

CINCH Systems

RF-ARmotion-319-UTC

FCC 15.231:2018

Low Power Periodic Transmitter

Report # CINC0025

NVLAP LAB CODE: 200881-0

CERTIFICATE OF TEST

Last Date of Test: September 13, 2018
CINCH Systems

Model: RF-ARmotion-319-UTC

Radio Equipment Testing

Standards

Specification	Method
FCC 15.231:2018	ANSI C63.10:2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	No	N/A	Not required for a battery powered EUT.
6.5, 6.6	Field Strength of Fundamental	Yes	Pass	
6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	
6.9.2	Occupied Bandwidth	Yes	Pass	
7.5	Duty Cycle	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Matt Nuernberg, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

Report No. CINC0025 2/24

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

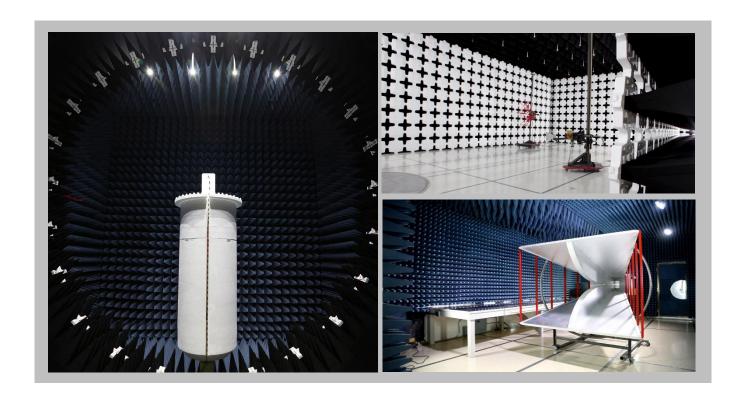
Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations

Report No. CINC0025 4/24


FACILITIES

California	Minnesota	New York	Oregon	Texas	Washington			
Labs OC01-17	Labs MN01-10	Labs NY01-04	Labs EV01-12	Labs TX01-09	Labs NC01-05			
41 Tesla	9349 W Broadway Ave.	4939 Jordan Rd.	6775 NE Evergreen Pkwy #400	3801 E Plano Pkwy	19201 120th Ave NE			
Irvine, CA 92618	Brooklyn Park, MN 55445	Elbridge, NY 13060	Hillsboro, OR 97124	Plano, TX 75074	Bothell, WA 98011			
(949) 861-8918	(612)-638-5136	(315) 554-8214	(503) 844-4066	(469) 304-5255	(425)984-6600			
		NV	LAP					
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0			
	Innovation, Science and Economic Development Canada							
2834B-1, 2834B-3	2834E-1, 2834E-3	N/A	2834D-1, 2834D-2	2834G-1	2834F-1			
	BSMI							
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R			
	VCCI							
A-0029	A-0109	N/A	A-0108	A-0201	A-0110			
Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA								
US0158	US0175	N/A	US0017	US0191	US0157			

Report No. CINC0025 5/24

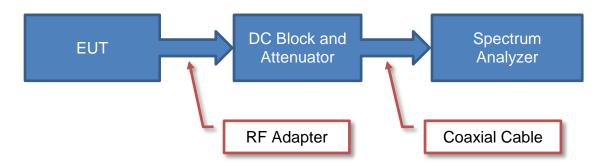
MEASUREMENT UNCERTAINTY

Measurement Uncertainty

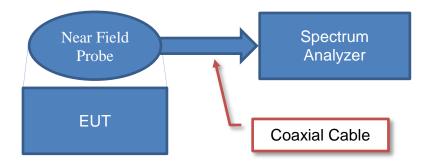
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

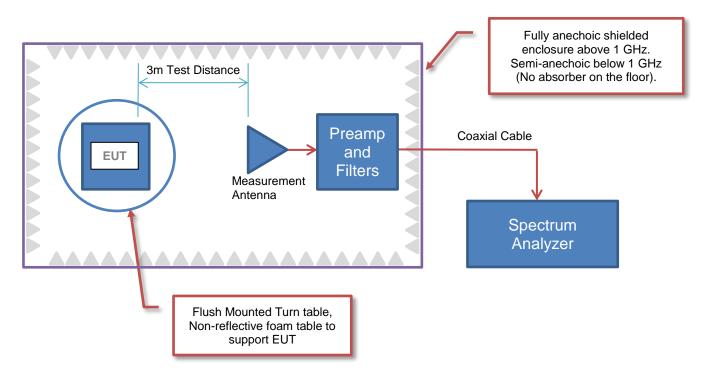
A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.


Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Report No. CINC0025 6/24


Test Setup Block Diagrams


Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

Report No. CINC0025 7/24

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	CINCH Systems
Address:	Suite 300 12075 43rd Street NE
City, State, Zip:	St. Michael, MN 55376
Test Requested By:	Jibril Aga
Model:	RF-ARmotion-319-UTC
First Date of Test:	September 13, 2018
Last Date of Test:	September 13, 2018
Receipt Date of Samples:	September 13, 2018
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Door/window security sensor for alarm security industry containing a low power transmitter which operates at 319.5 MHz utilizing AM modulation (OOK).

Testing Objective:

To demonstrate compliance of the periodic radio to FCC 15.231(b) requirements.

CONFIGURATIONS

Configuration CINC0025-1

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
Motion Sensor	CINCH Systems	RF-ARmotion-319-UTC	FC-M-3	

Configuration CINC0025-2

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
Motion Sensor	CINCH Systems	RF-ARmotion-319-UTC	FC-M-2	

Configuration CINC0025-3

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
Motion Sensor	CINCH Systems	RF-ARmotion-319-UTC	FC-M-1	

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
			Tested as	No EMI suppression	EUT remained at
1	2018-09-13	Duty Cycle	delivered to	devices were added or	Element following
			Test Station.	modified during this test.	the test.
		Occupied	Tested as	No EMI suppression	EUT remained at
2	2018-09-13	Bandwidth	delivered to	devices were added or	Element following
		Dariuwiutri	Test Station.	modified during this test.	the test.
		Spurious	Tested as	No EMI suppression	EUT remained at
3	2018-09-13	Radiated	delivered to	devices were added or	Element following
		Emissions	Test Station.	modified during this test.	the test.
		Field Strength	Tested as	No EMI suppression	EUT remained at
4	2018-09-13	of Fundamental	delivered to	devices were added or	Element following
		Of Fundamental	Test Station.	modified during this test.	the test.

FIELD STRENGTH OF FUNDAMENTAL

PSA-ESCI 2018.05.04

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Tx at 319.5 MHz, CW

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

CINC0025 - 3

FREQUENCY RANGE INVESTIGATED

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	ESM Cable Corp.	Bilog Cables	MNH	9-Nov-2017	12 mo
Antenna - Biconilog	Teseq	CBL 6141B	AYD	25-Jan-2018	24 mo
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	27-Apr-2018	12 mo

Report No. CINC0025 11/24

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was configured for continuous un-modulated CW operation at its single transmit frequency. The field strength of the transmit frequency was maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT in 3 orthogonal planes (per ANSI C63.10:2013).

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

```
Where "On time" = N1L1 +N2L2 +....
```

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. (Where T is the period of the pulse train.)

The measured values for the EUT's first protocol pulse train (Worst Case) are as follows:

```
Period = 100 mSec
Pulsewidth of Type 1 Pulse = 0.9323 mSec
Pulsewidth of Type 2 Pulse = 0.1152 mSec
Pulsewidth of Type 3 Pulse = 0.3605 mSec
Pulsewidth of Type 4 Pulse = 0.2368 mSec
Number of Type 1 Pulses = 1
Number of Type 2 Pulses = 28
Number of Type 3 Pulses = 8
Number of Type 3 Pulses = 8
```

Duty Cycle = 20 log [((1)(0.9323) + (28)(0.1152) + (8)(0.3605) + (8)(0.2368))/Pd] = -20.98 dB

The duty cycle correction factor of $-21.0\,$ dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.

