

CINCH Systems

RF-ROR-433

FCC 15.231:2018
Low Power 433 MHz Periodic Transmitter

Report # CINC0021

NVLAP LAB CODE: 200881-0

CERTIFICATE OF TEST

Last Date of Test: March 26, 2018 CINCH Systems Model: RF-ROR-433

Radio Equipment Testing

Standards

Specification	Method		
FCC 15.231:2018	ANSI C63.10:2013		

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	No	N/A	Not required for a battery powered EUT.
6.5, 6.6	Field Strength of Fundamental	Yes	Pass	
6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	
6.9.2	Occupied Bandwidth	Yes	Pass	
7.5	Duty Cycle	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Matt Nuernberg, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

Report No. CINC0021 2/22

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

Report No. CINC0021 3/22

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

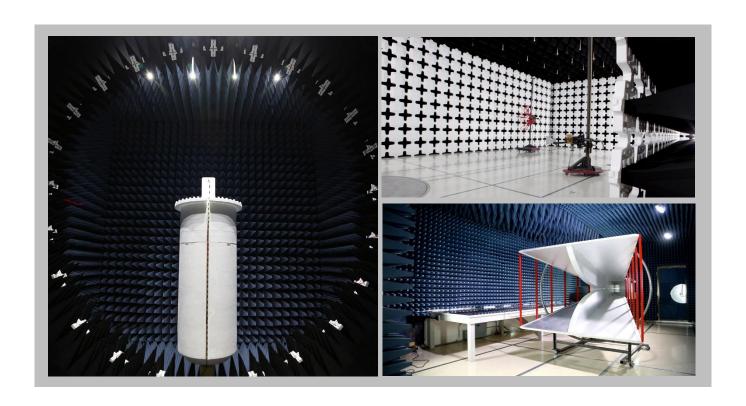
MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

http://portlandcustomer.element.com/ts/scope/scope.htm http://gsi.nist.gov/global/docs/cabs/designations.html

Report No. CINC0021 4/22


FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600		
NVLAP							
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0		
	Innovation, Science and Economic Development Canada						
2834B-1, 2834B-3	2834E-1, 2834E-3	N/A	2834D-1, 2834D-2	2834G-1	2834F-1		
	BSMI						
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R		
VCCI							
A-0029	A-0109	N/A	A-0108	A-0201	A-0110		
	Recognized Phase	e I CAB for ACMA, BSM	I, IDA, KCC/RRA, MIC, M	OC, NCC, OFCA			
US0158	US0175	N/A	US0017	US0191	US0157		

Report No. CINC0021 5/22

EMISSIONS MEASUREMENTS

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

Measurement Bandwidths

Frequency Range (MHz)			Average Data (kHz)	
0.01 - 0.15	1.0	0.2	0.2	
0.15 - 30.0	10.0	9.0	9.0	
30.0 - 1000	100.0	120.0	120.0	
Above 1000 1000.0		N/A	1000.0	

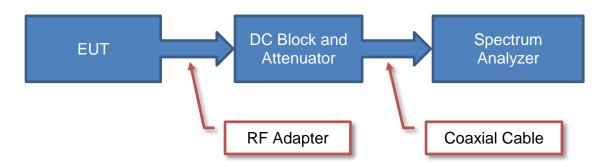
Measurements were made using the bandwidths and detectors specified. No video filter was used.

Sample Calculations

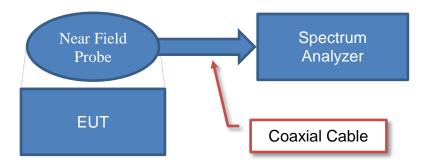
Radiated Emissions:

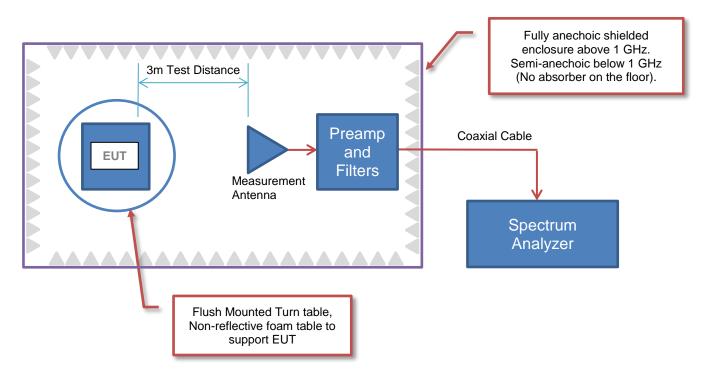
Field Strength		Measured Level		Antenna Factor		Cable Factor		Amplifier Gain		Distance Adjustment Factor		External Attenuation
33.5	=	42.6	+	28.6	+	3.1	-	40.8	+	0.0	+	0.0

