

CINCH Systems MIXRF319

FCC 15.231:2019

Low Power Periodic Radio

Report # CINC0040

TESTING

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.

CERTIFICATE OF TEST

Last Date of Test: July 5, 2019 CINCH Systems Model: MIXRF319

Radio Equipment Testing

Standards

Specification	Method
FCC 15.207:2019	ANSI C63.4:2014
FCC 15.231:2019	ANSI C63.10:2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
6.5, 6.6	Field Strength of Fundamental	Yes	Pass	
6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	
6.9.2	Occupied Bandwidth	Yes	Pass	
7.5	Duty Cycle	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Jeremiah Darden, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

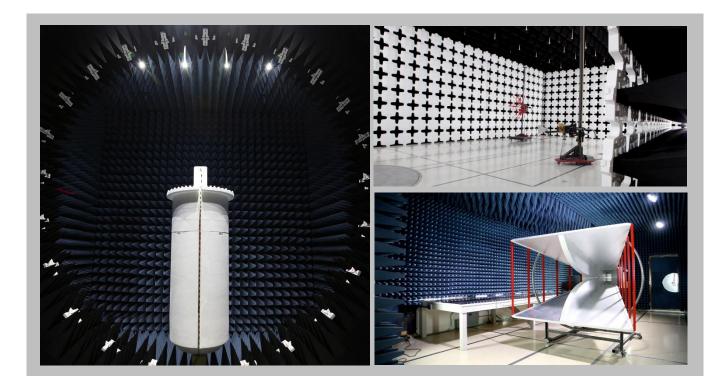
Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE


For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations

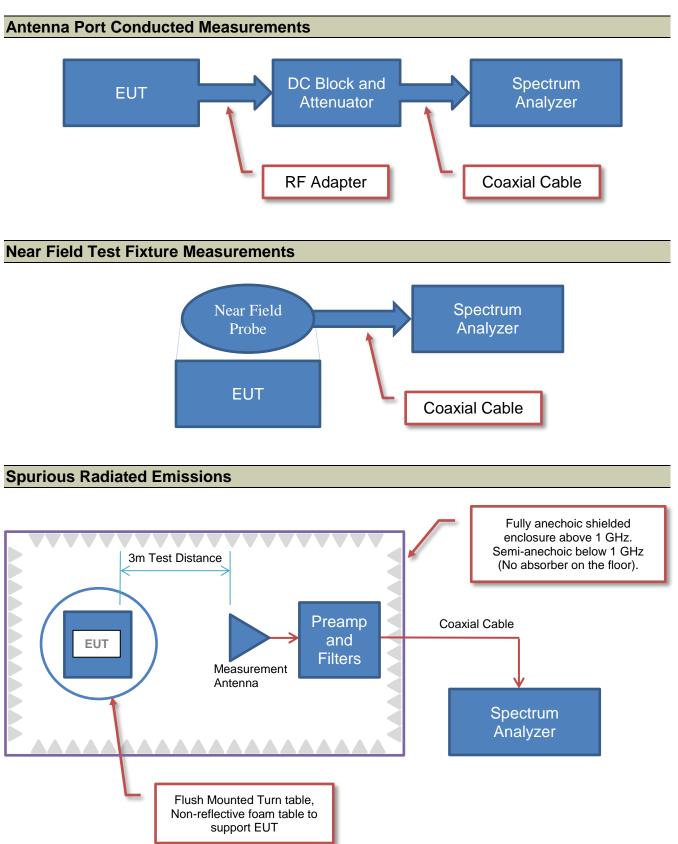
FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600		
		NVLAP				
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0		
Innovation, Science and Economic Development Canada						
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1		
		BSMI				
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R		
		VCCI				
A-0029	A-0109	A-0108	A-0201	A-0110		
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA						
US0158	US0175	US0017	US0191	US0157		

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.


A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Test Setup Block Diagrams

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	CINCH Systems
Address:	12075 43rd Street NE Suite 300
City, State, Zip:	St. Michael, MN 55376
Test Requested By:	Jibril Aga
Model:	MIXRF319
First Date of Test:	July 5, 2019
Last Date of Test:	July 5, 2019
Receipt Date of Samples:	July 5, 2019
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Transceiver radio

Testing Objective:

To demonstrate compliance to FCC 15.231 specifications.

Configuration CINC0040-1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
MIXRF319	CINCH Systems	MIXRF319	10B7

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Power Supply (MIXRF319)	Sure-Power	SW-120200A	1113		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Cable	No	2.2 m	No	MIXRF319	Power Supply (MIXRF319)

Configuration CINC0040-2

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
MIXRF319	CINCH Systems	MIXRF319	10B8

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Power Supply (MIXRF319)	Sure-Power	SW-120200A	1113		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Cable	No	2.2 m	No	MIXRF319	Power Supply (MIXRF319)

