400 50	0 600 7	00 1000.000
Freq.	Reading (dBuV)		Result (dBuV/m)	Limit (dBuV/m)		t Detector	Height (cm)	degree (deg)	Remark
		-17.95	14.17	40.00	-25.83	QP	1	10000	
94.09	78 32.85	-18.05	14.80	43.50	-28.70	QP			
173.20	50 37.64	-20.06	17.58	43.50	-25.92	QP			
2		-17.98	24.05	43.50	-19.45	QP			
307.83	12 40.58	-15.10	25.48	46.00	-20.52	QP			
	70 50 50 50 60 50 60 50 50 50 50 50 50 50 50 50 5	Iodel: SMT97 TM4 / F 80.0 dBuV/m 70	Iodel: SMT97 TM4 / Polarizati 80.0 dBuV/m 70 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 60 50 60 50 60 50 60 50 60 50 60 50 60 50 60 60.0690 32.12 173.2050 37.64 212.2694 42.03	Iodel: SMT97 TM4 / Polarization: Horizo 80.0 dBuV/m 70 0 50 60 50 60 50 60 50 60 60.0690 32.12 -17.95 14.17 94.0978 32.85 -18.05 14.80 173.2050 37.64	Iodel: SMT97 TM4 / Polarization: Horizontal / Ba 80.0 dBuV/m 70 50 50 50 50 50 50 60 50 <td>Iodel: SMT97 TM4 / Polarization: Horizontal / Band: 5150 80.0 dBuV/m 70 </td> <td>Iodel: SMT97 Mail Description Mail State State</td> <td>Iodel: SMT97 TM4 / Polarization: Horizontal / Band: 5150-5250 MHz / B 80.0 dBuV/m 70 </td> <td>Iodel: SMT97 TM4 / Polarization: Horizontal / Band: 5150-5250 MHz / BW: 80 80.0 dBuV/m 70 0 300 400 50 60 70 80 80 14.17 40.00 -25.83 94.0978 32.85 18.05 14.80 43.50 173.2050 37.64 -20.06 17.58 212.2694 42.03 -17.98<!--</td--></td>	Iodel: SMT97 TM4 / Polarization: Horizontal / Band: 5150 80.0 dBuV/m 70	Iodel: SMT97 Mail Description Mail State State	Iodel: SMT97 TM4 / Polarization: Horizontal / Band: 5150-5250 MHz / B 80.0 dBuV/m 70	Iodel: SMT97 TM4 / Polarization: Horizontal / Band: 5150-5250 MHz / BW: 80 80.0 dBuV/m 70 0 300 400 50 60 70 80 80 14.17 40.00 -25.83 94.0978 32.85 18.05 14.80 43.50 173.2050 37.64 -20.06 17.58 212.2694 42.03 -17.98 </td

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com



 Report No.:
 18220WC40042204
 FCC ID: 2ABC5-E0062
 Page 51 of 60

 Temperature:
 25.3 °C
 Humidity:
 49 %
 Atmospheric Pressure:
 101 kPa

 Test Model:
 SMT97

 TM4 / Polarization: Vertical / Band: 5150-5250 MHz / BW: 80

Note: Only record the worst data (802.11ax(HEW80)) in the report.

