

TEST REPORT

Report No.	SST240408002EF01	
Applicant:	SHENZHEN ELECTRON TECHNOLOGY CO., LTD.	
Address of Applicant:	Bld.2, Yingfeng Industrial Zone, Tantou Community, Songgang Street, Bao'an, Shenzhen, China.	
Product Name:	Android Tablet	
Trade Mark:	/	
Standard(s):	FCC CFR Title 47 Part 15 Subpart E Section 15.247	
FCC ID:	2ABC5-E0055	
Test Report Form No:	SST-RD-7.5-02-E01(A/0)	
Date of sample receipt:	2024/4/8	
Date of Test:	2024/4/8 - 2024/4/24	
Date of report issued:	2024/4/25	

*The equipment complies with the requirements according to the standard(s) or Specification above, it is applicable only to the tested sample identified in the report.

*The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Version	Description	Date of Issue
V1.0	Original	2024/4/25

2 Contents

	Page	9
1	COVER PAGE1	I
2	CONTENTS	3
3	TEST SUMMARY	ŀ
4	MEASUREMENT UNCERTAINTY4	ŀ
5	GENERAL INFORMATION	5
5 5 5 5 5 5	2 GENERAL DESCRIPTION OF EUT	557777
6	TECHNICAL REQUIREMENT AND MEASUREMENT DATA	3
6	2 CONDUCTED PEAK OUTPUT POWER)))))))))))))))))))
7	TEST SETUP PHOTO 27	
8	EUT CONSTRUCTIONAL DETAILS	
	NEX ATEST INSTRUMENTS LIST	3

3 Test Summary

Test items	Basics standards	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Notes:

1: NA =Not Applicable

2: Determining compliance based on the results of the compliance measurement, not taking into account measurement uncertainty. If necessary, the applicant shall informing test lab in advance 3: Additions, Deviations and Exclusions from Standards: None.

4 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Item	Uncertainty (±) (k=2, 95%)		
Output Power, Conducted	0.54		
Power Spectral Density, Conducted	1.:	28	
Spurious Emissions, Conducted	1.:	28	
Radiated Emissions(<1GHz)	9kHz~30MHz	2.6	
	30MHz~1GHz	5.08	
	1GHz~6GHz	4.02	
Radiated Emissions(>1GHz)	6GHz~18GHz	4.62	
	18GHz~40GHz	4.7	
Occupied Bandwidth	1.14		
Conducted Emissions—AC mains	9kHz~150KHz	1.76	
Conducted Emissions—AC mains	150kHz~30MHz	2.52	
Conducted Emissions—Telecom	2.0	64	

5 General Information

5.1 Client Information

Applicant: Address of applicant:	SHENZHEN ELECTRON TECHNOLOGY CO., LTD. Bld.2, Yingfeng Industrial Zone, Tantou Community, Songgang Street, Bao'an, Shenzhen, China.
Manufacturer: Address of	Same as applicant
Manufacturer: Factory: Address of Factory:	Same as applicant Same as applicant Same as applicant

5.2 General Description of EUT

Product Name:	Android Tablet
Model No.:	SW3295T, NW3295T
Test Model:	SW3295T
Test sample(s) ID:	24040800202
Sample(s) Status:	Continuously transmitter
S/N:	1
Hardware Version:	R136 V1.0
Software Version:	/
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, Pi/4DQPSK, 8DPSK
Antenna gain:	Refer to section 5.7 for details
Power supply:	SW3295T: SWITCH MODE POWER SUPPLY Model No.: E096-1A180500B3 INPUT: AC 100-240V, 50/60Hz, 1.5A OUTPUT: DC 18V, 5.0A, 90.0W Or 6800mAh, 14.6V, 99.28Wh Lithium-ion Rechargeable Battery NW3295T: SWITCH ADAPTER Model No.: FJ-SW20171205000 INPUT: AC 100-240V, 50/60Hz, 1.5A MAX OUTPUT: DC 12V, 5.0A, 60.0W

5.3 Test mode(s)

Mode 1:	continuously transmitting
Mode 2:	
Mode 3:	

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2 <mark>412M</mark> Hz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see above marked

5.4 Test Facility

	FCC Accredited Lab
The test facility is	Test Firm Registration Number: 638130 Designation Number: CN1359
recognized, certified, or accredited by these organizations:	IC Registration Lab
	CAB Identifier No. CN0154
	A2LA Accreditation Lab
	Certificate No.:7057.01

	Name
	GuangDong Set Sail Testing Co., Ltd.
Test Performed at: Address	
	101, No.19, Tianxin Hudie 1st Road, Huangjiang Town, Dongguan, Guangdong,
	China

5.5 Description of Support Units

Device Type	Brand	Model	Series No.	Note
Notebook PC	HP	ZHAN 66P		

5.6 Additional Instructions

Test Software	Special test command provided by manufacturer
Power level setup	Default

5.7 Antenna Information

Ant	Manufacturer	Model	Antenna Type	Antenna Gain (dBi)
2	Shenzhen Yishengbang Technology Co., Ltd	1	1	1.98

All above information provided by the applicant which is fully responsible for those information.