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
		Powerline	Tested as	No EMI suppression	EUT remained at
1	2019-07-05	Conducted	delivered to	devices were added or	Element following
		Emissions	Test Station.	modified during this test.	the test.
		Field Strength of	Tested as	No EMI suppression	EUT remained at
2	2019-07-05	Fundamental	delivered to	devices were added or	Element following
		Tunuamentai	Test Station.	modified during this test.	the test.
		Spurious	Tested as	No EMI suppression	EUT remained at
3	2019-07-05	019-07-05 Radiated	delivered to	devices were added or	Element following
		Emissions	Test Station.	modified during this test.	the test.
		Occupied	Tested as	No EMI suppression	EUT remained at
4	2019-07-05	Occupied Bandwidth	delivered to	devices were added or	Element following
		Danuwiuun	Test Station.	modified during this test.	the test.
			Tested as	No EMI suppression	Schodulad testing
5	2019-07-05	019-07-05 Duty Cycle	delivered to	devices were added or	Scheduled testing
				modified during this test.	was completed.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 500hm measuring port is terminated by a 500hm EMI meter or a 500hm resistive load. All 500hm measuring ports of the LISN are terminated by 500hm. The test data represents the configuration/ operating mode/ model that produced the highest emission levels as compared to the specification limit.

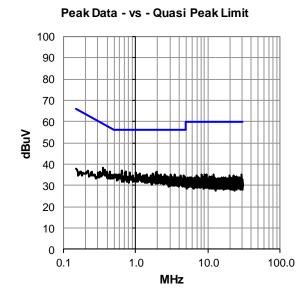
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	E4443A	AAS	2019-03-08	2020-03-08
LISN	Solar Electronics	9252-50-R-24-BNC	LIY	2019-03-15	2020-03-15
Cable - Conducted Cable Assembly	Northwest EMC	MNC, HGN, TYK	MNCA	2019-03-13	2020-03-13

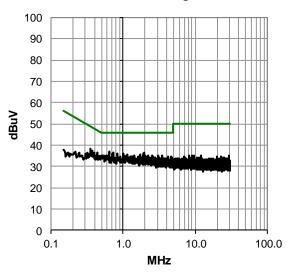
MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	2.4 dB	-2.4 dB

CONFIGURATIONS INVESTIGATED


CINC0040-1 CINC0040-2

MODES INVESTIGATED


Rx at 319.5 MHz Tx at 319.5 MHz, Modulated

EUT:	MIXRF319					Work Order:	CINC0040	
Serial Number:	10B7					Date:	2019-07-05	
Customer:	CINCH Syste	ems				Temperature:	21.7°C	
Attendees:	Jibril Aga					Relative Humidity:	66.7%	
Customer Project:	None					Bar. Pressure:	1019 mb	
Tested By:	Andrew Rog	stad				Job Site:	MN03	
Power:	110VAC/60F	łz				Configuration:	CINC0040-1	
TEST SPECIFIC	CATIONS							
Specification:					Method:			
FCC 15.207:2019					ANSI C63.10:	2013		
TEST PARAME	TERS							
Run #: 3		Line:	Neutral		Ad	d. Ext. Attenuation (dB): 0	
COMMENTS								
None								
EUT OPERATIN	NG MODES							
Rx at 319.5 MHz								
DEVIATIONS FROM TEST STANDARD								
None								

Peak Data - vs - Average Limit

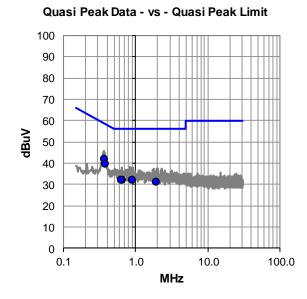
RESULTS - Run #3

Peak Data - vs - Quasi Peak Limit								
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)			
0.639	16.5	20.6	37.1	56.0	-18.9			
0.732	15.8	20.6	36.4	56.0	-19.6			
1.930	15.7	20.6	36.3	56.0	-19.7			
0.825	15.5	20.6	36.1	56.0	-19.9			
1.001	15.3	20.6	35.9	56.0	-20.1			
0.355	17.9	20.6	38.5	58.8	-20.3			
1.739	15.1	20.6	35.7	56.0	-20.3			
1.146	14.9	20.6	35.5	56.0	-20.5			
2.504	14.6	20.7	35.3	56.0	-20.7			
0.437	15.7	20.6	36.3	57.1	-20.8			
2.034	14.5	20.6	35.1	56.0	-20.9			
1.441	14.4	20.6	35.0	56.0	-21.0			
3.041	14.3	20.7	35.0	56.0	-21.0			
3.485	14.2	20.8	35.0	56.0	-21.0			
2.221	14.2	20.7	34.9	56.0	-21.1			
1.359	14.2	20.6	34.8	56.0	-21.2			
4.228	14.1	20.7	34.8	56.0	-21.2			
2.071	14.1	20.6	34.7	56.0	-21.3			
4.601	13.8	20.7	34.5	56.0	-21.5			
2.541	13.7	20.7	34.4	56.0	-21.6			
2.582	13.7	20.7	34.4	56.0	-21.6			
3.127	13.6	20.7	34.3	56.0	-21.7			
1.683	13.6	20.6	34.2	56.0	-21.8			
2.754	13.5	20.7	34.2	56.0	-21.8			
4.769	13.5	20.7	34.2	56.0	-21.8			
3.004	13.2	20.7	33.9	56.0	-22.1			

