| This report concerns (ch                                                           | eck one): ⊠Original Grant                                     |
|------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Project No.: 1501Equipment: PILLModel Name: PA14Applicant: HelloAddress: 1660State | 436<br>o Inc.<br>), 17th St., San Francisco, CA 94107, United |
| Date of Receipt: Jan.Date of Test: Jan.Issued Date: Jan.Tested by: BTL             | 14, 2015 ~ Jan. 28, 2015<br>29, 2015                          |
| Testing Engineer                                                                   | : Rush Kao<br>(Rush Kao)                                      |
| Technical Manager                                                                  | :(Jeff Yang)                                                  |
| Authorized Signatory                                                               | :(AndyChiu)                                                   |
|                                                                                    | LINC.                                                         |

## Declaration

**BTL** represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**) of **R.O.C**, or National Institute of Standards and Technology (**NIST**) of **U.S.A**.

**BTL**'s reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

**BTL**'s reports must not be used by the client to claim product endorsement by the authorities or any agency of the Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **BTL-self**, extracts from the test report shall not be reproduced except in full with **BTL**'s authorized written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO Guide 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

#### Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

| Table of Contents                                                  | Page        |
|--------------------------------------------------------------------|-------------|
| 1. CERTIFICATION                                                   | 6           |
| 2 . SUMMARY OF TEST RESULTS                                        | 7           |
| 2.1 TEST FACILITY                                                  | 8           |
| 2.2 MEASUREMENT UNCERTAINTY                                        | 8           |
| 3 . GENERAL INFORMATION                                            | 9           |
| 3.1 GENERAL DESCRIPTION OF EUT                                     | 9           |
| 3.2 DESCRIPTION OF TEST MODES                                      | 11          |
| 3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING                   | 11          |
| 3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTE               | M TESTED 12 |
| 3.5 DESCRIPTION OF SUPPORT UNITS                                   | 12          |
| 4 . EMC EMISSION TEST                                              | 13          |
| 4.1 CONDUCTED EMISSION MEASUREMENT                                 | 13          |
| 4.1.1 POWER LINE CONDUCTED EMISSION LIMITS<br>4.1.2 TEST PROCEDURE | 13<br>13    |
| 4.1.3 DEVIATION FROM TEST STANDARD                                 | 13          |
| 4.1.4 TEST SETUP                                                   | 14          |
| 4.1.5 EUT OPERATING CONDITIONS<br>4.1.6 EUT TEST CONDITIONS        | 14<br>14    |
| 4.1.7 TEST RESULTS                                                 | 14          |
| 4.2 RADIATED EMISSION MEASUREMENT                                  | 15          |
| 4.2.1 RADIATED EMISSION LIMITS<br>4.2.2 TEST PROCEDURE             | 15<br>16    |
| 4.2.2 TEST PROCEDURE<br>4.2.3 DEVIATION FROM TEST STANDARD         | 16          |
| 4.2.4 TEST SETUP                                                   | 17          |
| 4.2.5 EUT OPERATING CONDITIONS                                     | 18          |
| 4.2.6 EUT TEST CONDITIONS<br>4.2.7 TEST RESULTS (9KHZ TO 30MHZ)    | 18<br>18    |
| 4.2.8 TEST RESULTS (BETWEEN 30MHZ TO 1000 MHZ)                     | 19          |
| 4.2.9 TEST RESULTS (ABOVE 1000 MHZ)                                | 19          |
| 5 . BANDWIDTH TEST                                                 | 20          |
| 5.1 APPLIED PROCEDURES / LIMIT                                     | 20          |
| 5.1.1 TEST PROCEDURE<br>5.1.2 DEVIATION FROM STANDARD              | 20<br>20    |
| 5.1.3 TEST SETUP                                                   | 20          |
| 5.1.4 EUT OPERATION CONDITIONS                                     | 20          |
| 5.1.5 EUT TEST CONDITIONS<br>5.1.6 TEST RESULTS                    | 20<br>20    |
|                                                                    |             |

# ЗĨL

| Table of Contents                                       | Page     |
|---------------------------------------------------------|----------|
| 6 . MAXIMUM OUTPUT POWER TEST                           | 21       |
| 6.1 APPLIED PROCEDURES / LIMIT                          | 21       |
| 6.1.1 TEST PROCEDURE                                    | 21       |
| 6.1.2 DEVIATION FROM STANDARD                           | 21       |
| 6.1.3 TEST SETUP<br>6.1.4 EUT OPERATION CONDITIONS      | 21<br>21 |
| 6.1.5 EUT TEST CONDITIONS                               | 21       |
| 6.1.6 TEST RESULTS                                      | 21       |
| 7 . ANTENNA CONDUCTED SPURIOUS EMISSION                 | 22       |
| 7.1 APPLIED PROCEDURES / LIMIT                          | 22       |
| 7.1.1 TEST PROCEDURE                                    | 22       |
| 7.1.2 DEVIATION FROM STANDARD<br>7.1.3 TEST SETUP       | 22<br>22 |
| 7.1.3 TEST SETUP<br>7.1.4 EUT OPERATION CONDITIONS      | 22       |
| 7.1.5 EUT OPERATION CONDITIONS                          | 22       |
| 7.1.6 TEST RESULTS                                      | 22       |
| 8 . POWER SPECTRAL DENSITY TEST                         | 23       |
| 8.1 APPLIED PROCEDURES / LIMIT                          | 23       |
| 8.1.1 TEST PROCEDURE                                    | 23       |
| 8.1.2 DEVIATION FROM STANDARD<br>8.1.3 TEST SETUP       | 23<br>23 |
| 8.1.4 EUT OPERATION CONDITIONS                          | 23       |
| 8.1.5 EUT TEST CONDITIONS                               | 23       |
| 8.1.6 TEST RESULTS                                      | 23       |
| 9 . MEASUREMENT INSTRUMENTS LIST                        | 24       |
| ATTACHMENT A - CONDUCTED EMISSION                       | 25       |
| ATTACHMENT B - RADIATED EMISSION (9KHZ-30MHZ)           | 26       |
| ATTACHMENT C - RADIATED EMISSION BETWEEN 30MHZ AND 1000 | MHZ) 28  |
| ATTACHMENT D - RADIATED EMISSION (ABOVE 1000MHZ)        | 31       |
| ATTACHMENT E - BANDWIDTH                                | 44       |
| ATTACHMENT F - MAXIMUM OUTPUT POWER TEST                | 47       |
| ATTACHMENT G - ANTENNA CONDUCTED SPURIOUS EMISSION      | 48       |
| ATTACHMENT H - POWER SPECTRAL DENSITY TEST              | 52       |

## **REPORT ISSUED HISTORY**

| Issued No.         | Description     | Issued Date   |
|--------------------|-----------------|---------------|
| BTL-FCCP-2-1501115 | Original Issue. | Jan. 29, 2015 |

## **1. CERTIFICATION**

| Equipment :<br>Brand Name : |                                                                            |
|-----------------------------|----------------------------------------------------------------------------|
| Model Name :                |                                                                            |
|                             |                                                                            |
| Applicant :                 |                                                                            |
| Manufacturer :              |                                                                            |
| Address .                   | 10560, Dr. Martin Luther King Jr. St. N., St. Petersburg, FL 33716, United |
|                             | States                                                                     |
| Factory :                   | Jabil Circuit (GuangZhou) LTD.                                             |
| Address                     | 128, JunCheng Road, Eastern Zone, Guangzhou Economic and Technological     |
|                             | Development District, 510530 Guangdong ProvInce, PRC                       |
| Date of Test :              | Jan. 14, 2015 ~ Jan. 28, 2015                                              |
| Test Sample :               | ENGINEERING SAMPLE                                                         |
| Standard(s) :               | FCC Part15, Subpart C :2013 (15.247) / ANSI C63.4-2009 /                   |
|                             | FCC KDB Publication No. 558074 D01 DTS Meas Guidance v03r02                |