Report No. CINC0025 12/24

FIELD STRENGTH OF FUNDAMENTAL

319.515

319.512

319.513

319.513

319.513

319.513

319.515

319.515

70.6

69.8

66.9

66.9

64.6

64.6

57.0

57.0

20.2

20.2

20.2

20.2

20.2

20.2

20.2

20.2

1.6

1.7

1.1

1.1

1.9

1.9

2.7

2.7

78.0

113.1

343.9

343.9

191.1

191.1

322.9

322.9

-21.0

-21.0

0.0

-21.0

0.0

-21.0

-21.0

0.0

0.0

0.0

0.0

0.0

						,, =				EmiR5 2018.05.0	7	PSA-ESCI 2018.05.0	4
W	ork Order		C0025		Date:		p-2018	1	1	/	211		
	Project		one	Ter	mperature:		2 °C	//	<	1	M		
	Job Site		N05		Humidity:		% RH						
Seria	I Number:		-M-1		etric Pres.:	1019	mbar		Tested by:	Andrew R	ogstad, Chr	ris Patterso	<u>n</u>
			tion-319-UT	С						•			
Conf	figuration	3											_
(Customer	CINCH Sy	/stems										_
	Attendees	Jabril Aga	1										_
	UT Power												_
	ing Mode	T 1010	.5 MHz, CW										_
D	eviations	None											_
С	omments	None :											_
	ifications						Test Meth						=
CC 15.23		•					ANSI C63.	10:2013	•				
Run #	2	Test Di	istance (m)	3	Antenna	ı Height(s)		1 to 4(m)		Results	s Pa	ass	_
100													
90 -													
80													
70 -						*							
						•							
60													
60													
Bu//m													
] 50 ·													
<u> </u>													
40													
40													
30													
20													
10													
0 -													
	9.0	319.1	319.2	319.3	319.4	319.5	319.	6 31	9.7 3	19.8	319.9	320.0	
						MHz				■ PK	◆ AV	• QP	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	
10.510	7	00.0		4.		0.0		D. C		00.0	07.0		Comme
319.513	71.8 71.8	20.2	1.0	1.1	0.0 -31.0	0.0	Horz	PK AV	0.0	92.0 71.0	95.9 75.0	-3.9 -4.0	EUT hor EUT hor
319.513 319.515	70.6	20.2 20.2	1.0 1.6	1.1 78.0	-21.0 0.0	0.0 0.0	Horz Vert	AV PK	0.0 0.0	71.0 90.8	75.9 95.9	-4.9 -5.1	EUT ver
319.512	69.8	20.2	1.7	113.1	0.0	0.0	Vert	PK	0.0	90.0	95.9	-5.1 -5.9	EUT on:
310.512	70.6	20.2	1.7	78.0	-21.0	0.0	Vert	Δ\/	0.0	69.8	75.9	-6.1	FUT ver

Report No. CINC0025 13/24

Vert

Vert

Horz

Horz

Horz

Horz

ΑV

ΑV

ΑV

 AV

AV

0.0

0.0

0.0

0.0

0.0

69.8

69.0

87.1

66.1

84.8

63.8

56.2

75.9

75.9

95.9

75.9

95.9

75.9

75.9

-6.1

-6.9

-8.8

-9.8

-11.1

-12.1

-18.7

-19.7

EUT vert

EUT vert

EUT vert

EUT on side

EUT on side

EUT on side

EUT horz

EUT horz

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2018.05.04

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Tx at 319.5 MHz, CW

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

CINC0025 - 3

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz Stop Frequency 4000 MHz
--

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVT	13-Feb-2018	12 mo
Cable	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	21-Nov-2017	12 mo
Antenna - Double Ridge	ETS Lindgren	3115	AJA	27-Jun-2018	24 mo
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AVO	9-Nov-2017	12 mo
Cable	ESM Cable Corp.	Bilog Cables	MNH	9-Nov-2017	12 mo
Antenna - Biconilog	Teseq	CBL 6141B	AYD	25-Jan-2018	24 mo
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	27-Apr-2018	12 mo

Report No. CINC0025 14/24

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequency in each operational band and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

```
QP = Quasi-Peak Detector
PK = Peak Detector
AV = RMS Detector
```

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

```
Where "On time" = N1L1 +N2L2 +....
```

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. Where T is the period of the pulse train.

