

CINCH Systems

RF-ROR-345 Heat Detector FCC 15.231:2016

Low Power Transceiver

Report # CINC0003.2

NVLAP Lab Code: 200881-0

CERTIFICATE OF TEST

Last Date of Test: November 29, 2016

CINCH Systems

Model: RF-ROR-345 Heat Detector

Radio Equipment Testing

Standards

Specification	Method		
FCC 15.231:2016	ANSI C63.10:2013		

Results

Method Clause	Last Description		Results	Comments
6.2	Powerline Conducted Emissions	No	N/A	Not required for a battery powered EUT.
6.5, 6.6	Field Strength of Fundamental	Yes	Pass	
6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	
6.9.2	Occupied Bandwidth	Yes	Pass	
7.5	Duty Cycle	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Tim O'Shea, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

Report No. CINC0003.2

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Validated by the European Commission as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

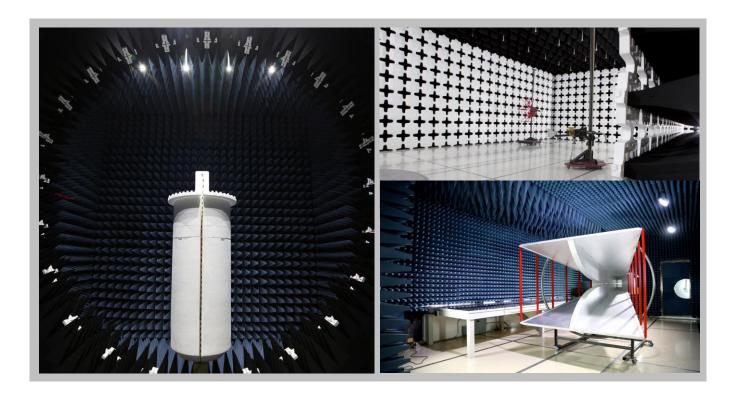
SCOPE

For details on the Scopes of our Accreditations, please visit:

http://www.nwemc.com/accreditations/ http://gsi.nist.gov/global/docs/cabs/designations.html

4/24

FACILITIES


California			
Labs OC01-13			
41 Tesla			
Irvine, CA 92618			
(949) 861-8918			

Minnesota Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136 New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214

Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066 **Texas**Labs TX01-09
3801 E Plano Pkwy
Plano, TX 75074
(469) 304-5255

WashingtonLabs NC01-05
19201 120th Ave NE
Bothell, WA 98011
(425)984-6600

(949) 861-8918	(612)-638-5136	(315) 554-8214	(503) 844-4066	(469) 304-5255	(425)984-6600	
NVLAP						
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0	
	Innovation, Science and Economic Development Canada					
2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	2834G-1	2834F-1	
		BS	МІ			
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R	
	VCCI					
A-0029	A-0109	N/A	A-0108	A-0201	A-0110	
	Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	N/A	US0017	US0191	US0157	

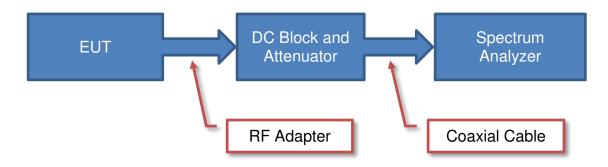
Report No. CINC0003.2 5/24

MEASUREMENT UNCERTAINTY

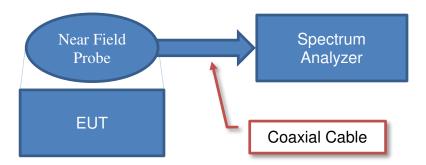
Measurement Uncertainty

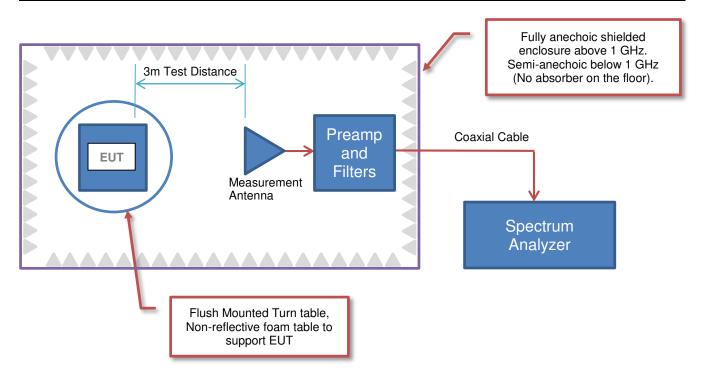
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.