5.8 Others

The laboratory responsible for all the information provided in the report, except those information provided by the applicant.

The applicant shall fully responsible for the information they provided.

The report would be invalid without a stamp of test laboratory and the signatures of compiler and approver. The laboratory has not been responsible for the sampling stage; the test report merely corresponds to the test sample received.

Any objection to the test report shall submitted to the test laboratory within 15 days from the date of receipt of the report.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

6 Technical Requirement and Measurement Data

6.1 Generally requirement

15.203 requirement:

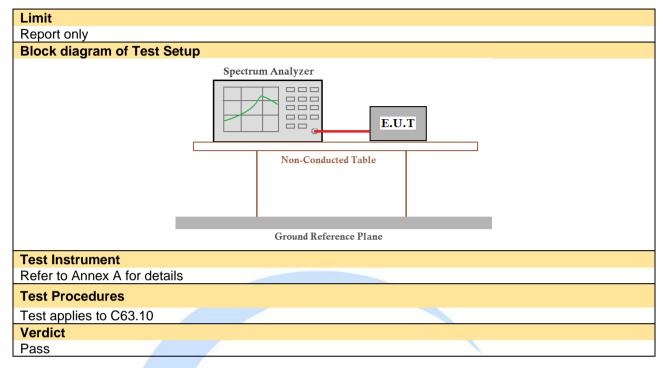
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

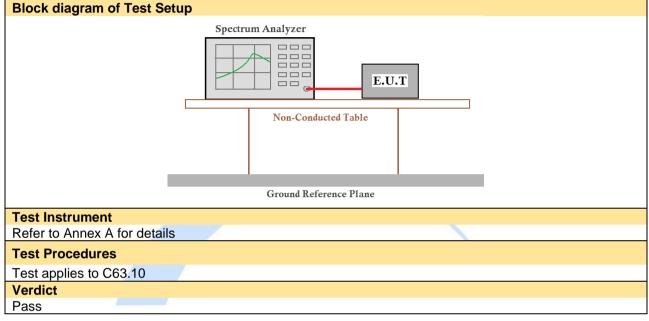
EUT Antenna:

Reference to the appendix II for details

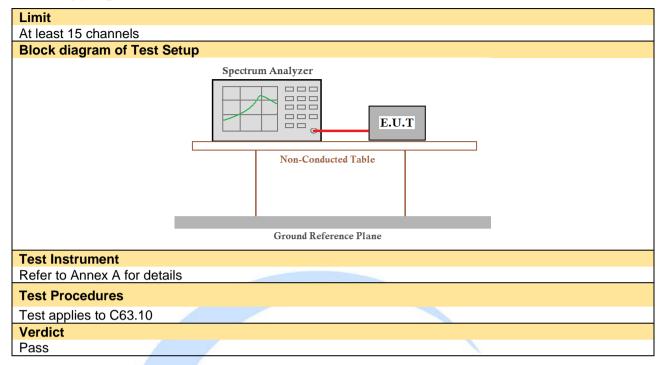

6.2 Conducted Peak Output Power

.imit
20.97dBm
Block diagram of Test Setup
Spectrum Analyzer E.U.T Non-Conducted Table
Ground Reference Plane
Fest Instrument
Refer to Annex A for details
Test Procedures
Fest applies to C63.10
/erdict
Pass

6.3 20dB Emission Bandwidth



6.4 Carrier Frequency Separation


Limit

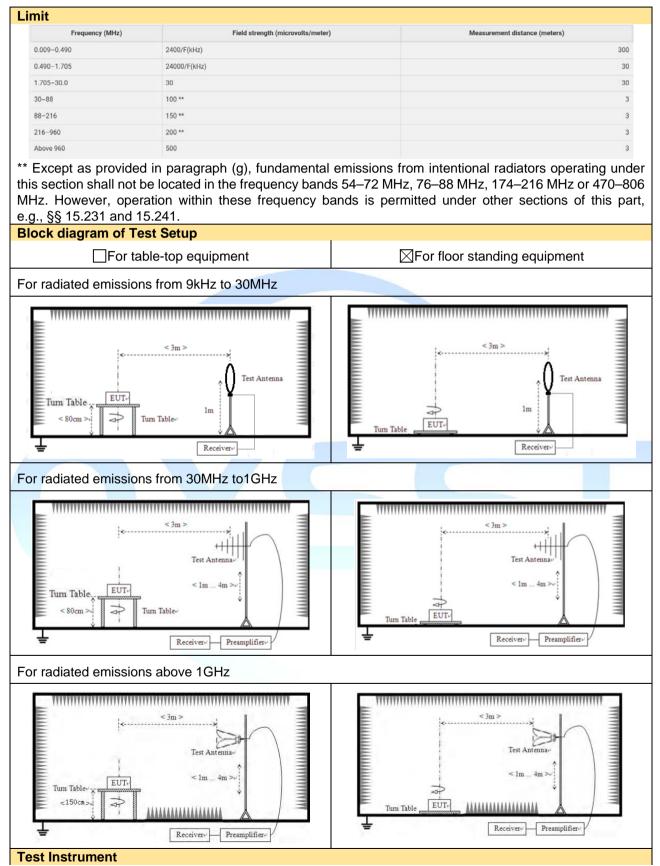
Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