Conducted Emissions:


Adjusted		Measured		Transducer		Cable		External
Level		Level		Factor		Factor		Attenuation
47.1	=	26.7	+	0.3	+	0.1	+	20.0

Report No. CINC0021 6/22


Test Setup Block Diagrams


Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

Report No. CINC0021 7/22

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	CINCH Systems
Address:	Suite 300 12075 43rd Street NE
City, State, Zip:	St. Michael, MN 55376
Test Requested By:	Jibril Aga
Model:	RF-ROR-433
First Date of Test:	March 26, 2018
Last Date of Test:	March 26, 2018
Receipt Date of Samples:	March 26, 2018
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Low power periodic transmitter which operates at 433 MHz utilizing OOK modulation.

Testing Objective:

To demonstrate compliance of the periodic radio to FCC 15.231(b) requirements.

Report No. CINC0021 8/22

CONFIGURATIONS

Configuration CINC0021-1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
RF-ROR-433	CINCH Systems	RF-ROR-433	R4

Configuration CINC0021-3

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
RF-ROR-433	CINCH Systems	RF-ROR-433	R1

Report No. CINC0021 9/22

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
			Tested as	No EMI suppression	EUT remained at
1	3/26/2018	Duty Cycle	delivered to	devices were added or	Element following the
			Test Station.	modified during this test.	test.
		Field	Tested as	No EMI suppression	EUT remained at
2	3/26/2018	Strength of	delivered to	devices were added or	Element following the
		Fundamental	Test Station.	modified during this test.	test.
		Spurious	Tested as	No EMI suppression	EUT remained at
3	3/26/2018	Radiated	delivered to	devices were added or	Element following the
		Emissions	Test Station.	modified during this test.	test.
	4 3/26/2018	018 Occupied Bandwidth	Tested as	No EMI suppression	Sahadulad taating
4			delivered to	devices were added or	Scheduled testing was completed.
		Danuwidin	Test Station.	modified during this test.	was completed.

Report No. CINC0021 10/22

FIELD STRENGTH OF FUNDAMENTAL

PSA-ESCI 2017.12.19

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting CW at 433.916 MHz

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

CINC0021 - 3

FREQUENCY RANGE INVESTIGATED

Start Frequency	430 MHz	Stop Frequency	440 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	Element	Biconilog Cable	MNX	24-Feb-2018	12 mo
Antenna - Biconilog	ETS Lindgren	3142D	AXO	15-Dec-2017	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFG	19-Jun-2017	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was configured for continuous un-modulated CW operation at its single transmit frequency. The field strength of the transmit frequency was maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT in 3 orthogonal planes (per ANSI C63.10:2013).

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. (Where T is the period of the pulse train.)

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec Pulsewidth of Type 1 Pulse = 1.08 mSec Pulsewidth of Type 2 Pulse = 0.12 mSec Pulsewidth of Type 3 Pulse = 0.51 mSec

Number of Type 1 Pulses = 1 Number of Type 2 Pulses = 58 Number of Type 3 Pulses = 1

Duty Cycle = $20 \log [((1.08)(1) + (0.12)(58) + (0.51)(1))/100] = -21.36 dB$

The duty cycle correction factor of -21.36 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.

