

CINCH Systems

RF-ARPIR-319-NN

FCC 15.231:2021 Low Power Radio

Report: CINC0058.2 Rev 1, Issue Date: September 3, 2021

TESTING NVLAP LAB CODE: 200881-0

Last Date of Test: April 8, 2021 CINCH Systems EUT: RF-ARPIR-319-NN

Radio Equipment Testing

Standards	
Specification	Method
FCC 15.231:2021	ANSI C63.10:2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions (Transmitter)	No	N/A	Not required for a battery powered EUT.
6.5, 6.6	Field Strength of Fundamental	Yes	Pass	
6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	
6.9.2	Occupied Bandwidth	Yes	Pass	
7.4e	Periodic Operation	No	N/A	Not required to test. If applicable, this is addressed by an attestation in the equipment theory of operation.
7.5	Duty Cycle	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Eric Brandon, Department Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)		Page Number
01	Corrected Antenna Gain details	2021-09-03	11	

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission – Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

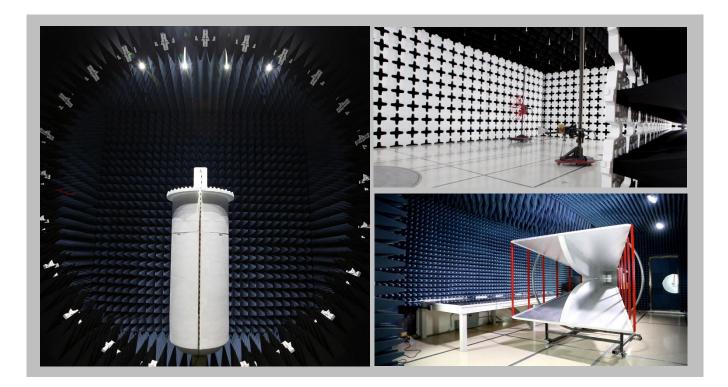
Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE


For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations

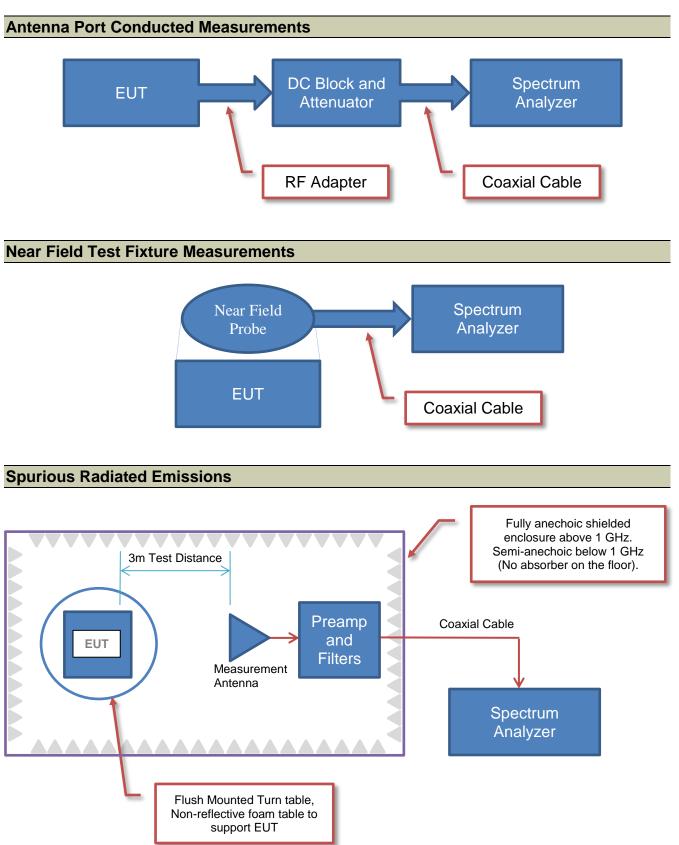
FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-11 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Oregon Texas Labs EV01-12 Labs TX01-09 6775 NE Evergreen Pkwy #400 3801 E Plano Pkwy Hillsboro, OR 97124 Plano, TX 75074 (503) 844-4066 (469) 304-5255		Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600			
NVLAP							
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0			
Innovation, Science and Economic Development Canada							
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1			
		BSMI					
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R			
		VCCI					
A-0029	A-0109	A-0108	A-0201	A-0110			
Re	cognized Phase I CAB for IS	ED, ACMA, BSMI, IDA, KCC/	RRA, MIC, MOC, NCC, OF	-CA			
US0158	US0175	US0017	US0191	US0157			

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.


