

TEST REPORT

Report No.	SST240416006EF01		
Applicant:	SHENZHEN ELECTRON TECHNOLOGY CO., LTD.		
Address of Applicant:	Bld.2, Yingfeng Industrial Zone, Tantou Community, Songgang Street, Bao'an, Shenzhen, China.		
Product Name:	Android Tablet		
Trade Mark:	1		
Standard(s):	FCC CFR Title 47 Part 15 Subpart E Section 15.247		
FCC ID:	2ABC5-E0059		
Test Report Form No:	SST-RD-7.5-02-E01(A/0)		
Date of sample receipt:	2024/4/18		
Date of Test:	2024/4/19 - 2024/5/21		
Date of report issued:	2024/5/23		

*The equipment complies with the requirements according to the standard(s) or Specification above, it is applicable only to the tested sample identified in the report.

*The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Version	Description	Date of Issue
V1.0	Original	2024/5/23

2 Contents

	Pag	е
1	COVER PAGE	1
2	CONTENTS	3
3	TEST SUMMARY	4
4	MEASUREMENT UNCERTAINTY	4
5	GENERAL INFORMATION	5
5 5 5 5 5 5 5 5 5	.1 CLIENT INFORMATION	5 5 6 7 7 7 7 7
6	TECHNICAL REQUIREMENT AND MEASUREMENT DATA	8
6 6 6 6 6 6	.1 GENERALLY REQUIREMENT	8 9 0 1 2 3 4 5 4
7	TEST SETUP PHOTO	7
8	EUT CONSTRUCTIONAL DETAILS	7
	NEX ATEST INSTRUMENTS LIST 2	8

3 Test Summary

Test items	Basics standards	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Notes:

1: NA =Not Applicable

2: Determining compliance based on the results of the compliance measurement, not taking into account measurement uncertainty. If necessary, the applicant shall informing test lab in advance 3: Additions, Deviations and Exclusions from Standards: None.

4 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Item	Uncertainty (±	:) (k=2, 95%)	
Output Power, Conducted	0.54		
Power Spectral Density, Conducted	1.28		
Spurious Emissions, Conducted	1.2	8	
Padiated Emissions(<1CHz)	9kHz~30MHz	2.6	
	30MHz~1GHz	5.08	
	1GHz~6GHz	4.02	
Radiated Emissions(>1GHz)	6GHz~18GHz	4.62	
	18GHz~40GHz	4.7	
Occupied Bandwidth	1.1	4	
Conducted Emissions AC mains	9kHz~150KHz	1.76	
Conducted Emissions—AC mains	150kHz~30MHz	2.52	
Conducted Emissions—Telecom	2.6	4	

5 General Information

5.1 Client Information

Applicant: Address of applicant:	SHENZHEN ELECTRON TECHNOLOGY CO., LTD. Bld.2, Yingfeng Industrial Zone, Tantou Community, Songgang Street, Bao'an, Shenzhen, China.
Manufacturer: Address of	Same as applicant
Manufacturer: Factory: Address of Factory:	Same as applicant Same as applicant Same as applicant
-	••

5.2 General Description of EUT

Product Name:	Android Tablet
Model No.:	EP1095T
Test sample(s) ID:	24041600602
Sample(s) Status:	Continuously transmitter
S/N:	1
Hardware Version:	T30-T616-V2.0
Software Version:	039_ums9230_6h10_Natv_k515t30_full_YLD_EP1095T_20240410
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, Pi/4DQPSK, 8DPSK
Antenna gain:	Refer to section 5.7 for details
Power supply:	
	AC/DC Adapter
	Model No.: JHD-AP013U-050200BB-B
	INPUT: AC 100-240V, 50/60Hz, 0.35A
	OUTPUT: DC 5V, 2.0A
	Or 7000mAh, 3.8V, 26.6Wh Lithium-ion Rechargeable Battery

5.3 Test mode(s)

Mode 1:	continuously transmitting
Mode 2:	
Mode 3:	

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see above marked

5.4 Test Facility

	FCC Accredited Lab
The test facility is	Test Firm Registration Number: 638130 Designation Number: CN1359
recognized, certified,	IC Registration Lab
or accredited by these organizations:	CAB Identifier No. CN0154
	A2LA Accreditation Lab
	Certificate No.:7057.01
-	

	Name
	GuangDong Set Sail Testing Co., Ltd.
Test Performed at:	Address
	101, No.19, Tianxin Hudie 1st Road, Huangjiang Town, Dongguan, Guangdong,
	China

5.5 Description of Support Units

None

5.6 Additional Instructions

Test Software	Test software built-in by manufacturer
Power level setup	Default

5.7 Antenna Information

Ant	Manufacturer	Model	Antenna Type	Antenna Gain (dBi)
1	SHENZHEN Xingyuanchuang TECHNOLOGY CO., LTD	1	/	1.36

All above information provided by the applicant which is fully responsible for those information.