The measured values for the EUT's first protocal pulse train (Worst Case) are as follows:

```
Period = 100 mSec
Pulsewidth of Type 1 Pulse = 0.9323 mSec
Pulsewidth of Type 2 Pulse = 0.1152 mSec
Pulsewidth of Type 3 Pulse = 0.3605 mSec
Pulsewidth of Type 4 Pulse = 0.2368 mSec
Number of Type 1 Pulses = 1
Number of Type 2 Pulses = 28
Number of Type 3 Pulses = 8
Number of Type 3 Pulses = 8
```

 $\text{Duty Cycle} = 20 \log \left[((1)(0.9323) + (28)(0.1152) + (8)(0.3605) + (8)(0.2368)) / \text{Pd} \right] = -20.98 \text{ dB}$

The duty cycle correction factor of $-21.0\,$ dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.

Report No. CINC0025 15/24

SPURIOUS RADIATED EMISSIONS

639.023

31.7

7.6

1.1

288.0

0.0

10.0

EUT horz EUT on side

-36.6

39.3

75.9

										EmiR5 2018.05.07		PSA-ESCI 2018.05.0	14
Wo	ork Order:	CINC	00025		Date:	13-Sep	o-2018	1	2	/	7 11-		
	Project:		one	Te	mperature:	23		/		11	M		
	Job Site:		N05		Humidity:	53.69	% RH						
Seria	l Number:		-M-1		etric Pres.:	1017	mbar	-	Tested by:	Andrew Ro	ogstad, Ch	ris Patterso	<u>on</u>
			tion-319-UT	<u> </u>									_
	iguration:												_
	Customer:	CINCH Sy	stems										_
		Jabril Aga											_
EU	JT Power:												_
Operati	ing Mode:	Tx at 319.	5 MHz, CW										
D	eviations:	None											_
Co	omments:	None											_
Test Speci							Test Metho						_
FCC 15.23	1:2018						ANSI C63.	10:2013					
													_
Run #	3	Test Dis	stance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	P	ass	_
Г													
80													
80 T													
70													
						1 1 11							
						1 1 11							
60 +													
						⊣ 				█▗█▖▏			
						1 1 11		""					
_ 50 +			-		- 								
<u>, , , , , , , , , , , , , , , , , , , </u>													
_ ≧													
w///ngp			_	-						•			
9										•			
30										•			
30								1 •					
20 +								-					
10 +													
0												Щ	
10)			100				1000				10000	
				. 30		MHz							
						1411 12				■ PK	AV	QP	
					Duty Cycle		Polarity/						
					Correction	External	Transducer		Distance			Compared to	
Freq	Amplitude	Factor	Antenna Height	Azimuth	Factor	Attenuation	Туре	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(dB)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	Comments
3195.310	62.6	-1.8	2.5	40.1	0.0	0.0	Horz	PK	0.0	60.8	75.9	-15.1	EUT horz
3195.275	59.4	-1.8	2.3	286.0	0.0	0.0	Vert	PK	0.0	57.6	75.9	-18.3	EUT vert
2556.095	61.0	-3.9	2.7	131.1	0.0	0.0	Horz	PK	0.0	57.1	75.9	-18.8	EUT horz
2556.005	56.9	-3.9	1.2	89.0	0.0	0.0	Vert	PK	0.0	53.0	75.9	-22.9	EUT vert
1278.105	57.8	-7.5	1.0	346.0	0.0	0.0	Vert	PK	0.0	50.3	75.9	-25.6	EUT vert
1278.045	57.1	-7.5	1.0	360.0	0.0	0.0	Horz	PK	0.0	49.6	75.9	-26.3	EUT horz
639.018 639.027	38.1 37.3	7.6 7.6	1.3 1.3	219.0 219.0	0.0 0.0	10.0 10.0	Horz Horz	PK PK	0.0 0.0	45.7 44.9	75.9 75.9	-30.2 -31.0	EUT horz EUT on side
639.027	37.3 35.2	7.6 7.6	1.0	336.9	0.0	10.0	Vert	PK PK	0.0	44.9 42.8	75.9 75.9	-31.0 -33.1	EUT vert
958.563	27.6	14.1	1.1	289.9	0.0	10.0	Vert	PK	0.0	41.7	75.9 75.9	-34.2	EUT vert
958.532	26.9	14.1	1.5	55.1	0.0	10.0	Horz	PK	0.0	41.0	75.9	-34.9	EUT horz
3195.310	62.6	-1.8	2.5	40.1	-21.0	0.0	Horz	AV	0.0	39.8	75.9	-36.1	EUT horz
639.023	31.7	7.6	1.1	288.0	0.0	10.0	Vert	PK	0.0	39.3	75.9	-36.6	EUT on side