-19.84

-17.98

-7.02

20.67

26.37

29.65

43,50

43.50

46.00

-22.83

-17.13

-16.35

QP

QP

QP

Shenzhen Anbotek Compliance Laboratory Limited

176.8877

212.2694

787.8513

4

5

6

40.51

44.35

36.67

Anbotek

Product Safety

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

Anbotek Product Safety

mper	ature: 25	.3 °C ^{.,000}	H	umidity:	49 %	Á	tmosph	eric Pre	essure:	101 kPa
est Mo	del: SN	AT101	OVE.	PUT	14 05	botek	Aupo.	-9K	botel	Anbors.
nbore	- par-	dek	nboten	Pupo		abotek	Aupo	<u></u>	- <u>A</u> []-	tek anbotet
anbo	ter Aup	TM4 / P	olarizatio	on: Horizo	ontal / Ba	nd: 5150-	-5250 M	Hz / BV	V: 80 ⁰⁰⁰	ode Har
		20. ULT			- 2 William					
8	0.0 dBuV/m					-				
70										
60										
										_
50	2 					1.5			Margin	-6.48
			r	_						
40				-		-				
30						3		4	5	6
						1 COM	un who	1 Mar	M Lun	worken
20		_				NUMBAR	Jule of Mart	0.44	and production	
	×.	manutur	N A	hourseller	unmultil					
	William at 1 miles		1.15				-			
10	Montestant		Maria							
	.0									
	8	50 60	70 80		(MHz)			400 50	0 600 71	00 1000.000
0	.0 30.000 40 Freq.	Reading		Result	(MHz)	Over Limi	300	Height	degree	
No.	.0 30.000 40 Freq. (MHz)	Reading (dBuV)	70 80 Factor	Result (dBuV/m)	(MH2) Limit (dBuV/m)	Over Limi (dB)	300 4	_		00 1000.000 Remark
No.	.0 30.000 40 Freq. (MHz) 38.3462	Reading (dBuV) 33.01	70 80 Factor () -17.56	Result (dBuV/m) 15.45	(MHz) Limit (dBuV/m) 40.00	Over Limi (dB) -24.55	300 / Detector QP	Height	degree	
No.	.0 30.000 40 Freq. (MHz) 38.3462 92.1388	Reading (dBuV) 33.01 34.40	70 80 Factor () -17.56 -18.31	Result (dBuV/m) 15.45 16.09	(MHz) Limit (dBuV/m) 40.00 43.50	Over Limi (dB) -24.55 -27.41	300 A Detector QP QP	Height	degree	
No. 1 2 3	.0 30.000 40 Freq. (MHz) 38.3462 92.1388 212.2694	Reading (dBuV) 33.01 34.40 47.27	70 80 Factor 0 -17.56 -18.31 -17.98	Result (dBuV/m) 15.45 16.09 29.29	(MHz) Limit (dBuV/m) 40.00 43.50 43.50	Over Limi (dB) -24.55 -27.41 -14.21	300 t Detector QP QP QP	Height	degree	
0	.0 30.000 40 Freq. (MHz) 38.3462 92.1388	Reading (dBuV) 33.01 34.40	70 80 Factor () -17.56 -18.31	Result (dBuV/m) 15.45 16.09	(MHz) Limit (dBuV/m) 40.00 43.50	Over Limi (dB) -24.55 -27.41	300 A Detector QP QP	Height	degree	

Anbot

Shenzhen Anbotek Compliance Laboratory Limited

Aupo

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com Hotline 400–003–0500 www.anbotek.com.cn