A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.6 dB	-2.6 dB

Test Setup Block Diagrams

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	CINCH Systems
Address:	12075 43rd Street NE Suite 300
City, State, Zip:	St. Michael, MN 55376
Test Requested By:	Jibril Aga
EUT:	RF-ARPIR-319-NN
First Date of Test:	February 5, 2021
Last Date of Test:	April 8, 2021
Receipt Date of Samples:	February 5, 2021
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Motion Sensor with Wireless Radio for property protection

Testing Objective:

To demonstrate compliance to FCC 15.231 specifications.

Configuration CINC0058-3

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Sensor	CINCH Systems	RF-ARPIR-319-NN	EAD7E

Configuration CINC0058-5

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Sensor	CINCH Systems	RF-ARPIR-319-NN	C8ECB

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2021-02-05	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2021-02-08	Duty Cycle	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2021-04-08	Field Strength of Fundamental	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	2021-04-08	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

POWER SETTINGS AND ANTENNAS

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information.

ANTENNA GAIN (dBi)

Туре	Provided by:	Frequency (MHz)	Gain (dBi)
Monopole	Manufacturer	319.508	-1.3

The EUT was tested using the power settings provided by the manufacturer:

SETTINGS FOR ALL TESTS IN THIS REPORT

RF-ARPIR-319-NN	Power Setting	
Periodic	+13 dBm (power rated)	

FIELD STRENGTH OF FUNDAMENTAL

PSA-ESCI 2021.03.17.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting 319.5 MHz unmodulated (CW)

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

CINC0058 - 5

FREQUENCY RANGE INVESTIGATED

Start Frequency 318.5 MHz

Stop Frequency 320.5 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Antenna - Biconilog	Teseq	CBL 6141B	AYD	2020-02-05	2022-02-05
Amplifier - Pre-Amplifier	Miteq	AM-1064-9079	AOO	2021-02-01	2022-02-01
Cable	Element	Biconilog Cable	MNX	2021-02-01	2022-02-01
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFG	2020-07-14	2021-07-14

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was configured for continuous un-modulated CW operation at its single transmit frequency. The field strength of the transmit frequency was maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT in 3 orthogonal planes (per ANSI C63.10:2013).

Peak measurements were made with a resolution bandwidth of 100 kHz and a video bandwidth of 300 kHz for measurements at or below 1 GHz. A duty cycle correction factor was added to the peak readings to mathematically derive the average levels. The supporting screen captures and duty cycle calculation is contained in the "Duty Cycle" module in this report.

FIELD STRENGTH OF FUNDAMENTAL

	14/	0		000050		Data	0004.04	00		EmiR5 2021	.01.08.0	PSA-ESCI 2021.03
		Order:		NC0058	т.	Date:	2021-04	-08	15	/	In	2
		Project:		None	Ie	mperature:	21.3 °		am		0	
		b Site:		MN09 8ECB	Danam	Humidity: etric Pres.:	45% R		Tester			
Se	eriai N	umber:			Barom	etric Pres.:	1001 m	oar	lested	Diristo	pher Heintze	elman, Eric Brand
				IR-319-NN								
	onfigu	iration:	5									
			CINCH S	Systems								
		ndees:										
	EUI	Power:	Battery									
Оре	erating	Mode:		tting 319.5	MHz unmodu	lated (CW)						
	Devi	ations:	None									
	Com	ments:	Duty Cyc	cle Correcti	on Factor = 2	20 log [2 * ((56	5)(0.1137) +	(1)(0.3844))/	(100] = -17.4 d	dB		
st Sr	oecific	ations					Te	est Method				
	5.231:2							VSI C63.10:2	2013			
Rur	n #	7	Test I	Distance (r	n) 3	Antenna	Height(s)	1 t	o 4(m)	Res	ults	Pass
		,	10011		0	/ altornia	loight(0)			1100	ano	1 400
10	JU T											
9	90											
ç	во 🗕											
C	50 -											
7	70 🗕						•					
							• •					
dBuV/m 9							↓ ◆					
≥,	60 🗕											
ື້							•					
D												
F	50 🗕											
4	40 🗕		_									
3	30 🗕						<u> </u>					
U U												
2	20											
2	20 318.5	;	318.7	318.9	319.1	319.3	319.5	319.7	319.9	320.1	320.3	320.5