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FCCP-2-1501115) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

## 2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

## Applied Standard(s): FCC Part15 (15.247) , Subpart C

| Standard(s) Section | Test Item                              | Judgment | Remark |
|---------------------|----------------------------------------|----------|--------|
| 15.207              | Conducted Emission                     | N/A      |        |
| 15.247(d)           | Antenna conducted<br>Spurious Emission | PASS     |        |
| 15.247(a)(2)        | 6dB Bandwidth                          | PASS     |        |
| 15.247(b)(3)        | Peak Output Power                      | PASS     |        |
| 15.247(e)           | Power Spectral Density                 | PASS     |        |
| 15.203              | Antenna Requirement                    | PASS     |        |
| 15.209/15.205       | Transmitter Radiated<br>Emissions      | PASS     |        |

## NOTE:

(1)" N/A" denotes test is not applicable to this device.

(2) The test follows FCC KDB Publication No. 558074 D01 DTS Meas Guidance v03r02 (Measurement Guidelines of DTS)

## 2.1 TEST FACILITY

#### Radiated emission Test (Below 1 GHz):

**CB08:** (FCC RN: 614388; FCC DN: TW1054; IC Assigned Code: 4428A-1) 1F., No. 61, Ln. 77, Sing-ai Rd., Neihu Dist., Taipei City 114, Taiwan (R.O.C.)

Radiated emission Test (Above 1 GHz):

CB08: (VCCI RN: G-91; FCC RN: 614388; FCC DN: TW1054; IC Assigned Code: 4428A-1)

1F., No. 61, Ln. 77, Sing-ai Rd., Neihu Dist., Taipei City 114, Taiwan (R.O.C.)

## 2.2 MEASUREMENT UNCERTAINTY

# The measurement uncertainty is not specified by FCC rules and Canada Industry for reference only.

The reported uncertainty of measurement  $\mathbf{y} \pm \mathbf{U}$ , where expended uncertainty  $\mathbf{U}$  is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95**%.

The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2.

| Α. | Radiated | emission test: |  |
|----|----------|----------------|--|
|    |          |                |  |

| Test Site | Item         | Measurement Frequency Range |               | Uncertainty | NOTE |
|-----------|--------------|-----------------------------|---------------|-------------|------|
|           |              |                             | 30 - 200MHz   | 3.35 dB     |      |
|           |              | Horizontal                  | 200 - 1000MHz | 3.11 dB     |      |
|           | Radiated     | Polarization                | 1 - 18GHz     | 3.97 dB     |      |
| CB08      | emission at  |                             | 18 - 40GHz    | 4.01 dB     |      |
| CDUO      | 3m           |                             | 30 - 200MHz   | 3.22 dB     |      |
|           | 511          | Vertical                    | 200 - 1000MHz | 3.24 dB     |      |
|           | Polarization | 1 - 18GHz                   | 4.05 dB       |             |      |
|           |              |                             | 18 - 40GHz    | 4.04 dB     |      |

Our calculated Measurement Instrumentation Uncertainty is shown in the tables above. These are our  $U_{lab}$  values in CISPR 16-4-2 terminology.

Since Table 1 of CISPR 16-4-2 has values of measurement instrumentation uncertainty, called  $U_{CISPR}$ , as follows:

Conducted Disturbance (mains port) – 150 kHz – 30 MHz : 3.6 dB

Radiated Disturbance (electric field strength on an open area test site or alternative test site) - 30 MHz - 1000 MHz : 5.2 dB

It can be seen that our  $U_{lab}$  values are smaller than  $U_{CISPR}$ .

## **3. GENERAL INFORMATION**

## 3.1 GENERAL DESCRIPTION OF EUT

| Equipment           | PILL                    |                    |  |
|---------------------|-------------------------|--------------------|--|
| Brand Name          | Hello                   |                    |  |
| Model Name          | PA1436                  |                    |  |
| Model Difference    | N/A                     |                    |  |
| Product Description | Operation Frequency     | 2402~2480 MHz      |  |
|                     | Modulation Technology   | GFSK(1Mbps)        |  |
|                     | Bit Rate of Transmitter |                    |  |
|                     | Output Power (Max.)     | 3.54 dBm (0.0023W) |  |
| Power Source        | Supplier from battery.  |                    |  |
| Power Rating        | DC 3V (CR 2025)         |                    |  |

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

|         | Channel List       |         |                    |  |  |
|---------|--------------------|---------|--------------------|--|--|
| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |  |  |
| 00      | 2402               | 20      | 2442               |  |  |
| 01      | 2404               | 21      | 2444               |  |  |
| 02      | 2406               | 22      | 2446               |  |  |
| 03      | 2408               | 23      | 2448               |  |  |
| 04      | 2410               | 24      | 2450               |  |  |
| 05      | 2412               | 25      | 2452               |  |  |
| 06      | 2414               | 26      | 2454               |  |  |
| 07      | 2416               | 27      | 2456               |  |  |
| 08      | 2418               | 28      | 2458               |  |  |
| 09      | 2420               | 29      | 2460               |  |  |
| 10      | 2422               | 30      | 2462               |  |  |
| 11      | 2424               | 31      | 2464               |  |  |
| 12      | 2426               | 32      | 2466               |  |  |
| 13      | 2428               | 33      | 2468               |  |  |
| 14      | 2430               | 34      | 2470               |  |  |
| 15      | 2432               | 35      | 2472               |  |  |
| 16      | 2434               | 36      | 2474               |  |  |
| 17      | 2436               | 37      | 2476               |  |  |
| 18      | 2438               | 38      | 2478               |  |  |
| 19      | 2440               | 39      | 2480               |  |  |

## 3. Table for Filed Antenna

| Ant. | Brand | Model Name | Antenna Type | Connector | Gain (dBi) | Note |
|------|-------|------------|--------------|-----------|------------|------|
| 1    | N/A   | N/A        | PCB          | N/A       | -4.54      |      |

## 3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

| Pretest Mode | Description      |  |
|--------------|------------------|--|
| Mode 1       | TX Mode NOTE (1) |  |

The EUT system operated these modes were found to be the worst case during the pre-scanning test as following:

| For Radiated Test           |                  |  |
|-----------------------------|------------------|--|
| Final Test Mode Description |                  |  |
| Mode 1                      | TX Mode NOTE (1) |  |

Note:

(1) The measurements are performed at the high, middle, low available channels.

#### 3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN

| Test software version | N/A                      |     |     |  |
|-----------------------|--------------------------|-----|-----|--|
| Frequency             | 2402MHz 2440 MHz 2480MHz |     |     |  |
| BT LE                 | DEF                      | DEF | DEF |  |

# 3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED



## **3.5 DESCRIPTION OF SUPPORT UNITS**

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment | Mfr/Brand | Model/Type No. | FCC ID/IC | Series No. | Note |
|------|-----------|-----------|----------------|-----------|------------|------|
| -    | -         | -         | -              | -         | -          | -    |

| Item | Shielded Type | Ferrite Core | Length | Note |
|------|---------------|--------------|--------|------|
| -    | -             | -            | -      | -    |

Note:

(1) For detachable type I/O cable should be specified the length in m in  $\[$  Length  $\]$  column.