6.5 Hopping Channel Numbers

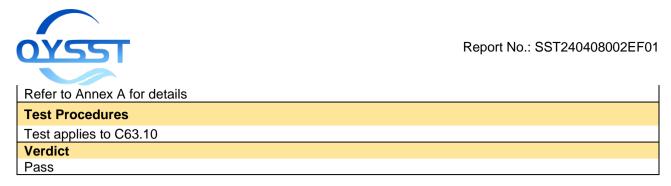
6.6 Dwell Time

imit	
.4s	
Block diagram of Test Setup	
Spectrum Analyzer E.U.T Non-Conducted Table	
Ground Reference Plane	
est Instrument	
Refer to Annex A for details	
est Procedures	
est applies to C63.10	
/erdict	
Pass	

6.7 Conducted Emission


Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

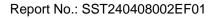

Block diagram of Test Setup)
[Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
Test Instrument Refer to Annex A for details	
Test Procedures	
Test applies to C63.10	
Verdict	
Pass	

6.8 Radiated Spurious Emission

GuangDong Set Sail Testing Co., Ltd. 101, No.19, Tianxin Hudie 1st Road, Huangjiang Town, Dongguan, Guangdong, China

Note: The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o), the test result no need to reported.

est mode			lode 1		Polarity			Horizontal		
Fest vo	Itage	A	C 120V/60H	lz	Temp. /Hum	า.	2	5 °C/60%		
1	90			FCC P	ART 15B					
	70									
	50							FCC PART 15B-QP U	imit	
Level[dBµV/m]	40								1	
			an dita. A attan	All when the form						
	OL 30M — QP Limit • QP Detector	Horizontal	100M	Frequ	ency[iiz]				16	
	QP Limit QP Detector	- Horizontal Factor [dB]	100M		I	Height [cm]	Angle [°]	Polarity	IG Verdict	
Fina	- QP Limit • QP Detector I Data List Freq.	Factor	PK QP Value	Frequ QP Limit	ency[liz] QP Margin	-		Polarity Horizontal	Verdict	
Fina NO.	QP Limit • QP Detector Data List Freq. [MHz]	Factor [dB]	QP Value [dBµV/m]	Frequ QP Limit [dBµV/m]	ency[iiz] QP Margin [dB]	[cm]	[°]		Verdict	
Final NO.	QP Limit • QP Detector Data List Freq. [MHz] 30.6109 138.6987 155.9825	Factor [dB] -18.61 -20.49 -20.61	QP Value [dBµV/m] 26.24 26.42 27.61	Frequ QP Limit [dBµV/m] 40.00 43.50 43.50	ency[liz] QP Margin [dB] 13.76 17.08 15.89	[cm] 200 200 100	[°] 112 31 162	Horizontal Horizontal Horizontal	Verdict PASS PASS PASS	
Fina NO. 1 2 3 4	QP Limit • QP Detector Data List Freq. [MHz] 30.6109 138.6987 155.9825 157.9082	Factor [dB] -18.61 -20.49 -20.61 -20.65	QP Value [dBµV/m] 26.24 26.42 27.61 25.88	Frequ QP Limit [dBµV/m] 40.00 43.50 43.50 43.50	ency[iiz] QP Margin [dB] 13.76 17.08 15.89 17.62	[cm] 200 200 100 100	[°] 112 31 162 18	Horizontal Horizontal Horizontal Horizontal	Verdict PASS PASS PASS PASS	
Fina NO. 1 2 3 4 5	QP Limit • QP Detector Data List Freq. [MHz] 30.6109 138.6987 155.9825 157.9082 177.7416	Factor [dB] -18.61 -20.49 -20.61 -20.65 -18.57	QP Value [dBµV/m] 26.24 26.42 27.61 25.88 28.92	Frequ QP Limit [dBµV/m] 40.00 43.50 43.50 43.50	ency[liz] QP Margin [dB] 13.76 17.08 15.89 17.62 14.58	[cm] 200 200 100 200	[°] 112 31 162 18 342	Horizontal Horizontal Horizontal Horizontal Horizontal	Verdict PASS PASS PASS PASS PASS	
Fina NO. 1 2 3 4	QP Limit • QP Detector Data List Freq. [MHz] 30.6109 138.6987 155.9825 157.9082	Factor [dB] -18.61 -20.49 -20.61 -20.65	QP Value [dBµV/m] 26.24 26.42 27.61 25.88	Frequ QP Limit [dBµV/m] 40.00 43.50 43.50 43.50	ency[iiz] QP Margin [dB] 13.76 17.08 15.89 17.62	[cm] 200 200 100 100	[°] 112 31 162 18	Horizontal Horizontal Horizontal Horizontal	Verdict PASS PASS PASS PASS	