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
319.420	90.6	-2.4	1.0	7.0	-17.4	0.0	Horz	AV	0.0	70.8	75.9	-5.1	EUT Horz
319.460	88.2	-2.4	1.6	191.0	-17.4	0.0	Vert	AV	0.0	68.4	75.9	-7.5	EUT Vert
319.420	90.6	-2.4	1.0	7.0		0.0	Horz	PK	0.0	88.2	95.9	-7.7	EUT Horz
319.420	87.2	-2.4	1.9	85.0	-17.4	0.0	Vert	AV	0.0	67.4	75.9	-8.5	EUT On Side
319.460	88.2	-2.4	1.6	191.0		0.0	Vert	PK	0.0	85.8	95.9	-10.1	EUT Vert
319.460	85.4	-2.4	2.8	176.0	-17.4	0.0	Horz	AV	0.0	65.6	75.9	-10.3	EUT On Side
319.420	87.2	-2.4	1.9	85.0		0.0	Vert	PK	0.0	84.8	95.9	-11.1	EUT On Side
319.420	83.9	-2.4	1.0	110.0	-17.4	0.0	Horz	AV	0.0	64.1	75.9	-11.8	EUT Vert
319.460	85.4	-2.4	2.8	176.0		0.0	Horz	PK	0.0	83.0	95.9	-12.9	EUT On Side
319.420	83.9	-2.4	1.0	110.0		0.0	Horz	PK	0.0	81.5	95.9	-14.4	EUT Vert
319.460	78.1	-2.4	1.5	152.0	-17.4	0.0	Vert	AV	0.0	58.3	75.9	-17.6	EUT Horz
319.460	78.1	-2.4	1.5	152.0		0.0	Vert	PK	0.0	75.7	95.9	-20.2	EUT Horz

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting 319.5 MHz unmodulated (CW)

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

CINC0058 - 5

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz

Stop Frequency

8200 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Micro-Tronics	3910-20	AXY	2020-09-14	2021-09-14
Filter - High Pass	Micro-Tronics	HPM50108	HFW	2020-09-14	2021-09-14
Filter - Low Pass	Micro-Tronics	LPM50003	HGL	2020-09-14	2021-09-14
Amplifier - Pre-Amplifier	Miteq	AM-1064-9079 and SA18E-10	AOO	2021-02-01	2022-02-01
Cable	Element	Biconilog Cable	MNX	2021-02-01	2022-02-01
Antenna - Biconilog	Teseq	CBL 6141B	AYD	2020-02-05	2022-02-05
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVX	2021-02-01	2022-02-01
Cable	Element	Double Ridge Guide Horn Cables	MNV	2021-02-01	2022-02-01
Antenna - Double Ridge	ETS Lindgren	3115	AIB	2020-09-03	2022-09-03
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFG	2020-07-14	2021-07-14

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequency in each operational band and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = Calculated Average based on Peak and Duty Cycle Correction Factor

Peak measurements were made with a resolution bandwidth of 100 kHz and a video bandwidth of 300 kHz for measurements at or below 1 GHz. Above 1 GHz, a resolution bandwidth of 1 MHz and a video bandwidth of 3 MHz was used.

A duty cycle correction factor was added to the peak readings to mathematically derive the average levels. The supporting screen captures and duty cycle calculation is contained in the "Duty Cycle" module in this report.

