

RADIO TEST REPORT

S

Report No: STS1509121F01

Issued for

HLS Technology Corporation Limited

4F,B4 Building,3rd Industrial Zone,Fenghuanggang,Bao'an District Shenzhen, China

Product Name:	TABLET PC
Brand Name:	NO
Model No.:	M10701
Series Model:	M10702,M10703,M10704,M10705, M10706,M10707,M10708,M10709
FCC ID:	2ABBL-M10701
Test Standard:	FCC Part 15.247

Any reproduction of this document must be done in full. No single part of this document may be reproduce permission from STS, All Test Data Presented in this report is only applicable to presented. Test sample VA

Page 2 of 38

Report No.: STS1509121F01

TEST RESULT CERTIFICATION

Applicant's name:	HLS Technology Corporation Limited
Address	4F,B4 Building,3rd Industrial Zone,Fenghuanggang,Bao'an District Shenzhen, China
Manufacture's Name	SHENZHEN HENGLONGSHENG TECHNOLOGY CO. LIMITED
Address	4F,B4 Building,3rd Industrial Zone,Fenghuanggang,Bao'an District Shenzhen, China
Product description	
Product name:	TABLET PC
Model and/or type reference .:	M10701
Series Model:	M10702,M10703,M10704,M10705, M10706,M10707,M10708,M10709
Standards	FCC Part15.247
Test procedure	. ANSI C63.10-2013

This device described above has been tested by STS, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, thidocument may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date (s) of performance of tests25 Sep. 2015 ~10 Oct. 2015Date of Issue12 Oct. 2015Test ResultPass

Date of Test

Testing Engineer :	Burning
	(Jin Ming)
Technical Manager :	vrtati ===
	(Vita Li)
Authorized Signatory :	howey Juney
	(Bovey Yang)

Shenzhen STS Test Services Co., Ltd.

Page 3 of 38

Report No.: STS1509121F01

Table of Contents	Page
1. SUMMARY OF TEST RESULTS	5
1.1 TEST FACTORY	5
1.2 MEASUREMENT UNCERTAINTY	5
2. GENERAL INFORMATION	6
2.1 GENERAL DESCRIPTION OF EUT	6
2.2 DESCRIPTION OF TEST MODES	8
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	9
2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	10
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	11
3. EMC EMISSION TEST	12
3.1 CONDUCTED EMISSION MEASUREMENT	12
3.2 TEST PROCEDURE	13
3.3 TEST SETUP	13
3.4 EUT OPERATING CONDITIONS	13
3.5 TEST RESULTS	14
4. RADIATED EMISSION MEASUREMENT	16
4.1 RADIATED EMISSION LIMITS	16
4.2 TEST PROCEDURE	17
4.3 TEST SETUP	18
4.4 EUT OPERATING CONDITIONS	19
4.5 TEST RESULTS	19
4.6 TEST RESULTS (RESTRICTED BANDS REQUIREMENTS)	23
5. CONDUCTED SPURIOUS EMISSIONS	24
5.1 REQUIREMENT	24
5.2 TEST PROCEDURE	24
5.3 TEST SETUP	24
5.4 EUT OPERATION CONDITIONS	24
5.5 TEST RESULTS	25
6. POWER SPECTRAL DENSITY TEST	28
6.1 APPLIED PROCEDURES / LIMIT	28
6.2 TEST PROCEDURE	28
6.3 TEST SETUP	28

Page 4 of 38

Report No.: STS1509121F01

Table of Contents	Page
6.4 EUT OPERATION CONDITIONS	28
6.5 TEST RESULTS	29
7. BANDWIDTH TEST	31
7.1 APPLIED PROCEDURES / LIMIT	31
7.2 TEST PROCEDURE	31
7.3 TEST SETUP	31
7.4 EUT OPERATION CONDITIONS	31
7.5 TEST RESULTS	32
8. PEAK OUTPUT POWER TEST	34
8.1 APPLIED PROCEDURES / LIMIT	34
8.2 TEST PROCEDURE	34
8.3 TEST SETUP	34
8.4 EUT OPERATION CONDITIONS	34
8.5 TEST RESULTS	35
9. ANTENNA REQUIREMENT	36
9.1 STANDARD REQUIREMENT	36
9.2 EUT ANTENNA	36
10. EUT TEST PHOTO	37