est mode est voltage			lode 1		Polarity			Vertical		
st voltag	ge	A	C 120V/60H	Z	Temp. /Hum. 2			5 °C/60%		
				ECC DA	DT 460					
90				FUUTA	PART 158					
80										
70										
60										
€ 50								FCC PART 15B-0	P Limit	
[₩/ΛήΞϷ]leve1										
30	WWWWWWWWWW	Millerant		k	A. M. Minelin	JAN MAR	1	. A A N.A		
20	data. hi	in all a first for the second	Ą	die and hat hat	MALAN LIN	ALL IN THE REAL	WAN ANAL A	NV WWW who who W	Y half	
10			Marilian Mutual	WANDER						
0										
						1. 1		1 1 1		
30M			100M						1G	
30M -	QP Limit	- Vertical PK	100M	Freque	ncy[Hz]				 1G	
30M -	QP Limit QP Delector	Vertical PK	100M	Freque	, ncy[Hz]		1		 1G	
		— Vertical PK	100M	Freque	ncy[iiz]			· · ·	IG	
	QP Detector Data List								16	
	• OP Detector Data List Freq.	Factor	QP Value	QP Limit	QP Margin	Height	Angle	Polarity	IG	
Final NO.	• OP Detector Data List Freq. [MHz]	Factor [dB]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	[cm]	[°]		Verdict	
Final NO.	• OP Detector Data List Freq. [MHz] 30.0263	Factor [dB] -18.68	QP Value [dBµV/m] 34.74	QP Limit [dBµV/m] 40.00	QP Margin [dB] 5.26	[cm] 100	[°] 118	Vertical	Verdict	
Final NO.	 OP Detector Data List Freq. [MHz] 30.0263 30.7184 	Factor [dB] -18.68 -18.60	QP Value [dBµV/m] 34.74 35.47	QP Limit [dBµV/m] 40.00 40.00	QP Margin [dB] 5.26 4.53	[cm] 100 100	[°] 118 158	Vertical Vertical	Verdict PASS PASS	
Final NO. 1 2 3	 OP Detector Data List Freq. [MHz] 30.0263 30.7184 31.2616 	Factor [dB] -18.68 -18.60 -18.53	QP Value [dBµV/m] 34.74 35.47 34.29	QP Limit [dBµV/m] 40.00 40.00	QP Margin [dB] 5.26 4.53 5.71	[cm] 100 100 100	[°] 118 158 199	Vertical Vertical Vertical	Verdict PASS PASS PASS	
Final NO. 1 2 3 4	 OP Detector Data List Freq. [MHz] 30.0263 30.7184 31.2616 31.9821 	Factor [dB] -18.68 -18.60 -18.53 -18.44	QP Value [dBµV/m] 34.74 35.47 34.29 34.25	QP Limit [dBµV/m] 40.00 40.00 40.00 40.00	QP Margin [dB] 5.26 4.53 5.71 5.75	[cm] 100 100 100 100	[°] 118 158 199 135	Vertical Vertical Vertical Vertical	Verdict PASS PASS PASS PASS	
Final NO. 1 2 3 4 5	 OP Detector Data List Freq. [MHz] 30.0263 30.7184 31.2616 31.9821 44.0773 	Factor [dB] -18.68 -18.60 -18.53 -18.44 -16.70	QP Value [dBµV/m] 34.74 35.47 34.29 34.25 33.47	QP Limit [dBµV/m] 40.00 40.00 40.00 40.00	QP Margin [dB] 5.26 4.53 5.71 5.75 6.53	[cm] 100 100 100 100 100	[°] 118 158 199 135 124	Vertical Vertical Vertical Vertical Vertical	Verdict PASS PASS PASS PASS PASS	
Final NO. 1 2 3 4	 OP Detector Data List Freq. [MHz] 30.0263 30.7184 31.2616 31.9821 	Factor [dB] -18.68 -18.60 -18.53 -18.44	QP Value [dBµV/m] 34.74 35.47 34.29 34.25	QP Limit [dBµV/m] 40.00 40.00 40.00 40.00	QP Margin [dB] 5.26 4.53 5.71 5.75	[cm] 100 100 100 100	[°] 118 158 199 135	Vertical Vertical Vertical Vertical	Verdict PASS PASS PASS PASS	
Final NO. 1 2 3 4 5	 OP Detector Data List Freq. [MHz] 30.0263 30.7184 31.2616 31.9821 44.0773 	Factor [dB] -18.68 -18.60 -18.53 -18.44 -16.70	QP Value [dBµV/m] 34.74 35.47 34.29 34.25 33.47	QP Limit [dBµV/m] 40.00 40.00 40.00 40.00	QP Margin [dB] 5.26 4.53 5.71 5.75 6.53	[cm] 100 100 100 100 100	[°] 118 158 199 135 124	Vertical Vertical Vertical Vertical Vertical	Verdict PASS PASS PASS PASS PASS	