Anbo

nbotek

Α

Page 53 of 60

Temperature:25.3 °CTest Model:SMT101		- 49 ×	Humidity: 49 % A			Atmospheric Pressure:			101 kPa		
		100.							sk Aup	Anbore	
YUpor.		otek	Anborot	Aup	10	obotek	Aup		- <u>-</u>	otek	nbote
anbr	over Ar	TM4 /	Polariza	ition: Verti	ical / Ban	d: 5150-	5250 MH	lz/BW	/: 80 ^{^^}	ek	
8	30.0 dBuV/m								-		
70	,	_	_	_			_				
60)										
50	ı	_							Margin	-6.48	
			-	-							
40											
40)					-					
40 30	-				14	-1		5	5 X		
30				2 X	, X	*.	h Marin	- MM	4h	man	
		unmanti		a multur	m.	*	Ma	- MM	4hin	man	
30		www.w		a multure	m	Multiman	M	- WM	4 h	m	
30 20 10		www.w		an when	m	Multuran	M	- Am	4 min	m	
30 20 10	n name	444 Mar	70 80	a multure	(MH2)	Mulum		100 50		Man	
30 20 10	1 1 1.0	50 60 Reading	70 80	Result (dBuV/m)	Limit	Over Limit	300			Man	
30 20 10 0 No.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 60 Reading (dBuV)	Factor		Limit		300	100 501 Height	0 600 70 degree	00 1000.000	
30 20 10 0 No.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 60 Reading (dBuV) 41.11	Factor ()	(dBuV/m)	Limit (dBuV/m)	(dB)	300 A	100 501 Height	0 600 70 degree	00 1000.000	
30 20 10 0 No. 1 2	0 0.0 30.000 40 Freq. (MHz) 66.2661	50 60 Reading (dBuV) 41.11 42.30	Factor () -20.41	(dBuV/m) 20.70	Limit (dBuV/m) 40.00	(dB) -19.30	300 t QP	100 501 Height	0 600 70 degree	00 1000.000	
30 20 10	5 30.000 40 Freq. (MHz) 66.2661 94.0978	50 60 Reading (dBuV) 41.11 42.30 42.68	Factor () -20.41 -18.05	(dBuV/m) 20.70 24.25	Limit (dBuV/m) 40.00 43.50	(dB) -19.30 -19.25	300 t Detector QP QP	100 501 Height	0 600 70 degree	00 1000.000	
30 20 10 0 No. 1 2 3	Freq. (MHz) 66.2661 94.0978 176.8877	50 60 Reading (dBuV) 41.11 42.30 42.68 41.85	Factor () -20.41 -18.05 -19.84	(dBuV/m) 20.70 24.25 22.84	Limit (dBuV/m) 40.00 43.50 43.50	(dB) -19.30 -19.25 -20.66	300 t Detector QP QP QP	100 501 Height	0 600 70 degree	00 1000.000	

Note: Only record the worst data (802.11ax(HEW80)) in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: 2ABC5-E0062

Page 54 of 60

10. Undesirable emission limits (above 1GHz)

Ask .	A Choice An	hote An		10/ 10/
	47 CFR Part 15.407(b	105		
est Requirement:	47 CFR Part 15.407(b))(4) _{knb} ore		
	47 CFR Part 15.407(b))(10)		
Anboten Anbo	For transmitters opera of the 5.15-5.35 GHz b			
	hotek Anbote.	And tek abote	Anbo.	
tek nooten	For transmitters opera	ting solely in the 5.72	5-5.850 GHz ba	nd: And we
ak hotek	All emissions shall be	limited to a level of -2	27 dBm/MHz at	75 MHz or more
	above or below the ba	nd edge increasing lir	nearly to 10 dBn	n/MHz at 25 MH
	above or below the ba	nd edge, and from 25	MHz above or	below the band
	edge increasing linear			
	below the band edge,			
hotek Anb	increasing linearly to a	NOV I	z at the band ed	ge. woor
	MHz MHz	MHz	MHz And	GHz otek
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
	¹ 0.495-0.505	16.69475-	608-614	5.35-5.46
	hotek Anbor	16.69525	aboten And	work work
	2.1735-2.1905	16.80425-	960-1240	7.25-7.75
	L Anbort All	16.80475	Anbo	work Ant
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
st Limit:	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4
	6.31175-6.31225	123-138	2200-2300	14.47-14.5
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4
All.	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
	12.57675-12.57725	322-335.4	3600-4400	(2)
	13.36-13.41	W WORK	dur	dek abo