## 4. EMC EMISSION TEST

## 4.1 CONDUCTED EMISSION MEASUREMENT

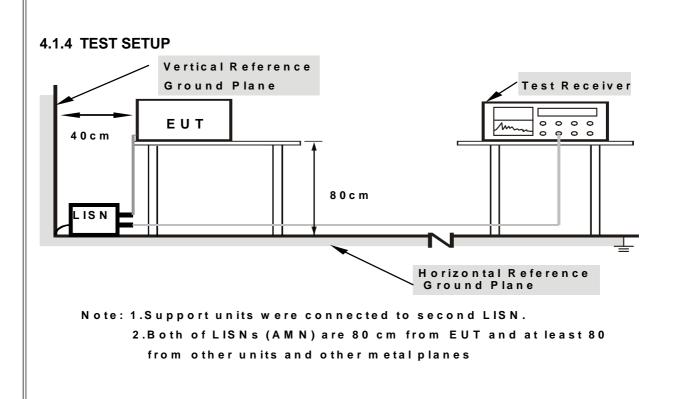
## 4.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

|                             | Conducted Limit (dBµV) |           |  |
|-----------------------------|------------------------|-----------|--|
| Frequency of Emission (MHz) | Quasi-peak             | Average   |  |
| 0.15 -0.5                   | 66 to 56*              | 56 to 46* |  |
| 0.50 -5.0                   | 56                     | 46        |  |
| 5.0 -30.0                   | 60                     | 50        |  |

Note:

- (1) The limit of " \* " decreases with the logarithm of the frequency
- (2) The test result calculated as following:
  - Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

#### The following table is the setting of the receiver


| Receiver Parameters | Setting  |
|---------------------|----------|
| Attenuation         | 10 dB    |
| Start Frequency     | 0.15 MHz |
| Stop Frequency      | 30 MHz   |
| IF Bandwidth        | 9 kHz    |

## 4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- $_{\mbox{e.}}$  For the actual test configuration, please refer to the related Item –EUT Test Photos.

## 4.1.3 DEVIATION FROM TEST STANDARD

No deviation



## 4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

## 4.1.6 EUT TEST CONDITIONS

Temperature: N/A°C Relative Humidity: N/A % Test Voltage: N/A

#### 4.1.7 TEST RESULTS Please refer to the Attachment A.

Remark:

- (1) All readings are QP Mode value unless otherwise stated AVG in column of Note I. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform. In this case, a "\*" marked in AVG Mode column of Interference Voltage Measured.
- (2) Measuring frequency range from 150KHz to 30MHz.
- (3) " N/A" denotes test is not applicable to this device.

## 4.2 RADIATED EMISSION MEASUREMENT

#### 4.2.1 RADIATED EMISSION LIMITS (Frequency Range 9KHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Frequencies | Field Strength     | Measurement Distance |
|-------------|--------------------|----------------------|
| (MHz)       | (microvolts/meter) | (meters)             |
| 0.009~0.490 | 2400/F(KHz)        | 300                  |
| 0.490~1.705 | 24000/F(KHz)       | 30                   |
| 1.705~30.0  | 30                 | 30                   |
| 30~88       | 100                | 3                    |
| 88~216      | 150                | 3                    |
| 216~960     | 200                | 3                    |
| 960~1000    | 500                | 3                    |

Section 15.33 Frequency range of radiated measurements.

Unless otherwise noted in the specific rule section under which the equipment operates for an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:

(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

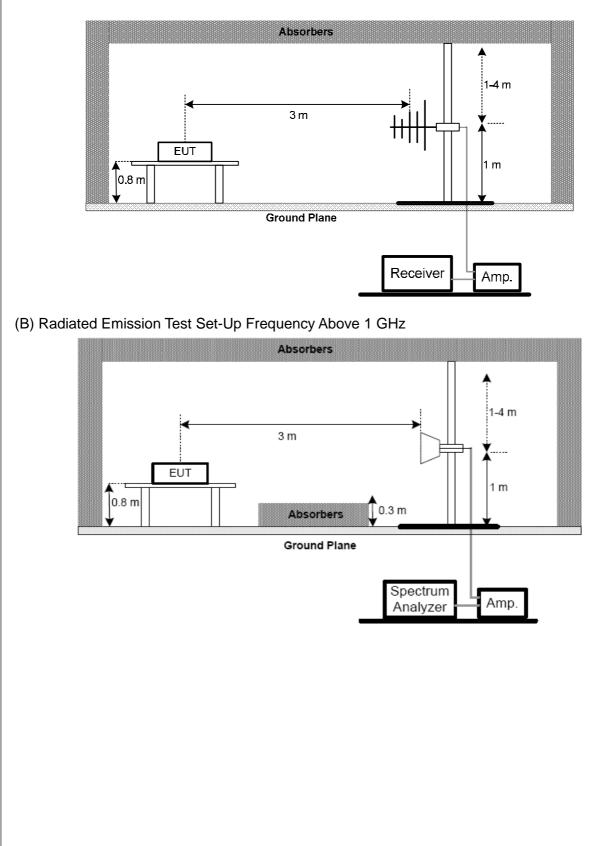
(3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules

(4) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a)(1)-(a)(3) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this Section, whichever is the higher frequency range of investigation.

| Spectrum Parameter            | Setting                                        |
|-------------------------------|------------------------------------------------|
| Attenuation                   | Auto                                           |
| Start Frequency               | 1000 MHz                                       |
| Stop Frequency                | 10th carrier harmonic                          |
| RBW / VBW                     |                                                |
| (Emission in restricted band) | 1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average |

| Receiver Parameter     | Setting                           |
|------------------------|-----------------------------------|
| Attenuation            | Auto                              |
| Start ~ Stop Frequency | 9kHz~90kHz for PK/AVG detector    |
| Start ~ Stop Frequency | 90kHz~110kHz for QP detector      |
| Start ~ Stop Frequency | 110kHz~490kHz for PK/AVG detector |
| Start ~ Stop Frequency | 490kHz~30MHz for QP detector      |
| Start ~ Stop Frequency | 30MHz~1000MHz for QP detector     |

## 4.2.2 TEST PROCEDURE


- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

## 4.2.3 DEVIATION FROM TEST STANDARD

No deviation

## 4.2.4 TEST SETUP

## (A) Radiated Emission Test Set-Up Frequency Below 1 GHz



# **3**TL

## 4.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **4.1.5** Unless otherwise a special operating condition is specified in the follows during the testing.

## 4.2.6 EUT TEST CONDITIONS

Temperature: 20°C Relative Humidity: 65% **Test Voltage**: DC 3V

## 4.2.7TEST RESULTS (9KHZ TO 30MHZ) Please refer to the Attachment B

Remark:

- (1) The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.
- (2) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (3) Limit line = specific limits (dBuV) + distance extrapolation factor.

# 4.2.8TEST RESULTS (BETWEEN 30MHZ TO 1000 MHZ) Please refer to the Attachment C.

Remark:

- (1) Reading in which marked as QP or Peak means measurements by using are Quasi-Peak Mode or Peak Mode with Detector BW=120KHz; SPA setting in RBW=120KHz, VBW =120KHz, Swp. Time = 0.3 sec./MHz.
- (2) All readings are Peak unless otherwise stated QP in column of 『Note』. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (3) Measuring frequency range from 30MHz to 1000MHz.
- (4) If the peak scan value lower limit more than 20dB, then this signal data does not show in table.

