RF EXPOSURE EVALUATION

Applicant $:$ WISOL CO., LTD Applicant Address $: 531-7$, Gajang-ro, Osan-si, Gyeonggi-do, 18103, Korea	
Kind of Product $:$ AUDI 0 TRANSCEIVER Equipment model name	$:$ ATM100
FCC ID	$: 2 A B A 2 A T M 100$
Certification	$: 11534 A-A T M 100$
Number IC	$:$ PCB Antenna
Antenna type	
Antenna Gain	

** MPE Calculations **

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the user. The MPE calculation for this exposure is shown below.

The peak radiated output power (EIRP) is calculated as follows:

EIRP $=P+G$	Where, $P=$ Power input to the antenna (mW) $G=$ Power gain of the antenna (dBi)

The numeric gain (G) of the antenna with a gain specified in dB is determined by:
$\mathrm{G}=\log ^{-1}(\mathrm{~dB}$ antenna gain / 10)

Power density at the specific separation:

$\mathrm{S}=\mathrm{PG} /\left(4 \mathrm{R}^{2} \pi\right)$	Where, $\mathrm{S}=$ Maximum power density ($\mathrm{mW} / \mathrm{cm}^{2}$) $\mathrm{P}=$ Power input to the antenna (mW) $\mathrm{G}=$ Numeric power gain of the antenna $R=$ Distance to the center of the radiation of the antenna (20 cm = limit for MPE)

The Maximum permissible exposure (MPE) for the general population is $1 \mathrm{~mW} / \mathrm{cm}^{2}$.
The power density at 20 cm does not exceed the $1 \mathrm{~mW} / \mathrm{cm}^{2}$ limit.

Estimated safe separation:

$\mathrm{R}=\sqrt{ }(\mathrm{PG} / 4 \pi)$	Where, $\mathrm{P}=$ Power input to the antenna (mW) $\mathrm{G}=$ Numeric power gain of the antenna $\mathrm{R}=$ Distance to the center of the radiation of the antenna (20 cm = limit for MPE)

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501 www.e-ctk.com

$P(d B m)$	$P(\mathrm{~mW})$	$G(\mathrm{dBi})$	$\mathbf{S}\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	$\mathbf{R}(\mathbf{c m})$
2.67	1.85	4.8	$\mathbf{0 . 0 0 1 1}$	$\mathbf{2 0}$