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

²Above 38.6

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

AI.	omissions. The provision	ns in § 15.35apply to these measur	omonto
	emissions. The provision	is in § 15.55appiy to these measur	ements.
	_Anbo	Antone Anto	otek Anbu
		where in this subpart, the emission not exceed the field strength levels	
	following table:	not exceed the held strength levels	s specified in the
ntek nbo	Frequency (MHz)	Field strength	Measurement
		(microvolts/meter)	distance
	botek potek	nber (millior ov pito/millior)	(meters)
	0.009-0.490	2400/F(kHz)	300
And	0.490-1.705	24000/F(kHz)	30 boten
	1.705-30.0	30 softek sub	30
K hotek	30-88	100 **	3iek Anbor
	88-216	150 **	3
	216-960	200 **	3/00 ¹⁰
	Above 960	500 moder And	3 wotek p
	** Except as provided in	paragraph (g), fundamental emiss	ions from
~ otek		rating under this section shall not b	
	frequency bands 54-72	MHz, 76-88 MHz, 174-216 MHz or	470-806 MHz.
	However, operation with	in these frequency bands is permit	ted under other
k sotek	sections of this part, e.g.	., §§ 15.231 and 15.241.	
	In the emission table ab	ove, the tighter limit applies at the l	hand addaa
		ove, the lighter little applies at the t	banu euges.
	NOV I NOV	wn in the above table are based on	
	The emission limits show		measurements
	The emission limits show employing a CISPR qua	wn in the above table are based on	measurements quency bands 9–
	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are ba	wn in the above table are based on si-peak detector except for the free	measurements quency bands 9– ssion limits in
Anbotek Anbot Anbotek Ant Anbotek I	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar	wn in the above table are based on si-peak detector except for the free nd above 1000 MHz. Radiated emis	measurements quency bands 9– ssion limits in
Anborek Anbore Anborek Anb	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are ba detector.	wn in the above table are based on si-peak detector except for the free nd above 1000 MHz. Radiated emis	measurements quency bands 9– ssion limits in
Anborek Anbor Anborek Anb	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are ba detector. ANSI C63.10-2020, sect	wn in the above table are based on si-peak detector except for the free nd above 1000 MHz. Radiated emis ased on measurements employing	measurements quency bands 9– ssion limits in
Anborek Anborek Method: polek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are ba detector. ANSI C63.10-2020, sect Above 1GHz:	wn in the above table are based on si-peak detector except for the frec and above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7	measurements quency bands 9– ssion limits in an average
Anborek Anbore Anborek Ant Method: nootek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are ba detector. ANSI C63.10-2020, sect Above 1GHz: a. For above 1GHz, the	wn in the above table are based on si-peak detector except for the free ad above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rot	measurements quency bands 9– ssion limits in an average tating table 1.5
Anborek Anbor Anborek Ant Anborek Ant Method: polek Jorek Anborek Anborek Anborek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are by detector. ANSI C63.10-2020, sect Above 1GHz: a. For above 1GHz, the meters above the ground	wn in the above table are based on si-peak detector except for the free and above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rol d at a 3 meter fully-anechoic cham	measurements quency bands 9– ssion limits in an average tating table 1.5 ber. The table wa
Anborek Anbore Anborek Anb Method: noorek Jorek Anborek Anborek Anborek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are ba detector. ANSI C63.10-2020, sect Above 1GHz: a. For above 1GHz, the meters above the ground rotated 360 degrees to c	wn in the above table are based on si-peak detector except for the frec and above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rot d at a 3 meter fully-anechoic cham determine the position of the highes	measurements quency bands 9– ssion limits in an average tating table 1,5 ber. The table wa st radiation.
Anborek Anbore Anborek Anto Method: noose Jorek Anborek Anborek Anbore Anborek Anbore	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are ba detector. ANSI C63.10-2020, sect Above 1GHz: a. For above 1GHz, the meters above the ground rotated 360 degrees to c b. The EUT was set 3 m	wn in the above table are based on si-peak detector except for the frec and above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rol d at a 3 meter fully-anechoic cham determine the position of the highes eters away from the interference-re	measurements quency bands 9– ssion limits in an average tating table 1.5 ber. The table wa st radiation. ecciving antenna,
Anborek Anbore Anborek Ant Anborek Ant Method; noorek Anborek Anbore Anborek Anbore Anborek Anbore	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are by detector. ANSI C63.10-2020, sect Above 1GHz: a. For above 1GHz, the meters above the ground rotated 360 degrees to c b. The EUT was set 3 m which was mounted on t	wn in the above table are based on si-peak detector except for the free ad above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rol d at a 3 meter fully-anechoic cham determine the position of the highes eters away from the interference-re- the top of a variable-height antenna	measurements quency bands 9– ssion limits in an average tating table 1.5 ber. The table wa st radiation. eceiving antenna, a tower.