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C						
Standard Section	Test Item Judgment Remark					
15.207	Conducted Emission	PASS				
15.247 (a)(2)	6dB Bandwidth	PASS				
15.247 (b)	Peak Output Power	PASS				
15.247 (c)	Radiated Spurious Emission	PASS				
15.247 (d)	Power Spectral Density	PASS				
15.205	Band Edge Emission	PASS				
15.203	Antenna Requirement PASS					

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

1.1 TEST FACTORY

Shenzhen STS Test Services Co., Ltd. Add. : 1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China CNAS Registration No.: L7649; FCC Registration No.: 842334; IC Registration No.: 12108A-1

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $\ k=2$, providing a level of confidence of approximately 95 % $^{\circ}$

No.	Item	Uncertainty
1	Conducted Emission (9KHz-150KHz)	±2.88dB
2	Conducted Emission (150KHz-30MHz)	±2.67dB
3	RF power,conducted	±0.70dB
4	Spurious emissions, conducted	±1.19dB
5	All emissions,radiated(<1G) 30MHz-200MHz	±2.83dB
6	All emissions,radiated(<1G) 200MHz-1000MHz	±2.94dB
7	All emissions,radiated(>1G)	±3.03dB
8	Temperature	±0.5°C
9	Humidity	±2%

Shenzhen STS Test Services Co., Ltd.

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	TABLET PC			
Trade Name	NO			
Model Name	M10701			
Series Model	M10702,M10703,M1 M10708,M10709	M10702,M10703,M10704,M10705,M10706,M10707, M10708,M10709		
Model Difference	Only different in mod	del name.		
	The EUT is a TABLE	ET PC		
	Operation Frequency:	2402~2480 MHz		
	Modulation Type:	GFSK		
Product Description	Radio Technology	BLE		
	Number Of Channe	I 40		
	Antenna Designation:	Please see Note 3.		
	Antenna Gain (dBi)	0 dbi		
Channel List	Please refer to the N	lote 2.		
Adapter	Input: AC100-240V, Output: DC 5V, 1500			
Potton	Rated Voltage: 3.7V			
Battery	capacity :3000mAh			
Hardware version number				
Software versioning number				
Connecting I/O Port(s)	Please refer to the User's Manual			

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

	Channel List						
Channel	Frequenc y (MHz)	Channel	Frequenc y (MHz)	Channel	Frequenc y (MHz)	Channel	Frequency (MHz)
01	2402	11	2422	21	2442	31	2462
02	2404	12	2424	22	2444	32	2464
03	2406	13	2426	23	2446	33	2466
04	2408	14	2428	24	2448	34	2468
05	2410	15	2430	25	2450	35	2470
06	2412	16	2432	26	2452	36	2472
07	2414	17	2434	27	2454	37	2474
08	2416	18	2436	28	2456	38	2476
09	2418	19	2438	29	2458	39	2478
10	2420	20	2440	30	2460	40	2480

3.

Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
A	NO	M10701	Dipole Antenna	N/A	0	BT 4.0 ANT

Shenzhen STS Test Services Co., Ltd.

Page 8 of 38

2.2 DESCRIPTION OF TEST MODES

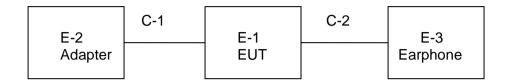
To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	TX CH1/CH20/CH40
Mode 2	Keeping TX mode

For Conducted Emission		
Final Test Mode	Description	
Mode 2	Keeping TX mode	

For Radiated Emission				
Final Test Mode	Description			
Mode 1	TX CH1/CH20/CH40			
Mode 2 Keeping TX mode				

Note:


(1) The measurements are performed at the highest, middle, lowest available channels.

(2) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

(3) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation.

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Shenzhen STS Test Services Co., Ltd.

Page 10 of 38

Report No.: STS1509121F01

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
E-1	TABLET PC	NO	M10701	N/A	EUT
E-2	Adapter	N/A	003	N/A	EUT
E-3	Earphone	N/A	N/A	N/A	N/A

Item	Shielded Type	Ferrite Core	Length	Note
C-1	unshielded	NO	98cm	/
C-2	unshielded	NO	103cm	/

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[\]$ Length $\[\]$ column.