Fest mode		Mode 1		Ter	np. /Hum.		25 °C/60%)		
est voltage		AC 120V	//60Hz	Tes	t channel		Lowest			
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Limit	Polarization		
2310	47.11	27.71	5.3	53.84	26.28	74	-47.72	Horizontal		
2390	49.07	27.91	5.4	53.82	28.56	74	-45.44	Horizonta		
2000					29.93 74					
2310	50.76	27.71	5.3	53.84	29.93	74	-44.07	Vertical		
	50.76 50.43	27.71 27.91	5.3 5.4	53.84 53.82	29.93 29.92	74 74	-44.07 -44.08	Vertical Vertical		
2310	50.43 Je: Read Level	27.91 Antenna Factor	5.4 Cable Loss	53.82 Preamp Factor			-44.08 Over Limit	Vertical		
2310 2390 Average valu Frequency (MHz)	50.43 Ie: Read Level (dBuV)	27.91 Antenna Factor (dB/m)	5.4 Cable Loss (dB)	53.82 Preamp Factor (dB)	29.92 Level (dBuV/m)	74 Limit Line (dBuV/m)	-44.08 Over Limit (dB)	Vertical Polarizatio		
2310 2390 Average valu Frequency (MHz) 2310	50.43 Je: Read Level (dBuV) 41.44	27.91 Antenna Factor (dB/m) 27.71	5.4 Cable Loss (dB) 5.3	53.82 Preamp Factor (dB) 53.84	29.92 Level (dBuV/m) 20.61	74 Limit Line (dBuV/m) 54	-44.08 Over Limit (dB) -33.39	Vertical Polarizatio Horizonta		
2310 2390 Average valu Frequency (MHz) 2310 2390	50.43 Ie: Read Level (dBuV) 41.44 40.2	27.91 Antenna Factor (dB/m) 27.71 27.91	5.4 Cable Loss (dB) 5.3 5.4	53.82 Preamp Factor (dB) 53.84 53.82	29.92 Level (dBuV/m) 20.61 19.69	74 Limit Line (dBuV/m) 54 54	-44.08 Over Limit (dB) -33.39 -34.31	Vertical Polarizatio Horizonta Horizonta		
2310 2390 Average valu Frequency (MHz) 2310	50.43 Je: Read Level (dBuV) 41.44	27.91 Antenna Factor (dB/m) 27.71	5.4 Cable Loss (dB) 5.3	53.82 Preamp Factor (dB) 53.84	29.92 Level (dBuV/m) 20.61	74 Limit Line (dBuV/m) 54	-44.08 Over Limit (dB) -33.39			

est mode		Mode 1		Te	mp. /Hum.		25 °C/60%			
est voltage		AC 120V	//60Hz		st channel		Highest	<u> </u>		
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatior		
2483.5	46.32	28.16	5.51	53.8	26.19	74	-47.81	Horizontal		
0500	47.84	22.8 5.53 53		53.8	22.37	74	-51.63	Horizontal		
2500	17.01									
2500	51.29	28.16	5.51	53.8	31.16	74	-42.84	Vertical		
			5.51 5.53	53.8 53.8	31.16 23.33	74 74	-42.84 -50.67	Vertical Vertical		
2483.5 2500 Verage valu	51.29 48.8	28.16			23.33 Level	74 Limit Line		Vertical		
2483.5 2500 verage valu	51.29 48.8 Je: Read	28.16 22.8 Antenna	5.53 Cable	53.8 Preamp	23.33	74	-50.67 Over	Vertical		
2483.5 2500 Verage valu	51.29 48.8 Je: Read Level	28.16 22.8 Antenna Factor	5.53 Cable Loss	53.8 Preamp Factor	23.33 Level	74 Limit Line	-50.67 Over Limit	Vertical Polarizatio		
2483.5 2500 Average valu Frequency (MHz)	51.29 48.8 Je: Read Level (dBuV)	28.16 22.8 Antenna Factor (dB/m)	5.53 Cable Loss (dB)	53.8 Preamp Factor (dB)	23.33 Level (dBuV/m)	74 Limit Line (dBuV/m)	-50.67 Over Limit (dB)	Vertical Polarizatio Horizonta		
2483.5 2500 Average valu Frequency (MHz) 2483.5	51.29 48.8 Je: Read Level (dBuV) 41.7	28.16 22.8 Antenna Factor (dB/m) 28.16	5.53 Cable Loss (dB) 5.51	53.8 Preamp Factor (dB) 53.8	23.33 Level (dBuV/m) 21.57	74 Limit Line (dBuV/m) 54	-50.67 Over Limit (dB) -32.43			