## 4.2.9TEST RESULTS (ABOVE 1000 MHZ)

## Please refer to the Attachment D.

Remark:

- (1) All readings are Peak unless otherwise stated QP in column of "Note ... Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (3) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (4) EUT Orthogonal Axis:
  - "X" denotes Laid on Table ; "Y" denotes Vertical Stand ; "Z" denotes Side Stand
- (5) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna
- (6) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

## 5. BANDWIDTH TEST

## 5.1 Applied procedures / limit

|              | FCC Part15 (15.247), Subpart C |                              |                          |        |  |
|--------------|--------------------------------|------------------------------|--------------------------|--------|--|
| Section      | Test Item                      | Limit                        | Frequency Range<br>(MHz) | Result |  |
| 15.247(a)(2) | Bandwidth                      | >= 500KHz<br>(6dB bandwidth) | 2400-2483.5              | PASS   |  |

#### 5.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

## 5.1.2 DEVIATION FROM STANDARD

No deviation.

## 5.1.3 TEST SETUP



## 5.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 Unless otherwise a special operating condition is specified in the follows during the testing.

## 5.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3V

5.1.6 TEST RESULTS Please refer to the Attachment E.

## 6. MAXIMUM OUTPUT POWER TEST

## 6.1 Applied procedures / limit

| FCC Part15 (15.247) , Subpart C |                         |                 |                          |        |
|---------------------------------|-------------------------|-----------------|--------------------------|--------|
| Section                         | Test Item               | Limit           | Frequency Range<br>(MHz) | Result |
| 15.247(b)(3)                    | Maximum<br>Output Power | 1 watt or 30dBm | 2400-2483.5              | PASS   |

## 6.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
- b. The maximum peak conducted output power was performed in accordance with method 9.1.2 of FCC KDB 558074 D01 DTS Meas Guidance v03r02.

#### 6.1.2 DEVIATION FROM STANDARD

No deviation.

## 6.1.3 TEST SETUP



## 6.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 Unless otherwise a special operating condition is specified in the follows during the testing.

Transmit output power was measured while the host equipment supply voltage was varied from 85 % to 115 % of the nominal rated supply voltage. No change in transmit output power was observed.

## 6.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3V

6.1.6 TEST RESULTS Please refer to the Attachment F.

## 7. ANTENNA CONDUCTED SPURIOUS EMISSION

## 7.1 Applied procedures / limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

## 7.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=300KHz, Sweep time = 10 ms.

## 7.1.2 DEVIATION FROM STANDARD

No deviation.

## 7.1.3 TEST SETUP



## 7.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 Unless otherwise a special operating condition is specified in the follows during the testing.

## 7.1.5 EUT OPERATION CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3V

7.1.6 TEST RESULTS Please refer to the Attachment G.

## 8. POWER SPECTRAL DENSITY TEST

## 8.1 Applied procedures / limit

| FCC Part15 (15.247), Subpart C |                        |                        |                          |        |  |
|--------------------------------|------------------------|------------------------|--------------------------|--------|--|
| Section                        | Test Item              | Limit                  | Frequency Range<br>(MHz) | Result |  |
| 15.247(e)                      | Power Spectral Density | 8 dBm<br>(in any 3KHz) | 2400-2483.5              | PASS   |  |

## 8.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=3KHz, VBW=10 KHz, Sweep time = auto.

#### 8.1.2 DEVIATION FROM STANDARD

No deviation.

## 8.1.3 TEST SETUP



## 8.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 Unless otherwise a special operating condition is specified in the follows during the testing.

## 8.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3V

8.1.6 TEST RESULTS Please refer to the Attachment H.

## 9. MEASUREMENT INSTRUMENTS LIST

|      | Radiated Emission Measurement |                    |                     |            |                  |  |  |  |  |  |
|------|-------------------------------|--------------------|---------------------|------------|------------------|--|--|--|--|--|
| Item | Kind of Equipment             | Manufacturer       | nufacturer Type No. |            | Calibrated until |  |  |  |  |  |
| 1    | Spectrum Analyzer             | R&S                | FSP-40              | 100129     | Oct. 13, 2015    |  |  |  |  |  |
| 2    | Horn Antenna                  | Schwarzbeck        | BBHA 9120           | D-325      | Jun. 14, 2015    |  |  |  |  |  |
| 3    | Microwave Agilent             |                    | 8449B               | 3008A01714 | Apr. 15, 2015    |  |  |  |  |  |
| 4    | Microflex Cable               | Harbour industries | 27478LL142          | 1m         | May. 12, 2015    |  |  |  |  |  |
| 5    | Microflex Cable               | EMC                | S104-SMA            | 8m         | May. 14, 2015    |  |  |  |  |  |
| 6    | Microflex Cable               | Harbour industries | 27478LL142 3m       |            | May. 12, 2015    |  |  |  |  |  |
| 7    | Test Cable                    | LMR                | LMR-400             | 12m        | May. 13, 2015    |  |  |  |  |  |
| 8    | Test Cable                    | LMR                | LMR-400             | 3m         | May. 13, 2015    |  |  |  |  |  |
| 9    | Pre-Amplifier                 | Anritsu            | MH648A              | M92649     | Jun. 17, 2015    |  |  |  |  |  |
| 10   | Log-Bicon Antenna Schwarzbeck |                    | VULB9168-35<br>2    | 9168-352   | July. 10, 2015   |  |  |  |  |  |
| 11   | Loop Antenna                  | EMCO               | 6502                | 00042960   | Nov. 06, 2015    |  |  |  |  |  |

|      |                   | Bar          | ndwidth  |            |                  |
|------|-------------------|--------------|----------|------------|------------------|
| Item | Kind of Equipment | Manufacturer | Type No. | Serial No. | Calibrated until |
| 1    | Spectrum Analyzer | R&S          | FSP-40   | 100129     | Oct. 13, 2015    |

|      |                   | Peak O       | utput Power |            |                  |
|------|-------------------|--------------|-------------|------------|------------------|
| Item | Kind of Equipment | Manufacturer | Type No.    | Serial No. | Calibrated until |
| 1    | Spectrum Analyzer | R&S          | FSP-40      | 100129     | Oct. 13, 2015    |

|      | An                | tenna Conduct | ed Spurious | Emission   |                  |
|------|-------------------|---------------|-------------|------------|------------------|
| Item | Kind of Equipment | Manufacturer  | Type No.    | Serial No. | Calibrated until |
| 1    | Spectrum Analyzer | R&S           | FSP-40      | 100129     | Oct. 13, 2015    |

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

## ATTACHMENT A - CONDUCTED EMISSION

## Test Mode: N/A

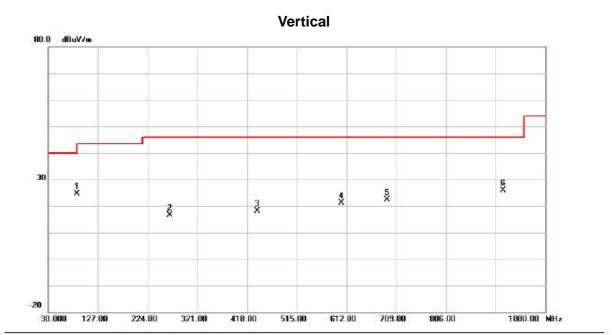
Note: "N/A" denotes test is not applicable to this device.