Anbotek Anbor Anbotek Ant Anbotek Ant Method; hotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are by detector. ANSI C63.10-2020, sect Above 1GHz: a. For above 1GHz, the meters above the ground rotated 360 degrees to c b. The EUT was set 3 m which was mounted on t c. The antenna height is	wn in the above table are based on si-peak detector except for the free ad above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rol d at a 3 meter fully-anechoic cham determine the position of the highes eters away from the interference-re- the top of a variable-height antenna varied from one meter to four meter	measurements quency bands 9– ssion limits in an average tating table 1.5 ber. The table wa st radiation. ecciving antenna, a tower. ers above the
Anborek Anborek Anborek Ant Anborek Ant Method: horek Anborek Anborek Anborek Anborek Anborek Anborek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are ba detector. ANSI C63.10-2020, sect Above 1GHz: a. For above 1GHz, the meters above the ground rotated 360 degrees to c b. The EUT was set 3 m which was mounted on t c. The antenna height is ground to determine the	wn in the above table are based on si-peak detector except for the free ad above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rol d at a 3 meter fully-anechoic cham determine the position of the highes eters away from the interference-re- the top of a variable-height antenna varied from one meter to four meter maximum value of the field streng	measurements quency bands 9– ssion limits in an average tating table 1.5 ber. The table wa st radiation. eceiving antenna, a tower. ers above the th. Both horizonta
Anborek Anborek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are ba detector. ANSI C63.10-2020, sect Above 1GHz: a. For above 1GHz, the meters above the ground rotated 360 degrees to c b. The EUT was set 3 m which was mounted on t c. The antenna height is ground to determine the and vertical polarizations	wn in the above table are based on si-peak detector except for the frec ad above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rol d at a 3 meter fully-anechoic cham determine the position of the highes eters away from the interference-re- the top of a variable-height antenna varied from one meter to four meter maximum value of the field streng s of the antenna are set to make th	tating table 1.5 ber. The table wast radiation. ecciving antenna, a tower. ers above the th. Both horizonta e measurement.
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are ba detector. ANSI C63.10-2020, sect Above 1GHz: a. For above 1GHz, the meters above the ground rotated 360 degrees to c b. The EUT was set 3 m which was mounted on t c. The antenna height is ground to determine the and vertical polarizations d. For each suspected e	wn in the above table are based on si-peak detector except for the frec ad above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rol d at a 3 meter fully-anechoic cham determine the position of the highes eters away from the interference-re- the top of a variable-height antenna varied from one meter to four meter maximum value of the field streng s of the antenna are set to make the mission, the EUT was arranged to	measurements quency bands 9– ssion limits in an average tating table 1.5 ber. The table wa st radiation. ecciving antenna, a tower. ers above the th. Both horizonta e measurement. its worst case
Method:	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are by detector. ANSI C63.10-2020, sect Above 1GHz: a. For above 1GHz, the meters above the ground rotated 360 degrees to o b. The EUT was set 3 m which was mounted on t c. The antenna height is ground to determine the and vertical polarizations d. For each suspected e and then the antenna was	wn in the above table are based on si-peak detector except for the free ad above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rol d at a 3 meter fully-anechoic cham determine the position of the highes eters away from the interference-re- the top of a variable-height antenna varied from one meter to four meter maximum value of the field streng s of the antenna are set to make the mission, the EUT was arranged to as tuned to heights from 1 meter to	tating table 1.5 ber. The table wast radiation. eceiving antenna, a tower. ers above the th. Both horizonta e measurement. its worst case 4 meters (for the
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are ba detector. ANSI C63.10-2020, sect Above 1GHz: a. For above 1GHz, the meters above the ground rotated 360 degrees to o b. The EUT was set 3 m which was mounted on t c. The antenna height is ground to determine the and vertical polarizations d. For each suspected e and then the antenna wa test frequency of below	wn in the above table are based on si-peak detector except for the free ad above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rol d at a 3 meter fully-anechoic cham determine the position of the highes eters away from the interference-re- the top of a variable-height antenna varied from one meter to four meter maximum value of the field streng s of the antenna are set to make the mission, the EUT was arranged to as tuned to heights from 1 meter to 30MHz, the antenna was tuned to l	tating table 1.5 ber. The table wast radiation. eceiving antenna, a tower. ers above the th. Both horizonta e measurement. its worst case 4 meters (for the heights 1 meter)
