

CINCH Systems

RF-GBA-433-CLR

FCC 15.231:2020 433.95 MHz Periodic Transmitter

Report: CINC0055.1, Issue Date: October 28, 2020

TESTING

NVLAP LAB CODE: 200881-0

CERTIFICATE OF TEST

Last Date of Test: September 9, 2020 CINCH Systems EUT: RF-GBA-433-CLR

Radio Equipment Testing

 Standards

 Specification
 Method

 FCC 15.231:2020
 ANSI C63.10:2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions (Transmitter)	No	N/A	Not required for a battery powered EUT.
6.5, 6.6	Field Strength of Fundamental	Yes	Pass	
6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	
6.9.2	Occupied Bandwidth	Yes	Pass	
7.4e	Periodic Operation	No	N/A	Not required to test. If applicable, this is addressed by an attestation in the equipment theory of operation.
7.5	Duty Cycle	Yes	N/A	

Deviations From Test Standards

None

Approved By:

Eric Brandon, Department Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission – Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

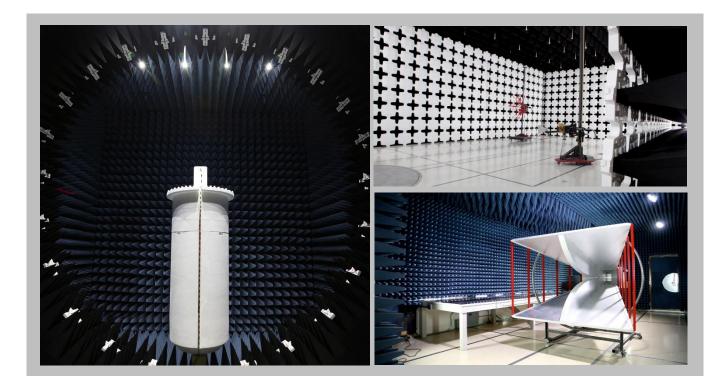
Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE


For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations

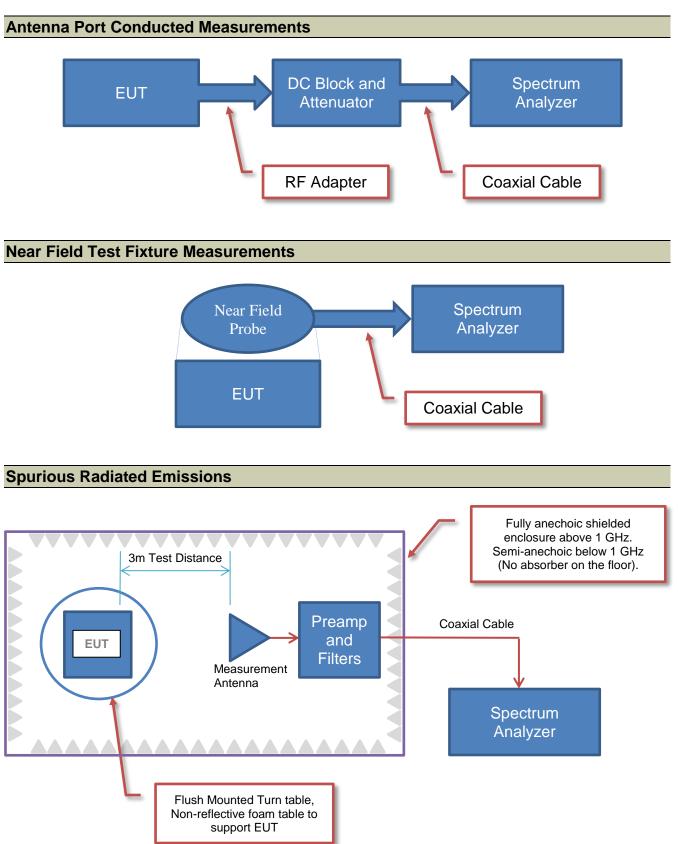
FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600		
		NVLAP				
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0		
Innovation, Science and Economic Development Canada						
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1		
		BSMI				
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R		
		VCCI				
A-0029	A-0109	A-0108	A-0201	A-0110		
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA						
US0158	US0175	US0017	US0191	US0157		

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.