Report No. CINC0025 16/24

Vert

PK

0.0

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
639.018	30.0	7.6	1.4	106.1	0.0	10.0	Vert	PK	0.0	37.6	75.9	-38.3	EUT horz
3195.275	59.4	-1.8	2.3	286.0	-21.0	0.0	Vert	AV	0.0	36.6	75.9	-39.3	EUT vert
2556.095	61.0	-3.9	2.7	131.1	-21.0	0.0	Horz	AV	0.0	36.1	75.9	-39.8	EUT horz
639.005	27.0	7.6	1.7	142.1	0.0	10.0	Horz	PK	0.0	34.6	75.9	-41.3	EUT vert
2556.005	56.9	-3.9	1.2	89.0	-21.0	0.0	Vert	AV	0.0	32.0	75.9	-43.9	EUT vert
1278.105	57.8	-7.5	1.0	346.0	-21.0	0.0	Vert	AV	0.0	29.3	75.9	-46.6	EUT vert
1278.045	57.1	-7.5	1.0	360.0	-21.0	0.0	Horz	AV	0.0	28.6	75.9	-47.3	EUT horz
639.018	38.1	7.6	1.3	219.0	-21.0	10.0	Horz	AV	0.0	24.7	75.9	-51.2	EUT horz
639.027	37.3	7.6	1.3	219.0	-21.0	10.0	Horz	AV	0.0	23.9	75.9	-52.0	EUT on side
639.023	35.2	7.6	1.0	336.9	-21.0	10.0	Vert	AV	0.0	21.8	75.9	-54.1	EUT vert
958.563	27.6	14.1	1.1	289.9	-21.0	10.0	Vert	AV	0.0	20.7	75.9	-55.2	EUT vert
958.532	26.9	14.1	1.5	55.1	-21.0	10.0	Horz	AV	0.0	20.0	75.9	-55.9	EUT horz
639.023	31.7	7.6	1.1	288.0	-21.0	10.0	Vert	AV	0.0	18.3	75.9	-57.6	EUT on side
639.018	30.0	7.6	1.4	106.1	-21.0	10.0	Vert	AV	0.0	16.6	75.9	-59.3	EUT horz
639.005	27.0	7.6	1.7	142.1	-21.0	10.0	Horz	AV	0.0	13.6	75.9	-62.3	EUT vert

Report No. CINC0025 17/24

OCCUPIED BANDWIDTH

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	27-Apr-18	27-Apr-19
Cable	ESM Cable Corp.	Bilog Cables	MNH	9-Nov-17	9-Nov-18
Antenna - Biconilog	Teseq	CBL 6141B	AYD	25-Jan-18	25-Jan-20

TEST DESCRIPTION

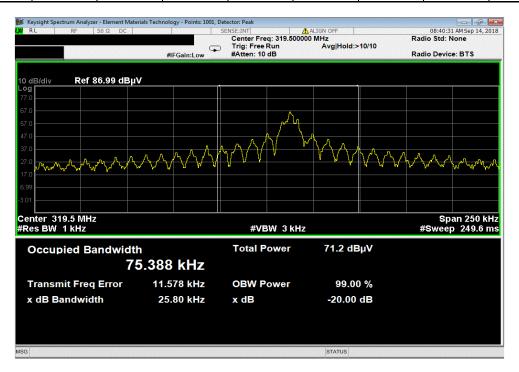
The measurement was made in a radiated configuration of the fundamental with the carrier fully maximized for its highest radiated power. The EUT was transmitting at its maximum data rate.

The 20 dB occupied bandwidth is required to be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz.