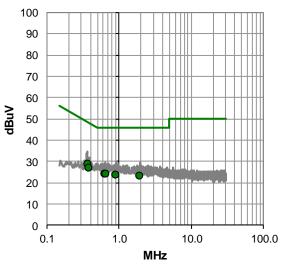
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.639	16.5	20.6	37.1	46.0	-8.9
0.732	15.8	20.6	36.4	46.0	-9.6
1.930	15.7	20.6	36.3	46.0	-9.7
0.825	15.5	20.6	36.1	46.0	-9.9
1.001	15.3	20.6	35.9	46.0	-10.1
0.355	17.9	20.6	38.5	48.8	-10.3
1.739	15.1	20.6	35.7	46.0	-10.3
1.146	14.9	20.6	35.5	46.0	-10.5
2.504	14.6	20.7	35.3	46.0	-10.7
0.437	15.7	20.6	36.3	47.1	-10.8
2.034	14.5	20.6	35.1	46.0	-10.9
1.441	14.4	20.6	35.0	46.0	-11.0
3.041	14.3	20.7	35.0	46.0	-11.0
3.485	14.2	20.8	35.0	46.0	-11.0
2.221	14.2	20.7	34.9	46.0	-11.1
1.359	14.2	20.6	34.8	46.0	-11.2
4.228	14.1	20.7	34.8	46.0	-11.2
2.071	14.1	20.6	34.7	46.0	-11.3
4.601	13.8	20.7	34.5	46.0	-11.5
2.541	13.7	20.7	34.4	46.0	-11.6
2.582	13.7	20.7	34.4	46.0	-11.6
3.127	13.6	20.7	34.3	46.0	-11.7
1.683	13.6	20.6	34.2	46.0	-11.8
2.754	13.5	20.7	34.2	46.0	-11.8
4.769	13.5	20.7	34.2	46.0	-11.8
3.004	13.2	20.7	33.9	46.0	-12.1

Peak Data - vs - Average Limit

CONCLUSION


Pass

and Rophand


Tested By

EUT:	MIXRF319				Work Order:	CINC0040			
Serial Number:	10B7				Date:	2019-07-05			
Customer:	CINCH Syste	ems			Temperature:	21.7°C			
Attendees:	Jibril Aga				Relative Humidity:	66.7%			
Customer Project:	None				Bar. Pressure:	1019 mb			
Tested By:	Andrew Rogs	stad			Job Site:	MN03			
Power:	110VAC/60H	lz			Configuration:	CINC0040-1			
TEST SPECIFIC	CATIONS								
Specification:				Method:					
FCC 15.207:2019				ANSI C63.10	0:2013				
TEST PARAME	TERS								
Run #: 4		Line:	High Line	A	dd. Ext. Attenuation (dB)): 0			
COMMENTS None									
NULLE									
EUT OPERATIN	IG MODES								
Rx at 319.5 MHz									
DEVIATIONS F	DEVIATIONS FROM TEST STANDARD								
None									

Average Data - vs - Average Limit

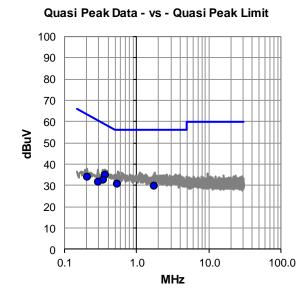
RESULTS - Run #4

Quasi Peak Data - vs - Quasi Peak Limit									
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)				
0.366	21.5	20.6	42.1	58.6	-16.5				
0.376	18.7	20.6	39.3	58.4	-19.1				
0.649	11.6	20.6	32.2	56.0	-23.8				
0.913	11.5	20.6	32.1	56.0	-23.9				
0.625	11.6	20.5	32.1	56.0	-23.9				
1.953	10.4	20.6	31.0	56.0	-25.0				

Average Data - vs - Average Limit									
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)				
0.366	8.1	20.6	28.7	48.6	-19.9				
0.376	6.2	20.6	26.8	48.4	-21.6				
0.625	3.7	20.5	24.2	46.0	-21.8				
0.649	3.3	20.6	23.9	46.0	-22.1				
0.913	3.0	20.6	23.6	46.0	-22.4				
1.953	2.3	20.6	22.9	46.0	-23.1				

Average Data - vs - Average Limit

CONCLUSION


Pass

and Rophard

Tested By

EUT:	MIXRF319				Work Order:	CINC0040			
Serial Number:	10B8				Date:	2019-07-05			
Customer:	CINCH Syste	ems			Temperature:	21.7°C			
Attendees:	Jibril Aga				Relative Humidity:	66.7%			
Customer Project:	None				Bar. Pressure:	1019 mb			
Tested By:	Andrew Rogs	stad			Job Site:	MN03			
Power:	110VAC/60H	z			Configuration:	CINC0040-2			
TEST SPECIFIC	CATIONS								
Specification:				Method:					
FCC 15.207:2019				ANSI C63.10:	2013				
TEST PARAME	TERS								
Run #: 7		Line:	Neutral	Ad	d. Ext. Attenuation (dB)): 0			
COMMENTS									
None									
EUT OPERATIN	NG MODES								
Tx at 319.5 MHz, M	odulated								
DEVIATIONS F	DEVIATIONS FROM TEST STANDARD								
None									