5.8 Others

The laboratory responsible for all the information provided in the report, except those information provided by the applicant.

The applicant shall fully responsible for the information they provided.

The report would be invalid without a stamp of test laboratory and the signatures of compiler and approver. The laboratory has not been responsible for the sampling stage; the test report merely corresponds to the test sample received.

Any objection to the test report shall submitted to the test laboratory within 15 days from the date of receipt of the report.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

6 Technical Requirement and Measurement Data

6.1 Generally requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

Reference to the appendix II for details

6.2 Conducted Peak Output Power

imit
0.97dBm
Block diagram of Test Setup
Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
est instrument
Refer to Annex A for details
est Procedures
est applies to C63.10
/erdict
Pass

6.3 20dB Emission Bandwidth

Limit
Report only
Block diagram of Test Setup
Spectrum Analyzer E.U.T Non-Conducted Table Ground Beference Plane
Test Instrument
Refer to Annex A for details
Test Procedures
Test applies to C63.10
Verdict
Pass

6.4 Carrier Frequency Separation

Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

6.5 Hopping Channel Numbers

6.6 Dwell Time

Limit	
0.4s	
Block diagram of Test Setu	р
	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
Test Instrument	
Refer to Annex A for details	
Test Procedures	
Test applies to C63.10	
Verdict	
Pass	

6.7 Conducted Emission

Limit In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Block diagram of Test Setup Spectrum Analyzer FU.T Non-Conducted Table Ground Reference Plane

Refer to Annex A for details

Test Procedures

Test applies to C63.10

Verdict Pass

6.8 Radiated Spurious Emission

GuangDong Set Sail Testing Co., Ltd. 101, No.19, Tianxin Hudie 1st Road, Huangjiang Town, Dongguan, Guangdong, China

Note: The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o), the test result no need to reported.

est mode		-								
Test mode Mode 1					Polarity Horizontal					
est voltage	t voltage AC 120V/60Hz				um.	25 °C/60%	0			
90 80 70 60 50 30 20 10 30M	QP Limit QP Detector		100M	FCC PART 15B	M M M M	FCC PA	RT 15B-QP Limit			
	Freq	Factor	OP Value	OP Limit	05.M					
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	QP Margin [dB]	Polarity	Verdict			
NO.	[MHz] 347.8143	[dB]	[dBµV/m] 32.17	[dBµV/m] 46.00	[dB] [dB]	Polarity Horizontal	Verdict PASS			
NO.	[MHz] 347.8143 359.9082	[dB] -12.98 -12.65	[dBµV/m] 32.17 34.29	[dBµV/m] 46.00 46.00	QP Margin [dB] 13.83 11.71	Polarity Horizontal Horizontal	Verdict PASS PASS			
NO.	[MHz] 347.8143 359.9082 368.8496	[dB] -12.98 -12.65 -12.41	[dBµV/m] 32.17 34.29 35.02	[dBµV/m] 46.00 46.00 46.00	[dB] 13.83 11.71 10.98	Polarity Horizontal Horizontal Horizontal	Verdict PASS PASS PASS			
NO. 1 2 3 4	[MHz] 347.8143 359.9082 368.8496 373.0761	[dB] -12.98 -12.65 -12.41 -12.29	[dBµV/m] 32.17 34.29 35.02 31.44	[dBµV/m] 46.00 46.00 46.00 46.00	QP Margin [dB] 13.83 11.71 10.98 14.56	Polarity Horizontal Horizontal Horizontal Horizontal	Verdict PASS PASS PASS PASS			
NO. 1 2 3 4 5	[MHz] 347.8143 359.9082 368.8496 373.0761 386.3869	[dB] -12.98 -12.65 -12.41 -12.29 -11.92	[dBµV/m] 32.17 34.29 35.02 31.44 31.60	[dBµV/m] 46.00 46.00 46.00 46.00 46.00	QP Margin [dB] 13.83 11.71 10.98 14.56 14.40	Polarity Horizontal Horizontal Horizontal Horizontal	Verdict PASS PASS PASS PASS PASS			
NO. 1 2 3 4 5 6	[MHz] 347.8143 359.9082 368.8496 373.0761 386.3869 465.6884	[dB] -12.98 -12.65 -12.41 -12.29 -11.92 -10.66	[dBµV/m] 32.17 34.29 35.02 31.44 31.60 35.86	[dBµV/m] 46.00 46.00 46.00 46.00 46.00 46.00	QP Margin [dB] 13.83 11.71 10.98 14.56 14.40 10.14	Polarity Horizontal Horizontal Horizontal Horizontal Horizontal	Verdict PASS PASS PASS PASS PASS PASS			