Report No. CINC0025 18/24

OCCUPIED BANDWIDTH

EUT: RF-ARmotion-319-UTC
Serial Number: FC-M-3
Customer: CINCH Systems
Attendees: Jibril Aba
Project: None
Tested by: Andrew Rogstad, Chris Patterson
TEST SPECIFICATIONS Work Order: CINC0025
Date: 13-Sep-18
Temperature: 22.3 °C
Humidity: 50.7% RH
Barometric Pres.: 1019 mbar
Job Site: MN05 Power: Battery
Test Method FCC 15.231:2018 ANSI C63.10:2013 COMMENTS Tx at 319.5 MHz, Modulated DEVIATIONS FROM TEST STANDARD None 2 Configuration # Signature -20 OB (kHz) Limit (kHz) Result 319.5 MHz 25.8 Pass


OCCUPIED BANDWIDTH

319.5 MHz

-20 OB (kHz) Limit (kHz) Result

25.8 798 Pass

XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	27-Apr-18	27-Apr-19
Cable	ESM Cable Corp.	Bilog Cables	MNH	9-Nov-17	9-Nov-18
Antenna - Biconilog	Teseq	CBL 6141B	AYD	25-Jan-18	25-Jan-20

TEST DESCRIPTION

The measurement was made in a radiated configuration of the fundamental with the carrier fully maximized for its highest radiated power. For software controlled or pre-programmed devices, the manufacturer shall declare the duty cycle class or classes for the equipment under test. For manually operated or event dependant devices, with or without software controlled functions, the manufacturer shall declare whether the device once triggered, follows a pre-programmed cycle, or whether the transmission is constant until the trigger is released or manually reset. The manufacturer shall also give a description of the application for the device and include a typical usage pattern. The typical usage pattern as declared by the manufacturer shall be used to determine the duty cycle and hence the duty class.

Where an acknowledgement is required, the additional transmitter on-time shall be included and declared by the manufacturer.

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. (Where T is the period of the pulse train.)

The customer indicated that 2 protocols are used by the EUT, so the DCCF was found for both protocols.

The measured values for the EUT's first protocol pulse train are as follows:

```
Period = 100 mSec
Pulsewidth of Type 1 Pulse = 0.9323 mSec
Pulsewidth of Type 2 Pulse = 0.1152 mSec
Pulsewidth of Type 3 Pulse = 0.3605 mSec
Pulsewidth of Type 4 Pulse = 0.2368 mSec
Number of Type 1 Pulses = 1
Number of Type 2 Pulses = 28
Number of Type 3 Pulses = 8
Number of Type 3 Pulses = 8
```

Duty Cycle = $20 \log [((1)(0.9323) + (28)(0.1152) + (8)(0.3605) + (8)(0.2368))/Pd] = -20.98 dB$

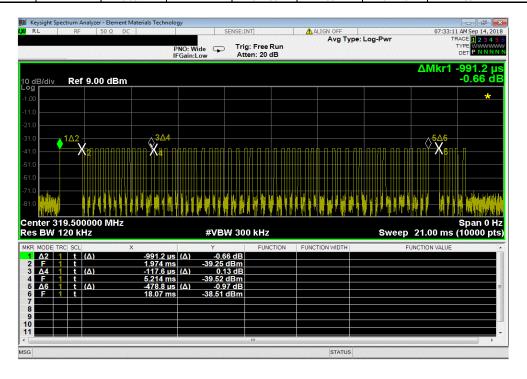
The measured values for the EUT's second protocol pulse train are as follows:

```
Period = 100_> mSec
Pulsewidth of Type 1 Pulse = 0.9912 mSec
Pulsewidth of Type 2 Pulse = 0.4788 mSec
Pulsewidth of Type 3 Pulse = 0.1176 mSec
Number of Type 1 Pulses = 1
Number of Type 2 Pulses = 1
Number of Type 3 Pulses = 58

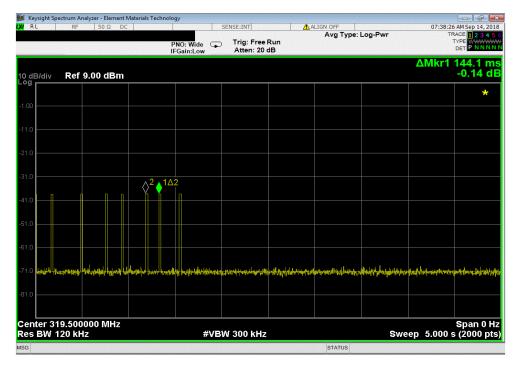
Duty Cycle = 20 log [((1)(.9912) + (1)(.4788 + (58)(.1176))/100] = 21.63 dB
```