The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB


Test Setup Block Diagrams


Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

Report No. CINC0003.2 7/24

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	CINCH Systems
Address:	Suite 300 12075 43rd Street NE
City, State, Zip:	St. Michael, MN 55376
Test Requested By:	Jibril Aga
Model:	RF-ROR-345 Heat Detector
First Date of Test:	November 29, 2016
Last Date of Test:	November 29, 2016
Receipt Date of Samples:	November 29, 2016
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

This is a wireless heat detector. The unit contains a temperature sensor used for both heat and freeze detection. Contains a periodic radio operating at 345 MHz. Packets are sent wirelessly to a panel which monitors the detector for any alarms or even from a supervisory standpoint.

Testing Objective:

To demonstrate compliance of the periodic radio to FCC 15.231(b) requirements.

Report No. CINC0003.2

CONFIGURATIONS

Configuration CINC0003-1

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
Rate of Rise	CINCH Systems	RF-ROR-345	2	

Configuration CINC0003-2

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
Rate of Rise (Duty Cycle)	CINCH Systems	RF-ROR-345	1	

Report No. CINC0003.2 9/24

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
		Spurious	Tested as	No EMI suppression	EUT remained at
1	11/29/2016	Radiated	delivered to	devices were added or	Northwest EMC
		Emissions	Test Station.	modified during this test.	following the test.
		Field	Tested as	No EMI suppression	EUT remained at
2	11/29/2016	Strength of	delivered to	devices were added or	Northwest EMC
		Fundamental	Test Station.	modified during this test.	following the test.
		29/2016 Occupied Bandwidth	Tested as	No EMI suppression	EUT remained at
3	11/29/2016		delivered to	devices were added or	Northwest EMC
		Danuwiuth	Test Station.	modified during this test.	following the test.
			Tested as	No EMI suppression	Scheduled testing
4	11/29/2016	2016 Duty Cycle	delivered to	devices were added or	was completed.
			Test Station.	modified during this test.	was completed.

Report No. CINC0003.2 10/24

FIELD STRENGTH OF FUNDAMENTAL

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Constant packet at 345MHz.

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

CINC0003 - 1

FREQUENCY RANGE INVESTIGATED

Ctart Eranicana	344 MHz	Cton Evenuence	1346 MHz
Start Frequency	344 MHz	Stop Frequency	1.346 MHZ
Otal Ci Toquonoj	0 1 1 Wil IZ	Olop i loquolloj	0 10 1111 12

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2016	12 mo
Antenna - Biconilog	Teseq	CBL 6141B	AYD	1/6/2016	24 mo
Cable	ESM Cable Corp.	Bilog Cables	MNH	12/7/2015	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The measurement was made in a radiated configuration of the fundamental with the carrier fully maximized for its highest radiated power. For software controlled or pre-programmed devices, the manufacturer shall declare the duty cycle class or classes for the equipment under test. For manually operated or event dependant devices, with or without software controlled functions, the manufacturer shall declare whether the device once triggered, follows a pre-programmed cycle, or whether the transmission is constant until the trigger is released or manually reset. The manufacturer shall also give a description of the application for the device and include a typical usage pattern. The typical usage pattern as declared by the manufacturer shall be used to determine the duty cycle and hence the duty class.

Where an acknowledgement is required, the additional transmitter on-time shall be included and declared by the manufacturer.

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Report No. CINC0003.2 11/24

FIELD STRENGTH OF FUNDAMENTAL

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

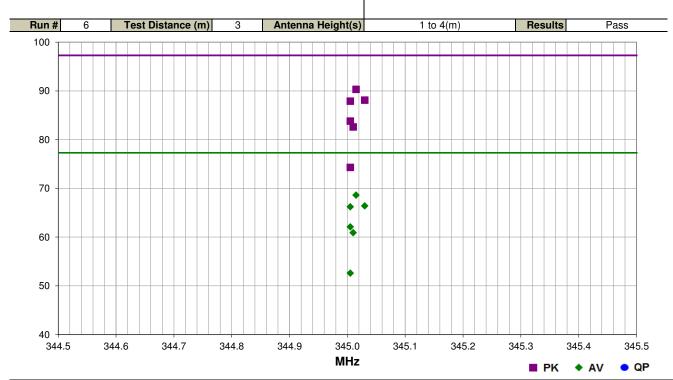
Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. (Where T is the period of the pulse train.)