SPURIOUS RADIATED EMISSIONS

				_					EmiR5 2021.01.08	.0	PSA-ESCI 2021.03.17
V	Nork Order:			Date:	2021-04		1		//	1	
	Project:			nperature:	21.3 °		12	m	e	2	
C ==	Job Site: ial Number:			Humidity:	45% F			Tested			
Ser			Barome	tric Pres.:	1001 m	bar		Tested D	y: Christophe	r Heintzelm	nan, Eric Brando
<u> </u>		RF-ARPIR-319-NN									
0.0	nfiguration:	5 CINCH Systems									
	Attendees:										
	EUT Power:										
		The second this at 240 C MI		atod (CW/)							
Opera	ating Mode:	Transmining 519.5 Wi		aleu (CW)							
		None									
	Deviations:	None									
		Duty Cycle Correction	Factor = 20) log [2 * ((56	(0.1137) +	(1)(0.384)	4))/1001 -	-17 4 dB			
	Comments:			0.09[2 ((00	/(011101) 1	(.)(0.00.	.,,,]				
T 0											
FCC 15.2	ecifications					est Metho NSI C63.1					
FUC 15.4	231:2021				A	NSI C63.1	0:2013				
Run	# 9	Test Distance (m)	3	Antenna H	eight(s)		1 to 4(m)		Result	2	Pass
Itun	. 0		v		orgin(0)				Robult		1 400
80	-										
							<u>+</u>		ասեւ		
70	-										
								-			
60											
00											
								<u><u></u> <u></u></u>			
- ⁵⁰	-										
<u> </u>									• • •		
m//ngb							•	-			
n 40	-										++++
σ								•	1		
									·		
30	-							•			
20											
20											
10	-					\rightarrow					++++
0	+										
	10		100				1000				10000
					MHz				_		
									PK	A\	/ 🗢 QP

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
1916.960	75.9	-4.2	1.5	291.0	-17.4	0.0	Horz	AV	0.0	54.3	55.9	-1.6	EUT Horz
1916.960	75.5	-4.2	1.0	26.0	-17.4	0.0	Vert	AV	0.0	53.9	55.9	-2.0	EUT On Side
1277.880	78.0	-7.2	3.2	154.0	-17.4	0.0	Horz	AV	0.0	53.4	55.9	-2.5	EUT Horz
958.420	57.9	12.8	1.1	274.0	-17.4	0.0	Vert	AV	0.0	53.3	55.9	-2.6	EUT Vert
1917.080	74.9	-4.2	3.7	48.0	-17.4	0.0	Vert	AV	0.0	53.3	55.9	-2.6	EUT Horz
958.460	56.9	12.8	1.5	168.0	-17.4	0.0	Horz	AV	0.0	52.3	55.9	-3.6	EUT Horz
1916.960	73.6	-4.2	1.5	331.0	-17.4	0.0	Horz	AV	0.0	52.0	55.9	-3.9	EUT Vert
639.040	62.8	6.4	1.3	163.0	-17.4	0.0	Horz	AV	0.0	51.8	55.9	-4.1	EUT Horz
1917.170	73.4	-4.2	1.0	136.0	-17.4	0.0	Vert	AV	0.0	51.8	55.9	-4.1	EUT Vert
1916.960	75.9	-4.2	1.5	291.0		0.0	Horz	PK	0.0	71.7	75.9	-4.2	EUT Horz
1917.210	73.0	-4.2	1.5	263.0	-17.4	0.0	Horz	AV	0.0	51.4	55.9	-4.5	EUT On Side
958.500	55.9	12.8	1.6	222.0	-17.4	0.0	Horz	AV	0.0	51.3	55.9	-4.6	EUT On Side
1916.960	75.5	-4.2	1.0	26.0		0.0	Vert	PK	0.0	71.3	75.9	-4.6	EUT On Side
1277.880	78.0	-7.2	3.2	154.0		0.0	Horz	PK	0.0	70.8	75.9	-5.1	EUT Horz
958.420	57.9	12.8	1.1	274.0		0.0	Vert	PK	0.0	70.7	75.9	-5.2	EUT Vert
1917.080	74.9	-4.2	3.7	48.0		0.0	Vert	PK	0.0	70.7	75.9	-5.2	EUT Horz
639.000	61.0	6.4	1.8	291.0	-17.4	0.0	Vert	AV	0.0	50.0	55.9	-5.9	EUT Vert
1278.080	74.6	-7.2	4.0	169.0	-17.4	0.0	Vert	AV	0.0	50.0	55.9	-5.9	EUT On Side

