

Global United Technology Services Co., Ltd.

Report No.: GTS16000189E02

FCC Report

Shenzhen Micro Star Electronic Technology Co., Ltd. Applicant:

Address of Applicant: 4F, Block C, NO. 56, FengTang Road, Fuyong, Bao'an district,

Shenzhen, P.R.C.

Equipment Under Test (EUT)

Product Name: SPORT DV

Model No.: SDV-105, SDV-106, SDV-107, SDV-108, SDV-109

Applicable standards: FCC CFR Title 47 Part 15 Subpart B:2014

Date of sample receipt: January 25, 2016

Date of Test: January 26-27, 2016

Date of report issue: January 28, 2016

PASS * **Test Result:**

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	January 28, 2016	Original

Prepared By:	Edward.Pan	Date:	January 28, 2016
	Project Engineer		
Check By:	hank. yan	Date:	January 28, 2016
	Reviewer		

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3	COI	NTENTS	3
4	TES	ST SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	NERAL INFORMATION	5
6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	CLIENT INFORMATION. GENERAL DESCRIPTION OF EUT TEST MODE. TEST FACILITY. TEST LOCATION. DESCRIPTION OF SUPPORT UNITS. DEVIATION FROM STANDARDS. ABNORMALITIES FROM STANDARD CONDITIONS. OTHER INFORMATION REQUESTED BY THE CUSTOMER	5 6 6 6
7	TES	ST RESULTS AND MEASUREMENT DATA	8
	7.1 7.2	CONDUCTED EMISSIONS	11
8	TES	ST SETUP PHOTO	17
9	EUT	CONSTRUCTIONAL DETAILS	18

4 Test Summary

Test Item	Section in CFR 47	Result
Conducted Emission	Part15.107	PASS
Radiated Emissions	Part15.109	PASS

PASS: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%. Remark: Test according to ANSI C63.4:2014

5 General Information

5.1 Client Information

Applicant:	Shenzhen Micro Star Electronic Technology Co., Ltd.
Address of Applicant:	4F, Block C, NO. 56, FengTang Road, Fuyong, Bao'an district, Shenzhen, P.R.C.
Manufacturer/ Factory:	Shenzhen Micro Star Electronic Technology Co., Ltd.
Address of	4F, Block C, NO. 56, FengTang Road, Fuyong, Bao'an district, Shenzhen, P.R.C.
Manufacture/ Factor:	

5.2 General Description of EUT

Product Name:	SPORT DV	
Model No.:	SDV-105, SDV-106, SDV-107, SDV-108, SDV-109	
Power Supply:	Charger:	
	Input: AC 100-240V, 50/60Hz	
	Output: DC 5.0V±50%, 1000±50mA	
	Or	
	DC 3.7V 900mAh Li-ion Battery	

5.3 Test mode

Test mode:	
PC mode	Keep the EUT in exchange data status with PC by USB line mode
REC mode	Keep the EUT in video record mode
HDMI mode	Keep the EUT in video playing and HDMI output mode
Playing mode	Keep the EUT in video playing mode

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 5 of 18

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC Approval
Apple	PC	A1278	C1MN99ERDTY3	FCC DOC
DELL	KEYBOARD	SK-8115	N/A	FCC DOC
DELL	MOUSE	N/A	N/A	FCC DOC

5.7 Deviation from Standards

Biconical, log.per. antenna and horn antenna were used instead of dipole antenna. Semi-anechoic Chamber was used as alternation of open air test sites, and all test suites were performed with radiated method in it.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Radi	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.0(L)*6.0(W)* 6.0(H)	GTS250	July. 03 2015	July. 02 2020	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	ESU EMI Test Receiver	R&S	ESU26	GTS203	July. 03 2015	July. 02 2016	
4	BiConiLog Antenna	SCHWARZBECK	VULB9163	GTS214	July. 06 2015	July. 05 2016	
5	Double -ridged waveguide horn	SCHWARZBECK	9120D	GTS208	July. 06 2015	July. 05 2016	
6	RF Amplifier	HP	8347A	GTS204	July. 03 2015	July. 02 2016	
7	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	July. 03 2015	July. 02 2016	
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
9	Coaxial cable	GTS	N/A	GTS210	July. 05 2015	July. 04 2016	
10	Coaxial Cable	GTS	N/A	GTS211	July. 05 2015	July. 04 2016	
11	Thermo meter	N/A	N/A	GTS256	July. 06 2015	July. 05 2016	