A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.6 dB	-2.6 dB

Test Setup Block Diagrams

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	CINCH Systems
Address:	12075 43rd Street NE Suite 300
City, State, Zip:	St. Michael, MN 55376
Test Requested By:	Jibril Aga
EUT:	RF-GBA-433-CLR
First Date of Test:	September 1, 2020
Last Date of Test:	September 1, 2020
Receipt Date of Samples:	September 1, 2020
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Glass Break Sensor with a periodic radio, interfacing wirelessly to a security panel to provide property protection. The transmitter operates at a frequency of 433.950 MHz and utilizes AM modulation (OOK).

Testing Objective:

To demonstrate compliance to FCC 15.231 specifications.

Configuration CINC0055-1

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
Glass Break Sensor	CINCH Systems	RF-GBA-433-CLR	E73590			

Configuration CINC0055-2

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
Glass Break Sensor	CINCH Systems	RF-GBA-433-CLR	C8CA94			

Configuration CINC0055-3

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
Glass Break Sensor	CINCH Systems	RF-GBA-433-CLR	4BD99B			

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2020-09-01	Duty Cycle	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2020-09-01	Field Strength of Fundamental	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2020-09-01	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	2020-09-01	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information.

No adjustable power settings were provided. The EUT was tested using power settings pre-defined by the manufacturer.

FIELD STRENGTH OF FUNDAMENTAL

PSA-ESCI 2020.04.03.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting 433	.95 MHz unmodulated		
POWER SETTIN	IGS INVESTIGATED		
Battery			
CONFIGURATIC	ONS INVESTIGATED		
CINC0055 - 3			
FREQUENCY R	ANGE INVESTIGATED		
Start Frequency	433 MHz	Stop Frequency	435 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	Element	Biconilog Cable	MNX	2020-02-18	12 mo
Antenna - Biconilog	Ametek	CBL 6141B	AYS	2019-03-19	24 mo
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2020-04-14	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was configured for continuous un-modulated CW operation at its single transmit frequency. The field strength of the transmit frequency was maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT in 3 orthogonal planes (per ANSI C63.10:2013).

Peak measurements were made with a resolution bandwidth of 100 kHz and a video bandwidth of 300 kHz for measurements at or below 1 GHz. A duty cycle correction factor was added to the peak readings to mathematically derive the average levels. The supporting screen captures and duty cycle calculation is contained in the "Duty Cycle" module in this report.

FIELD STRENGTH OF FUNDAMENTAL

		-	-	EmiR5	2020.04.20.0 PSA-ESCI 2020.04.03.0
Work Orde		Date:		- 0	\bigcirc
Proje		Temperature:	21.9 °C	Justin	Krado
Job Sit		Humidity:	48.5% RH		=[
Serial Number		Barometric Pres.:	1013 mbar	Tested by: Dus	stin Sparks
	IT: RF-GBA-433-CLR				
Configuratio	on: 3				
Custome	er: CINCH Systems				
Attendee	es: Jibril Aga				
EUT Powe	er: Battery				
Operating Mod	le: Transmitting 433.95 I	MHz unmodulated			
Deviation	ns: None				
Commen		n Factor = 20 log [((0.0)	7647)(60) + (0.1963)(1	7))/100] = -22.0 dB	
est Specification	าร		Test Meth	nod	
CC 15.231:2020			ANSI C63		
Run # 15	Test Distance (m)	3 Antenna	a Height(s)	1 to 4(m) R	esults Pass
	Test Distance (iii)		a noight(5)		1 435
110					
400					
100					
90					
90					
80					
00					
			•		
70			•		
			•		
			•		
60					
50					
40					
30					
433.0	433.2 433.4	433.6 433.8	434.0 434	.2 434.4 434.6	434.8 435.0
			MHz	_	
					PK 🔶 AV 😐 QP
		Duty Cycle	Polarity/		
		Correction	External Transducer	Distance	Compared to