Test Result(Emissions	in Restricte	d band)					
Test mode		Mode 1		Tem	ıp. /Hum.		25 °C/60%	
Test voltage		AC 120V/	60Hz	Test	channel		Lowest	
Peak value:	ak value:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Limit	polarization
4804	49.72	33.35	7.7	53.72	37.05	74	-36.95	Vertical
7206	47.05	36.54	9.55	53.24	39.9	74	-34.1	Vertical
9608	51.6	39.04	11.29	53.28	48.65	74	-25.35	Vertical
4804	51.79	33.35	7.7	53.72	39.12	74	-34.88	Horizontal
7206	50.33	36.54	9.55	53.24	43.18	74	-30.82	Horizontal
9608	48.51	39.04	11.29	53.28	45.56	74	-28.44	Horizontal
Average valu	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Limit	polarization
4804	39.77	33.35	7.7	53.72	27.1	54	-26.9	Vertical
7206	40.14	36.54	9.55	53.24	32.99	54	-21.01	Vertical
9608	41.42	39.04	11.29	53.28	38.47	54	-15.53	Vertical
4804	38.36	33.35	7.7	53.72	25.69	54	-28.31	Horizontal
7206	39.87	36.54	9.55	53.24	32.72	54	-21.28	Horizontal
9608	41.5	39.04	11.29	53.28	38.55	54	-15.45	Horizontal

Test Result(Emissions	in Restricte	d band)							
Test mode		Mode 1			Tem	p. /Hum.		25 °C/60%		
Test voltage		AC 120V/60Hz				channel		Middle		
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (dl	tor	Level (dBuV/m)	Limit Lin (dBuV/m		polarization	
4882	47.61	33.57	7.77	53.	71	35.24	74	-38.76	Vertical	
7323	46.69	36.56	9.64	53.	26	39.63	74	-34.37	Vertical	
9764	48.32	39.11	11.39	53.	25	45.57	74	-28.43	Vertical	
4882	47.09	33.57	7.77	53.	71	34.72	74	-39.28	Horizontal	
7323	51.32	36.56	9.64	53.	26	44.26	74	-29.74	Horizontal	
9764	50.92	39.11	11.39	53.	25	48.17	74	-25.83	Horizontal	
Average valu	ne:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (dl	tor	Level (dBuV/m)	Limit Lin (dBuV/m		polarization	

4882	38.91	33.57	7.77	53.71	26.54	54	-27.46	Vertical
7323	39.86	36.56	9.64	53.26	32.8	54	-21.2	Vertical
9764	37.06	39.11	11.39	53.25	34.31	54	-19.69	Vertical
4882	40.39	33.57	7.77	53.71	28.02	54	-25.98	Horizontal
7323	37.09	36.56	9.64	53.26	30.03	54	-23.97	Horizontal
9764	40.22	3 9.11	11.39	53.25	37.47	54	-16.53	Horizontal
			•					

Test Result(Emissions	in Restricte	d band)							
Test mode		Mode 1			Temp. /Hum.			25 °C/60%		
Test voltage		AC 120V/	60Hz		Test channel			Highest		
Peak value:	Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (dE	tor	Level (dBuV/m)	Limit Line (dBuV/m		polarization	
4960	52.37	33.79	7.83	53.	7	40.29	74	-33.71	Vertical	
7440	49.88	36.59	9.72	53.2	29	42.9	74	-31.1	Vertical	
9920	47.87	39.17	11.48	53.2	22	45.3	74	-28.7	Vertical	
4960	46.06	33.79	7.83	53.	7	33.98	74	-40.02	Horizontal	
7440	47.33	36.59	9.72	53.2	29	40.35	74	-33.65	Horizontal	
9920	51.16	39.17	11.48	53.2	22	48.59	74	-25.41	Horizontal	
Average valu	ue:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (dE	tor	Level (dBuV/m)	Limit Line (dBuV/m		polarization	
4960	37.44	33.79	7.83	53.	7	25.36	54	-28.64	Vertical	
7440	42.41	36.59	9.72	53.2	29	35.43	54	-18.57	Vertical	
9920	41.1	39.17	11.48	53.2	22	38.53	54	-15.47	Vertical	
4960	38	33.79	7.83	53.	7	25.92	54	-28.08	Horizontal	
7440	38.74	36.59	9.72	53.2	29	31.76	54	-22.24	Horizontal	
9920	39.94	39.17	11.48	53.2	22	37.37	54	-16.63	Horizontal	

6.9 Conducted Emissions

Limit		
Frequency (MHz)	Quasi-peak	Average
0.15~0.50	66 to 56*	56 to 46*
0.50~5.0	56	46
5.0~30	60	50
*Decreases with the logarithm of the frequ If the limit for the measurement with the a detector, the equipment under test shall receiver with an average detector need no	average detector is met when be deemed to meet both limit	
Block diagram of Test Setup		
For table-top equipment	⊠For f	loor standing equipment
	DROUND PLANE BROUND PLANE BROUN	

Test Instrument

Refer to Annex A for details

Test Procedures

The measurement was performed in a shield room.