# ATTACHMENT B - RADIATED EMISSION (9KHZ-30MHZ)

Test Mode:

TX Mode

| Freq.  | Ant.   | Reading(RA) | Corr.Factor(CF) | Measured(FS) | Limits(QP) | Margin | Note  |
|--------|--------|-------------|-----------------|--------------|------------|--------|-------|
| (MHz)  | 0°/90° | (dBuV)      | (dB)            | (dBuV/m)     | (dBuV/m)   | (dB)   | 11010 |
| 0.0090 | 0°     | 76.08       | 19.88           | 95.96        | 108.52     | -12.56 | AVG   |
| 0.0090 | 0°     | 79.64       | 19.88           | 99.52        | 128.52     | -29.00 | PK    |
| 0.0244 | 0°     | 53.92       | 16.08           | 70.00        | 99.86      | -29.86 | AVG   |
| 0.0244 | 0°     | 58.34       | 16.08           | 74.42        | 119.86     | -45.44 | PK    |
| 0.0353 | 0°     | 55.87       | 14.43           | 70.30        | 96.65      | -26.35 | AVG   |
| 0.0353 | 0°     | 52.42       | 14.43           | 66.85        | 116.65     | -49.80 | PK    |
| 0.0532 | 0°     | 54.23       | 13.12           | 67.35        | 93.09      | -25.74 | AVG   |
| 0.0532 | 0°     | 60.49       | 13.12           | 73.61        | 113.09     | -39.48 | PK    |
| 0.4983 | 0°     | 21.01       | 11.22           | 32.23        | 73.65      | -41.43 | QP    |
| 1.7139 | 0°     | 22.18       | 11.63           | 33.81        | 69.54      | -35.73 | QP    |

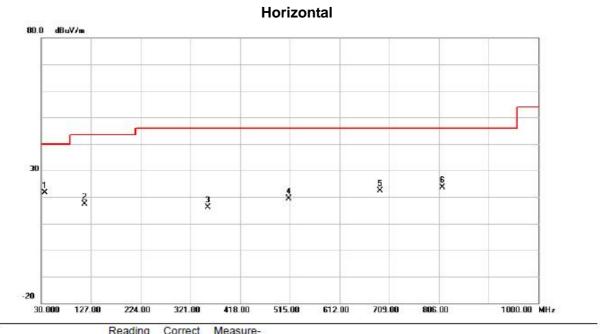

| Freq.  | Ant.   | Reading(RA) | Corr.Factor(CF) | Measured(FS) | Limits(QP) | Margin | Note |
|--------|--------|-------------|-----------------|--------------|------------|--------|------|
| (MHz)  | 0°/90° | (dBuV)      | (dB)            | (dBuV/m)     | (dBuV/m)   | (dB)   | NOLE |
| 0.0096 | 90°    | 76.93       | 19.44           | 96.37        | 107.96     | -11.59 | AVG  |
| 0.0096 | 90°    | 79.34       | 19.44           | 98.78        | 127.96     | -29.18 | PK   |
| 0.0244 | 90°    | 53.86       | 16.08           | 69.94        | 99.86      | -29.92 | AVG  |
| 0.0244 | 90°    | 58.56       | 16.08           | 74.64        | 119.86     | -45.22 | PK   |
| 0.0355 | 90°    | 55.21       | 14.41           | 69.62        | 96.60      | -26.98 | AVG  |
| 0.0355 | 90°    | 52.53       | 14.41           | 66.94        | 116.60     | -49.66 | PK   |
| 0.0531 | 90°    | 55.09       | 13.12           | 68.21        | 93.10      | -24.89 | AVG  |
| 0.0531 | 90°    | 60.12       | 13.12           | 73.24        | 113.10     | -39.86 | PK   |
| 0.4921 | 90°    | 21.26       | 11.22           | 32.48        | 73.76      | -41.29 | QP   |
| 1.7139 | 90°    | 22.04       | 11.63           | 33.67        | 69.54      | -35.87 | QP   |

## ATTACHMENT C - RADIATED EMISSION BETWEEN 30MHZ AND 1000MHZ)



Test Mode:

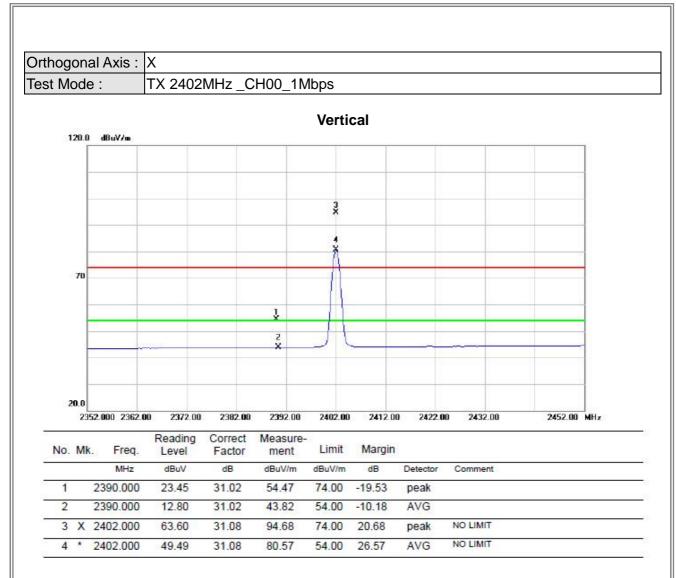
TX 2440MHz -CH19 -1Mbps



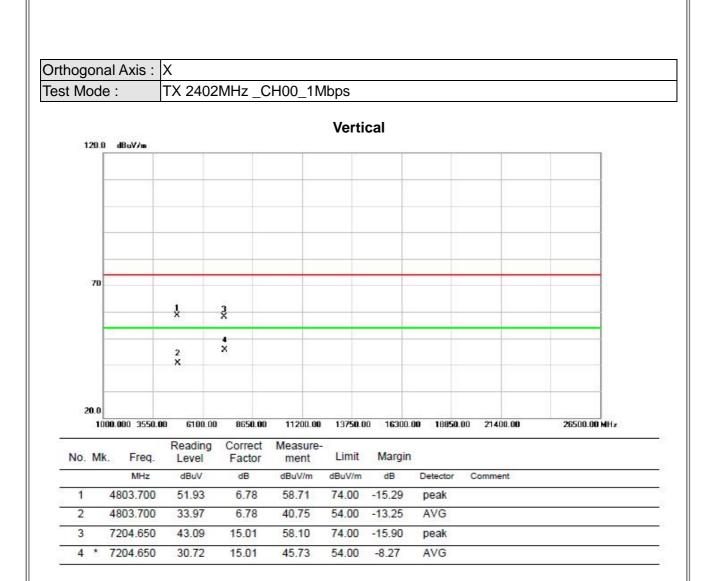

| No. | Mk. | Freq.    | Reading<br>Level                         | Correct<br>Factor | Measure-<br>ment | Limit                                    | Margin           |             |         |
|-----|-----|----------|------------------------------------------|-------------------|------------------|------------------------------------------|------------------|-------------|---------|
|     |     | MHz      | dBuV                                     | dB                | dBuV/m           | dBuV/m                                   | dB               | Detector    | Comment |
| 1   | *   | 85.7750  | 43.96                                    | -19.38            | 24.58            | 40.00                                    | -15.42           | peak        |         |
| 2   |     | 267.6500 | 30.89                                    | -14.29            | 16.60            | 46.00                                    | -29.40           | peak        |         |
| 3   | 1   | 437.4000 | 28.23                                    | -10.02            | 18.21            | 46.00                                    | -27.79           | peak        |         |
| 4   | 1   | 602.3000 | 28.55                                    | -7.43             | 21.12            | 46.00                                    | -24.88           | peak        |         |
| 5   |     | 692.0250 | 28.10                                    | -5.65             | 22.45            | 46.00                                    | -23.55           | peak        |         |
| 6   |     | 917.5500 | 28.26                                    | -2.45             | 25.81            | 46.00                                    | -20.19           | peak        |         |
| 2.7 |     |          | 1000 B B B B B B B B B B B B B B B B B B | 100012555         | 20201020000      | 5 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 1 | 1010100000000000 | 10000000000 |         |