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
433.945	73.0	22.7	1.1	54.0		0.0	Vert	PK	0.0	95.7	100.8	-5.1	EUT on side
433.947	71.6	22.7	2.1	141.0		0.0	Horz	PK	0.0	94.3	100.8	-6.5	EUT horizontal
433.947	71.3	22.7	1.0	360.0		0.0	Horz	PK	0.0	94.0	100.8	-6.8	EUT vertical
433.945	73.0	22.7	1.1	54.0	-22.0	0.0	Vert	AV	0.0	73.7	80.8	-7.1	EUT on side
433.947	71.0	22.7	1.1	254.0		0.0	Vert	PK	0.0	93.7	100.8	-7.1	EUT vertical
433.947	71.6	22.7	2.1	141.0	-22.0	0.0	Horz	AV	0.0	72.3	80.8	-8.5	EUT horizontal
433.947	71.3	22.7	1.0	360.0	-22.0	0.0	Horz	AV	0.0	72.0	80.8	-8.8	EUT vertical
433.947	71.0	22.7	1.1	254.0	-22.0	0.0	Vert	AV	0.0	71.7	80.8	-9.1	EUT vertical
433.948	67.4	22.7	1.0	221.0		0.0	Vert	PK	0.0	90.1	100.8	-10.7	EUT horizontal
433.948	67.4	22.7	1.0	221.0	-22.0	0.0	Vert	AV	0.0	68.1	80.8	-12.7	EUT horizontal
433.947	63.3	22.7	1.0	81.0		0.0	Horz	PK	0.0	86.0	100.8	-14.8	EUT on side
433.947	63.3	22.7	1.0	81.0	-22.0	0.0	Horz	AV	0.0	64.0	80.8	-16.8	EUT on side

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2020.04.03.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting 433.95 MHz unmodulated

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

CINC0055 - 3

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz

Stop Frequency 6000 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Filter - High Pass	Micro-Tronics	HPM50108	HFW	2019-09-18	12 mo
Attenuator	Coaxicom	3910-20	AXY	2019-09-17	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVX	2020-02-18	12 mo
Cable	Element	Double Ridge Guide Horn Cables	MNV	2020-02-18	12 mo
Antenna - Double Ridge	ETS Lindgren	3115	AJA	2019-08-28	24 mo
Filter - Low Pass	Micro-Tronics	LPM50003	HGL	2019-09-17	12 mo
Attenuator	Coaxicom	3910-10	AWZ	2019-09-17	12 mo
Amplifier - Pre-Amplifier	Miteq	AM-1064-9079 and SA18E-10	AOO	2020-02-18	12 mo
Cable	Element	Biconilog Cable	MNX	2020-02-18	12 mo
Antenna - Biconilog	Ametek	CBL 6141B	AYS	2019-03-19	24 mo
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2020-04-14	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequency in each operational band and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = Calculated Average based on Peak and Duty Cycle Correction Factor

Peak measurements were made with a resolution bandwidth of 100 kHz and a video bandwidth of 300 kHz for measurements at or below 1 GHz. Above 1 GHz, a resolution bandwidth of 1 MHz and a video bandwidth of 3 MHz was used.

A duty cycle correction factor was added to the peak readings to mathematically derive the average levels. The supporting screen captures and duty cycle calculation is contained in the "Duty Cycle" module in this report.

SPURIOUS RADIATED EMISSIONS

					EmiR5 2020.04.20.0	PSA-ESCI 2020.04.03.
Work Order		Date:	2020-09-01	-10	\sim \cap	2
Project		Temperature:	22.2 °C	Tus	tintoa	20
Job Site		Humidity:	50.6% RH			
Serial Number		Barometric Pres.:	1015 mbar	Tested	by: Dustin Sparks	
	RF-GBA-433-CLR					
Configuration						
Customer	: CINCH Systems					
Attendees	: Jibril Aga					
EUT Power	: Batterv					
Operating Mode	T	/Hz unmodulated				
Deviations						
Comments		Factor = 20 log [((0.07	647)(60) + (0.1963)(1	17))/100] = -22.0 d	В	
Test Specifications			Test Meth			
FCC 15.231:2020			ANSI C63	.10.2013		
Run # 3	Test Distance (m)	3 Antenna	Hoight(a)	1 to 4(m)	Results	Pass
Kull# 5	Test Distance (III)	3 Antenna	neight(s)	1 to 4(11)	Results	F 855
80						
10						
10		100		1000		10000
10		100	MHz	1000	■ PK ◆ /	