The measured values for the EUT's pulse train are as follows

Period = 153 mSec Pulsewidth of Type 1 Pulse = 0.9171 mSec Pulsewidth of Type 2 Pulse = 0.2736 mSec Pulsewidth of Type 3 Pulse = 0.1368 mSec Number of Type 1 Pulses = 1 Number of Type 2 Pulses = 6 Number of Type 3 Pulses = 52

Duty Cycle = $20 \log [((1)(0.9171) + (6)(0.2736) + (52)(0.1368))/100] = -21.7 dB$

The duty cycle correction factor of -21.7 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.


Report No. CINC0003.2 12/24

FIELD STRENGTH OF FUNDAMENTAL

EmiR5 2016.08.26

Work Order:	CINC0003	Date:	11/29/16	- 0
Project:		Temperature:	22.1 °C	Trevor Buls
Job Site:		Humidity:	33% RH	Drevol ville
Serial Number:	2	Barometric Pres.:	993 mbar	Tested by: Trevor Buls, Kyle McMullan
EUT:	RF-ROR-345 Heat De	etector		
Configuration:	1			
Customer:	CINCH Systems			
Attendees:	Jibril Aga			
EUT Power:	Battery			
Operating Mode:	Constant packet at 34	5MHz.		
Deviations:	None			
Comments:	None			
Test Specifications			Test Meth	od
FCC 15.231(b):2016			ANSI C63.	10:2013

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
345.015	69.8	20.5	1.0	360.0		0.0	Horz	PK	0.0	90.3	97.3	-7.0	EUT Horz
345.015	69.8	20.5	1.0	360.0	-21.7	0.0	Horz	AV	0.0	68.6	77.3	-8.7	EUT Horz
345.030	67.6	20.5	1.8	180.0		0.0	Vert	PK	0.0	88.1	97.3	-9.2	EUT Vert
345.005	67.4	20.5	1.4	160.1		0.0	Vert	PK	0.0	87.9	97.3	-9.4	EUT On Side
345.030	67.6	20.5	1.8	180.0	-21.7	0.0	Vert	AV	0.0	66.4	77.3	-10.9	EUT Vert
345.005	67.4	20.5	1.4	160.1	-21.7	0.0	Vert	AV	0.0	66.2	77.3	-11.1	EUT On Side
345.005	63.3	20.5	1.0	122.0		0.0	Horz	PK	0.0	83.8	97.3	-13.5	EUT On Side
345.010	62.1	20.5	1.8	117.0		0.0	Horz	PK	0.0	82.6	97.3	-14.7	EUT Vert
345.005	63.3	20.5	1.0	122.0	-21.7	0.0	Horz	AV	0.0	62.1	77.3	-15.2	EUT On Side
345.010	62.1	20.5	1.8	117.0	-21.7	0.0	Horz	AV	0.0	60.9	77.3	-16.4	EUT Vert
345.005	53.8	20.5	1.0	87.1		0.0	Vert	PK	0.0	74.3	97.3	-23.0	EUT Horz
345.005	53.8	20.5	1.0	87.1	-21.7	0.0	Vert	AV	0.0	52.6	77.3	-24.7	EUT Horz

Report No. CINC0003.2 13/24

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Constant packet at 345MHz.

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

CINC0003 - 1

FREQUENCY RANGE INVESTIGATED

	Start Frequency 30 MHz	Stop Frequency	5 GHz
--	------------------------	----------------	-------

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator	Fairview Microwave	SA18E-10	TYA	9/23/2016	12 mo
Antenna - Double Ridge	ETS Lindgren	3115	AJA	6/23/2016	24 mo
Cable	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	12/7/2015	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVT	3/1/2016	12 mo
Antenna - Biconilog	Teseq	CBL 6141B	AYD	1/6/2016	24 mo
Cable	ESM Cable Corp.	Bilog Cables	MNH	12/7/2015	12 mo
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AVO	12/10/2015	12 mo
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2016	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequency in each operational band and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Report No. CINC0003.2 14/24

SPURIOUS RADIATED EMISSIONS

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. Where T is the period of the pulse train.