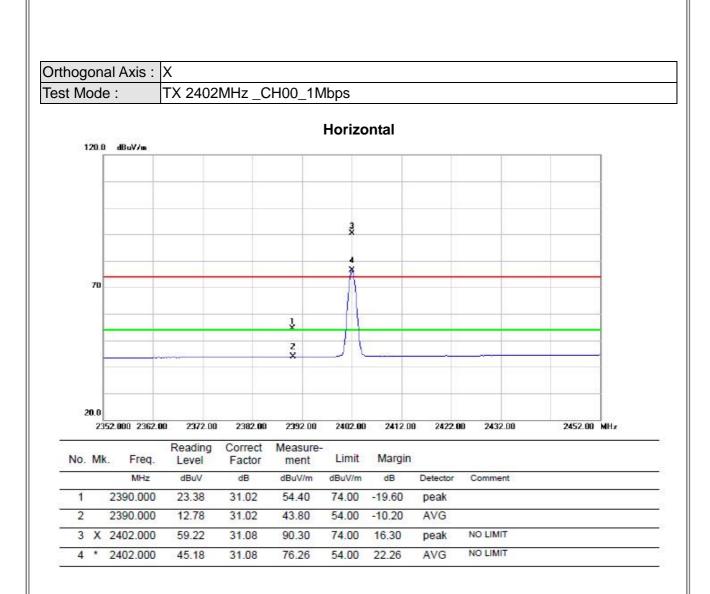
Test Mode:


## TX 2440MHz -CH19 -1Mbps




| No. | Mk. | Freq.                   | Level | Factor                | measure- | Limit  | Margin |          |         |
|-----|-----|-------------------------|-------|-----------------------|----------|--------|--------|----------|---------|
|     |     | MHz                     | dBuV  | dB                    | dBuV/m   | dBuV/m | dB     | Detector | Comment |
| 1   | *   | 37.2750                 | 36.42 | - <mark>14</mark> .71 | 21.71    | 40.00  | -18.29 | peak     |         |
| 2   | ŝ   | 1 <mark>1</mark> 4.8750 | 34.10 | -16.78                | 17.32    | 43.50  | -26.18 | peak     |         |
| 3   | 1   | 354.9500                | 28.18 | -12.17                | 16.01    | 46.00  | -29.99 | peak     |         |
| 4   | 3   | 512.5750                | 28.35 | -8.97                 | 19.38    | 46.00  | -26.62 | peak     |         |
| 5   |     | 692.0250                | 28.00 | -5.65                 | 22.35    | 46.00  | -23.65 | peak     |         |
| 6   |     | 813.2750                | 28.11 | -4.50                 | 23.61    | 46.00  | -22.39 | peak     |         |

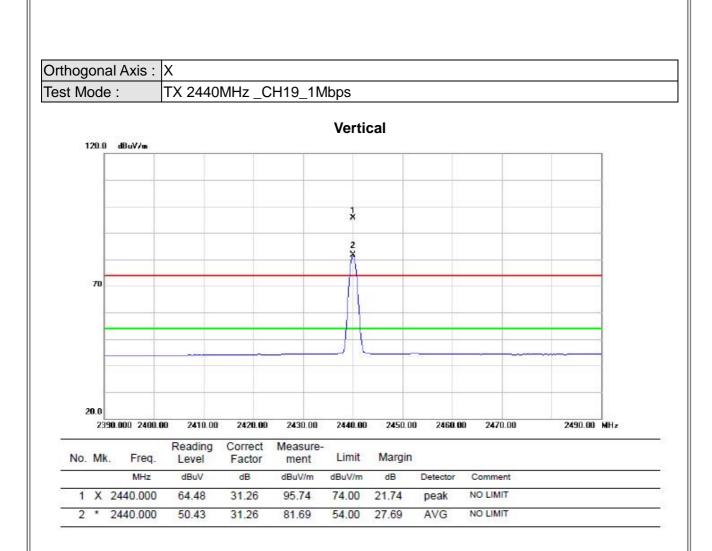
## ATTACHMENT D - RADIATED EMISSION (ABOVE 1000MHZ)