Report No. CINC0021 11/22

FIELD STRENGTH OF FUNDAMENTAL

											EmiR5 2018.02.06		PSA-ESCI 2017.12.1	9
	W	ork Order:		C0021	_	Date:		ar-2018	7/	2	man	400	*	
		Project: Job Site:		one	Ter	nperature:		9 °C	12	y la	Mari	mer		
	·:-			N05	Davama	Humidity:		% RH		Tastad bu	Kula MaMi	ممال		
- 3	eria	I Number:	RF-ROR-4	R1 133	Barome	etric Pres.:	1024	mbar		Tested by:	Kyle Micivit	ullan		_
	Conf	figuration:		100										_
			CINCH Sy	stems										_
	Α	Attendees:	Jibril Aga											_
		JT Power:	Battery											_
On	erat	ing Mode:	Transmittii	ng CW at 43	33.916 MH	Z								_
	ciut	g mode.												=
	D	eviations:	None											
			None											_
	С	omments:												
	Ŭ													
Test S	Snec	ifications						Test Meth	nod					
		1:2018						ANSI C63						_
	0.20	71.2010						711101 000	.10.2010					
														_
Rı	ın#	3	Test Dis	stance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	P	ass	_
1	110 -													
1	100 -													
	90 -													
Ε														
dBuV/m	80 -													
Bu	00													
0														
							•							
	70 -													
							•							
							•							
	60 -						•							
	00													
	50				•					46:0			40: 5	
	43	3.8		433.	9		433.9			434.0			434.0	
							MHz				■ PK	◆ AV	QP	
						B . G . I		51.77						
						Duty Cycle Correction	External	Polarity/ Transducer		Distance			Compared to	
Free		Amplitude	Factor	Antenna Height	Azimuth	Factor	Attenuation	Туре	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MH	z)	(dBuV)	(dB)	(meters)	(degrees)	(dB)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	Comments
433.9		70.4	23.2	1.2	71.0		0.0	Vert	PK	0.0	93.6	100.8	-7.2	EUT Vert
433.9		70.4	23.2	1.2	71.0	-21.4	0.0	Vert	AV	0.0	72.2	80.8	-8.6	EUT Vert
433.9 433.9		69.0 69.0	23.2 23.2	1.1 1.1	246.0 246.0	-21.4	0.0 0.0	Vert Vert	PK AV	0.0 0.0	92.2 70.8	100.8 80.8	-8.6 -10.0	EUT On Side EUT On Side
433.9		66.9	23.2	1.0	240.0	-21. 4	0.0	Horz	PK	0.0	90.1	100.8	-10.7	EUT Horz
433.9	16	66.9	23.2	1.0	240.0	-21.4	0.0	Horz	AV	0.0	68.7	80.8	-12.1	EUT Horz
433.9		65.0	23.2	1.0	154.0	24.4	0.0	Horz	PK	0.0	88.2	100.8	-12.6	EUT On Side EUT On Side
433.9 433.9		65.0 62.1	23.2 23.2	1.0 3.6	154.0 325.0	-21.4	0.0 0.0	Horz Horz	AV PK	0.0 0.0	66.8 85.3	80.8 100.8	-14.0 -15.5	EUT On Side EUT Vert
433.9	16	62.1	23.2	3.6	325.0	-21.4	0.0	Horz	AV	0.0	63.9	80.8	-16.9	EUT Vert
433.9		59.2	23.2	1.1	92.0	04.4	0.0	Vert	PK	0.0	82.4	100.8	-18.4	EUT Horz
433.9	116	59.2	23.2	1.1	92.0	-21.4	0.0	Vert	AV	0.0	61.0	80.8	-19.8	EUT Horz

Report No. CINC0021

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2017.12.19

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting CW at 433.916 MHz

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

CINC0021 - 3

FREQUENCY RANGE INVESTIGATED

|--|

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator	Coaxicom	3910-10	AWZ	24-Feb-2018	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVX	24-Feb-2018	12 mo
Cable	Element	Double Ridge Guide Horn Cables	MNV	24-Feb-2018	12 mo
Antenna - Double Ridge	ETS-Lindgren	3115	AJQ	14-Nov-2016	24 mo
Amplifier - Pre-Amplifier	Miteq	AM-1064-9079 and SA18E-10	AOO	24-Feb-2018	12 mo
Cable	Element	Biconilog Cable	MNX	24-Feb-2018	12 mo
Antenna - Biconilog	ETS Lindgren	3142D	AXO	15-Dec-2017	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFG	19-Jun-2017	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Report No. CINC0021 13/22

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequency in each operational band and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. Where T is the period of the pulse train.

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec
Pulsewidth of Type 1 Pulse = 1.08 mSec
Pulsewidth of Type 2 Pulse = 0.12 mSec
Pulsewidth of Type 3 Pulse = 0.51 mSec
Number of Type 1 Pulses = 1
Number of Type 2 Pulses = 58
Number of Type 3 Pulses = 1

Duty Cycle = $20 \log [((1.08)(1) + (0.12)(58) + (0.51)(1))/100] = -21.36 dB$

The duty cycle correction factor of -21.36 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz for measurements at or below 1GHz. Above 1GHz, a resolution bandwidth of 1MHz and a video bandwidth of 3MHz was used.