The measured values for the EUT's pulse train are as follows:

Period = 153 mSec
Pulsewidth of Type 1 Pulse = 0.9171 mSec
Pulsewidth of Type 2 Pulse = 0.2736 mSec
Pulsewidth of Type 3 Pulse = 0.1368 mSec
Number of Type 1 Pulses = 1
Number of Type 2 Pulses = 6
Number of Type 3 Pulses = 52

71

Duty Cycle = $20 \log [((1)(0.9171) + (6)(0.2736) + (52)(0.1368))/100] = -21.7 dB$

The duty cycle correction factor of -21.7 dB was added to the peak readings to mathematically derive the average levels Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz for measurements at or below 1GHz. Above 1GHz, a resolution bandwidth of 1MHz and a video bandwidth of 3MHz was used.

Report No. CINC0003.2 15/24

SPURIOUS RADIATED EMISSIONS

3105.067

3105.067

3105.050

3105.050

690.030

-1 0

-1.0

-1.0

-1.0

7.6

61 1

61.1

57.4

57 4

31.6

256.0

256.0

214.1

214.1

358.9

-21.7

-21.7

10

1.0

1.0

1.0

1.0

EmiR5 2016.08.26 Work Order: CINC0003 Date: 11/29/16 22 °C Temperature: Project: None wo . Humidity: Job Site: MN05 32.8% RH Tested by: Trevor Buls, Kyle McMullan Serial Number: 2 **Barometric Pres.:** 991 mbar EUT: RF-ROR-345 Heat Detector Configuration: Customer: CINCH Systems Attendees: Jibril Aga **EUT Power:** Battery Constant packet at 345MHz. **Operating Mode: Deviations:** None Comments: **Test Specifications Test Method** FCC 15.231:2016 ANSI C63.10:2013 Test Distance (m) Antenna Height(s) 1 to 4(m) Results Pass Run# 3 80 70 60 50 40 30 20 10 0 10 100 1000 10000 MHz PK AV QP Duty Cycle Polarity/ External Distance Compared to Factor Туре Freq Adjustment Spec. Detector (MHz) (dBuV) (dB) (meters) (degrees) (dB) (dB) (dB) (dBuV/m) (dBuV/m) (dB) Comments 1725.058 69.0 -5.6 1.0 263.0 0.0 Vert PK 0.0 63.4 77.3 -13.9 EUT Vert PK 62.7 **EUT Vert** 2070.000 65.9 -3.2 1.0 62.1 0.0 Vert 0.0 77.3 -14.6 2070.117 65.9 -3.21.0 294.9 0.0 Horz PK 0.0 62.7 77.3 -14.6 EUT On Side 1725.033 68.2 -5.6 1.0 115.0 0.0 Horz PΚ 0.0 62.6 77.3 -14.7 **EUT On Side** ΑV 1725.058 69.0 -5.6 1.0 263.0 -21.7 0.0 Vert 0.0 41.7 57.3 -15.6 **EUT Vert** 2070.000 **EUT Vert** 65.9 -3.2 1.0 62.1 -21.7 0.0 Vert ΑV 0.0 41.0 57.3 -16.3 2070.117 ΑV EUT On Side 65.9 -32 1.0 294 9 -21.7 0.0 Horz 0.0 41 0 57.3 -16.3 -16.4 1725.033 68.2 -5.6 1.0 115.0 -21.7 0.0 Horz ΑV 0.0 40.9 57.3 **EUT On Side**