958.460	56.9	12.8	1.5	168.0		0.0	Horz	PK	0.0	69.7	75.9	-6.2	EUT Horz
1916.960	73.6	-4.2	1.5	331.0		0.0	Horz	PK	0.0	69.4	75.9	-6.5	EUT Vert
639.040	62.8	6.4	1.3	163.0		0.0	Horz	PK	0.0	69.2	75.9	-6.7	EUT Horz
1917.170	73.4	-4.2	1.0	136.0		0.0	Vert	PK	0.0	69.2	75.9	-6.7	EUT Vert
1917.210	73.0	-4.2	1.5	263.0		0.0	Horz	PK	0.0	68.8	75.9	-7.1	EUT On Side
958.540	53.3	12.8	1.0	141.0	-17.4	0.0	Vert	AV	0.0	48.7	55.9	-7.2	EUT On Side
958.500	55.9	12.8	1.6	222.0		0.0	Horz	PK	0.0	68.7	75.9	-7.2	EUT On Side
2555.790	67.5	-2.7	1.0	69.0	-17.4	0.0	Horz	AV	0.0	47.4	55.9	-8.5	EUT Horz
639.000	61.0	6.4	1.8	291.0		0.0	Vert	PK	0.0	67.4	75.9	-8.5	EUT Vert
1278.080	74.6	-7.2	4.0	169.0		0.0	Vert	PK	0.0	67.4	75.9	-8.5	EUT On Side
958.460	50.8	12.8	1.4	108.0	-17.4	0.0	Vert	AV	0.0	46.2	55.9	-9.7	EUT Horz
958.540	53.3	12.8	1.0	141.0		0.0	Vert	PK	0.0	66.1	75.9	-9.8	EUT On Side
3194.790	64.4	-1.7	3.6	175.0	-17.4	0.0	Horz	AV	0.0	45.3	55.9	-10.6	EUT Horz
2555.880	65.2	-2.7	1.5	185.0	-17.4	0.0	Vert	AV	0.0	45.1	55.9	-10.8	EUT On Side
2555.790	67.5	-2.7	1.0	69.0		0.0	Horz	PK	0.0	64.8	75.9	-11.1	EUT Horz
958.460	48.8	12.8	2.9	216.0	-17.4	0.0	Horz	AV	0.0	44.2	55.9	-11.7	EUT Vert
958.460	50.8	12.8	1.4	108.0		0.0	Vert	PK	0.0	63.6	75.9	-12.3	EUT Horz
2875.620	61.1	-2.7	1.5	167.0	-17.4	0.0	Horz	AV	0.0	41.0	54.0	-13.0	EUT Horz
3195.170	61.9	-1.7	1.5	323.0	-17.4	0.0	Vert	AV	0.0	42.8	55.9	-13.1	EUT On Side
3194.790	64.4	-1.7	3.6	175.0		0.0	Horz	PK	0.0	62.7	75.9	-13.2	EUT Horz
2555.880	65.2	-2.7	1.5	185.0		0.0	Vert	PK	0.0	62.5	75.9	-13.4	EUT On Side
958.460	48.8	12.8	2.9	216.0		0.0	Horz	PK	0.0	61.6	75.9	-14.3	EUT Vert
2875.580	59.6	-2.7	1.0	0.0	-17.4	0.0	Vert	AV	0.0	39.5	54.0	-14.5	EUT On Side
2875.620	61.1	-2.7	1.5	167.0		0.0	Horz	PK	0.0	58.4	74.0	-15.6	EUT Horz
3195.170	61.9	-1.7	1.5	323.0		0.0	Vert	PK	0.0	60.2	75.9	-15.7	EUT On Side
2875.580	59.6	-2.7	1.0	0.0		0.0	Vert	PK	0.0	56.9	74.0	-17.1	EUT On Side
2236.420	56.8	-3.0	3.4	107.0	-17.4	0.0	Vert	AV	0.0	36.4	54.0	-17.6	EUT On Side
1597.290	58.8	-6.0	3.6	162.0	-17.4	0.0	Horz	AV	0.0	35.4	54.0	-18.6	EUT Horz
2236.620	55.0	-3.0	1.5	318.0	-17.4	0.0	Horz	AV	0.0	34.6	54.0	-19.4	EUT Horz
2236.420	56.8	-3.0	3.4	107.0		0.0	Vert	PK	0.0	53.8	74.0	-20.2	EUT On Side
1597.290	58.8	-6.0	3.6	162.0		0.0	Horz	PK	0.0	52.8	74.0	-21.2	EUT Horz
2236.620	55.0	-3.0	1.5	318.0		0.0	Horz	PK	0.0	52.0	74.0	-22.0	EUT Horz
1597.460	51.5	-6.0	1.5	302.0	-17.4	0.0	Vert	AV	0.0	28.1	54.0	-25.9	EUT On Side
1597.460	51.5	-6.0	1.5	302.0		0.0	Vert	PK	0.0	45.5	74.0	-28.5	EUT On Side