Report No. CINC0021 14/22

SPURIOUS RADIATED EMISSIONS

W. 1 0 1	OING	20004		D.11	00.14	0040	ı		EmiR5 2018.02.06		PSA-ESCI 2017.12.1	9
Work Orde Projec		one	Tor	Date:		ır-2018 9 °C	2	ngla.	ma	mel	Can	
Job Site		N05	101	Humidity:		% RH		7				
Serial Numbe		R1	Barome	etric Pres.:	1024	mbar		Tested by:	Kyle McMu	llan		-
	: RF-ROR-4	33										=
Configuration	: CINCH Sy:	stems										=
	: Jibril Aga	3101113										_
EUT Powe												- -
Operating Mode	Transmittir	ng CW at 43	33.916 MH	Z								
												_
Deviations	:: None											
	None											_
Comments	::											
Test Specifications						Test Meth						_
FCC 15.231:2018						ANSI C63.	10:2013					
- "									- "			=
Run # 4	l est Dis	stance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	Pi	ass	_
100												
100												
80	mic	7 (1)	$\neg \Box$		 	піі		<u> </u>		— n		
					│ ■ │├─		і Ші				I W	
	Ш	_ Ш						"	T			
60												
								_ " _				
	Ш		U		•							
40									<u> </u>			
20												
20												
0 —												
100					1000						10000	
					MHz				■ PK	◆ AV	QP	
				Duty Cycle		Polarity/						
_		Antenna		Correction	External	Transducer		Distance			Compared to	
Freq Amplitude (MHz) (dBuV)	Factor (dB)	Height (meters)	Azimuth (degrees)	Factor (dB)	Attenuation (dB)	Туре	Detector	Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Spec. (dB)	
()												Comments
1000 177		0.1	4000					0.0	74 ^		-2.7	EUT Horz
4339.177 58.6 4339.177 58.6	2.7	2.1 2.1	180.0 180.0	-21.4	10.0 10.0	Horz Horz	PK AV	0.0	71.3 49.9	74.0 54.0		EUT Horz
4339.177 58.6 3905.215 56.5	2.7 1.2	2.1 2.4	180.0 196.0	-21.4	10.0 10.0	Horz Horz	AV PK	0.0 0.0	49.9 67.7	54.0 74.0	-4.1 -6.3	EUT Horz EUT Horz
4339.177 58.6 3905.215 56.5 867.833 51.8	2.7 1.2 12.5	2.1 2.4 1.0	180.0 196.0 191.0	-21.4	10.0 10.0 10.0	Horz Horz Horz	AV PK PK	0.0 0.0 0.0	49.9 67.7 74.3	54.0 74.0 80.8	-4.1 -6.3 -6.5	EUT Horz EUT Horz
4339.177 58.6 3905.215 56.5	2.7 1.2	2.1 2.4	180.0 196.0	-21.4	10.0 10.0	Horz Horz	AV PK	0.0 0.0	49.9 67.7	54.0 74.0	-4.1 -6.3	EUT Horz
4339.177 58.6 3905.215 56.5 867.833 51.8 867.843 51.6 3905.298 55.5 867.833 50.7	2.7 1.2 12.5 12.5 1.2 12.5	2.1 2.4 1.0 1.3 2.3 1.0	180.0 196.0 191.0 237.0 134.0 321.0		10.0 10.0 10.0 10.0 10.0 10.0	Horz Horz Horz Vert Vert Horz	AV PK PK PK PK PK	0.0 0.0 0.0 0.0 0.0 0.0	49.9 67.7 74.3 74.1 66.7 73.2	54.0 74.0 80.8 80.8 74.0 80.8	-4.1 -6.3 -6.5 -6.7 -7.3 -7.6	EUT Horz EUT Horz EUT Vert EUT Vert EUT On Side
4339.177 58.6 3905.215 56.5 867.833 51.8 867.843 51.6 3905.298 55.5 867.833 50.7 3905.215 56.5	2.7 1.2 12.5 12.5 1.2 12.5 1.2	2.1 2.4 1.0 1.3 2.3 1.0 2.4	180.0 196.0 191.0 237.0 134.0 321.0 196.0	-21.4	10.0 10.0 10.0 10.0 10.0 10.0	Horz Horz Horz Vert Vert Horz Horz	AV PK PK PK PK PK AV	0.0 0.0 0.0 0.0 0.0 0.0 0.0	49.9 67.7 74.3 74.1 66.7 73.2 46.3	54.0 74.0 80.8 80.8 74.0 80.8 54.0	-4.1 -6.3 -6.5 -6.7 -7.3 -7.6	EUT Horz EUT Horz EUT Vert EUT Vert EUT On Side EUT Horz
4339.177 58.6 3905.215 56.5 867.833 51.8 867.843 51.6 3905.298 55.5 867.833 50.7	2.7 1.2 12.5 12.5 1.2 12.5	2.1 2.4 1.0 1.3 2.3 1.0	180.0 196.0 191.0 237.0 134.0 321.0		10.0 10.0 10.0 10.0 10.0 10.0	Horz Horz Horz Vert Vert Horz	AV PK PK PK PK PK AV AV	0.0 0.0 0.0 0.0 0.0 0.0	49.9 67.7 74.3 74.1 66.7 73.2	54.0 74.0 80.8 80.8 74.0 80.8	-4.1 -6.3 -6.5 -6.7 -7.3 -7.6	EUT Horz EUT Horz EUT Vert EUT Vert EUT On Side EUT Horz EUT Horz EUT Vert