Report No. CINC0003.2 16/24

Vert

Vert

Horz

Horz

Vert

0.0

0.0

0.0

0.0

10.0

PK

ΑV

PK

ΑV

PK

60 1

38.4

56.4

34 7

39.2

0.0

0.0

0.0

0.0

0.0

-172

-18.9

-20.9

-22.6

-38.1

77.3

57.3

77.3

57.3

FUT Vert

EUT Vert

EUT Vert

EUT On Side

EUT On Side

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
690.010	31.3	7.6	1.0	148.1		10.0	Vert	PK	0.0	38.9	77.3	-38.4	EUT Horz
690.025	30.5	7.6	1.0	308.9		10.0	Horz	PK	0.0	38.1	77.3	-39.2	EUT On Side
690.005	30.0	7.6	1.6	31.0		10.0	Horz	PK	0.0	37.6	77.3	-39.7	EUT Horz
690.030	31.6	7.6	1.0	358.9	-21.7	10.0	Vert	AV	0.0	17.5	57.3	-39.8	EUT Vert
690.010	31.3	7.6	1.0	148.1	-21.7	10.0	Vert	AV	0.0	17.2	57.3	-40.1	EUT Horz
689.990	29.5	7.6	1.0	252.0		10.0	Vert	PK	0.0	37.1	77.3	-40.2	EUT On Side
690.000	29.1	7.6	1.0	297.9		10.0	Horz	PK	0.0	36.7	77.3	-40.6	EUT Vert
690.025	30.5	7.6	1.0	308.9	-21.7	10.0	Horz	AV	0.0	16.4	57.3	-40.9	EUT On Side
690.005	30.0	7.6	1.6	31.0	-21.7	10.0	Horz	AV	0.0	15.9	57.3	-41.4	EUT Horz
689.990	29.5	7.6	1.0	252.0	-21.7	10.0	Vert	AV	0.0	15.4	57.3	-41.9	EUT On Side
690.000	29.1	7.6	1.0	297.9	-21.7	10.0	Horz	AV	0.0	15.0	57.3	-42.3	EUT Vert

Report No. CINC0003.2 17/24

OCCUPIED BANDWIDTH

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Antenna - Biconilog	Teseq	CBL 6141B	AYD	1/6/2016	1/6/2018
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2016	1/27/2017
Cable	ESM Cable Corp.	Bilog Cables	MNH	12/7/2015	12/7/2016

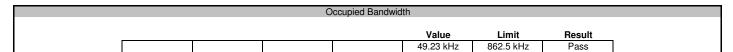
TEST DESCRIPTION

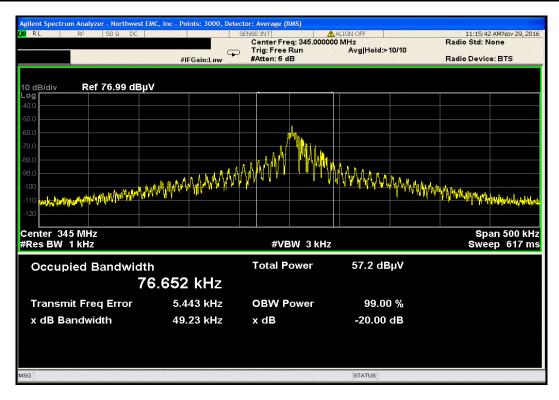
The measurement was made in a radiated configuration of the fundamental with the carrier fully maximized for its highest radiated power. The EUT was transmitting at its maximum data rate.

The 20 dB occupied bandwidth is required to be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz.

Report No. CINC0003.2

OCCUPIED BANDWIDTH




EUT:	RF-ROR-345 Heat Detector			Work Order:	CINC0003	
Serial Number:	2			Date:	11/29/16	
Customer:	CINCH Systems			Temperature:	21.9 °C	
Attendees:	Jibril Aga			Humidity:	30.9% RH	
Project:	1			Barometric Pres.:	996 mbar	
Tested by:	Trevor Buls, Kyle McMullan	Power:	Battery	Job Site:	MN05	
TEST SPECIFICATI	IONS		Test Method			
FCC 15.231:2016			ANSI C63.10:2013			
COMMENTS						
None						
DEVIATIONS FROM	// TEST STANDARD					
None						
Configuration #	1 Signature	revor	Buls			
				Value	Limit	Result
Occupied Bandwidth	1		·	49.23 kHz	862.5 kHz	Pass

Report No. CINC0003.2 19/24

OCCUPIED BANDWIDTH

Report No. CINC0003.2 20/24

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2016	1/27/2017
Antenna - Biconilog	Teseq	CBL 6141B	AYD	1/6/2016	1/6/2018
Cable	ESM Cable Corp.	Bilog Cables	MNH	12/7/2015	12/7/2016