OCCUPIED BANDWIDTH

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

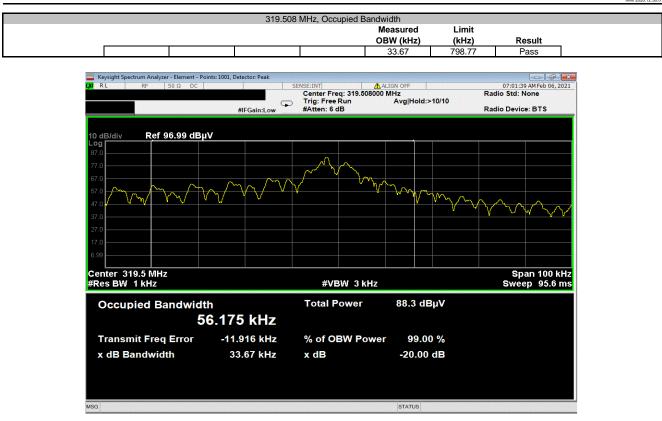
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AVO	2020-10-06	2021-10-06
Cable	ESM Cable Corp.	Bilog Cables	MNH	2020-10-06	2021-10-06
Antenna - Biconilog	ETS Lindgren	3142D	AXO	2019-09-03	2021-09-03
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFQ	2020-12-27	2021-12-27

TEST DESCRIPTION

The EUT was transmitting at its maximum data rate.

The 20 dB occupied bandwidth is required to be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz.


OCCUPIED BANDWIDTH

						XMit 2020.12.30.0
EUT	RF-ARPIR-319-NN			Work Order	CINC0058	
Serial Number:	: C8ECB			Date	5-Feb-21	
Customer	: CINCH Systems			Temperature	22.3 °C	
Attendees	: Jibril Aga			Humidity	: 18.6% RH	
Project	None			Barometric Pres.	: 1007 mbar	
Tested by:	: Andrew Rogstad		Power: Battery	Job Site	MN05	
TEST SPECIFICAT	TIONS		Test Method			
FCC 15.231:2021			ANSI C63.10:2013			
COMMENTS						
OBW limit = 319.50	08 MHz * 0.0025 = 798.77 kł	Ηz				
DEVIATIONS FROM	M TEST STANDARD					
None						
Configuration #	5	Signature	to Rogetail			
				Measured OBW (kHz)	Limit (kHz)	Result
319.508 MHz						
	Occupied Bandwidth			33.67	798.77	Pass

OCCUPIED BANDWIDTH

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFQ	2020-12-27	2021-12-27
Antenna - Biconilog	ETS Lindgren	3142D	AXO	2019-09-03	2021-09-03
Cable	ESM Cable Corp.	Bilog Cables	MNH	2020-10-06	2021-10-06
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AVO	2020-10-06	2021-10-06

TEST DESCRIPTION

For software controlled or pre-programmed devices, the manufacturer shall declare the duty cycle class or classes for the equipment under test. For manually operated or event dependant devices, with or without software controlled functions, the manufacturer shall declare whether the device once triggered, follows a pre-programmed cycle, or whether the transmission is constant until the trigger is released or manually reset. The manufacturer shall also give a description of the application for the device and include a typical usage pattern. The typical usage pattern as declared by the manufacturer shall be used to determine the duty cycle and hence the duty class.