Test Result(30M~1GHz)										
Test m	Test mode Mode 1				Polarity	Polarity Vertical				
Test vo	oltage		AC 120V/6	i0Hz	Temp. /H	um.	25 °C/60%	6		
	90 80									
Lavoitfaffa, 17/m)	70 60 50 40 30 20 10 0 30M	QP Limit - V		100M	Frequency[Hz]			RT 15B-QP Limit		
	NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Polarity	Verdict		
	1	33.8273	-18.22	28.12	40.00	11.88	Vertical	PASS		
	2	54.9709	-16.04	26.39	40.00	13.61	Vertical	PASS		
	3	68.0777	-18.96	24.82	40.00	15.18	Vertical	PASS		
	4	82.1219	-20.65	25.85	40.00	14.15	Vertical	PASS		
	5	125.0716	-19.36	28.51	43.50	14.99	Vertical	PASS		
	6	128.6289	-19.76	28.01	43.50	15.49	Vertical	PASS		
Note: F Factor	6 128.6289 -19.76 28.01 43.50 15.49 Vertical PASS Note: Final Level =Receiver Read level + Factor Final Level = Receiver Read level + Factor Final Level = Receiver Read level + Factor Final Level = Receiver Read level + Factor									

Only the worst case report(GFSK 2402MHz)

Test Result(Emissions	in Non-res	tricted ba	nd)				
Test mode		Mode 1		Τe	mp. /Hum.		25 °C/60%	
Test voltage		AC 120\	//60Hz	Τe	st channel		Lowest	
Peak value:	Peak value:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310	59.99	27.71	5.3	53.84	39.16	74	-34.84	Horizontal
2390	64.72	27.91	5.4	53.82	44.21	74	-29.79	Horizontal
2310	61.23	27.71	5.3	53.84	40.4	74	-33.6	Vertical
2390	64.74	27.91	5.4	53.82	44.23	74	-29.77	Vertical
Average valu	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310	48.78	27.71	5.3	53.84	27.95	54	-26.05	Horizontal
2390	55.63	27.91	5.4	53.82	35.12	54	-18.88	Horizontal
2310	51.21	27.71	5.3	53.84	30.38	54	-23.62	Vertical
2390	56.09	27.91	5.4	53.82	35.58	54	-18.42	Vertical

lest Result(Emissions	in Non-res	stricted ba	na)						
Test mode		Mode 1				np. /Hum.		25 °C/60%	D	
Test voltage		AC 120\	//60Hz		Test channel			Highest		
Peak value:	Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Facto (dB)	np or)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
2483.5	57.04	28.16	5.51	53.8	3	36.91	74	-37.09	Horizontal	
2500	55.5	28.2	5.53	53.8	3	35.43	74	-38.57	Horizontal	
2483.5	58.4	28.16	5.51	53.8	3	38.27	74	-35.73	Vertical	
2500	53.08	28.2	5.53	53.8		33.01	74	-40.99	Vertical	
Average valu	ie:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)	np or	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
2483.5	51.97	28.16	5.51	53.8		31.84	54	-22.16	Horizontal	
2500	49.76	28.2	5.53	53.8		29.69	54	-24.31	Horizontal	
2483.5	50.54	28.16	5.51	53.8		30.41	54	-23.59	Vertical	
2500	49.77	28.2	5.53	53.8		29.7	54	-24.3	Vertical	