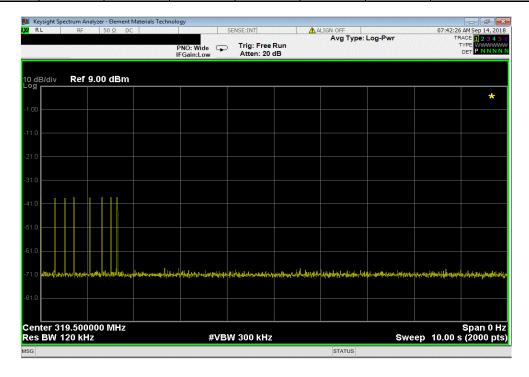
The duty cycle correction factor of 21.0 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.


Report No. CINC0025 21/24


EUT: RF-ARmotion-319-U	TC							Work Order:	CINC0025	
Serial Number: FC-M-3								Date:	13-Sep-18	
Customer: CINCH Systems								Temperature:	22.3 °C	
Attendees: Jibril Aba									50.7% RH	
Project: None								Barometric Pres.:		
Tested by: Andrew Rogstad, Ch	hris Patterson			Power	: Battery			Job Site:		
TEST SPECIFICATIONS					Test Method					
FCC 15.231:2018					ANSI C63.10:2013					
COMMENTS										
Tx at 319.5 MHz, Modulated										
DEVIATIONS FROM TEST STANDARD										
DEVIATIONS FROM TEST STANDARD None										
		Signature	C	e,	PAL					
None	Number of	Signature Type 1 Pulse	C Number of	Type 2 Pulse	P. At	Type 3 Pulse	Number of Type	Type 4 Pulse		
None	Number of Type 1		Number of Type 2	Type 2 Pulse length (ms)	Number of Type 3 Pulses	Type 3 Pulse length (ms)	Number of Type 4 Pulses	Type 4 Pulse length (ms)	DCCF	Result
None		Type 1 Pulse							DCCF -20.98	Result N/A
None Configuration # 1		Type 1 Pulse length (ms)	Type 2	length (ms)	3 Pulses	length (ms)	4 Pulses	length (ms)		
None Configuration # 1 100 ms - 1st protocol		Type 1 Pulse length (ms) 0.9323	Type 2	0.1152	3 Pulses	length (ms) 0.3605	4 Pulses	length (ms) 0.2368	-20.98	N/A

100 ms - 1st protocol Number of Type 1 Pulse Number of Type 2 Pulse Number of Type 3 Pulse Number of Type 4 Pulse length (ms) length (ms) Type 2 Pulses length (ms) Type 3 Pulses length (ms) Type 4 Pulses Type 1 0.1152 -20.98


100 ms - 2nd protocol									
Number of Type 1 Pulse Number of Type 2 Pulse Number of Type 3 Pulse									
Type 1 Pulses	length (ms)	Type 2 Pulses	length (ms)	Type 3 Pulses	length (ms)	DCCF			
1	0.9912	1	0.4788	58	0.1176	-21.63			


Report No. CINC0025 23/24

5 s Type 2 Pulse Type 3 Pulse Type 4 Pulse Number of Number of Number of DCCF Type 2 Pulses length (ms) Type 3 Pulses length (ms) Type 4 Pulses length (ms) N/A N/A N/A N/A N/A N/A N/A

			10 s			
Number of	Type 2 Pulse	Number of	Type 3 Pulse	Number of	Type 4 Pulse	
Type 2 Pulses	length (ms)	Type 3 Pulses	length (ms)	Type 4 Pulses	length (ms)	DCCF
N/A	N/A	N/A	N/A	N/A	N/A	N/A