Where an acknowledgement is required, the additional transmitter on-time shall be included and declared by the manufacturer.

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. (Where T is the period of the pulse train.)

The measured values for the EUT's pulse train are as follows:

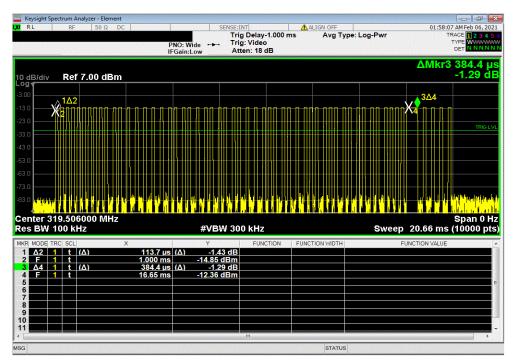
Period = **100** mSec Pulsewidth of Type 1 Pulse = **0.1137** mSec Pulsewidth of Type 2 Pulse = **0.3844** mSec Number of Type 1 Pulses = **56** Number of Type 2 Pulses = **1** Number of Bursts in Period = **2**

Duty Cycle Correction Factor = 20 log [2 * ((56)(0.1137) + (1)(0.3844))/100] = -17.4 dB

The duty cycle correction factor of -**17.4 dB** was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.

EUT:	: RF-ARPIR-319-NN Work C	der: CINC0058	
Serial Number:	EAD7E	ate: 8-Feb-21	
Customer:	CINCH Systems Temper	ure: 22.4 °C	
Attendees:		dity: 15% RH	
Project:	None Barometric	res.: 1029 mbar	
Tested by:	Andrew Rogstad, Christopher Heintzelman Power: Battery Job	Site: MN05	
TEST SPECIFICATI			
FCC 15.231:2021	ANSI C63.10:2013		
COMMENTS			
None			
	M TEST STANDARD		
	M TEST STANDARD		
DEVIATIONS FROM	3 and Rentard		
DEVIATIONS FROM			On Time in 100 ms
DEVIATIONS FROM	3 Signature Regular Bursts in Pulse Type 1 Type 1 Pulse Type		
DEVIATIONS FROM None Configuration # 10 s	3 Signature Restard Bursts in Pulse Type 1 Type 1 Pulse Type 100 ms Width (us) Pulse Count Width (u) Pulse Count	in 100 ms
DEVIATIONS FROM None Configuration #	3 Signature Signature Signature Bursts in Bursts in Pulse Type 1 Type 1 Pulse Type Pulse Type Pulse Count Width (us) N/A) Pulse Count N/A	in 100 ms N/A

Bursts in 100 ms	Pulse Type 1 Width (us)	10 s Type 1 Pulse Count	Pulse Type 2 Width (us)	Type 2 Pulse Count	On Time in 100 ms
N/A	N/A	N/A	N/A	N/A	N/A
Revision Spectrum Analyzer - Element μμ RF 50 Ω DC	SE	NSE:INT	ALIGN OFF		01:44:32 AM Feb 06, 2021
	PNO: Wide 🔸	Trig Delay-100.0 m Trig: Video Atten: 18 dB	s Avg Type:	Log-Pwr	TRACE 1 2 3 4 5 6 TYPE WWWWW DET N N N N N
10 dB/div Ref 7.00 dBm					Mkr1 4.960 s -9.69 dBm
Log					
-3.00					
		• • • • • • ¹			
-13.0					
-23.0					
-33.0					TRIG LVL
-43.0					
-53.0					
-63.0					
	an best de la constante de la c	la l	adalla de <mark>legita els sectos a terrando</mark> es	, shan, maka ana a tahad tahin ata	iter fate on tradition from the state
-83.0				and the second	
Center 319.506000 MHz					Span 0 Hz
Res BW 100 kHz	#VBW	300 kHz		Sweep 1	0.00 s (10000 pts)