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are ba detector. ANSI C63.10-2020, sect Above 1GHz: a. For above 1GHz, the meters above the ground rotated 360 degrees to o b. The EUT was set 3 m which was mounted on t c. The antenna height is ground to determine the and vertical polarizations d. For each suspected e and then the antenna wa test frequency of below and the rotatable table w	wn in the above table are based on si-peak detector except for the free ad above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rol d at a 3 meter fully-anechoic cham determine the position of the highes eters away from the interference-re- the top of a variable-height antenna varied from one meter to four meter maximum value of the field streng s of the antenna are set to make the mission, the EUT was arranged to as tuned to heights from 1 meter to	tating table 1.5 ber. The table wast radiation. eceiving antenna, a tower. ers above the th. Both horizonta e measurement. its worst case 4 meters (for the heights 1 meter)
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are by detector. ANSI C63.10-2020, sect Above 1GHz: a. For above 1GHz, the meters above the ground rotated 360 degrees to o b. The EUT was set 3 m which was mounted on t c. The antenna height is ground to determine the and vertical polarizations d. For each suspected e and then the antenna wa test frequency of below and the rotatable table w maximum reading.	wn in the above table are based on si-peak detector except for the free ad above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rol d at a 3 meter fully-anechoic cham determine the position of the highes eters away from the interference-re- the top of a variable-height antenna varied from one meter to four meter maximum value of the field streng s of the antenna are set to make the mission, the EUT was arranged to as tuned to heights from 1 meter to 30MHz, the antenna was tuned to height antenna was turned from 0 degrees to 360 d	tating table 1.5 ber. The table wast radiation. ecciving antenna, a tower. ers above the th. Both horizonta e measurement. its worst case 4 meters (for the heights 1 meter) legrees to find the
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are by detector. ANSI C63.10-2020, sect Above 1GHz: a. For above 1GHz, the meters above the ground rotated 360 degrees to c b. The EUT was set 3 m which was mounted on t c. The antenna height is ground to determine the and vertical polarizations d. For each suspected e and then the antenna wa test frequency of below and the rotatable table w maximum reading. e. The test-receiver syst	wn in the above table are based on si-peak detector except for the free ad above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rol d at a 3 meter fully-anechoic cham determine the position of the highes eters away from the interference-re- the top of a variable-height antenna varied from one meter to four meter maximum value of the field streng s of the antenna are set to make the mission, the EUT was arranged to as tuned to heights from 1 meter to 30MHz, the antenna was tuned to I was turned from 0 degrees to 360 d em was set to Peak Detect Function	tating table 1.5 ber. The table wast radiation. ecciving antenna, a tower. ers above the th. Both horizonta e measurement. its worst case 4 meters (for the heights 1 meter) legrees to find the
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are ba detector. ANSI C63.10-2020, sect Above 1GHz: a. For above 1GHz, the meters above the ground rotated 360 degrees to o b. The EUT was set 3 m which was mounted on t c. The antenna height is ground to determine the and vertical polarizations d. For each suspected e and then the antenna wa test frequency of below and the rotatable table v maximum reading. e. The test-receiver syst Bandwidth with Maximum	wn in the above table are based on si-peak detector except for the free ad above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rol d at a 3 meter fully-anechoic cham determine the position of the highes eters away from the interference-re- the top of a variable-height antenna varied from one meter to four meter maximum value of the field streng s of the antenna are set to make the mission, the EUT was arranged to as tuned to heights from 1 meter to 30MHz, the antenna was tuned to I vas turned from 0 degrees to 360 d em was set to Peak Detect Function m Hold Mode.	measurements quency bands 9– ssion limits in an average tating table 1.5 ber. The table wa st radiation. eceiving antenna, a tower. ers above the th. Both horizonta e measurement. its worst case 4 meters (for the heights 1 meter) legrees to find the on and Specified