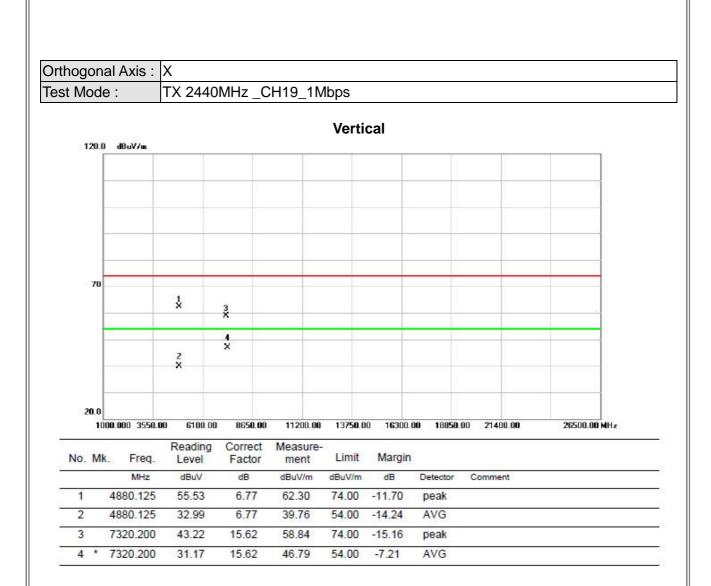




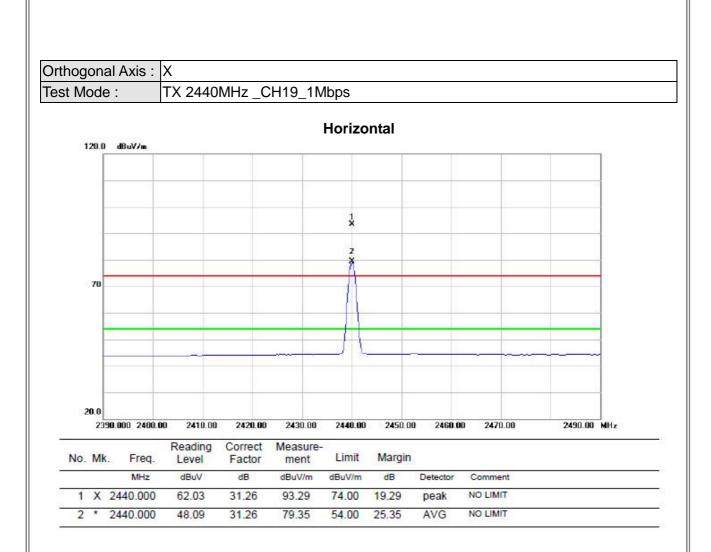




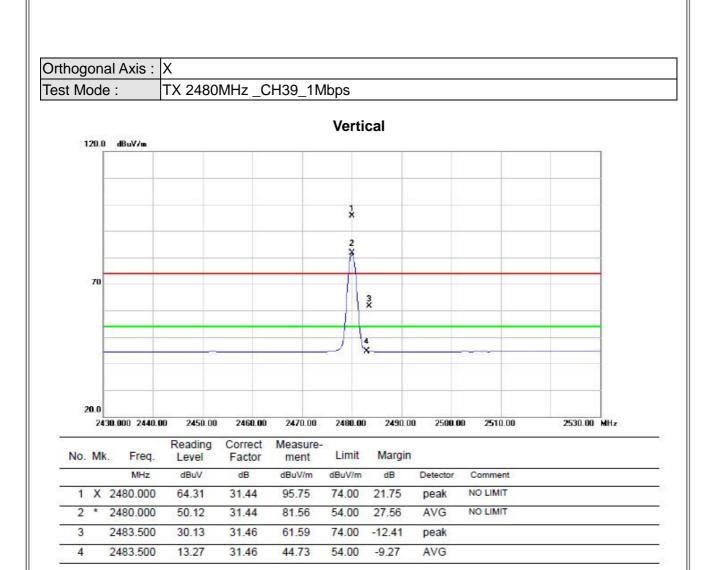


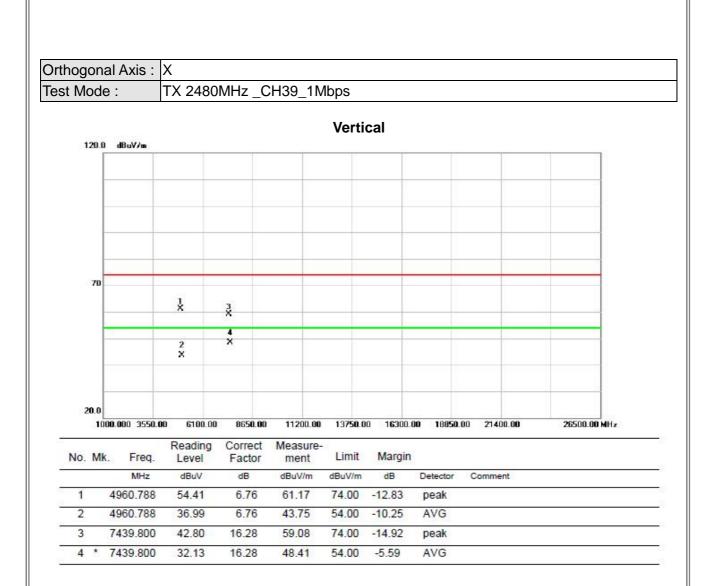




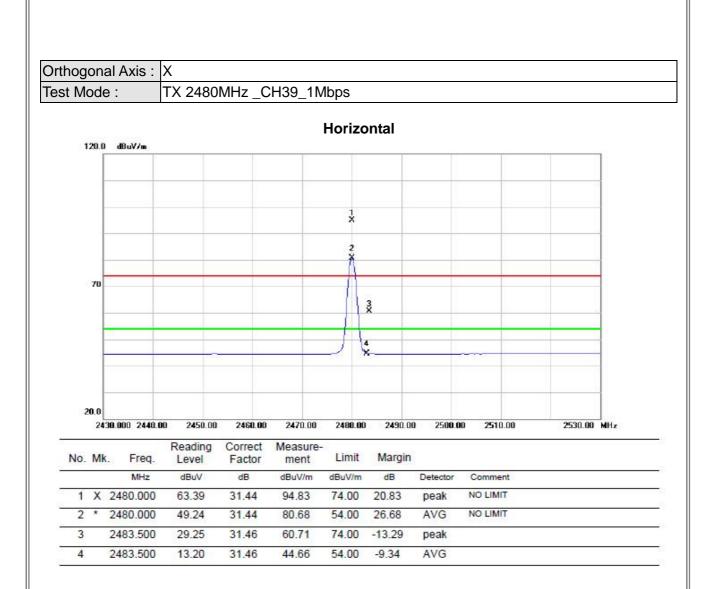






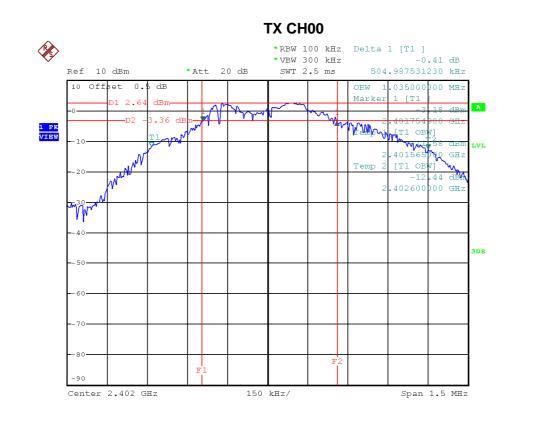





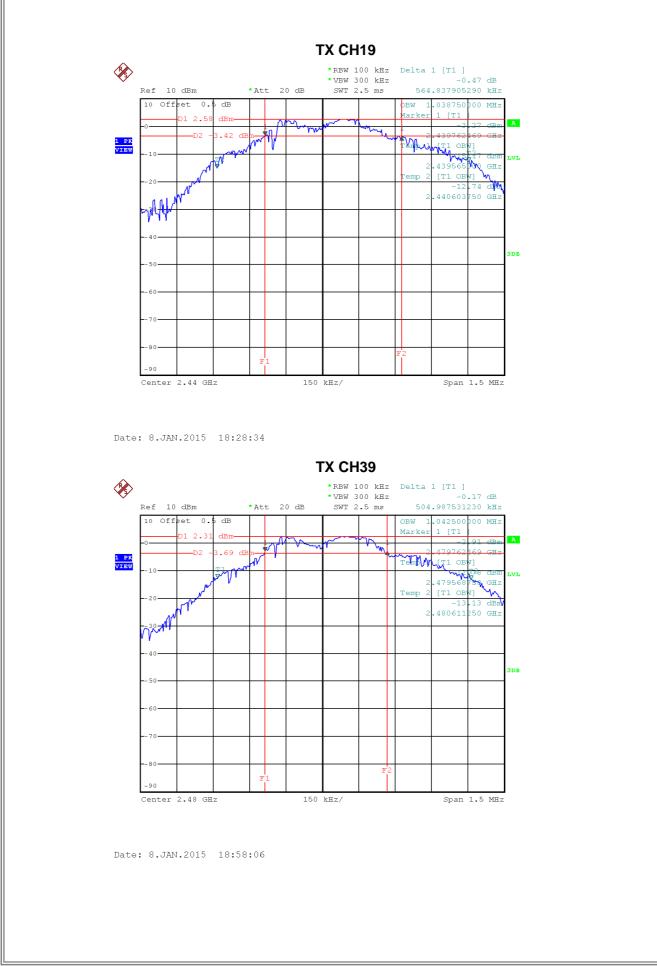








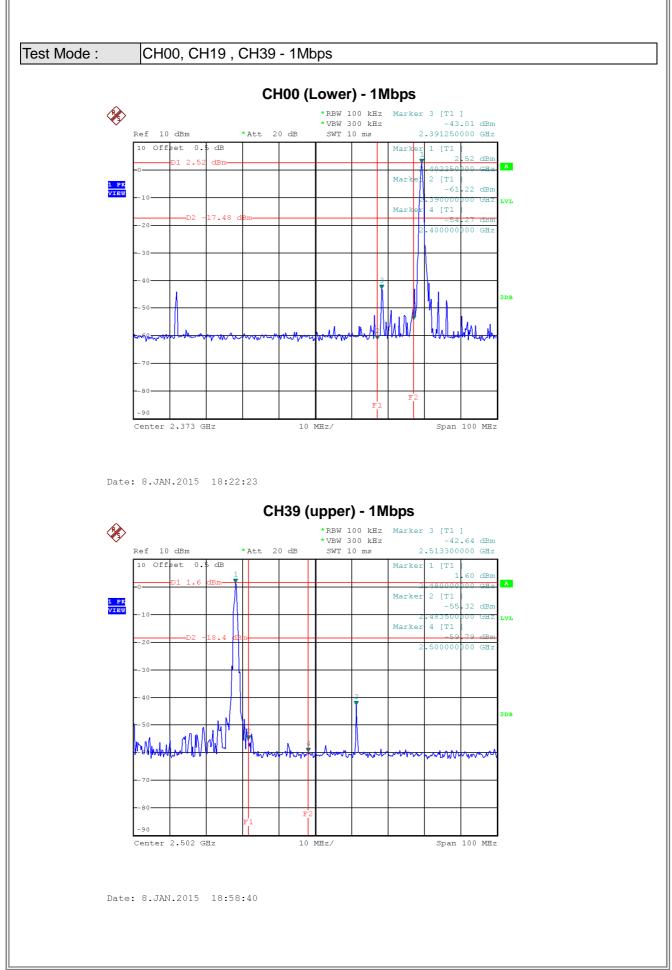



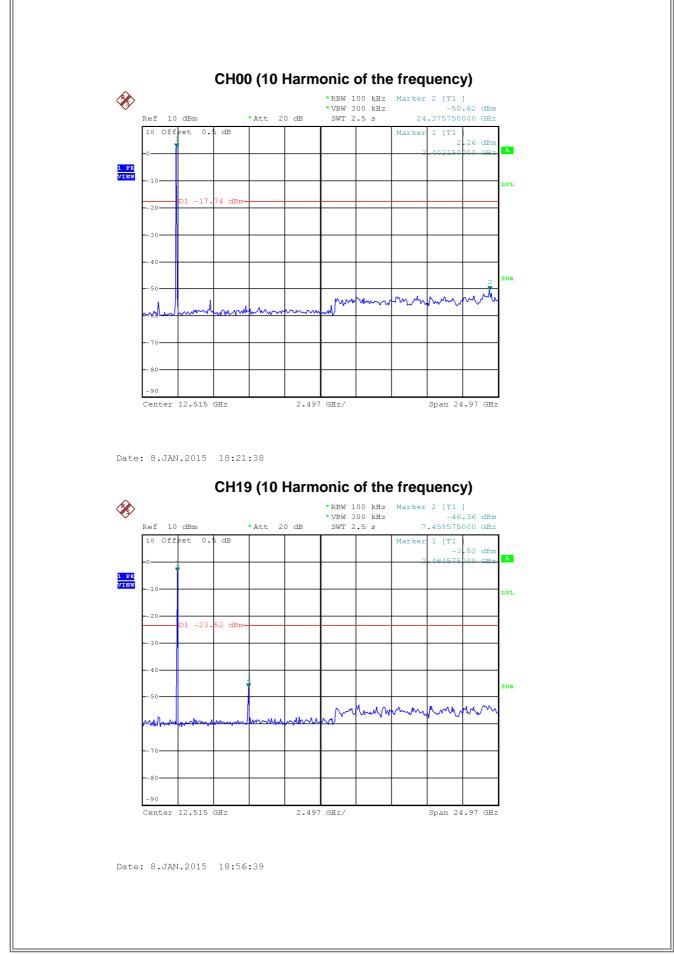

# ATTACHMENT E - BANDWIDTH

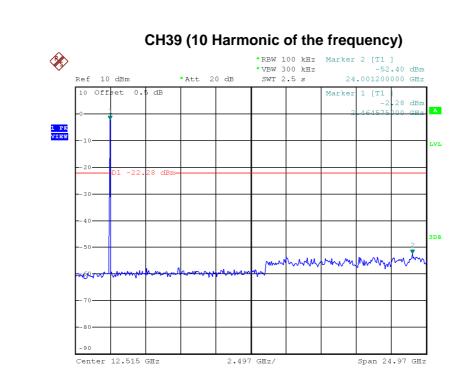
| Frequency<br>(MHz) | 6dB Bandwidth<br>(MHz) | 99% Occupied BW<br>(MHz) | Min. Limit<br>(kHz) | Test Result |
|--------------------|------------------------|--------------------------|---------------------|-------------|
| 2402               | 0.505                  | 1.035                    | 500                 | Complies    |
| 2440               | 0.565                  | 1.039                    | 500                 | Complies    |
| 2480               | 0.505                  | 1.043                    | 500                 | Complies    |



Date: 8.JAN.2015 18:22:05