Test Result(Emissions	in Restricte	d band)						
Test mode		Mode 1			Tem	p. /Hum.		25 °C/60%	
Test voltage		AC 120V/	60Hz	Test channel				Lowest	
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (d	amp ctor B)	Level (dBuV/m)	Limit Line (dBuV/m	e Over Limit (dB)	polarization
4804	51.35	33.35	7.7	53.	72	38.68	74	-35.32	Vertical
7206	51.3	36.54	9.55	53.	24	44.15	74	-29.85	Vertical
9608	51.59	39.04	11.29	53.	28	48.64	74	-25.36	Vertical
4804	52.94	33.35	7.7	53.72		40.27	74	-33.73	Horizontal
7206	51.77	36.54	9.55	53.24		44.62	74	-29.38	Horizontal
9608	51.42	39.04	11.29	53.	28	48.47	74	-25.53	Horizontal
Average valu	le:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (d	amp ctor B)	Level (dBuV/m)	Limit Line (dBuV/m	e Over Limit (dB)	polarization
4804	47.17	33.35	7.7	53.	72	34.5	54	-19.5	Vertical
7206	45.25	36.54	9.55	53.	24	38.1	54	-15.9	Vertical
9608	44.47	39.04	11.29	53.	28	41.52	54	-12.48	Vertical
4804	44.89	33.35	7.7	53.	72	32.22	54	-21.78	Horizontal
7206	45.93	36.54	9.55	53.	24	38.78	54	-15.22	Horizontal
9608	44.8	39.04	11.29	53.	28	41.85	54	-12.15	Horizontal

Test Result(Emissions	in Restricte	d band)					
Test mode		Mode 1 Temp. /Hum.					25 °C/60%	
Test voltage		AC 120V/	60Hz	Test	channel		Middle	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882	52.69	33.57	7.77	53.71	40.32	74	-33.68	Vertical
7323	52.57	36.56	9.64	53.26	45.51	74	-28.49	Vertical
9764	53.76	39.11	11.39	53.25	51.01	74	-22.99	Vertical
4882	52.3	33.57	7.77	53.71	39.93	74	-34.07	Horizontal
7323	52.77	36.56	9.64	53.26	45.71	74	-28.29	Horizontal
9764	52.77	39.11	11.39	53.25	50.02	74	-23.98	Horizontal
Average valu	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	e Over Limit (dB)	polarization
4882	47.95	33.57	7.77	53.71	35.58	54	-18.42	Vertical
7323	45.98	36.56	9.64	53.26	38.92	54	-15.08	Vertical
9764	48.36	39.11	11.39	53.25	45.61	54	-8.39	Vertical
4882	45.36	33.57	7.77	53.71	32.99	54	-21.01	Horizontal
7323	47.7	36.56	9.64	53.26	40.64	54	-13.36	Horizontal
9764	46.21	39.11	11.39	53.25	43.46	54	-10.54	Horizontal

Test Result(Emissions	in Restricte	d band)						
Test mode		Mode 1	Mode 1 Temp. /Hum.						
Test voltage		AC 120V/	60Hz	Т	Test channel			Highest	
Posk value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)	r Le ^r (dBu	vel V/m)	Limit Line (dBuV/m	e Over Limit (dB)	polarization
4960	52.23	33.79	7.83	53.7	40.	.15	74	-33.85	Vertical
7440	53.51	36.59	9.72	53.29	46.	.53	74	-27.47	Vertical
9920	52.12	39.17	11.48	53.22	49.	.55	74	-24.45	Vertical
4960	52.69	33.79	7.83	53.7	40.	.61	74	-33.39	Horizontal
7440	52.76	36.59	9.72	53.29	45.	.78	74	-28.22	Horizontal
9920	53.16	39.17	11. <mark>4</mark> 8	53.22	50.	.59	74	-23.41	Horizontal
Average valu	ue:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)	r Le ^r (dBu	vel V/m)	Limit Line (dBuV/m	e Over Limit (dB)	polarization
4960	46.1	33.79	7.83	53.7	34.	.02	54	-19.98	Vertical
7440	46.88	36.59	9.72	53.29	39	9.9	54	-14.1	Vertical
9 <mark>9</mark> 20	46.62	39.17	11.48	53.22	44.	.05	54	-9.95	Vertical
4960	45.09	33.79	7.83	53.7	33.	.01	54	-20.99	Horizontal
7440	45.81	36.59	9.72	53.29	38.	.83	54	-15.17	Horizontal
9920	46.62	39.17	11.48	53.22	44.	.05	54	-9.95	Horizontal