Measured levels of ac power-line conducted emission shall be the radio-noise voltage from the voltage probe, where permitted, or across the 50 Ω LISN port (to which the EUT is connected), as terminated into a 50 Ω EMI receiver or spectrum analyzer. All radio-noise voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord or calibrated extension cord by the use of mating plugs and receptacles on the EUT and LISN, if used. The manufacturer shall test equipment with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended. For measurements using a LISN, the 50 Ω measuring port is terminated into a 50 Ω EMI receiver or spectrum analyzer. All other ports are terminated into 50 Ω loads.

Table top devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.

The bandwidth of the test receiver is set at 9 kHz.

Verdict Pass

1	1		Mode				larity		Lin		
t voltage		AC 12	AC 120V/60Hz			Temp. /Hum.			°C/60%		
					FCC PA	RT 158(L)					
100 90											
80-											
70									FCC	PART 15B-QP L	
5 50 T										PART 15B-AV L	
[Vrlgp] ava1									23 19		
30-		MA				11.	a distance in the second s	A CONTRACTOR OF THE OWNER			
20		1 mm	Manha	mmm	Nummer	An Marked and an	MAN HANNING MAN	and the second second			
10-	~~[MM	ANN	MMA	Mannan Mannan	MayMonda	Maryan				
0			~~~	vV0. 41						-	
150	k			1M		ency[Hz]		10	м		
	- QP Lim		t <u>—</u> РК	AV	Fieque	aicy[n2]					
	QP Det	ector • AV De	elector								
	Fine	al Data L	ist								
	1 1110		QP	QP	QP	AV	AV	AV			
		Fred			Margin	Value	Linnit	Manain	\/oudiet	Tunna	
	NO.	Freq. [MHz]	Value [dBµV]	Limit [dBuV]	[dB]		Limit [dBuV]	Margin [dB]	Verdict	Туре	
	NO. 1		Value [dBµV] 47.92	Limit [dBµV] 66.00	[dB] 18.08	[dBµV] 22.07	[dBµV] 56.00	[dB] 33.93	PASS	L	
		[MHz]	[dBµV]	[dBµV]	[dB]	[dBµV]	[dBµV]	[dB]			
	1	[MHz] 0.15	[dBµV] 47.92	[dBµV] 66.00	[dB] 18.08	[dBµV] 22.07	[dBµV] 56.00	[dB] 33.93	PASS	L	
	1	[MHz] 0.15 14.073	[dBµV] 47.92 42.26	[dBµV] 66.00 60.00	[dB] 18.08 17.74	[dBµV] 22.07 29.20	[dBµV] 56.00 50.00	[dB] 33.93 20.80	PASS PASS	L	
	1 2 3	[MHz] 0.15 14.073 14.55	[dBµV] 47.92 42.26 41.90	[dBµV] 66.00 60.00 60.00	[dB] 18.08 17.74 18.10	[dBµV] 22.07 29.20 29.38	[dBµV] 56.00 50.00 50.00	[dB] 33.93 20.80 20.62	PASS PASS PASS	L L L	

mode		Mode 1			Polarity			Neutra	al
voltage		AC 120\	//60Hz		Temp. /			25 °C/60%	
	·								
100				FCC PA	RT 15B(N)				
90									
70-									
60		_							PART 15B-QP
50 -1 40								FCC 23	PART 15B-AV
And a second sec								2	
30	mon	hamly	mm	MANAMAN	and strateging	N. Martin Law Martin	Westlersteinensteinen die		\sim
10		MAAA	IN ALAMA	And Andereda a	where we wanted	Anno ma			
0-	0000	VUUVU	AAAAAAAAA	All a alla colla collacal	Mr.M.M.				
-10									
150k			1M	Frequ	ency[Hz]		10	DM	
- QP L	imit - AV Lim etector • AV D	etector	— AV						
		1							
		1							
Fir	nal Data I	lst							
	Freq.	QP	QP	QP	AV	AV	AV		
NO.	Erog	QP Value	Limit	Margin	Value	Limit	Margin	Verdict	Туре
	Freq.	QP						Verdict PASS	Type N
NO	Freq. [MHz]	QP Value [dBµV]	Limit [dBµV]	Margin [dB]	Value [dBµV]	Limit [dBµV]	Margin [dB]		
NO. 1	Freq. [MHz] 0.15	QP Value [dBµV] 46.86	Limit [dBµV] 66.00	Margin [dB] 19.14	Value [dBµV] 21.92	Limit [dBµV] 56.00	Margin [dB] 34.08	PASS	N
NO.	Freq. [MHz] 0.15 14.613	QP Value [dBµV] 46.86 42.93	Limit [dBµV] 66.00 60.00	Margin [dB] 19.14 17.07	Value [dBµV] 21.92 30.89	Limit [dBµV] 56.00 50.00	Margin [dB] 34.08 19.11	PASS PASS	N N
NO. 1 2 3	Freq. [MHz] 0.15 14.613 14.9325	QP Value [dBµV] 46.86 42.93 42.84	Limit [dBµV] 66.00 60.00 60.00	Margin [dB] 19.14 17.07 17.16	Value [dBµV] 21.92 30.89 30.85	Limit [dBµV] 56.00 50.00 50.00	Margin [dB] 34.08 19.11 19.15	PASS PASS PASS	N N N
NO. 1 2 3 4	Freq. [MHz] 0.15 14.613 14.9325 20.5935	QP Value [dBµV] 46.86 42.93 42.84 43.43	Limit [dBµV] 66.00 60.00 60.00 60.00	Margin [dB] 19.14 17.07 17.16 16.57	Value [dBµV] 21.92 30.89 30.85 32.67	Limit [dBµV] 56.00 50.00 50.00 50.00	Margin [dB] 34.08 19.11 19.15 17.33	PASS PASS PASS PASS	N N N N