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are ba detector. ANSI C63.10-2020, sect Above 1GHz: a. For above 1GHz, the meters above the ground rotated 360 degrees to o b. The EUT was set 3 m which was mounted on t c. The antenna height is ground to determine the and vertical polarizations d. For each suspected e and then the antenna wa test frequency of below and the rotatable table v maximum reading. e. The test-receiver syst Bandwidth with Maximum f. If the emission level of	wn in the above table are based on si-peak detector except for the free ad above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rol d at a 3 meter fully-anechoic cham determine the position of the highes eters away from the interference-re- the top of a variable-height antenna varied from one meter to four meter maximum value of the field streng s of the antenna are set to make the mission, the EUT was arranged to as tuned to heights from 1 meter to 30MHz, the antenna was tuned to I vas turned from 0 degrees to 360 d em was set to Peak Detect Function m Hold Mode.	tating table 1.5 ber. The table wast radiation. eceiving antenna, a tower. ers above the th. Both horizonta e measurement. its worst case 4 meters (for the heights 1 meter) legrees to find the on and Specified lower than the
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are ba detector. ANSI C63.10-2020, sect Above 1GHz: a. For above 1GHz, the meters above the ground rotated 360 degrees to c b. The EUT was set 3 m which was mounted on t c. The antenna height is ground to determine the and vertical polarizations d. For each suspected e and then the antenna wa test frequency of below and the rotatable table v maximum reading. e. The test-receiver syst Bandwidth with Maximum f. If the emission level of limit specified, then testi	wn in the above table are based on si-peak detector except for the frec ad above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rol d at a 3 meter fully-anechoic cham determine the position of the highes eters away from the interference-re- the top of a variable-height antenna varied from one meter to four meter maximum value of the field streng s of the antenna are set to make the mission, the EUT was arranged to as tuned to heights from 1 meter to 30MHz, the antenna was tuned to I was turned from 0 degrees to 360 d em was set to Peak Detect Function m Hold Mode.	tating table 1.5 ber. The table wast radiation. eceiving antenna, a tower. ers above the th. Both horizonta e measurement. its worst case 4 meters (for the heights 1 meter) legrees to find the on and Specified lower than the values of the EU
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are by detector. ANSI C63.10-2020, sect Above 1GHz: a. For above 1GHz, the meters above the ground rotated 360 degrees to o b. The EUT was set 3 m which was mounted on t c. The antenna height is ground to determine the and vertical polarizations d. For each suspected e and then the antenna wa test frequency of below and the rotatable table w maximum reading. e. The test-receiver syst Bandwidth with Maximum f. If the emission level of limit specified, then testi would be reported. Othe	wn in the above table are based on si-peak detector except for the free ad above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rol d at a 3 meter fully-anechoic cham determine the position of the highes eters away from the interference-re- the top of a variable-height antenna varied from one meter to four meter maximum value of the field streng s of the antenna are set to make the mission, the EUT was arranged to as tuned to heights from 1 meter to 30MHz, the antenna was tuned to I was turned from 0 degrees to 360 d em was set to Peak Detect Function m Hold Mode. The EUT in peak mode was 10dB ng could be stopped and the peak arwise the emissions that did not ha	measurements quency bands 9– ssion limits in an average tating table 1.5 ber. The table wast radiation. eceiving antenna, a tower. ers above the th. Both horizonta e measurement. its worst case 4 meters (for the heights 1 meter) legrees to find the on and Specified lower than the values of the EU ave 10dB margin
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The emission limits show employing a CISPR qua 90 kHz, 110–490 kHz ar these three bands are by detector. ANSI C63.10-2020, sect Above 1GHz: a. For above 1GHz, the meters above the ground rotated 360 degrees to o b. The EUT was set 3 m which was mounted on t c. The antenna height is ground to determine the and vertical polarizations d. For each suspected e and then the antenna wa test frequency of below and the rotatable table w maximum reading. e. The test-receiver syst Bandwidth with Maximum f. If the emission level of limit specified, then testi would be reported. Othe	wn in the above table are based on si-peak detector except for the free ad above 1000 MHz. Radiated emis ased on measurements employing tion 12.7.4, 12.7.6, 12.7.7 EUT was placed on the top of a rol d at a 3 meter fully-anechoic cham determine the position of the highes eters away from the interference-re- the top of a variable-height antenna varied from one meter to four meter maximum value of the field streng s of the antenna are set to make the mission, the EUT was arranged to as tuned to heights from 1 meter to 30MHz, the antenna was tuned to I vas turned from 0 degrees to 360 d em was set to Peak Detect Function m Hold Mode. The EUT in peak mode was 10dB ng could be stopped and the peak rwise the emissions that did not ha by one using peak or average method	measurements quency bands 9– ssion limits in an average tating table 1.5 ber. The table wast radiation. eceiving antenna, a tower. ers above the th. Both horizonta e measurement. its worst case 4 meters (for the heights 1 meter) legrees to find the on and Specified lower than the values of the EU ave 10dB margin