TEST DESCRIPTION

The measurement was made in a radiated configuration of the fundamental with the carrier fully maximized for its highest radiated power. For software controlled or pre-programmed devices, the manufacturer shall declare the duty cycle class or classes for the equipment under test. For manually operated or event dependant devices, with or without software controlled functions, the manufacturer shall declare whether the device once triggered, follows a pre-programmed cycle, or whether the transmission is constant until the trigger is released or manually reset. The manufacturer shall also give a description of the application for the device and include a typical usage pattern. The typical usage pattern as declared by the manufacturer shall be used to determine the duty cycle and hence the duty class.

Where an acknowledgement is required, the additional transmitter on-time shall be included and declared by the manufacturer.

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. (Where T is the period of the pulse train.)

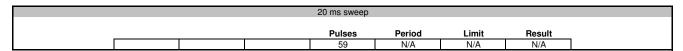
The measured values for the EUT's pulse train are as follows:

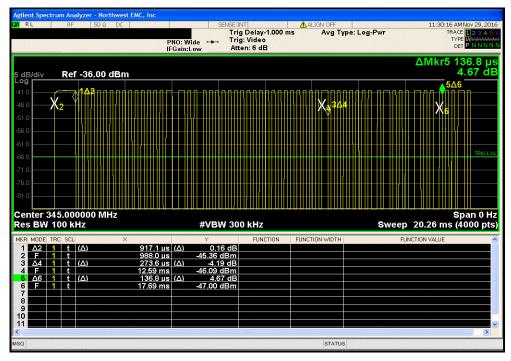
Period = 153 mSec Pulsewidth of Type 1 Pulse = 0.9171 mSec Pulsewidth of Type 2 Pulse = 0.2736 mSec Pulsewidth of Type 3 Pulse = 0.1368 mSec Number of Type 1 Pulses = 1

Number of Type 2 Pulses = 6 Number of Type 3 Pulses = 52

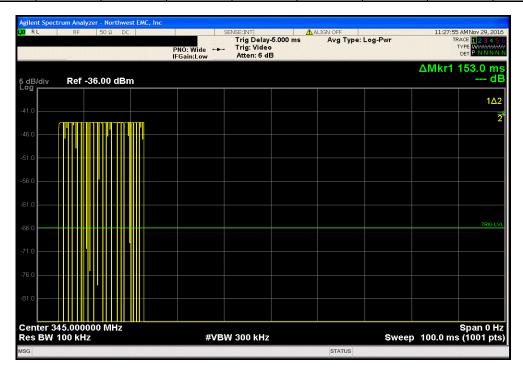
Duty Cycle = $20 \log [((1)(0.9171) + (6)(0.2736) + (52)(0.1368))/100] = -21.7 dB$

The duty cycle correction factor of -21.7 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz for measurements at or below 1GHz. Above 1GHz, a resolution bandwidth of 1MHz and a video bandwidth of 3MHz was used.


Report No. CINC0003.2



EUT: RF-ROR-345 Heat Detector		Work Order:		
Serial Number: 1			11/29/16	
Customer: CINCH Systems		Temperature:		
Attendees: Jibril Aga		Humidity:		
Project: 1		Barometric Pres.:		
Tested by: Trevor Buls, Kyle McMullan Power: Battery		Job Site:	MN05	
TEST SPECIFICATIONS Test Method				
FCC 15.231:2016 ANSI C63.10:2013				
COMMENTS				
None				
PENALTIANA PROMINENTAL PROMINE				
DEVIATIONS FROM TEST STANDARD				
None				
Configuration # 2 Signature Trevor Buls				
Configuration # 2				
Signature				
	Pulses	Period	Limit	Result
20 ms sweep	59	N/A	N/A	N/A
100 ms sweep	N/A	N/A	N/A	N/A
1 s sweep	6	153.0 ms	N/A	N/A


Report No. CINC0003.2 22/24


		100 ms sweep			
		Pulses	Period	Limit	Result
		N/A	N/A	N/A	N/A

Report No. CINC0003.2 23/24

Pulses Period Limit Result			1 s sweep		
Pulses Period Limit Result				B. C. I	 D !!

Report No. CINC0003.2 24/24