Report No.: SST240408002EF01

7

Test Setup Photo Reference to the appendix I for details.

EUT Constructional Details 8 Reference to the **appendix II** for details.



Annex A -- Test Instruments list

Radiated Emiss	ion:	1	Γ		1	
Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. cycle	Cal.Date
SST-E-SAC001	3m Semi- Anechoic Chamber	BOST	966	/	3 years	2023.01.07
SST-E-SCC001	Control Room	BOST	333	/	3 years	2023.01.07
SST-E-SAC002	Breiband TRILOG Messantenne	Schwarzbeck	VULB 9162	00556	1 year	2024.04.20
SST-E-SAC004	Broad-band Horn Antenna	Schwarzbeck	BBHA 9120 D	02783	1 year	2024.04.16
SST-E-SCC003	EMI Test Receiver	R&S	ESU 8	100372	1 year	2024.04.16
SST-E-SCC004	Amplifier	Schwarzbeck	BBV 9744	00327	1 year	2024.04.16
SST-E-SCC015	Amplifie (1-18GHz)	TSTPASS	LNA10180G45	TSAM2303003	1 year	2024.04.16
SST-E-SCC016	Amplifier (40G)	RFsystem	TRLA- 180400G45B	23060801	1 year	2024.04.16
SST-E-SAC006	Broadband Horn Antenna (40G)	Schwarzbeck	BBHA9170	01306	1 year	2024.04.17
SST-E-RSC010	Spectrum analyzer	R&S	FSV40-N	1	1 year	2024.04.16
SST-E-SAC007	Loop Antenna	Schwarzbeck	FMZB 1513- 60B	1513-60B 044	1 year	2024.04.17
SST-E-SAC005	5W 6dB attenuator	/	DC-6GHz	/	Internal calibration	/
SST-E-EMC006	Thermohygrometer	KTJ	TA218A	879030	1 year	2024.04.18
/	EMI Test Software	Tonscend	TS+	/	/	/

Conducted Emission									
Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. cycle	Cal.Date			
SST-E-CSC001	Shielding Room	BOST	854	/	3 year	2023.01.07			
SST-E-CSC002	EMI Test Receiver	R&S	ESR3	103057	1 year	2024.04.16			
SST-E-CSC003	LISN	R&S	ENV 216	102832	1 year	2024.04.16			
SST-E-CSC004	ISN	R&S	NTFM 8158	00347	1 year	2024.04.16			
SST-E-CSC007	Antenna port test assembly	/	DC-3GHz	1	Internal calibration	/			
SST-E-EMC011	Thermohygrometer	КТЈ	TA218A	879036	1 year	2024.04.18			
/	EMI Test Software	Tonscend	TS+	V4.0	/	/			

RF conducted						
Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. cycle	Cal.Date
SST-E-RSC001	Shielding Room	BOST	543	/	3 year	2023.01.07
SST-E-RSC007	Spectrum analyzer	keysight	N9020A	MY51280659	1 year	2024.04.16
SST-E-RSC008	Analog signal source	Agilent	N5181A	MY48180054	1 year	2024.04.16
SST-E-RSC009	Vector signal source	keysight	N5172B	MY57281610	1 year	2024.04.16
SST-E-EMC007	Thermohygrometer	КТЈ	TA218A	879032	1 year	2024.04.18
SST-E-RSC010	Spectrum analyzer	R&S	FSV40-N	/	1 year	2024.04.16
SST-E-RSC015- 1	Power meter 1	TST	TST V2	/	1 year	2024.04.16
/	Test Software	TST PASS	TST PASS	V2.0	/	/

END OF REPORT