6.9 Conducted Emissions

Limit							
Frequency (MHz)	Quasi-peak	Average					
0.15~0.50	66 to 56*	56 to 46*					
0.50~5.0	56	46					
5.0~30	60	50					
*Decreases with the logarithm of the frequence	су.						
If the limit for the measurement with the aver	rage detector is met when us	sing a receiver with a quasi-peak					
detector, the equipment under test shall be	deemed to meet both limits	and the measurement using the					
receiver with an average detector need not be	e carried out						
Block diagram of Test Setup							
For table-top equipment		oor standing equipment					
Toet Instrument							
Refer to Annex A for details							
CONDUCTING GROUND PLANE EXTENDIA AT LEAST 0.5 m BEVOID EUT SYSTEM POOTPRINT UNIVER UNIVER							

Test Procedures

The measurement was performed in a shield room.

Measured levels of ac power-line conducted emission shall be the radio-noise voltage from the voltage probe, where permitted, or across the 50 Ω LISN port (to which the EUT is connected), as terminated into a 50 Ω EMI receiver or spectrum analyzer. All radio-noise voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord or calibrated extension cord by the use of mating plugs and receptacles on the EUT and LISN, if used. The manufacturer shall test equipment with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended. For measurements using a LISN, the 50 Ω measuring port is terminated into a 50 Ω EMI receiver or spectrum analyzer. All other ports are terminated into 50 Ω loads.

Table top devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.

The bandwidth of the test receiver is set at 9 kHz.

Verdict Pass

Test mode Mode 1 Polarity Line Test voltage AC 120V/60Hz Temp. /Hum. 25 °C/60%
Test voltage AC 120V/60Hz Temp. /Hum. 25 °C/60%
Provide FCC PART 15B(L) Provide FCC PART 15B(L) FCC PART 15B(L) FCC PART 15B-QP Limit FCC PART 15B-QP Limit FCC PART 15B-QP Limit
$f_{\text{Fequery[Hz]}}$
$f_{\text{CCPART 13B-QP Limit}}$
FCC PART 15B-OP Limit FCC PART 15B-OP Limit
FCC PART 15% V Limit
$f_{requency[Hz]}$
20 M M M M M M M M M M M M M M M M M M M
-10 -10 -10 -10 -10 -10 -10 -10
150k 1M 10M 30M Frequency[Hz] OP Limit AV Limit PK AV • QP Detector • AV Detector
QP Limit AV Limit PK AV QP Detector AV Detector
Final Data List
NO.QPQPQPAVAVAV[MHz]QPLimitMarginValueLimitMarginVerdictType[MHz][dBµV][dBµV][dB][dBµV][dBµV][dBµV][dBµV]
1 0.456 43.52 56.77 13.25 24.13 46.77 22.64 PASS L
2 21.885 48.00 60.00 12.00 27.22 50.00 22.78 PASS L
3 22.1685 48.57 60.00 11.43 30.46 50.00 19.54 PASS L
4 22.614 52.39 60.00 7.61 31.12 50.00 18.88 PASS L
5 22.9065 50.72 60.00 9.28 30.80 50.00 19.20 PASS L
6 23.361 45.72 60.00 14.28 29.40 50.00 20.60 PASS L
Note: Final Level =Receiver Read level + Factor
Factor= LISN Factor + Cable Loss