4339.177 58.6 3905.215 56.5 867.833 51.8 867.843 51.6 3905.298 55.5 867.833 50.7 3905.215 66.5 867.833 51.8 867.843 51.8 3905.298 55.5	2.7 1.2 12.5 12.5 1.2 12.5 1.2 12.5 12.5 12	2.1 2.4 1.0 1.3 2.3 1.0 2.4 1.0 1.3 2.3	180.0 196.0 191.0 237.0 134.0 321.0 196.0 191.0 237.0 134.0	-21.4 -21.4 -21.4 -21.4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Horz Horz Horz Vert Vert Horz Horz Horz Vert Vert Vert	AV PK PK PK PK AV AV AV AV	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	49.9 67.7 74.3 74.1 66.7 73.2 46.3 52.9 52.7 45.3	54.0 74.0 80.8 80.8 74.0 80.8 54.0 60.8 54.0	-4.1 -6.3 -6.5 -6.7 -7.3 -7.6 -7.7 -7.9 -8.1 -8.7	EUT Horz EUT Horz EUT Vert EUT Vert EUT On Side EUT Horz EUT Horz EUT Vert EUT Vert
4339.177 58.6 3905.215 56.5 867.833 51.8 867.843 51.6 3905.298 55.5 867.833 50.7 3905.215 56.5 867.833 51.8 867.843 51.6 3905.298 55.5 867.833 50.7	2.7 1.2 12.5 12.5 1.2 12.5 1.2 12.5 1.2,5 1.2 12.5	2.1 2.4 1.0 1.3 2.3 1.0 2.4 1.0 1.3 2.3 1.0	180.0 196.0 191.0 237.0 134.0 321.0 196.0 191.0 237.0 134.0 321.0	-21.4 -21.4 -21.4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Horz Horz Horz Vert Vert Horz Horz Vert Vert Horz Horz Vert Vert Horz	AV PK PK PK PK PK AV AV AV AV	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	49.9 67.7 74.3 74.1 66.7 73.2 46.3 52.9 52.7 45.3 51.8	54.0 74.0 80.8 80.8 74.0 80.8 54.0 60.8 54.0 60.8	-4.1 -6.3 -6.5 -6.7 -7.3 -7.6 -7.7 -7.9 -8.1 -8.7 -9.0	EUT Horz EUT Horz EUT Vert EUT Vert EUT On Side EUT Horz EUT Horz EUT Vert
4339.177 58.6 3905.215 56.5 867.833 51.8 867.843 51.6 3905.298 55.5 867.833 50.7 3905.215 56.5 867.833 51.8 867.843 51.6 3905.298 55.5 867.833 50.7 4339.110 52.3 4339.110 52.3	2.7 1.2 12.5 12.5 1.2 12.5 1.2 12.5 12.5 1.2 12.5 2.7 2.7	2.1 2.4 1.0 1.3 2.3 1.0 2.4 1.0 1.3 2.3 1.0 1.1	180.0 196.0 191.0 237.0 134.0 321.0 196.0 191.0 237.0 134.0 321.0 45.0	-21.4 -21.4 -21.4 -21.4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Horz Horz Vert Vert Horz Horz Horz Vert Vert Vert Vert Vert Vert Vert Vert	AV PK PK PK PK AV AV AV AV AV AV AV	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	49.9 67.7 74.3 74.1 66.7 73.2 46.3 52.9 52.7 45.3 51.8 65.0 43.6	54.0 74.0 80.8 80.8 74.0 80.8 54.0 60.8 60.8 54.0 60.8 74.0 54.0	-4.1 -6.3 -6.5 -6.7 -7.3 -7.6 -7.7 -7.9 -8.1 -8.7 -9.0 -9.0	EUT Horz EUT Horz EUT Vert EUT Vert EUT On Side EUT Horz EUT Vert EUT Vert EUT On Side EUT Vert EUT On Side EUT Vert EUT On Side
4339.177 58.6 3905.215 56.5 867.833 51.8 867.843 51.6 3905.298 55.5 867.833 50.7 3905.215 56.5 867.833 51.8 867.843 51.6 3905.298 55.5 867.833 50.7 4339.110 52.3 4339.110 52.3 867.828 46.5	2.7 1.2 12.5 12.5 1.2 12.5 1.2 12.5 12.5 12	2.1 2.4 1.0 1.3 2.3 1.0 2.4 1.0 1.3 2.3 1.0 1.1	180.0 196.0 191.0 237.0 134.0 321.0 196.0 191.0 237.0 134.0 321.0 45.0 45.0	-21.4 -21.4 -21.4 -21.4 -21.4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Horz Horz Vert Vert Horz Horz Horz Vert Vert Vert Vert Vert Horz Vert Vert Vert Vert Horz	AV PK PK PK PK AV AV AV AV PK AV AV	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	49.9 67.7 74.3 74.1 66.7 73.2 46.3 52.9 52.7 45.3 51.8 65.0 43.6 69.0	54.0 74.0 80.8 80.8 74.0 80.8 54.0 60.8 54.0 60.8 74.0 54.0 80.8	-4.1 -6.3 -6.5 -6.7 -7.3 -7.6 -7.7 -7.9 -8.1 -8.7 -9.0 -10.4 -11.8	EUT Horz EUT Horz EUT Vert EUT On Side EUT Horz EUT Horz EUT Vert EUT On Side EUT Vert EUT Vert EUT Vert EUT Vert