Page 11 of 38

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Spectrum Analyzer	Agilent	E4407B	MY50140340	2014.10.25	2015.10.24
Test Receiver	R&S	ESCI	101427	2014.10.25	2015.10.24
Bilog Antenna	TESEQ	CBL6111D	34678	2014.11.25	2015.11.24
Horn Antenna	Schwarzbeck	BBHA 9120D(1201)	9120D-1343	2015.03.06	2016.03.05
50Ω Coaxial Switch	Anritsu	MP59B	6200264416	2015.06.06	2016.06.05
PreAmplifier	Agilent	8449B	60538	2014.10.25	2015.10.24
Loop Antenna	ARA	PLA-1030/B	1029	2015.06.08	2016.06.07
USB RF power sensor	DARE	RPR3006W	15100041SNO03	2014.10.25	2015.10.24
STS-E048	MXA SIGNAL Analyzer	Agilent	N9020A	2015.10.25	2016.10.24

Conduction Test equipment

Kind of Equipment	Manufacturer Type No.		Serial No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESPI	102086	2014.11.20	2015.11.19
LISN	R&S	ENV216	101242	2014.10.25	2015.10.24
LISN	EMCO	3810/2NM	000-23625	2014.10.25	2015.10.24

Shenzhen STS Test Services Co., Ltd.

Page 12 of 38

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

operating frequency band. In case the emission fall within the restricted band specified on Part 15.247&207(a) limit in the table below has to be followed.

	Class B	(dBuV)	Standard
FREQUENCY (MHz)	Quasi-peak	Average	Standard
0.15 -0.5	66 - 56 *	56 - 46 *	CISPR
0.50 -5.0	56.00	46.00	CISPR
5.0 -30.0	60.00	50.00	CISPR

0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

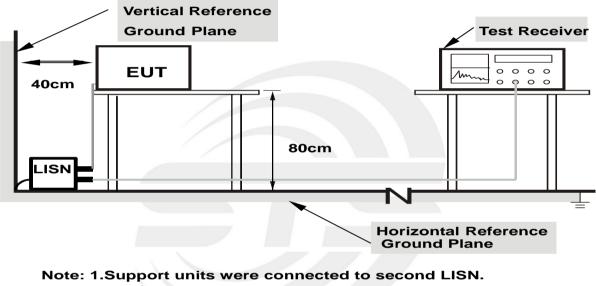
Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz



3.2 TEST PROCEDURE

a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Page 13 of 38

- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

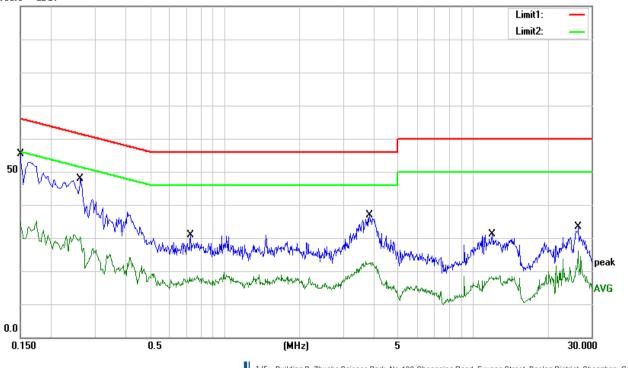
3.3 TEST SETUP

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.5 TEST RESULTS

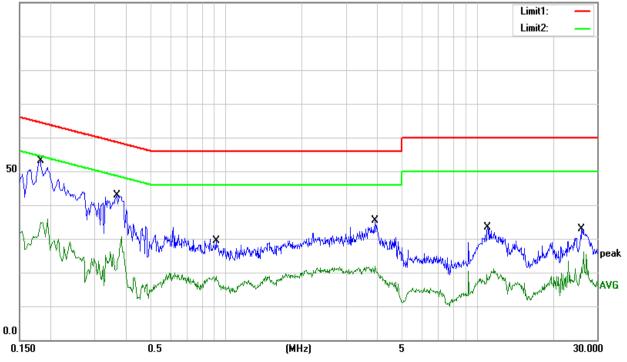

EUT :	TABLET PC	Model Name. :	M10701
Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC120V/60Hz	Test Mode:	Mode 2

Frequency	Reading	Correct	Result	Limit	Margin	Demerik
(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	Remark
0.1500	44.22	11.20	55.42	66.00	-10.58	QP
0.1500	23.72	11.20	34.92	56.00	-21.08	AVG
0.2620	37.94	9.94	47.88	61.37	-13.49	QP
0.2620	20.42	9.94	30.36	51.37	-21.01	AVG
0.7300	20.99	9.99	30.98	56.00	-25.02	QP
0.7300	7.19	9.99	17.18	46.00	-28.82	AVG
3.8220	26.70	10.20	36.90	56.00	-19.10	QP
3.8220	12.19	10.20	22.39	46.00	-23.61	AVG
11.9820	20.67	10.36	31.03	60.00	-28.97	QP
11.9820	7.42	10.36	17.78	50.00	-32.22	AVG
26.6100	22.78	10.55	33.33	60.00	-26.67	QP
26.6100	15.33	10.55	25.88	50.00	-24.12	AVG

Remark:

100.0 dBuV

Shenzhen STS Test Services Co., Ltd.