Test Result											
Test mode M			Mode 1			Polarity			Neutra	Neutral	
Test voltage			AC 120V/60Hz			Temp. /Hum.			25 °C/	25 °C/60%	
reve[dBJrV]	100 90 80 70 60 50 40 30 20 10		mm	mmm	FCC	PART 15B(N)			F	CC PART 15B-QI	P Limit
	-10 150k • QP Fina	Limit Detector • A	Limit — Pł V Detector	1M	Fre	equency[Hz]	- + +	~	10M		30M
	NO.	Freq. [MHz]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	Туре	
	1	22.164	51.96	60.00	8.04	35.97	50.00	14.03	PASS	N	
	2	22.6095	51.45	60.00	8.55	37.42	50.00	12.58	PASS	Ν	
	3	22.9065	51.60	60.00	8.40	38.25	50.00	11.75	PASS	Ν	
	4	23.3385	54.29	60.00	5.71	35.36	50.00	14.64	PASS	N	
	5	23.631	52.67	60.00	7.33	34.58	50.00	15.42	PASS	N	
	6	24.072	54.38	60.00	5.62	36.94	50.00	13.06	PASS	N	
lote: Fina Factor= L	al Level ISN Fac	=Receive ctor + Cab	r Read le le Loss GFSK 24	evel + Fa	ctor						

Report No.: SST240416006EF01

7

Test Setup Photo Reference to the appendix I for details.

EUT Constructional Details 8 Reference to the **appendix II** for details.

Annex A -- Test Instruments list

Radiated Emission:								
Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. cycle	Cal.Date		
SST-E-SAC001	3m Semi- Anechoic Chamber	BOST	966	/	3 years	2023.01.07		
SST-E-SCC001	Control Room	BOST	333	/	3 years	2023.01.07		
SST-E-SAC002	Breiband TRILOG Messantenne	Schwarzbeck	VULB 9162	00556	1 year	2024.04.20		
SST-E-SAC004	Broad-band Horn Antenna	Schwarzbeck	BBHA 9120 D	02783	1 year	2024.04.16		
SST-E-SCC003	EMI Test Receiver	R&S	ESU 8	100372	1 year	2024.04.16		
SST-E-SCC004	Amplifier	Schwarzbeck	BBV 9744	00327	1 year	2024.04.16		
SST-E-SCC015	Amplifie (1-18GHz)	TSTPASS	LNA10180G45	TSAM2303003	1 year	2024.04.16		
SST-E-SCC016	Amplifier (40G)	RFsystem	TRLA- 180400G45B	23060801	1 year	2024.04.16		
SST-E-SAC006	Broadband Horn Antenna (40G)	Schwarzbeck	BBHA9170	01306	1 year	2024.04.17		
SST-E-RSC010	Spectrum analyzer	R&S	FSV40-N	1	1 year	2024.04.16		
SST-E-SAC007	Loop Antenna	Schwarzbeck	FMZB 1513- 60B	1513-60B 044	1 year	2024.04.17		
SST-E-SAC005	5W 6dB attenuator	/	DC-6GHz	/	Internal calibration	/		
SST-E-EMC006	Thermohygrometer	KTJ	TA218A	879030	1 year	2024.04.18		
1	EMI Test Software	Tonscend	TS+	/	/	/		

Conducted Emission									
Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. cycle	Cal.Date			
SST-E-CSC001	Shielding Room	BOST	854	/	3 year	2023.01.07			
SST-E-CSC002	EMI Test Receiver	R&S	ESR3	103057	1 year	2024.04.16			
SST-E-CSC003	LISN	R&S	ENV 216	102832	1 year	2024.04.16			
SST-E-CSC004	ISN	R&S	NTFM 8158	00347	1 year	2024.04.16			
SST-E-CSC007	Antenna port test assembly	/	DC-3GHz	/	Internal calibration	/			
SST-E-EMC011	Thermohygrometer	KTJ	TA218A	879036	1 year	2024.04.18			
/	EMI Test Software	Tonscend	TS+	V4.0	/	/			

RF conducted						
Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. cycle	Cal.Date
SST-E-RSC001	Shielding Room	BOST	543	/	3 year	2023.01.07
SST-E-RSC007	Spectrum analyzer	keysight	N9020A	MY51280659	1 year	2024.04.16
SST-E-RSC008	Analog signal source	Agilent	N5181A	MY48180054	1 year	2024.04.16
SST-E-RSC009	Vector signal source	keysight	N5172B	MY57281610	1 year	2024.04.16
SST-E-EMC007	Thermohygrometer	КТЈ	TA218A	879032	1 year	2024.04.18
SST-E-RSC010	Spectrum analyzer	R&S	FSV40-N	/	1 year	2024.04.16
SST-E-RSC015- 1	Power meter 1	TST	TST V2	/	1 year	2024.04.16
/	Test Software	TST PASS	TST PASS	V2.0	/	/

END OF REPORT