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
1301.858	79.6	-6.8	1.0	121.0	-	0.0	Horz	PK	0.0	72.8	74.0	-1.2	EUT on side
1301.867	79.3	-6.8	1.2	93.0		0.0	Vert	PK	0.0	72.5	74.0	-1.5	EUT vertical
1301.858	78.2	-6.8	3.8	147.0		0.0	Horz	PK	0.0	71.4	74.0	-2.6	EUT horizontal
1301.858	79.6	-6.8	1.0	121.0	-22.0	0.0	Horz	AV	0.0	50.8	54.0	-3.2	EUT on side
1301.867	79.3	-6.8	1.2	93.0	-22.0	0.0	Vert	AV	0.0	50.5	54.0	-3.5	EUT vertical
1301.867	76.9	-6.8	1.0	126.0		0.0	Horz	PK	0.0	70.1	74.0	-3.9	EUT vertical
1301.875	76.5	-6.8	1.2	91.0		0.0	Vert	PK	0.0	69.7	74.0	-4.3	EUT on side
1301.858	78.2	-6.8	3.8	147.0	-22.0	0.0	Horz	AV	0.0	49.4	54.0	-4.6	EUT horizontal
1301.867	76.9	-6.8	1.0	126.0	-22.0	0.0	Horz	AV	0.0	48.1	54.0	-5.9	EUT vertical
1301.875	76.5	-6.8	1.2	91.0	-22.0	0.0	Vert	AV	0.0	47.7	54.0	-6.3	EUT on side
1301.867	73.3	-6.8	1.2	320.0		0.0	Vert	PK	0.0	66.5	74.0	-7.5	EUT horizontal
1735.767	78.4	-5.6	4.0	351.0		0.0	Vert	PK	0.0	72.8	80.8	-8.0	EUT vertical
1301.867	73.3	-6.8	1.2	320.0	-22.0	0.0	Vert	AV	0.0	44.5	54.0	-9.5	EUT horizontal
1735.767	78.4	-5.6	4.0	351.0	-22.0	0.0	Vert	AV	0.0	50.8	60.8	-10.0	EUT vertical
1735.817	74.6	-5.6	4.0	341.0		0.0	Horz	PK	0.0	69.0	80.8	-11.8	EUT on side
1735.817	74.6	-5.6	4.0	341.0	-22.0	0.0	Horz	AV	0.0	47.0	60.8	-13.8	EUT on side
867.893	43.2	10.7	1.2	247.0		10.0	Vert	PK	0.0	63.9	80.8	-16.9	EUT vertical
867.893	43.2	10.7	1.2	247.0	-22.0	10.0	Vert	AV	0.0	41.9	60.8	-18.9	EUT vertical
867.901	38.8	10.7	1.0	167.0		10.0	Horz	PK	0.0	59.5	80.8	-21.3	EUT on side
867.901	38.8	10.7	1.0	167.0	-22.0	10.0	Horz	AV	0.0	37.5	60.8	-23.3	EUT on side

OCCUPIED BANDWIDTH

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

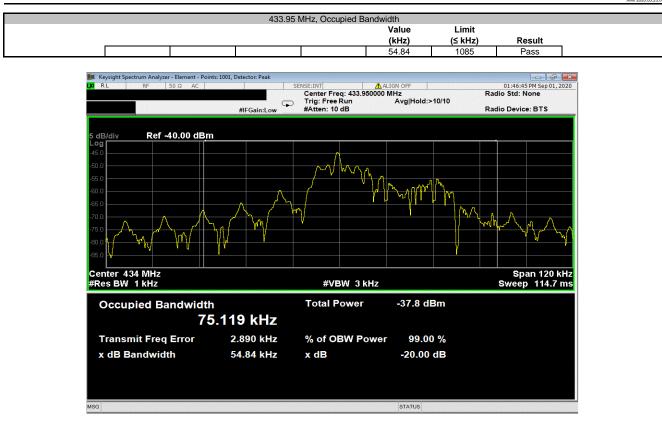
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Element	Biconilog Cable	MNX	18-Feb-20	18-Feb-21
Antenna - Biconilog	Ametek	CBL 6141B	AYS	19-Mar-19	19-Mar-21
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	14-Apr-20	14-Apr-21

TEST DESCRIPTION

The EUT was transmitting at its maximum data rate.

The 20 dB occupied bandwidth is required to be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz.