100 90 80 70 60 dBuV 50 40 30 Ô. 20 10 0 0.1 1.0 10.0 100.0 MHz

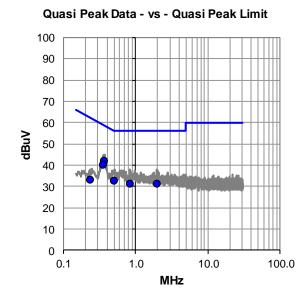
Average Data - vs - Average Limit

RESULTS - Run #7

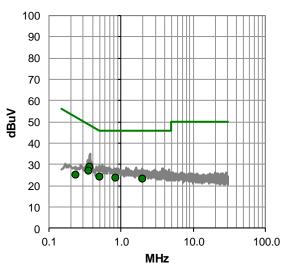
Quasi Peak Data - vs - Quasi Peak Limit									
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)				
0.365	14.3	20.6	34.9	58.6	-23.7				
0.541	10.2	20.6	30.8	56.0	-25.2				
1.762	8.9	20.6	29.5	56.0	-26.5				
0.343	11.8	20.6	32.4	59.1	-26.7				
0.295	10.9	20.6	31.5	60.4	-28.9				
0.209	13.2	20.8	34.0	63.2	-29.2				

Average Data - vs - Average Limit											
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margi (dB)						
0.541	3.0	20.6	23.6	46.0	-22.4						
0.365	4.6	20.6	25.2	48.6	-23.4						
1.762	1.5	20.6	22.1	46.0	-23.9						
0.343	3.5	20.6	24.1	49.1	-25.0						
0.295	3.3	20.6	23.9	50.4	-26.5						
0.209	3.8	20.8	24.6	53.2	-28.6						

CONCLUSION


Pass

and R


Tested By

EUT:	MIXRF319				Work Order:	CINC0040
Serial Number:	10B8				Date:	2019-07-05
Customer:	CINCH Syste	ems			Temperature:	21.7°C
Attendees:	Jibril Aga				Relative Humidity:	66.7%
Customer Project:	None				Bar. Pressure:	1019 mb
Tested By:	Andrew Rogs	stad			Job Site:	MN03
Power:	110VAC/60H	Z			Configuration:	CINC0040-2
TEST SPECIFIC	CATIONS					
Specification:				Method:		
FCC 15.207:2019				ANSI C63.1	0:2013	
TEST PARAME	TERS					
Run #: 8		Line:	High Line	ŀ	Add. Ext. Attenuation (dB)): 0
COMMENTS						
None						
EUT OPERATIN						
Tx at 319.5 MHz, M	odulated					
DEVIATIONS F	ROM TEST	STAND	ARD			
None						

Average Data - vs - Average Limit

RESULTS - Run #8

Q	uasi Peak	Data - vs	- Quasi P	eak Limit	
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.367	21.4	20.6	42.0	58.6	-16.6
0.353	19.4	20.6	40.0	58.9	-18.9
0.503	11.8	20.6	32.4	56.0	-23.6
0.837	10.7	20.6	31.3	56.0	-24.7
1.977	10.5	20.6	31.1	56.0	-24.9
0.239	12.2	20.7	32.9	62.1	-29.2

	Average	Data - vs	- Average	Limit	
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.367	8.0	20.6	28.6	48.6	-20.0
0.353	6.5	20.6	27.1	48.9	-21.8
0.503	3.5	20.6	24.1	46.0	-21.9
0.837	2.9	20.6	23.5	46.0	-22.5
1.977	2.3	20.6	22.9	46.0	-23.1
0.239	4.2	20.7	24.9	52.1	-27.2

CONCLUSION

Pass

and Roptail

Tested By

FIELD STRENGTH OF FUNDAMENTAL

PSA-ESCI 2019.05.10

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Tx at 319.505 MHz, Modulated

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

CINC0040 - 2

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz Stop Frequency 1000 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	ESM Cable Corp.	Bilog Cables	MNH	2-Nov-2018	12 mo
Antenna - Biconilog	Teseq	CBL 6141B	AYD	25-Jan-2018	24 mo
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	1-May-2019	12 mo

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was configured for continuous un-modulated CW operation at its single transmit frequency. The field strength of the transmit frequency was maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT in 3 orthogonal planes (per ANSI C63.10:2013).

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. (Where T is the period of the pulse train.)

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec Pulsewidth of Type 1 Pulse = 0.1259 mSec Pulsewidth of Type 2 Pulse = 0.3658 mSec Pulsewidth of Type 3 Pulse = 0.2439 mSec Number of Type 1 Pulses = 62 Number of Type 2 Pulses = 13 Number of Type 3 Pulses = 8

Duty Cycle = 20 log [((62)(0.1259) + (13)(0.3658) + (8)(0.2439))/100] = -16.77 dB

The duty cycle correction factor of -16.77 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.