EUT :	TABLET PC	Model Name. :	M10701
Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1010hPa	Phase :	N
Test Voltage:	DC 5V from Adapter AC120V/60Hz	Test Mode:	Mode 2

Frequency	Reading	Correct	Result	Limit	Margin	Domork
(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	Remark
0.1824	43.20	10.00	53.20	64.38	-11.18	QP
0.1824	24.78	10.00	34.78	54.38	-19.60	AVG
0.3673	32.84	9.97	42.81	58.56	-15.75	QP
0.3673	12.65	9.97	22.62	48.56	-25.94	AVG
0.9140	19.29	10.00	29.29	56.00	-26.71	QP
0.9140	8.00	10.00	18.00	46.00	-28.00	AVG
3.9140	25.23	10.19	35.42	56.00	-20.58	QP
3.9140	11.78	10.19	21.97	46.00	-24.03	AVG
10.9900	23.07	10.30	33.37	60.00	-26.63	QP
10.9900	7.46	10.30	17.76	50.00	-32.24	AVG
26.0020	22.03	10.74	32.77	60.00	-27.23	QP
26.0020	9.12	10.74	19.86	50.00	-30.14	AVG

Remark:

1. Factor = Antenna Factor + Cable Loss - Pre-amplifier.

100.0 dBuV

Shenzhen STS Test Services Co., Ltd.

Page 16 of 38

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

6dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on Part 15.247&205(a), then the Part15.247&209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Class B (dBuV/m) (at 3M)		
	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak
Start Frequency	1000 MHz(Peak/AV)
Stop Frequency	10th carrier harmonic(Peak/AV)
RB / VB (emission in restricted	
band)	1 MHz / 1 MHz, AV=3 MHz

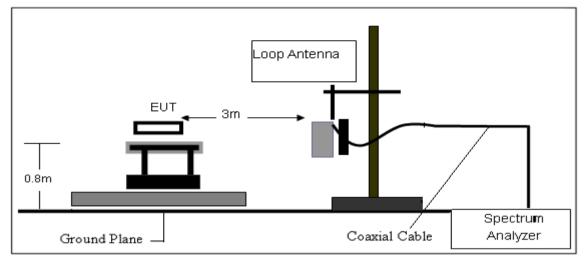
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

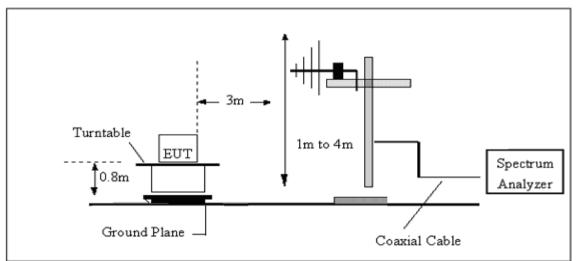
Page 17 of 38

4.2 TEST PROCEDURE

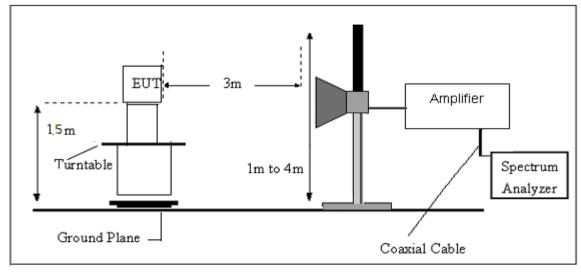
- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters (above 1GHz is 1.5 m) above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested


and performed pretest to three orthogonal axis. The worst case emissions were reported



4.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

4.5 TEST RESULTS

(Between 9KHz - 30 MHz)

EUT:	TABLET PC	Model Name. :	M10701
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa		DC 5V from Adapter AC120V/60Hz
Test Mode :	Link mode	Polarization :	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
	-			PASS
				PASS

NOTE:

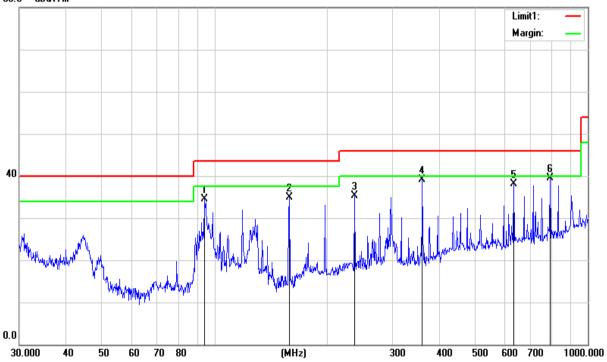
The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Shenzhen STS Test Services Co., Ltd.

Between 30-1000MHz

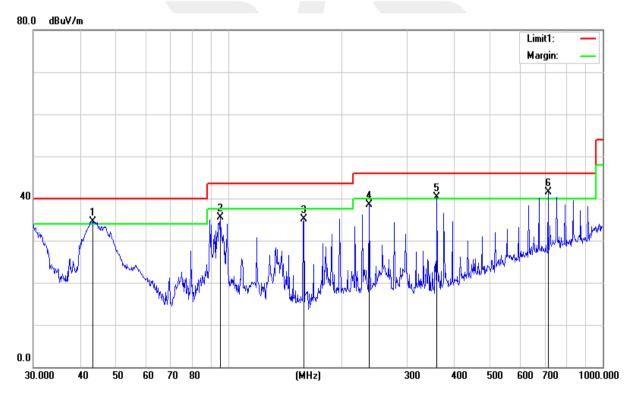

EUT :	TABLET PC	Model Name. :	M10701
Temperature :	26 °C	Relative Humidity :	54%
Pressure :	1010hPa	Phase :	Horizontal
Test Voltage :	DC 5V from Adapter AC120V/60Hz	Test Mode :	Mode 2

Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
94.0978	24.53	10.05	34.58	43.50	-8.92	QP
158.6676	23.34	11.66	35.00	43.50	-8.50	QP
237.4760	23.71	11.51	35.22	46.00	-10.78	QP
360.4476	22.68	16.45	39.13	46.00	-6.87	QP
633.9072	15.05	22.97	38.02	46.00	-7.98	QP
793.3960	13.96	25.45	39.41	46.00	-6.59	QP

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

80.0 dBuV/m


Page 21 of 38 Report No.: STS1509121F01

EUT :	TABLET PC	Model Name. :	M10701
Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1010hPa	Phase :	Vertical
	DC 5V from Adapter AC120V/60Hz	Test Mode:	Mode 2

Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
43.3534	22.94	11.61	34.55	40.00	-5.45	QP
95.0930	25.28	10.14	35.42	43.50	-8.08	QP
158.6676	23.42	11.66	35.08	43.50	-8.42	QP
237.4760	26.93	11.51	38.44	46.00	-7.56	QP
360.4476	23.87	16.45	40.32	46.00	-5.68	QP
714.1734	17.45	23.99	41.44	46.00	-4.56	QP

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Above 1000 MHz

EUT :	TABLET PC	Model Name :	M10701
Temperature :	20 °C	Relative Humidity :	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V

Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission Level (dBµV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Comment		
	Low Channel (GFSK/2402 MHz)								
4804.20	62.26	-3.62	58.64	74	-15.36	PK	Vertical		
4804.22	43.28	-3.62	39.66	54	-14.34	AV	Vertical		
7206.13	58.20	-0.9	57.3	74	-16.7	PK	Vertical		
7206.12	37.92	-0.9	37.02	54	-16.98	AV	Vertical		
4804.00	58.77	-3.65	55.12	74	-18.88	PK	Horizontal		
4803.99	40.69	-3.65	37.04	54	-16.96	AV	Horizontal		
		Mid	Channel (GFS	SK/2440 MHz)					
4882.08	64.09	-3.65	60.44	74	-13.56	PK	Vertical		
4882.07	47.49	-3.65	43.84	54	-10.16	AV	Vertical		
7320.22	59.67	-0.83	58.84	74	-15.16	PK	Vertical		
7320.21	42.46	-0.83	41.63	54	-12.37	AV	Vertical		
4882.18	60.31	-3.68	56.63	74	-17.37	PK	Horizontal		
4882.15	44.03	-3.68	40.35	54	-13.65	AV	Horizontal		
		High	h Channel (GF	SK/2480 MHz))				
4960.26	60.12	-3.59	56.53	74	-17.47	PK	Vertical		
4960.30	44.27	-3.59	40.68	54	-13.32	AV	Vertical		
7440.26	59.49	-0.73	58.76	74	-15.24	PK	Vertical		
7440.30	44.28	-0.73	43.55	54	-10.45	AV	Vertical		
4960.32	60.18	-3.59	56.59	74	-17.41	PK	Horizontal		
4960.31	43.94	-3.59	40.35	54	-13.65	AV	Horizontal		
Remark: 1. Factor = A									