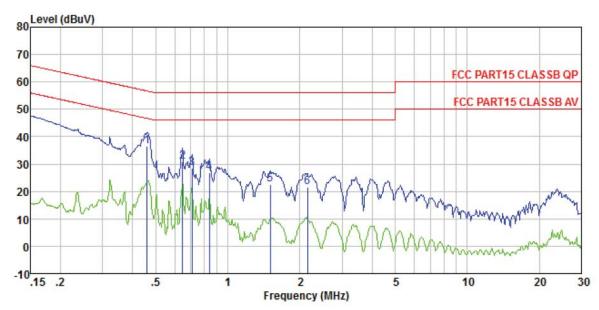
Conc	Conducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May. 16 2014	May. 15 2019
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April. 29 2015	April. 29 2016
3	Pulse Limiter	R&S	ESH3-Z2	GTS224	July. 03 2015	July. 02 2016
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	July. 03 2015	July. 02 2016
5	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	July. 03 2015	July. 02 2016
6	Coaxial Cable	GTS	N/A	GTS227	July. 05 2015	July. 04 2016
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Thermo meter	KTJ	TA328	GTS233	July. 07 2015	July. 06 2016

Gen	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Barometer	ChangChun	DYM3	GTS257	July 07 2015	July 06 2016	

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7 Test Results and Measurement Data

7.1 Conducted Emissions


Test Requirement:	FCC Part15 B Section 15.107						
Test Method:	ANSI C63.4:2014						
Test Frequency Range:	150KHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto					
Limit:	[[[]] [] [] [] [] [] [] [] [Limit (d	lBuV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30 * Decreases with the logarithm	60	50				
Test setup:	_	Tor the frequency.					
rest setup.	Reference Plane		•				
	Remark E.U.T Equipment Under Test LISN Filter AC power Remark E.U.T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m						
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and 						
	photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement.						
Test Instruments:	Refer to section 6 for details						
Test mode:	Refer to section 5.3 for details	·					
Test results:	Pass						

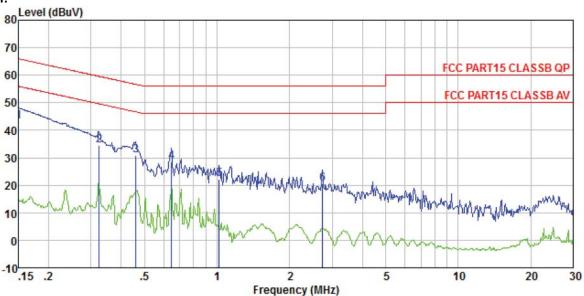
Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement Data

Line:

Condition : FCC PART15 CLASSB QP LISN-2013 LINE

Job No. : 0189 Test mode : PC mode Test Engineer: Arslan


	Freq	Read Level	Level	LISN Factor	Cable Loss		Over Limit	Remark
8	MHz	dBuV	dBuV	dB	dB	dBuV	dB	-
1 2 3 4 5 6	0.461 0.647 0.708 0.839 1.503 2.155	22.26		0.12 0.13 0.14 0.14 0.12 0.12	0.11 0.13 0.13 0.13 0.14 0.15	56.00 56.00 56.00 56.00	-20. 15 -25. 14 -27. 51 -29. 09 -33. 48 -34. 43	QP QP QP QP

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 9 of 18

Neutral:

Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL

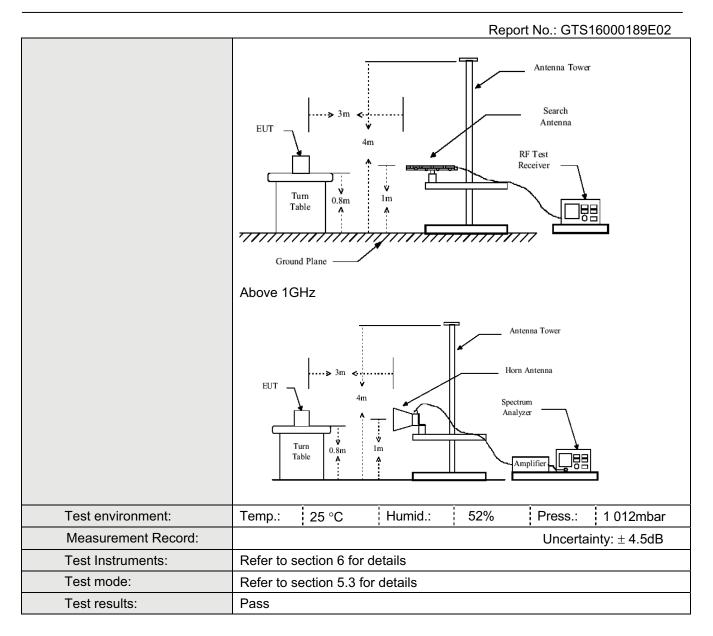
Job No. : 0189 Test mode : PC mode Test Engineer: Arslan