FIELD STRENGTH OF FUNDAMENTAL

W	ork Order:	CINC	20040		Date:		5- 10	-2019			EmiR5 2019.05	20		PSA-ESCI	2019.05.1)
	Project:		one	Tor	nperature:			9°C		-	10	<	1	0		
	Job Site:		N05	101	Humidity:		77.1	% RH	Ca		Ro	Ta	lap	~		
Soria	I Number:		B8	Barome	etric Pres.:) mbar		Tested by:						1
Jena		MIXRF319		Daronne	and 1163		1020	mbai		rested by.	Andrew	logsia	u			-
Cont	figuration:)													-
	Customer:		etome													-
	Attendees:		3161113													-
	UT Power:		∩⊔ -													-
			505 MHz, M	ladulated												-
Operat	ing Mode:	1X at 519.5	505 IVIHZ, IVI	louulateu												
D	eviations:	None														
		None														
С	omments:															
Toot Smoo	ifications							Toot Math	ad							1
FCC 15.23								Test Meth								-
FUU 15.23	01:2019							ANSI C63.	10:2013							
				-			1.(.)	-								-
Run #	6	l est Dis	stance (m)	3	Antenna	a Hei	gnt(s)		1 to 4(m)		Result	S	P	ass		-
100	1															
90	-															
80																
70	-															
										•						
m//uBb										•						
										•						
8 00																
Ъ																
50																
50																
40																
10																
30	-															
00																
20	L															
	10						100							100	00	
														100		
							MHz				PK	•	AV	o Q	P	
							_									
					Duty Cycle Correction	Ev	ternal	Polarity/ Transducer		Distance				Comp	pared to	I
Freq	Amplitude	Factor	Antenna Height	Azimuth	Factor	Atte	nuation	Туре	Detector	Adjustment	Adjusted		c. Limit	Sp	pec.	l
	(dBuV)	(dB)	(meters)	(degrees)	(dB)	(dB)			(dB)	(dBuV/m)	(dB	uV/m)		dB)	I
(MHz)	()	. ,	. ,		(, ,					(, ,	(, , , , , ,	· · ·				ø
(MHZ)	69.2	19.7	10	275.0	-16.8		0.0	Horz	۵۷	0.0	72.1		5.0		3.8	

(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(dB)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	
· · /													Comments
319.507	69.2	19.7	1.0	275.0	-16.8	0.0	Horz	AV	0.0	72.1	75.9	-3.8	EUT on side
319.505	67.8	19.7	1.01	214.0	-16.8	0.0	Horz	AV	0.0	70.7	75.9	-5.2	EUT horz
319.507	67.3	19.7	1.08	15.0	-16.8	0.0	Horz	AV	0.0	70.2	75.9	-5.7	EUT vert
319.507	69.2	19.7	1.0	275.0		0.0	Horz	PK	0.0	88.9	95.9	-7.0	EUT on side
319.505	65.6	19.7	1.7	261.0	-16.8	0.0	Vert	AV	0.0	68.5	75.9	-7.4	EUT vert
319.505	67.8	19.7	1.01	214.0		0.0	Horz	PK	0.0	87.5	95.9	-8.4	EUT horz
319.507	67.3	19.7	1.08	15.0		0.0	Horz	PK	0.0	87.0	95.9	-8.9	EUT vert
319.505	65.6	19.7	1.7	261.0		0.0	Vert	PK	0.0	85.3	95.9	-10.6	EUT vert
319.507	62.1	19.7	1.35	162.0	-16.8	0.0	Vert	AV	0.0	65.0	75.9	-10.9	EUT on side
319.507	62.1	19.7	1.35	162.0		0.0	Vert	PK	0.0	81.8	95.9	-14.1	EUT on side
319.507	57.5	19.7	1.25	173.0	-16.8	0.0	Vert	AV	0.0	60.4	75.9	-15.5	EUT horz
319.507	57.5	19.7	1.25	173.0		0.0	Vert	PK	0.0	77.2	95.9	-18.7	EUT horz

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Tx at 319.505 MHz, Modulated

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

CINC0040 - 2

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz Stop Frequency 4000 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVT	8-Feb-2019	12 mo
		Double Ridge Guide Horn			
Cable	ESM Cable Corp.	Cables	MNI	24-Sep-2018	12 mo
Antenna - Double Ridge	ETS-Lindgren	3115	AJQ	NCR	0 mo
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AVO	2-Nov-2018	12 mo
Cable	ESM Cable Corp.	Bilog Cables	MNH	2-Nov-2018	12 mo
Antenna - Biconilog	Teseq	CBL 6141B	AYD	25-Jan-2018	24 mo
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	1-May-2019	12 mo

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequency in each operational band and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. Where T is the period of the pulse train.