4.6 TEST RESULTS (RESTRICTED BANDS REQUIREMENTS)

EUT :	TABLET PC	Model Name :	M10701
Temperature :	20 °C	Relative Humidity :	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V

Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission Level (dBµV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Comment
			GFSI	<			
2390.0	66.99	-12.99	54	74	-20	PK	Vertical
2390.0	53.89	-12.99	40.9	54	-13.1	AV	Vertical
2390.0	65.52	-12.99	52.53	74	-21.47	PK	Horizontal
2390.0	51.44	-12.99	38.45	54	-15.55	AV	Horizontal
2483.6	65.99	-12.78	53.21	74	-20.79	PK	Vertical
2483.6	51.81	-12.78	39.03	54	-14.97	AV	Vertical
2483.6	66.80	-12.78	54.02	74	-19.98	PK	Horizontal
2483.6	52.74	-12.78	39.96	54	-14.04	AV	Horizontal
Remark:							

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Low measurement frequencies is range from 2310 to 2400 MHz, high measurement frequencies is range from 2483.5 to 2500 MHz.

Only show the worst point data of the emissions in the frequency 2310-2400 MHz and 2483.5-2500 MHz.

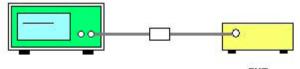
Shenzhen STS Test Services Co., Ltd.

5. CONDUCTED SPURIOUS EMISSIONS

5.1 REQUIREMENT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.2 TEST PROCEDURE


According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Spectrum Parameter	Setting		
Detector	Peak		
Start/Stop Frequency	30 MHz to 10th carrier harmonic		
RB / VB (emission in restricted band)	100 KHz/300 KHz		
Trace-Mode:	Max hold		

For Band edge

Spectrum Parameter	Setting		
Detector	Peak		
Start/Stop Frequency	Lower Band Edge: 2310 – 2404 MHz		
Start/Stop Frequency	Upper Band Edge: 2478 – 2500 MHz		
RB / VB (emission in restricted band)	100 KHz/300 KHz		
Trace-Mode:	Max hold		

5.3 TEST SETUP

Spectrum Analyzer

EUT

The EUT which is powered by the Battery, is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.5 TEST RESULTS

EUT :	TABLET PC	Model Name :	M10701		
Temperature :	25 ℃	Relative Humidity :	50%		
Pressure :	1012 hPa	Test Voltage :	DC 3.7V		
Test Mode :	TX Mode /CH01, CH20, CH40				

01 CH

	rum Analyzer - Swe RF 50 Ω		SENSE:IN	-	ALIGNAUTO		10.001	8 AM Oct 09, 20
enter F		000000 GHz	NO East Trig	: Free Run en: 30 dB	Avg Type:	Log-Pwr		RACE 1 2 3 4 5 TYPE M WAAWA DET P P P P F
) dB/div	Ref Offset 0.5 Ref -0.81 d						Mkr1 2 -5.	.402 GF 811 dB
0.8	V 1							
0.8								
0.8								-25.81
18								
1.8								
1.8	and the second	and the second states and the second	معاديداته المدانيين بريدهم	بالجرد الالايه بوطلوية	al and the second state of the	ويرد الالمغاط الدوالاريدة		
1.8								
18								
tart 30 M Res BW	/IHz 100 kHz		#VBW 300	kHz		Sw	Stop eep 2.39	25.00 GI s (8001 p
r Mode Ti		× 2.402 GHz	ĭ -5.811 dBm	FUNCTION	FUNCTION WIDTH	FU	NCTION VALUE	
2 N 1 3	f	24.925 GHz	-48.477 dBm					
L I								
1 5								
4 5 5 7								
4 5 6 7 8 9								
4 5 7 3								