	Freq	Read Level	Level	LISN Factor	Cable Loss		Over Limit	Remark
	MHz	dBuV	dBuV	dB	₫B	dBuV	——dB	10.
1	0.150 0.325	42.84 34.19	43.03 34.35	0.07	0.12 0.10		-22.97 -25.22	
2 3 4	0. 461 0. 647	30.58	30. 75 28. 49	0.06 0.07	0.11	56.67	-25. 92 -27. 51	QP
5 6	1.021 2.736	22.16 20.15	22.36 20.40		0.13	56.00		QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960


7.2 Radiated Emission

 Naulateu Lillission							
Test Requirement:	FCC Part15 B Section 15.109						
Test Method:	ANSI C63.4:2014						
Test Frequency Range:	30MHz to 6GHz	<u>z</u>					
Test site:	Measurement D	Distance: 3m	(Semi-Anecho	ic Chambe	r)		
Receiver setup:							
	Frequency Detector 30MHz- Quasi-peak 1GHz Above 1GHz		RBW k 120kHz	VBW 300kHz	Remark Quasi-peak Value		
			IZOKI IZ	JOOKI IZ	Quasi-peak value		
			1MHz	3MHz	Peak Value		
	7.5010 10112	Peak	1MHz	10Hz	Average Value		
Limit:					1		
	Frequency		Limit (dBuV		Remark		
	30MHz-88MHz		40.0		Quasi-peak Value		
	88MHz-216MHz		43.5		Quasi-peak Value		
	216MHz-960MHz		46.0		Quasi-peak Value		
	960MHz-1GHz		54.0		Quasi-peak Value		
	Above 1GHz		54.00		Average Value		
	7,5500 15112			0	Peak Value		
Test Procedure:	The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.						
	2. The EUT wa antenna, whi tower.				nce-receiving le-height antenna		
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.						
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.						
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.						
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.						
Test setup:	Below 1GHz						

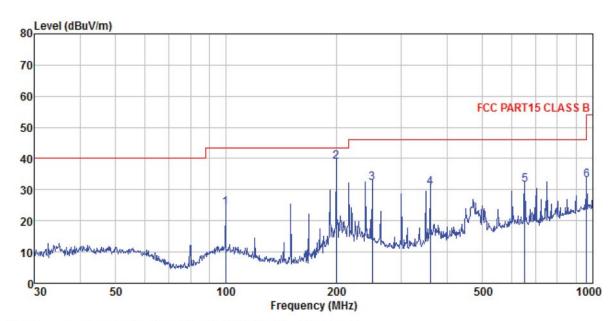
Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 11 of 18

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

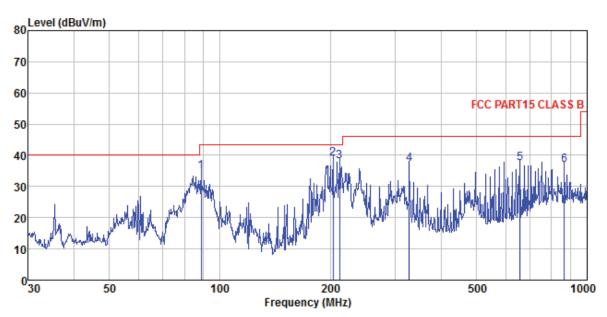

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement Data

Below 1GHz

Horizontal:

Condition : FCC PART15 CLASS B VULB9163-2013M HORIZONTAL


Job No. : 0189
Test Mode : PC mode
Test Engineer: Chen

est	Engineer:		Ant enna	Cable	Preamn		Limit	Over	
	Freq		Factor					A CONTRACTOR	Remark
	MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1	99.878	37.47	15.16	1.19	29.70	24.12	43.50	-19.38	QP
2	199.986	53.64	12.57	1.84	29.20	38.85	43.50	-4.65	QP
3	250.301	45.50	14.07	2.12	29.65	32.04	46.00	-13.96	QP
4	360.448	41.35	16.43	2.67	29.69	30.76	46.00	-15.24	QP
5	651.942	36.23	20.65	3.92	29.25	31.55	46.00	-14.45	QP
6	962.162	33.60	23.49	5.09	29.10	33.08	54.00	-20.92	QP

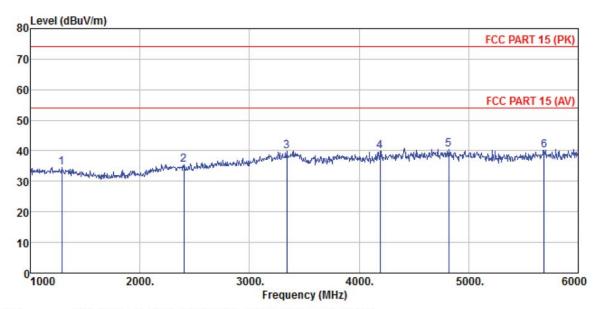
Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Vertical:

Condition : FCC PART15 CLASS B VULB9163-2013M VERTICAL

Job No. : 0189
Test Mode : PC mode
Test Engineer: Chen

THETHOUT.	CHELL							
	ReadAntenna		Cable	Preamp		Limit	Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-								
MHz	dBu∀	dB/m	dB	d₿	dBuV/m	dBuV/m	₫B	
		_,						
88.964	49.83	13.61	1.10	29.75	34.79	43.50	-8.71	QP
203.523	53.62							
								•
327.887	48.72	15.66						
			3.94					-
	Freq MHz 88.964 203.523 211.527 327.887 656.530	Freq Level MHz dBuV 88.964 49.83 203.523 53.62 211.527 52.67 327.887 48.72 656.530 42.09	ReadAntenna Freq Level Factor MHz dBuV dB/m 88.964 49.83 13.61 203.523 53.62 12.67 211.527 52.67 12.93 327.887 48.72 15.66 656.530 42.09 20.66	ReadAntenna Cable Freq Level Factor Loss MHz dBuV dB/m dB 88.964 49.83 13.61 1.10 203.523 53.62 12.67 1.86 211.527 52.67 12.93 1.91 327.887 48.72 15.66 2.51 656.530 42.09 20.66 3.94	ReadAntenna Cable Preamp Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 88.964 49.83 13.61 1.10 29.75 203.523 53.62 12.67 1.86 29.23 211.527 52.67 12.93 1.91 29.31 327.887 48.72 15.66 2.51 29.84 656.530 42.09 20.66 3.94 29.24	ReadAntenna Cable Preamp Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 88.964 49.83 13.61 1.10 29.75 34.79 203.523 53.62 12.67 1.86 29.23 38.92 211.527 52.67 12.93 1.91 29.31 38.20 327.887 48.72 15.66 2.51 29.84 37.05 656.530 42.09 20.66 3.94 29.24 37.45	ReadAntenna Cable Preamp Limit Level Factor Level Line Level Factor Level Factor Level Line Level Factor Level	ReadAntenna Cable Preamp Limit Over Level Factor Loss Factor Level Line Limit

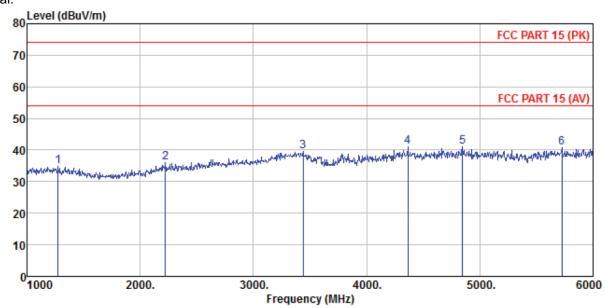

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 14 of 18

Above 1GHz

Horizontal:

Condition : FCC PART 15 (PK) BBHA9120D ANT (>1GHZ) HORIZONTAL


Job No. : 0189 Test Mode : PC mode Test Engineer: He

ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit Remark MHz dB dBuV/m dBuV/m dBuV dB/m ďB 25.60 27.58 74.00 -39.39 Peak 74.00 -38.45 Peak 1285.000 37.72 33.24 34.01 34.61 35.55 4.53 2400.000 36.59 5.39 3 74.00 -34.17 Peak 3340.000 37.69 28.43 6.64 32.93 39.83 74.00 -34.06 Peak 4 4190.000 33.67 30.18 8.05 31.96 39.94 4820.000 32.13 31.79 8.61 32.10 40.43 74.00 -33.57 Peak 5690.000 30.32 32.47 9.79 32.31 40.27 74.00 -33.73 Peak

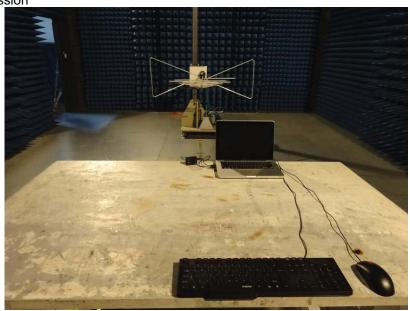
Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Vertical:

Condition : FCC PART 15 (PK) BBHA9120D ANT(>1GHZ) VERTICAL

Job No. : 0189 Test Mode : PC mode Test Engineer: He

~~	TILE TILOUT :	***							
	Freq		Antenna Factor					Over Limit	Remark
	MHz	dBu∜	dB/m	dB	dB	$\overline{dB}\overline{u}\overline{V}/\overline{m}$	dBuV/m	dB	
1 2	1275.000 2225.000				33.21 34.21				
3	3440.000				32.81				
4 5	4365.000 4845.000				31.87 32.11				
6	5725.000	30.77	32.53	9.83	32.29	40.84	74.00	-33.16	Peak


Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 16 of 18

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No.: GTS16000189E01

-----End-----

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 18 of 18