			3 s			
	Bursts in	Pulse Type 1	Type 1	Pulse Type 2	Type 2	On Time
	100 ms	Width (us)	Pulse Count	Width (us)	Pulse Count	in 100 ms
	2	N/A	N/A	N/A	N/A	N/A

RL RF	50 Ω DC	SENSE:INT	ALIGN OFF	02:08:	03 AM Feb 06, 2
		PNO: Wide ↔ Trig Del FGain:Low Atten: 1		: Log-Pwr	TRACE 1234 TYPE WWWW DET NNN
dB/div Ref 7.0	00 dBm			ΔMkr3	56.05 n 0.00 c
	3∆2				
.0	Xĭ				
.0					TRIG
.0					
.0 0	 				
.0					
0				andtund for John Chipad for discussion bundership to po	unti des encomplina
o	Wheenser of Anthropological	#VBW 300 kH		Sweep 3.000 s	Span 0 s (10000 p
nter 319.50600 s BW 100 kHz	x	Y FI	Length and the second s	Sweep 3.000 s	s (10000 p
nter 319.50600 s BW 100 kHz MODE TRC SCL F 1 t (A)	× 37.81 m 648.1 m	Y Fi s (Δ) 0.01 dB s -8.62 dBm		-	s (10000 p
Inter 319.50600 s BW 100 kHz MODE TRC SCL ∆2 1 t (∆) F 1 t (∆) ∆2 1 t (∆)	× 37.81 m	Y Fi s (Δ) 0.01 dB s -8.62 dBm		-	s (10000 p
Telefondering (2000) mter 319,506000 s BW 100 kHz MDDE TRC SCL ↓ 1 t (Δ) ↓ 1 t (Δ)	× 37.81 m 648.1 m	Y Fi s (Δ) 0.01 dB s -8.62 dBm		-	s (10000 p
This Second Secon	× 37.81 m 648.1 m	Y Fi s (Δ) 0.01 dB s -8.62 dBm		-	s (10000 p
The standard of the st	× 37.81 m 648.1 m	Y Fi s (Δ) 0.01 dB s -8.62 dBm		-	•

		100 ms			
	sts in Pulse Type 1	Type 1	Pulse Type 2	Type 2	On Time
	0 ms Width (us)	Pulse Count	Width (us)	Pulse Count	in 100 ms
1	N/A N/A	N/A	N/A	N/A	N/A
Keysight Spectrum Analyzer - Element					
LX RL RF 50Ω DC	SE	NSE:INT	ALIGN OFF		01:53:32 AM Feb 06, 2021
	PNO: Wide ↔ IFGain:Low	Trig Delay-1.000 ms Trig: Video Atten: 18 dB	Avg Type:	Log-Pwr	TRACE 123456 TYPE WWWW DET NNNNN
					Mkr1 18.12 ms
10 dB/div Ref 7.00 dBm					-11.14 dBm
Log					
-3.00					
-13.0					
-23.0					
					TRIG LVL
-33.0					
10.0					
-43.0					
-53.0					
-63.0					
70.0					
-73.0					
		at diday fallshi ka na marki	<mark>kanang ^kabuhang garupa</mark>	a a shekara a shekara a shekara	
-83.0 4					
		n			i ili i
Center 319.506000 MHz					Span 0 Hz
Res BW 100 kHz	#VBN	300 kHz		Sweep 10	0.7 ms (10000 pts)
MSG			STATUS		

		20 ms			
Bursts in	Pulse Type 1	Type 1	Pulse Type 2	Type 2	On Time
 100 ms	Width (us)	Pulse Count	Width (us)	Pulse Count	in 100 ms
N/A	113.7	56	384.4	1	13.5