20 CH

		er - Swept SA								
RL	RF	50 Ω AC		SI	ENSE:INT		ALIGN AUTO	e: Log-Pwr		:48 AM Oct 09, 21 TRACE 1 2 3 4
enter F	req 12.	5150000	P	NO: Fast 😱 Gain:Low	Trig: Free F #Atten: 30 d	un B	Avgiyp	e: Log-Pwr		TYPE MWWW DET P P P P
dB/div		set 0.5 dB 1.50 dBm								2.440 GH 5.502 dB
0.5	V 1									
0.5										-25.50
.5										
.5										
.5						ر مالار	بياطيعين والمسادر	المالة المريد المريد	and the second s	and the second second
.5	patricks/plibits/Plip	فالمتبو بالتينا المحجم		and a start of the					• ···	
.5										
.5										
art 30 I les BW	MHz 100 kH	z		#VBV	V 300 kHz			s	Sto weep 2.39	p 25.00 G s (8001 p
R MODE T		×		Y	FUNC	ION	FUNCTION WIDTH		FUNCTION VALUE	
	1 f 1 f		2.440 GHz 24.526 GHz	-5.502 d -50.245 d						
i)										
2										
1					1		STATUS			
1							514105			

40 CH

RL	RF	50 Ω AC		SEI	ISE:INT	AL	IGN AUTO		12:33	3:59 AM Oct 09, 2
enter l	Freq 1	2.51500000	Р	NO: Fast 😱 Sain:Low	Trig: Free Ru #Atten: 30 dE		Avg Type	: Log-Pwr		TRACE 1 2 3 4 TYPE MWWW DET P P P P
dB/div		Offset 0.5 dB -0.43 dBm								2.480 GI 5.426 dB
4		(1								
4										
4										-26.00
4										
4										
4	فالأستاس	And the second	والمراجع والمحاجم	A DESCRIPTION OF THE OWNER		البنينة مصاطنينها	الراعلين المستعلم والمستعلم	يسأون المسيرواس		and the second designed where
4										
4										
4										
.4										
art 30 les BW	MHz V 100 I	٢Hz		#VBW	300 kHz			S	Sto weep 2.39	p 25.00 G s (8001 p
NODE N	1 f	×	2.480 GHz	-5,426 dE	FUNCTION Sm	IN FUNC	TION WIDTH	f	UNCTION VALUE	
Ν	1 f	2	24.650 GHz	-49.830 dE	3m					
N										

01 CH

For Band edge

Analyzer -Swept SA ENSE:INT)ct 09, 20 Center Freq 2.357000000 GHz Avg Type: Log-Pwr TRACE Trig: Free Run #Atten: 30 dB PNO: Fast 😱 IFGain:Low DET P P P P Mkr2 2.402 026 GHz -4.891 dBm Ref Offset 0.5 dB Ref 0.11 dBm 10 dB/div Log 9.89 19.9 29.9 -39.9 -49.9 <u>59</u>. -69.9 79.9 89. Start 2.31000 GHz #Res BW 100 kHz Stop 2.40400 GHz Sweep 9.00 ms (1001 pts) #VBW 300 kHz
 True
 Duy
 Tuu K

 1
 N
 1
 F

 2
 N
 1
 F

 3
 N
 1
 F

 4
 5
 6
 7

 8
 9
 10
 11

 10
 11
 12
 12
UNCTION FUNCTION WIDTH -59.26 dBm -4.89 dBm 2.399 864 GHz 2.402 026 GHz STATUS SG

40 CH

6. POWER SPECTRAL DENSITY TEST

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS		

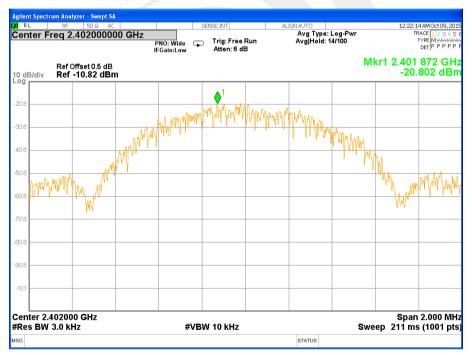
6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 100 kHz \ge RBW \ge 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