4339.177 58.6 3905.215 56.5 867.833 51.8 867.843 51.6 3905.298 55.5 867.833 50.7 3905.215 56.5 867.833 51.8 867.843 51.6 3905.298 55.5 867.833 50.7 4339.110 52.3 4339.110 52.3	2.7 1.2 12.5 12.5 1.2 12.5 1.2 12.5 12.5 1.2 12.5 2.7 2.7	2.1 2.4 1.0 1.3 2.3 1.0 2.4 1.0 1.3 2.3 1.0 1.1	180.0 196.0 191.0 237.0 134.0 321.0 196.0 191.0 237.0 134.0 321.0 45.0	-21.4 -21.4 -21.4 -21.4 -21.4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Horz Horz Vert Vert Horz Horz Horz Vert Vert Vert Vert Vert Vert Vert Vert	AV PK PK PK PK AV AV AV AV AV AV AV	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	49.9 67.7 74.3 74.1 66.7 73.2 46.3 52.9 52.7 45.3 51.8 65.0 43.6	54.0 74.0 80.8 80.8 74.0 80.8 54.0 60.8 60.8 54.0 60.8 74.0 54.0	-4.1 -6.3 -6.5 -6.7 -7.3 -7.6 -7.7 -7.9 -8.1 -8.7 -9.0 -9.0	EUT Horz EUT Horz EUT Vert EUT Vert EUT On Side EUT Horz EUT Vert EUT Vert EUT On Side EUT Vert EUT On Side EUT Vert EUT On Side
4339.177 58.6 3905.215 56.5 867.833 51.8 867.843 51.6 3905.298 55.5 867.833 50.7 3905.215 56.5 867.833 51.8 867.843 51.6 3905.298 55.5 867.833 50.7 4339.110 52.3 4339.110 52.3 867.828 46.5 867.833 46.0 867.834 45.8 867.828 46.5	2.7 1.2 12.5 12.5 1.2 12.5 1.2 12.5 1.2 12.5 2.7 2.7 12.5 12.5 12.5 12.5	2.1 2.4 1.0 1.3 2.3 1.0 2.4 1.0 1.3 2.3 1.0 1.1 1.1 1.1 1.0 1.2 1.6	180.0 196.0 191.0 237.0 134.0 321.0 196.0 191.0 237.0 134.0 321.0 45.0 194.0 96.0 110.0 194.0	-21.4 -21.4 -21.4 -21.4 -21.4 -21.4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Horz Horz Horz Vert Vert Vert Horz Horz Horz Vert Vert Vert Horz Vert Vert Vert Horz Vert Horz Vert Horz Vert Horz Vert Horz Vert Horz	AV PK PK PK PK AV AV AV AV PK PK PK AV	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	49.9 67.7 74.3 74.1 66.7 73.2 46.3 52.9 52.7 45.3 51.8 65.0 43.6 69.0 68.5 68.3 47.6	54.0 74.0 80.8 80.8 74.0 80.8 54.0 60.8 54.0 60.8 74.0 54.0 80.8 80.8 80.8	-4.1 -6.3 -6.5 -6.7 -7.3 -7.6 -7.7 -7.9 -8.1 -8.7 -9.0 -9.0 -10.4 -11.8 -12.3 -12.5 -13.2	EUT Horz EUT Horz EUT Vert EUT On Side EUT Horz EUT Vert EUT On Side EUT Horz EUT Vert EUT On Side EUT Vert EUT Vert EUT Vert EUT Vert EUT On Side EUT Vert EUT On Side EUT Vert EUT Vert EUT On Side
4339.177 58.6 3905.215 56.5 867.833 51.8 867.843 51.6 3905.298 55.5 867.833 50.7 3905.215 56.5 867.833 51.8 867.843 51.6 3905.298 55.5 867.833 50.7 4339.110 52.3 4339.110 52.3 867.828 46.5 867.833 46.0 867.838 45.8	2.7 1.2 12.5 12.5 1.2 12.5 1.2 12.5 1.2 12.5 1.2 12.5 1.2 12.5 1.2 12.5 2.7 2.7 12.5 12.5 12.5 12.5	2.1 2.4 1.0 1.3 2.3 1.0 2.4 1.0 1.3 2.3 1.0 1.1 1.1 1.1	180.0 196.0 191.0 237.0 134.0 321.0 196.0 191.0 237.0 134.0 321.0 45.0 45.0 45.0 194.0 96.0 110.0	-21.4 -21.4 -21.4 -21.4 -21.4 -21.4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Horz Horz Vert Vert Vert Horz Vert Vert Vert Vert Vert Vert Vert Vert	AV PK PK PK PK AV AV AV AV AV AV PK PK PK PK	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	49.9 67.7 74.3 74.1 66.7 73.2 46.3 52.9 52.7 45.3 51.8 65.0 43.6 69.0 68.5 68.3	54.0 74.0 80.8 80.8 74.0 80.8 54.0 60.8 54.0 60.8 74.0 54.0 80.8 80.8	-4.1 -6.3 -6.5 -6.7 -7.3 -7.6 -7.7 -7.9 -8.1 -8.7 -9.0 -10.4 -11.8 -12.3 -12.5	EUT Horz EUT Horz EUT Vert EUT On Side EUT Horz EUT Vert EUT Vert EUT On Side EUT Horz EUT Vert EUT On Side EUT Vert EUT Vert EUT Vert EUT Vert EUT Vert EUT Vert EUT On Side EUT Horz