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec Pulsewidth of Type 1 Pulse = 0.1259 mSec Pulsewidth of Type 2 Pulse = 0.3658 mSec Pulsewidth of Type 3 Pulse = 0.2439 mSec Number of Type 1 Pulses = 62 Number of Type 2 Pulses = 13

SPURIOUS RADIATED EMISSIONS

		011/000 40		5 1 1 0010	1	EmiR5 2019.05.20	PSA-ESCI 2019.05.
	Work Order		Date: Temperature:	5-Jul-2019 21.9 °C		10	10
	Project Job Site	None MN05	Humidity:	77.1% RH	Cho	Root	stark
50	erial Number	10B8	Barometric Pres.:	1020 mbar	Tostod	by: Andrew Rogs	
36		MIXRF319	Darometric Fres.	1020 1104	Testeu	by. Andrew Rogs	lau
0	onfiguration	2					
<u> </u>		CINCH Systems					
-	Attendees						
	FIIT Power	: 110VAC/60Hz					
		T OAO FOF MULL A	hodulated				
Ope	erating Mode	: I X dt 010.000 Mili2, I	noullated				
		None					
	Deviations	interio					
-		None					
	Comments						
	Commonito						
-							
	pecifications			Test Meth			
FCC 15	5.231:2019			ANSI C63	.10:2013		
Davi		Tast Distance (m)			A 1 - A()	Desselfe	
Rur	n# 8	Test Distance (m)	3 Antenna H	leight(s)	1 to 4(m)	Results	Pass
80	Ŋ ↓						
	-						
70	D		── 				
60	D						
			╶─╊╌╌╌┥╽┝╋╢┝╌╌╌┥	│ │ ┨ ─ ┨───╂─			
50							
50 د	7						
m//ngp							
	o						
B	-						
30	D						
20) 						
				*			
10	<u></u>						
C	Ŋ ↓						
	10		100		1000		10000
				MHz			
				1411 12		PK 🕨	AV OP

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
1597.450	45.0	-6.0	1.5	156.0	-16.8	0.0	Horz	AV	0.0	22.2	54.0	-31.8	EUT on side
1597.625	44.1	-6.0	1.5	231.0	-16.8	0.0	Vert	AV	0.0	21.3	54.0	-32.7	EUT vert
1597.450	45.0	-6.0	1.5	156.0		0.0	Horz	PK	0.0	39.0	74.0	-35.0	EUT on side
1280.042	43.9	-7.0	1.5	149.9	-16.8	0.0	Horz	AV	0.0	20.1	55.9	-35.8	EUT on side
1597.625	44.1	-6.0	1.5	231.0		0.0	Vert	PK	0.0	38.1	74.0	-35.9	EUT vert
958.475	22.7	13.2	3.7	173.0	-16.8	0.0	Horz	AV	0.0	19.1	55.9	-36.8	EUT on side
958.905	22.7	13.2	1.0	184.0	-16.8	0.0	Vert	AV	0.0	19.1	55.9	-36.8	EUT horz
1279.283	42.9	-7.0	1.5	45.9	-16.8	0.0	Vert	AV	0.0	19.1	55.9	-36.8	EUT vert
958.568	22.3	13.2	1.0	36.0	-16.8	0.0	Vert	AV	0.0	18.7	55.9	-37.2	EUT vert
958.795	21.9	13.2	1.6	162.0	-16.8	0.0	Vert	AV	0.0	18.3	55.9	-37.6	EUT on side
958.248	21.9	13.2	1.0	48.0	-16.8	0.0	Horz	AV	0.0	18.3	55.9	-37.6	EUT horz
958.065	21.8	13.2	1.0	240.9	-16.8	0.0	Horz	AV	0.0	18.2	55.9	-37.7	EUT vert
639.017	27.5	6.8	1.0	95.0	-16.8	0.0	Horz	AV	0.0	17.5	55.9	-38.4	EUT on side
1280.042	43.9	-7.0	1.5	149.9		0.0	Horz	PK	0.0	36.9	75.9	-39.0	EUT on side
639.017	26.3	6.8	1.3	146.9	-16.8	0.0	Vert	AV	0.0	16.3	55.9	-39.6	EUT vert
958.475	22.7	13.2	3.7	173.0		0.0	Horz	PK	0.0	35.9	75.9	-40.0	EUT on side
958.905	22.7	13.2	1.0	184.0		0.0	Vert	PK	0.0	35.9	75.9	-40.0	EUT horz
1279.283	42.9	-7.0	1.5	45.9		0.0	Vert	PK	0.0	35.9	75.9	-40.0	EUT vert

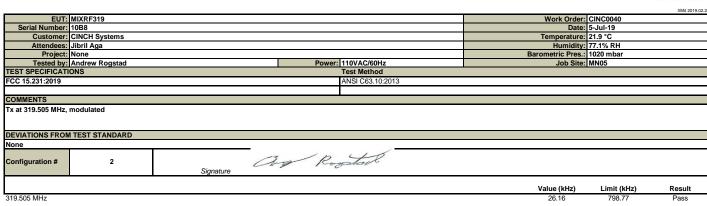
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
958.568	22.3	13.2	1.0	36.0		0.0	Vert	PK	0.0	35.5	75.9	-40.4	EUT vert
958.795	21.9	13.2	1.6	162.0		0.0	Vert	PK	0.0	35.1	75.9	-40.8	EUT on side
958.248	21.9	13.2	1.0	48.0		0.0	Horz	PK	0.0	35.1	75.9	-40.8	EUT horz
958.065	21.8	13.2	1.0	240.9		0.0	Horz	PK	0.0	35.0	75.9	-40.9	EUT vert
639.017	27.5	6.8	1.0	95.0		0.0	Horz	PK	0.0	34.3	75.9	-41.6	EUT on side
639.017	26.3	6.8	1.3	146.9		0.0	Vert	PK	0.0	33.1	75.9	-42.8	EUT vert