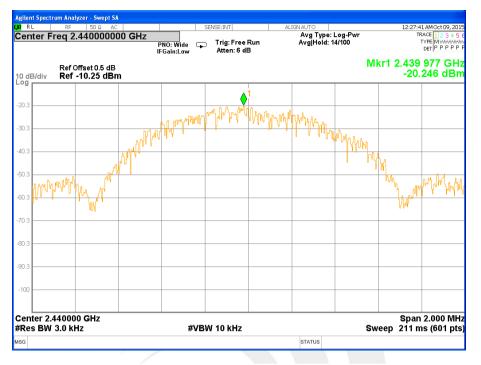
EUT	SPECTRUM
	ANALYZER

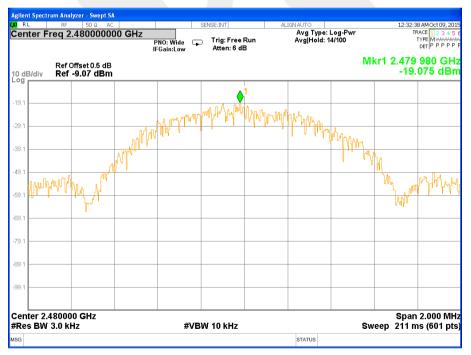
6.4 EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

6.5 TEST RESULTS

EUT :	TABLET PC	Model Name :	M10701		
Temperature :	25 ℃	Relative Humidity :	60%		
Pressure :	1015 hPa	Test Voltage :	DC 3.7V		
Test Mode :	TX Mode /CH01, CH20, CH40				


Frequency	Power Density (dBm)	Limit (dBm)	Result
2402 MHz	-20.802	8	PASS
2440 MHz	-20.246	8	PASS
2480 MHz	-19.075	8	PASS


TX CH01

TX CH20

TX CH40

7. BANDWIDTH TEST

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

7.2 TEST PROCEDURE

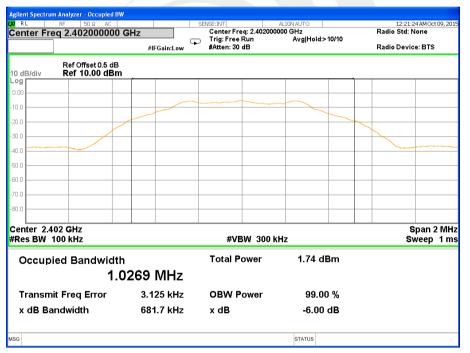
The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

7.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

7.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.



7.5 TEST RESULTS

EUT :	TABLET PC	Model Name :	M10701
Temperature :	25 ℃	Relative Humidity :	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX Mode /CH01, CH20, CH40		


Frequency	6dB Bandwidth (MHz)	Channel Separation (MHz)	Result
2402 MHz	0.682	>=500KHz	PASS
2440 MHz	0.683	>=500KHz	PASS
2480 MHz	0.685	>=500KHz	PASS

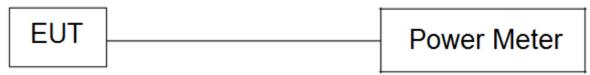
TX CH 01

TX CH 20

TX CH 40

Shenzhen STS Test Services Co., Ltd.

8. PEAK OUTPUT POWER TEST


8.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power Sensor&Power meter

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen STS Test Services Co., Ltd.

8.5 TEST RESULTS

EUT :	TABLET PC	Model Name :	M10701
Temperature :	25 ℃	Relative Humidity :	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX Mode /CH01, CH20, CH40		

TX Mode				
Test Channe	Frequency	Peak Conducted Output Power	LIMIT	
	(MHz)	(dBm)	dBm	
CH01	2402	-4.047	30	
CH20	2440	-3.874	30	
CH40	2480	-3.364	30	

Shenzhen STS Test Services Co., Ltd.

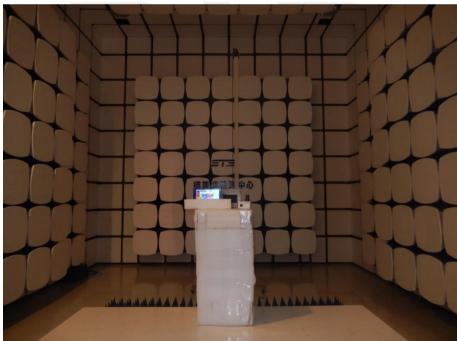
9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2 EUT ANTENNA

The EUT antenna is Dipole Antenna. It comply with the standard requirement.


Shenzhen STS Test Services Co., Ltd.

Radiated Measurement Photos

Page 38 of 38

Conducted Measurement Photos

* * * * * END OF THE REPORT * * * * *

Shenzhen STS Test Services Co., Ltd.