Report No. CINC0021 15/22

OCCUPIED BANDWIDTH

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Element	Biconilog Cable	MNX	24-Feb-18	24-Feb-19
Antenna - Biconilog	ETS Lindgren	3142D	AXO	15-Dec-17	15-Dec-19
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFG	19-Jun-17	19-Jun-18

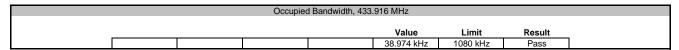
TEST DESCRIPTION

The EUT was transmitting at its maximum data rate.

The 20 dB occupied bandwidth is required to be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz.

Report No. CINC0021 16/22

OCCUPIED BANDWIDTH


							XMit 2017.12.13
EUT:	RF-ROR-433				Work Order:	CINC0021	
Serial Number:	R1				Date:	26-Mar-18	
Customer:	CINCH Systems				Temperature:	22.9 °C	
Attendees:	Jibril Aga					20.5% RH	
Project:					Barometric Pres.:		
Tested by:	Kyle McMullan		Powe	er: Battery	Job Site:	MN09	
TEST SPECIFICATI	IONS			Test Method			
FCC 15.231:2018				ANSI C63.10:2013			
COMMENTS							
None							
	/I TEST STANDARD						
None							
	_	-7.		m 16 00			
Configuration #	3	K	Zyla "	mathella			
		Signature					
					Value	Limit	Result
Occupied Bandwidth							
	433 916 MHz				38 974 kHz	1080 kHz	Page

Report No. CINC0021 17/22

OCCUPIED BANDWIDTH

(Mi) 2017 12 13

Report No. CINC0021 18/22

XMit 2017 12 13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Amplifier - Pre-Amplifier	Miteq	AM-1064-9079 and SA18E-10	AOO	24-Feb-18	24-Feb-19
Cable	Element	Biconilog Cable	MNX	24-Feb-18	24-Feb-19
Antenna - Biconilog	ETS Lindgren	3142D	AXO	15-Dec-17	15-Dec-19
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFG	19-Jun-17	19-Jun-18

TEST DESCRIPTION

The measurement was made in a radiated configuration of the fundamental with the carrier fully maximized for its highest radiated power. For software controlled or pre-programmed devices, the manufacturer shall declare the duty cycle class or classes for the equipment under test. For manually operated or event dependant devices, with or without software controlled functions, the manufacturer shall declare whether the device once triggered, follows a pre-programmed cycle, or whether the transmission is constant until the trigger is released or manually reset. The manufacturer shall also give a description of the application for the device and include a typical usage pattern. The typical usage pattern as declared by the manufacturer shall be used to determine the duty cycle and hence the duty class.

Where an acknowledgement is required, the additional transmitter on-time shall be included and declared by the manufacturer.

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. (Where T is the period of the pulse train.)