OCCUPIED BANDWIDTH

XMit 2019.02.26

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

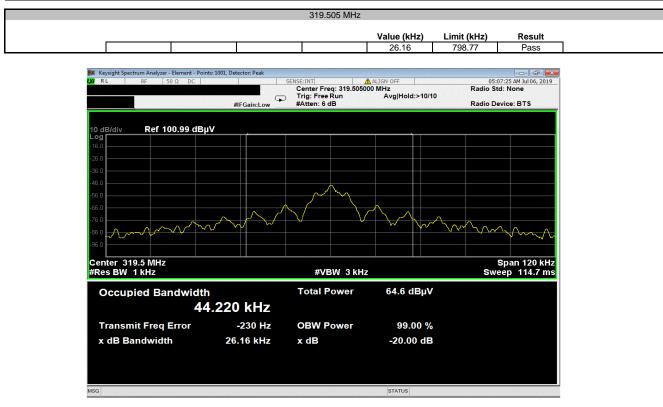
TEST EQUIPMENT


Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	ESM Cable Corp.	Bilog Cables	MNH	2-Nov-2018	2-Nov-2019
Antenna - Biconilog	Teseq	CBL 6141B	AYD	25-Jan-2018	25-Jan-2020
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	1-May-2019	1-May-2020

TEST DESCRIPTION

The measurement was made in a radiated configuration of the fundamental with the carrier fully maximized for its highest radiated power. The EUT was transmitting at its maximum data rate.

The 20 dB occupied bandwidth is required to be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz.


OCCUPIED BANDWIDTH

OCCUPIED BANDWIDTH

Duty Cycle

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	ESM Cable Corp.	Bilog Cables	MNH	2-Nov-2018	2-Nov-2019
Antenna - Biconilog	Teseq	CBL 6141B	AYD	25-Jan-2018	25-Jan-2020
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	1-May-2019	1-May-2020

TEST DESCRIPTION

The measurement was made in a radiated configuration of the fundamental with the carrier fully maximized for its highest radiated power. For software controlled or pre-programmed devices, the manufacturer shall declare the duty cycle class or classes for the equipment under test. For manually operated or event dependant devices, with or without software controlled functions, the manufacturer shall declare whether the device once triggered, follows a pre-programmed cycle, or whether the transmission is constant until the trigger is released or manually reset. The manufacturer shall also give a description of the application for the device and include a typical usage pattern. The typical usage pattern as declared by the manufacturer shall be used to determine the duty cycle and hence the duty class.

Where an acknowledgement is required, the additional transmitter on-time shall be included and declared by the manufacturer.

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. (Where T is the period of the pulse train.)

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec Pulsewidth of Type 1 Pulse = .1259 mSec Pulsewidth of Type 2 Pulse = .3658 mSec Pulsewidth of Type 3 Pulse = .2439 mSec Number of Type 1 Pulses = 62 Number of Type 2 Pulses = 13 Number of Type 3 Pulses = 8

Duty Cycle = 20 log [((62)(.1259) + (13)(.3658) + (8)(.2439))/100] = -16.77 dB

The duty cycle correction factor of **-16.77 dB** was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.

Duty Cycle

EUT: MI	IXRF319							Work Order:	CINC0040	
Serial Number: 10)B7							Date:	5-Jul-19	
Customer: CI	INCH Systems							Temperature:	21.9 °C	
Attendees: Jil	bril Aga							Humidity:	77.1% RH	
Project: No								Barometric Pres.:	1020 mbar	
Tested by: Ar	ndrew Rogstad			Power	: 110VAC/60Hz			Job Site:	MN05	
EST SPECIFICATION					Test Method					
CC 15.231:2019					ANSI C63.10:2013					
COMMENTS Transmitting at 319.50	05 MHz									
Transmitting at 319.50										
Fransmitting at 319.50										
Transmitting at 319.50		Signatu	Ire	ark	og fark					
ransmitting at 319.50 DEVIATIONS FROM TI Ione		Signatu	ire Number of Type	Org R Type 1 Pulse	Number of Type	Type 2 Pulse	Number of Type	Type 2 Pulse		
ransmitting at 319.50 EVIATIONS FROM T Ione		Signatu	Number of Type	Char R Type 1 Pulse length (ms)			Number of Type 3 Pulses		DCCF	Result
ransmitting at 319.50 EVIATIONS FROM T one onfiguration #		Signatu		Type 1 Pulse length (ms) 0.1259	Number of Type 2 Pulses 13	Type 2 Pulse length (ms) 0.3658	Number of Type 3 Pulses 8	Type 2 Pulse length (ms) 0.2439	DCCF -16.77	Result N/A
ransmitting at 319.50 EVIATIONS FROM T Ione		Signatu	Number of Type 1 Pulses	length (ms)	2 Pulses	length (ms)	3 Pulses	length (ms)		