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: 2ABC5-E0062

channel.

h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

i. Repeat above procedures until all frequencies measured was complete. Remark:

1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

10.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

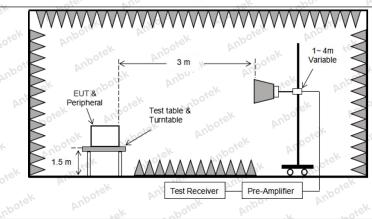
Test mode:

3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com



FCC ID: 2ABC5-E0062

Page 57 of 60

10.2. Test Setup

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: 2ABC5-E0062

Page 58 of 60

10.3. Test Data

Temperature:	25.3 °C	Humidity:	49 % M ^{bond}	Atmospheric Pressure:	101 kPa
202	- Ac	No. N.		NOV.	K bo.

TM4 / Band: 5150-5250 MHz / BW: 80									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
10420.00	30.03	23.81	53.84	68.20	-14.36	V	👦 Peak		
15630.00	30.72	29.36	60.08	68.20	-8.12	mbo V	Peak		
10420.00	30.96	23.81	54.77	68.20	-13.43	Anboit	Peak		
15630.00	32.21	29.36	61.57	68.20	-6.63	, Hotek	Peak		
10420.00	20.53	23.81	44.34	54.00	-9.66	V botek	AVG		
15630.00	21.46	29.36	50.82	54.00	-3.18	V	AVG NO		
10420.00	20.65	23.81	44.46 ⁰⁰⁰	54.00	otek -9.54 prof	H And	AVG		
15630.00	21.64 M	29.36	51.00	54.00	-3.00	nbotek H Ar	AVG		

Remark:

1. Result =Reading + Factor

2. Only record the worst data (802.11ax(HEW80)) in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

FCC ID: 2ABC5-E0062

Page 59 of 60

TM4 / Band: 5725-5850 MHz / BW: 80								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
11550.000	30.17	23.40	53.57	68.20	-14.63	K V bote	Peak	
17325.000	30.94	32.13	63.07	68.20	-5.13	V	Peak no	
11550.000	31.20	23.40	54.60 ^{mb/2}	68.20	o ^{tex} -13.60 pm	H Pun	Peak	
17325.000	o ^{ote} 31.45 M ⁿ	32.13	63.58	68.20	-4.62	nboter H P	Peak	
11550.000	17.69	23.40	41.09	54.00	-12.91	No VK	AVG	
17325.000	18.28	32.13	50.41	54.00	-3.59	V _{otek}	AVG	
11550.000	17.79	23.40	41.19	54.00	-12.81	H H	AVG	
17325.000	18.82	32.13	50.95	54.00	-3.05	H ^{upo}	AVG	

Remark:

1. Result =Reading + Factor

2. Only record the worst data (802.11ax(HEW80)) in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

Report No.: 18220WC40042204 FCC ID: 2ABC5-E0062 Page 60 of 60

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report ----

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)0755–26066440 Fax:(86)0755–26014772 Email:service@anbotek.com