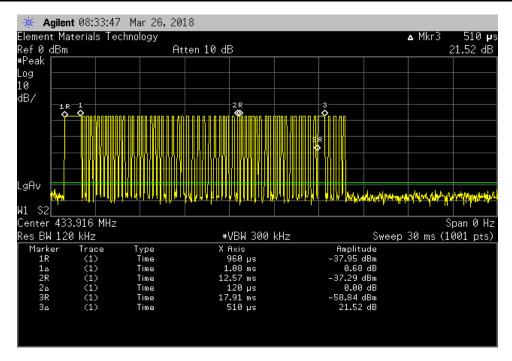
The measured values for the EUT's pulse train are as follows:

Period = 100 mSec
Pulsewidth of Type 1 Pulse = 1.08 mSec
Pulsewidth of Type 2 Pulse = 0.12 mSec
Pulsewidth of Type 3 Pulse = 0.51 mSec
Number of Type 1 Pulses = 1
Number of Type 2 Pulses = 58
Number of Type 3 Pulses = 1

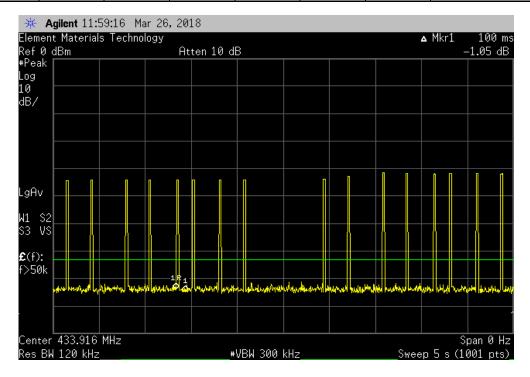
Duty Cycle = $20 \log [((1.08)(1) + (0.12)(58) + (0.51)(1))/100] = -21.36 dB$

The duty cycle correction factor of **-21.36 dB** was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.

Report No. CINC0021 19/22


									XMit 2017.12.1
EUT:	RF-ROR-433						Work Order:	CINC0021	
Serial Number:	R4						Date:	26-Mar-18	
Customer:	CINCH Systems						Temperature:	22.8 °C	
Attendees:	Jibril Aga						Humidity:	19.8% RH	
Project:	None						Barometric Pres.:	1024 mbar	
Tested by:	Kyle McMullan		Power:	Battery			Job Site:	MN05	
TEST SPECIFICAT	IONS			Test Method					
FCC 15.231:2018				ANSI C63.10:2013					
COMMENTS									
None									
DEVIATIONS FROM	M TEST STANDARD								
None									
				100000000000000000000000000000000000000					
Configuration #	1		Tryla ma	Milla					
_		Signature							
			Number of	Type 1 Pulse	Number of	Type 2 Pulse	Number of	Type 3 Pulse	
			Type 1	Length (ms)	Type 2	Length (ms)	Type 3	Length (ms)	DCCF (dB)
433.916 MHz Obser	vation Time								200. (42)
433.916 MHz Obser	vation Time Observation Time 30 ms		1	1.08	58	0.12	1	0.51	-21.36
433.916 MHz Obser			1 N/A	1.08 N/A	58 N/A	0.12 N/A	1 N/A	0.51 N/A	` ′

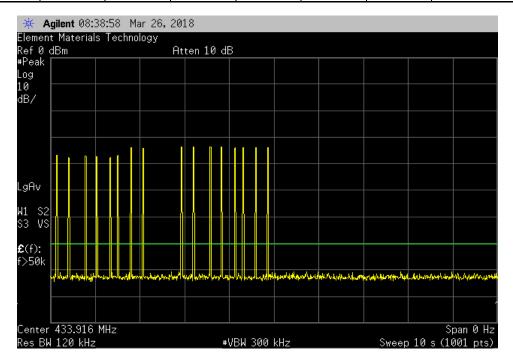
Report No. CINC0021 20/22



VMR 2017 12 1

433.916 MHz Observation Time, Observation Time 30 ms							
	Number of	Type 1 Pulse	Number of	Type 2 Pulse	Number of	Type 3 Pulse	
	Type 1	Length (ms)	Type 2	Length (ms)	Type 3	Length (ms)	DCCF (dB)
	1	1.08	58	0.12	1	0.51	-21.36

433.916 MHz Observation Time, Observation Time 5 s								
Number of	Type 1 Pulse	Number of	Type 2 Pulse	Number of	Type 3 Pulse			
Type 1	Length (ms)	Type 2	Length (ms)	Type 3	Length (ms)	DCCF (dB)		
N/A	N/A	N/A	N/A	N/A	N/A	N/A		



Report No. CINC0021 21/22

XMit 2017.12.13

433.916 MHz Observation Time, Observation Time 10 s										
Number of	Type 1 Pulse	Number of	Type 2 Pulse	Number of	Type 3 Pulse					
Type 1	Length (ms)	Type 2	Length (ms)	Type 3	Length (ms)	DCCF (dB)				
N/A	N/A	N/A	N/A	N/A	N/A	N/A				

Report No. CINC0021 22/22