OCCUPIED BANDWIDTH

							XMit 2020.03.25.0
EUT	RF-GBA-433-CLR				Work Order	CINC0055	
Serial Number	r: C8CA94				Date	: 1-Sep-20	
Customer	: CINCH Systems				Temperature	22 °C	
Attendees	: Jibril Aga				Humidity	46.7% RH	
	t: None				Barometric Pres.		
Tested by	: Dustin Sparks			Power: Battery	Job Site	MN09	
TEST SPECIFICA	TIONS			Test Method			
FCC 15.231:2020				ANSI C63.10:2013			
COMMENTS							
None							
	M TEST STANDARD						
None							
			12	- · · · · ·			
Configuration #	2		Ju	tingoado			
		Signature		(
					Value	Limit	
					(kHz)	(≤ kHz)	Result
433.95 MHz							
	Occupied Bandwidth				54.84	1085	Pass

OCCUPIED BANDWIDTH

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Element	Biconilog Cable	MNX	18-Feb-20	18-Feb-21
Antenna - Biconilog	Ametek	CBL 6141B	AYS	19-Mar-19	19-Mar-21
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	14-Apr-20	14-Apr-21

TEST DESCRIPTION

For software controlled or pre-programmed devices, the manufacturer shall declare the duty cycle class or classes for the equipment under test. For manually operated or event dependant devices, with or without software controlled functions, the manufacturer shall declare whether the device once triggered, follows a pre-programmed cycle, or whether the transmission is constant until the trigger is released or manually reset. The manufacturer shall also give a description of the application for the device and include a typical usage pattern. The typical usage pattern as declared by the manufacturer shall be used to determine the duty cycle and hence the duty class.

Where an acknowledgement is required, the additional transmitter on-time shall be included and declared by the manufacturer.

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

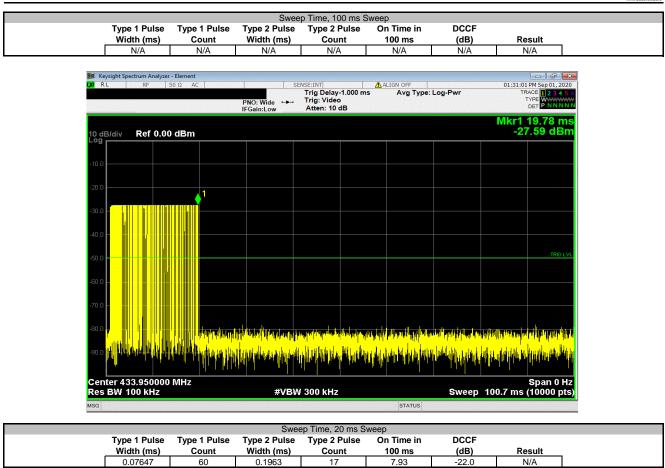
Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. (Where T is the period of the pulse train.)

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec Pulsewidth of Type 1 Pulse = 0.07647 mSec Pulsewidth of Type 2 Pulse = 0.1963 mSec Number of Type 1 Pulses = 60 Number of Type 2 Pulses = 17

Duty Cycle Correction Factor = 20 log [((0.07647)(60) + (0.1963)(17))/100] = -22.0 dB

The duty cycle correction factor of **-22.0 dB** was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.


EUT	RF-GBA-433-CLR						Work Order:	CINC0055	
Serial Number	r: E73590						Date:	1-Sep-20	
Custome	r: CINCH Systems						Temperature:	21.9 °C	
Attendees	s: Jibril Aga						Humidity:	47% RH	
	t: None						Barometric Pres.:	1011 mbar	
	: Dustin Sparks		Power:	Battery			Job Site:	MN09	
TEST SPECIFICA	TIONS			Test Method					
FCC 15.231:2020				ANSI C63.10:2013					
COMMENTS									
None									
DEVIATIONS FRC	M TEST STANDARD								
None									
			AUT) -					
Configuration #	1		Justing	parto					
Configuration #	1	Signature	Susting	Spardo	-				
Configuration #	1	Signature	Type 1 Pulse	Type 1 Pulse	Type 2 Pulse	Type 2 Pulse	On Time in	DCCF	
Configuration #	1	Signature	Type 1 Pulse Width (ms)	Type 1 Pulse Count	Type 2 Pulse Width (ms)	Type 2 Pulse Count	On Time in 100 ms	DCCF (dB)	Result
	1	Signature							Result
	1 20 s Sweep	Signature	Width (ms)	Count N/A		Count N/A			N/A
	2 s Sweep	Signature	Width (ms) N/A N/A	Count	Width (ms)	N/A N/A	100 ms	(dB)	
Configuration #		Signature	Width (ms)	Count N/A	Width (ms)	Count N/A	100 ms N/A	(dB) N/A	N/A