## ATTACHMENT F - MAXIMUM OUTPUT POWER TEST


| Frequency | Conducted   | Conducted    | Max. Limit | Max. Limit | Test Result |
|-----------|-------------|--------------|------------|------------|-------------|
| (MHz)     | Power (dBm) | Power (Watt) | (dBm)      | (Watt)     |             |
| 2402      | 3.48        | 0.0022       | 30.00      | 1.00       | Complies    |
| 2440      | 3.54        | 0.0023       | 30.00      | 1.00       | Complies    |
| 2480      | 3.49        | 0.0022       | 30.00      | 1.00       | Complies    |

### ATTACHMENT G - ANTENNA CONDUCTED SPURIOUS EMISSION

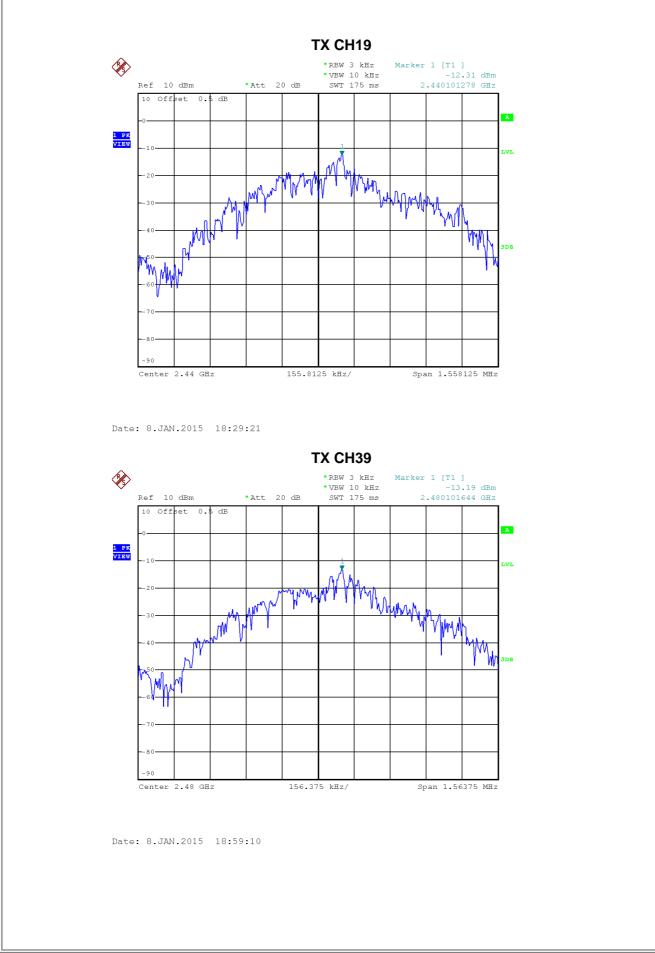
# **3**TL







Date: 8.JAN.2015 18:57:45


# ATTACHMENT H - POWER SPECTRAL DENSITY TEST

| Frequency | Power Density | Max. Limit | Result   |  |
|-----------|---------------|------------|----------|--|
| (MHz)     | (dBm)         | (dBm)      |          |  |
| 2402      | -11.29        | 8          | Complies |  |
| 2440      | -12.31        | 8          | Complies |  |
| 2480      | -13.19        | 8          | Complies |  |

#### TX CH00



Date: 8.JAN.2015 18:23:05