32 ms Type 1 Pulse Number of Number of Type 2 Pulse Number of Type 2 Pulse length (ms) DCCF Type 1 Pulses length (ms) Type 2 Pulses Type 3 Pulses length (ms) 62 0.1259 13 0.3658 8 0.2439 -16.77 trum Analyzer - Element 03:59:47 AM Jul 06, 2019 /sight S SENSE:INT ALIGN OFF Trig Delay-1.000 ms #Avg Type: Log-Pwr Trig: Video #Atten: 6 dB RL RF DC TRACE 2 3 4 5 6 TYPE WWWWWW DET PPPPP PNO: Wide IFGain:Low ----ΔMkr3 365.8 με -1.15 dE Ref 90.00 dBµV l0 d _og B/div _____5∆6 X6 374 X X Ш Center 319.500000 MHz Res BW 120 kHz Span 0 Hz Sweep 32.22 ms (8192 pts) #VBW 300 kHz 125.9 μs (Δ) 1.243 ms 365.8 μs (Δ) 12.83 ms 243.9 μs (Δ) 23.57 ms -5.78 dB 77.83 dBµV -1.15 dB 78.60 dBµV 3.72 dB 75.36 dBµV 1 4567 10 11 STATUS MSG 100 ms Type 2 Pulse Type 1 Pulse Type 2 Pulse Number of Number of Number of Type 1 Pulses length (ms) Type 2 Pulses length (ms) Type 3 Pulses length (ms) DCCF N/A N/A N/A N/A N/A N/A N/A

Keysight Spectrum Analyzer - Element K R L R F 50 Ω DC	SENSE:INT	ALIGN OFF	04:14:06 AM Jul 06, 2019		
	PNO: Wide Trig: Free Run IFGain:Low #Atten: 6 dB	#Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE WWWWW DET P P P P P P		
10 dB/div Ref 90.00 dBµV			ΔMkr1 29.29 ms -2.98 dB		
	mma 1∆2		*		
70.0					
60.0					
50.0					
40.0					
30.0					
20.0	and the second	La sulla di na kulta lan assi di s	- Lass International Association		
	a na sana sa na na manakan tana tana tang sa	an na manana ang ang tang tang ang ang ang ang ang ang ang ang ang	a ja sevara ang sa panang ana sa		
	and a state of the s	dt in die helie die klassient heerde.	ha di sa cikada da da atang		
0.00					
Center 319.500000 MHz Res BW 120 kHz	#VBW 300 kHz	Swee	Span 0 Hz p 100.5 ms (8192 pts)		
MSG		STATUS			

Duty Cycle

(Mit 2017.12.13 5 s Type 1 Pulse Number of Number of Type 2 Pulse Number of Type 2 Pulse DCCF Type 1 Pulses length (ms) Type 2 Pulses length (ms) Type 3 Pulses length (ms) N/A N/A N/A N/A N/A N/A N/A Keysight Spectrum Analyzer - Element 04:16:25 AM Jul 06, 2019 TRACE 1 2 3 4 5 6 TYPE WWWWW DET P P P P P P ALIGN OFF #Avg Type: Log-Pwr PNO: Wide Trig: Free Run IFGain:Low #Atten: 6 dB ΔMkr1 179.5 ms 0.63 dB Ref 90.00 dBµV 0 dB/div 1<u>Δ</u>2 X Center 319.500000 MHz Res BW 120 kHz Span 0 Hz Sweep 5.000 s (8192 pts) #VBW 300 kHz STATUS 10 s Number of Type 1 Pulse Type 2 Pulse Type 2 Pulse Number of Number of Type 1 Pulses length (ms) Type 2 Pulses length (ms) Type 3 Pulses length (ms) DCCF N/A N/A N/A N/A N/A N/A N/A

R L R L	RF	lyzer - Element 50 Ω DC			SENSE:INT	A	LIGN OFF #Avg Type:	Log-Pwr		AM Jul 06, 2019
				NO: Wide 🖵 Gain:Low	Trig: Free #Atten: 6 c	Run IB				
) dB/div	Ref 9	0.00 dBµ'	/						Mkr 17.	1 5.000 .16 dBµ'
0.0										*
0.0										
0.0										
0.0										
0.0										
D.0					llu	1				
		ang sa	na la presidente (na francés de la presidente de la presidente de la presidente de la presidente de la presiden La presidente de la presiden La presidente de la presiden	the end of the second	na di ka mana ka ka ka ma					
0.0										
.00										
enter 3 ⁴ es BW ⁴		00 MHz		#\/B	W 300 kHz			Swa	ep 10.00 s	Span 0 H
G				**	1 300 KHZ		STATUS	63 W C	ep 10.00 s	10192 pts