			ep Time, 20 s Sw	reep		
Type 1 Pulse	Type 1 Pulse	Type 2 Pulse	Type 2 Pulse	On Time in	DCCF	
Width (ms)	Count	Width (ms)	Count	100 ms	(dB)	Result
N/A	N/A	N/A	N/A	N/A	N/A	N/A
📜 Keysight Spectrum Analyzer	- Element					
LXIRL RF !	50 Ω AC	SE	NSE:INT	ALIGN OFF		01:26:34 PM Sep 01, 2020
		PNO: Wide 🔸	Trig Delay-150.0 m Trig: Video	s Avg Type:	Log-Pwr	TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N N
		IFGain:Low	Atten: 10 dB			DET PNNNN
						Mkr1 5.045 s
10 dB/div Ref 0.00) dBm					-24.60 dBm
Log						
-10.0						
-20.0	_ 1					
-30.0						
-40.0						
-50.0						TRIG LVL
-60.0						
-70.0						
والمربع والمراجع		ويدار مطاورها بالمحادثان	a akar da baharan da kadi d	اللعادين ليستماده أبعدهم بم	المتناب بالمستحد	uth Hilder as he was he was a short of a second
-80.0 ALLIL COMPANIES IN THE	مريماه أخلطتهم محاز وسماد وسمأوه يعاد		And the second	in the second second second second second	and a second provide state of the	n (particular, and an any station of the second
-90.0						
Center 433.950000	MHz					Span 0 Hz
Res BW 100 kHz		#VBW	300 kHz		Sweep	20.00 s (10000 pts)
MSG				STATUS		
		Sw	eep Time, 2 s Sw	еер		
Type 1 Pulse	Type 1 Pulse	Type 2 Pulse	Type 2 Pulse	On Time in	DCCF	
Width (ms)	Count	Width (ms)	Count	100 ms	(dB)	Result

RL RF 50 Ω	AC	SENSE:	INT	ALIGN OFF		01:29	:23 PM Sep 01, 2
		NO:Wide 🛶 Tri	ig Delay-150.0 m ig: Video iten: 10 dB	is Avg Type:	Log-Pwr		TRACE 1 2 3 4 TYPE WWWW DET P NNN
dB/div Ref 0.00 dl	Bm						2 285.8 n 2 <mark>9.21 d</mark> B
.0							
		<u> </u>				n n	
0							TRIG
o							
0 presentation at the target by	una facar ngatan dari tai	teleteren distance tele	n and an				luquitei visete
o <mark>provectivate publicativa p</mark> o		fels kom – disenser Fijstener versigsgeger	n bestelsen det den die Bestelsen die Jahr Der Sternen der Bestelsen die Sternen die Sternen die Sternen die Ste	dentri i se prijeta de la la la posta	g a ten sta a di Kana a dan bi da ka ga Kalan ang kana sa kata a tang a ga		
nter 433.950000 Ml		#VBW 30	de de la primera de la primera de la media de la m	ganna an Inglein (kindigan da Nangan (kindigan da na jaippina ak	for the second state of th	ep 2.000 s	Span 0 s (10000 p
nter 433.950000 Mi BW 100 KHz			FUNCTION	FUNCTION WIDTH	Swe	ep 2.000	s (10000 p
Image: second	Hz	#VBW 30	FUNCTION	ann an tao dh' an tao tao an tao a	Swe	-	s (10000 p
Image: second	Hz × 168.2 ms	#VBW 30	FUNCTION	ann an tao dh' an tao tao an tao a	Swe	-	s (10000 p
Inter 433.950000 Mi s BW 100 kHz MODE TRC SCL N 1 t	Hz × 168.2 ms	#VBW 30	FUNCTION	ann an tao dh' an tao tao an tao a	Swe	-	s (10000 p
Model Hill Model nter 433.950000 Mis BW 100 kHz s BW 100 kHz MODE TRC SCL N 1 N 1	Hz × 168.2 ms	#VBW 30	FUNCTION	ann an tao dh' an tao tao an tao a	Swe	-	

