

FCC Radio Test Report

FCC ID: 2AB9W-PP150XP

	 BTL-FCCP-1-1908T080 3D Printer PartPro150 xP XYZprinting XYZprinting, Inc. 10F., No.99, Sec. 5, Nanjing E. Rd.,Songshan Dist., Taipei City 10571, Taiwan (R.O.C.) Cal-Comp Electronics (Thailand) Public Company Limited 138, Moo 4, Phechkasem Road, Sapang, Koawyoi, Petchaburi 76140, Thailand. Cal-Comp Electronics (Thailand) Public Company Limited 138, Moo 4, Phechkasem Road, Sapang, Koawyoi, Petchaburi 76140, Thailand. Cal-Comp Electronics (Thailand) Public Company Limited 138, Moo 4, Phechkasem Road, Sapang, Koawyoi, Petchaburi 76140, Thailand.
Radio Function	: WLAN 2.4 GHz
FCC Rule Part(s) Measurement Procedure(s)	: FCC Part15, Subpart C (15.247) : ANSI C63.4-2014
Date of Receipt Date of Test Issued Date	: 2019/9/20 : 2019/9/20 ~ 2019/11/14 : 2019/11/22

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by Peter Chen, Engineer ac-MRA Testing Laborator 0659 Approved by Scott Hsu, Vice Manager BTL Inc. No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

	CONTENTS					
REPO	RT ISSUED HISTORY	5				
1	SUMMARY OF TEST RESULTS	6				
1.1	TEST FACILITY	7				
1.2	MEASUREMENT UNCERTAINTY	7				
1.3	TEST ENVIRONMENT CONDITIONS	8				
1.4	TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	8				
1.5	DUTY CYCLE	9				
2	GENERAL INFORMATION	10				
2.1	DESCRIPTION OF EUT	10				
2.2	TEST MODES	11				
2.3	BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	12				
2.4	SUPPORT UNITS	12				
3	AC POWER LINE CONDUCTED EMISSIONS TEST	13				
3.1	LIMIT	13				
3.2	TEST PROCEDURE	13				
3.3	DEVIATION FROM TEST STANDARD	13				
3.4	TEST SETUP	14				
3.5	TEST RESULT	14				
4	RADIATED EMISSIONS TEST	15				
4.1	LIMIT	15				
4.2	TEST PROCEDURE	16				
4.3	DEVIATION FROM TEST STANDARD	16				
4.4	TEST SETUP	16				
4.5	EUT OPERATING CONDITIONS	17				
4.6	TEST RESULT – 9 KHZ TO 30 MHZ	18				
4.7	TEST RESULT – 30 MHZ TO 1 GHZ	18				
4.8	TEST RESULT – ABOVE 1 GHZ	18				
5	BANDWIDTH TEST	19				
5.1	LIMIT	19				
5.2	TEST PROCEDURE	19				
5.3	DEVIATION FROM TEST STANDARD	19				
5.4	TEST SETUP	19				
5.5	EUT OPERATING CONDITIONS	19				
5.6	TEST RESULT	19				
6	OUTPUT POWER TEST	20				
6.1	LIMIT	20				
6.2	TEST PROCEDURE	20				
6.3	DEVIATION FROM TEST STANDARD	20				
6.4	TEST SETUP	20				
6.5	EUT OPERATING CONDITIONS	20				
6.6	TEST RESULT	20				
7	POWER SPECTRAL DENSITY	21				
7.1	LIMIT	21				
7.2	TEST PROCEDURE	21				
7.3	DEVIATION FROM TEST STANDARD	21				
7.4	TEST SETUP	21				
7.5	EUT OPERATING CONDITIONS	21				
7.6	TEST RESULT	21				

8	ANTENN	A CONDUCTED SPURIOUS EMISSIONS TEST	22
8.1	LIMIT		22
8.2	TEST	PROCEDURE	22
8.3	DEVI	ATION FROM TEST STANDARD	22
8.4	TEST	SETUP	22
8.5	EUT (OPERATING CONDITIONS	22
8.6	TEST	RESULT	22
9	LIST OF	MEASURING EQUIPMENTS	23
10	EUT TES	ST PHOTO	25
11	EUT PH	OTOS	25
APPENI	DIX A	AC POWER LINE CONDUCTED EMISSIONS	26
APPENI	DIX B	RADIATED EMISSIONS - 9 KHZ TO 30 MHZ	29
APPENI	DIX C	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	34
APPENI	DIX D	RADIATED EMISSIONS - ABOVE 1 GHZ	37
APPENI	DIX E	BANDWIDTH	62
APPENI	DIX F	OUTPUT POWER	65
APPENI	DIX G	POWER SPECTRAL DENSITY	67
APPENI	DIX H	ANTENNA CONDUCTED SPURIOUS EMISSIONS	70

REPORT ISSUED HISTORY

REFORT ISSUED HISTORY					
Report Version	Description	Issued Date			
R00	Original Issue.	2019/11/22			

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

FCC Part 15, Subpart C (15.247)							
Standard(s) Section	Judgement	Remark					
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass				
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	Pass				
15.247(a)	Bandwidth	APPENDIX E	Pass				
15.247(b)	Output Power	APPENDIX F	Pass				
15.247(e)	Power Spectral Density	APPENDIX G	Pass				
15.247(d)	Antenna conducted Spurious Emission	APPENDIX H	Pass				
15.203	Antenna Requirement		Pass				

NOTE:

(1) "N/A" denotes test is not applicable in this Test Report.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68	No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan								
The te	st sites and facili	ties a	are covered unde	r FC	C RN: 355421 an	d DN	I: TW1099.		
\boxtimes	C05		CB08		CB11		CB15		CB16
\boxtimes	CB18	\boxtimes	SR06						

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = 2$, providing a level of confidence of approximately **95**%. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions below 1 GHz test :

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB)
		30MHz ~ 200MHz	V	4.20
CB18	CISPR	30MHz ~ 200MHz	Н	3.64
(3m)	CISER	200MHz ~ 1,000MHz	V	4.56
		200MHz ~ 1,000MHz	Н	3.90

C. Radiated emissions above 1 GHz test :

	Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB)
Ī			1GHz ~ 6GHz	V	4.46
	CB18	CISPR	1GHz ~ 6GHz	Н	4.40
	(3m)	CISER	6GHz ~ 18GHz	V	3.88
			6GHz ~ 18GHz	Н	4.00

Test Site	Method	Measurement Frequency Range	U,(dB)
CB18	CISPR	18 ~ 26.5 GHz	4.62
(1m)	CISER	26.5 ~ 40 GHz	5.12

D. Conducted test :

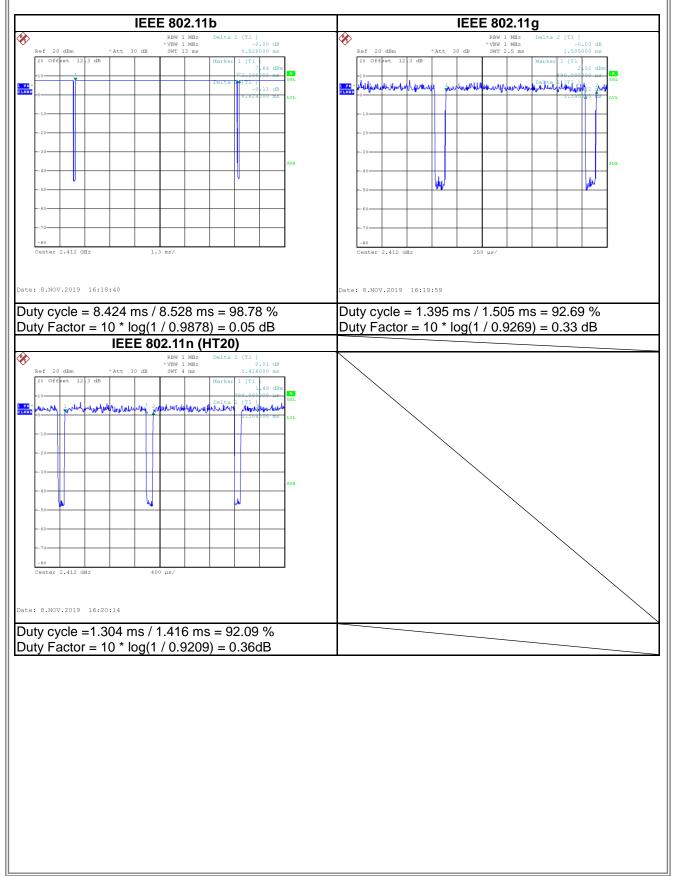
Test Item	U,(dB)
Bandwidth	1.13
Output power	1.06
Power Spectral Density	1.20
Conducted Spurious emissions	1.14
Conducted Band edges	1.13

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Tested by
AC Power Line Conducted Emissions	25 °C, 45 %	Eric Lee
Radiated emissions below 1 GHz	23 °C, 59 %	John Chuang
Radiated emissions above 1 GHz	23 °C, 59 %	John Chuang
Bandwidth	23.5 °C, 49 %	William Wei
Output Power	23.5 °C, 49 %	William Wei
Power Spectral Density	23.5 °C, 49 %	William Wei
Antenna conducted Spurious Emission	23.5 °C, 49 %	William Wei


1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

Test Software	Tera Term						
Mode	2412 MHz	2437 MHz	2462 MHz	Data Rate			
IEEE 802.11b	31	31	31	1 Mbps			
IEEE 802.11g	31	31	31	6 Mbps			
IEEE 802.11n (HT20)	31	31	31	MCS 0			

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	3D Printer				
Model Name	PartPro150 xP				
Brand Name	XYZprinting				
Model Difference	N/A				
Power Source	DC voltage supplied from AC/DC Adapter. (1) FSP / FSP060-DAAN3 (2) EDAC / EA10681P-240				
Power Rating	 (1) I/P: 100-240V~, 1.8A 50-60Hz / O/P: 24.0V2.5A (60E MAX.) (2) I/P: 100-240V~2.0A, 50-60Hz / O/P: 24V2.5A 				
Products Covered	1 * USB cable 1 * Power cable 2 * Adapter: (1) FSP / FSP060-DAAN3 (2) EDAC / EA10681P-240				
Frequency Range	2400 MHz ~ 2483.5 MHz				
Operation Frequency	2412 MHz ~ 2462 MHz				
Modulation Technology	IEEE 802.11b: DSSS IEEE 802.11g: OFDM IEEE 802.11n: OFDM				
Transfer Rate	IEEE 802.11b: 11/5.5/2/1 Mbps IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps IEEE 802.11n: up to 72.2 Mbps				
Output Power Max.	IEEE 802.11b: 16.07 dBm (0.0405 W) IEEE 802.11g: 21.05 dBm (0.1274 W) IEEE 802.11n (HT20): 19.90 dBm (0.0977 W)				
Test Model	PartPro150 xP				
Sample Status	Engineering Sample				
EUT Modification(s)	N/A				

NOTE:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		

(3) Table for Filed Antenna:

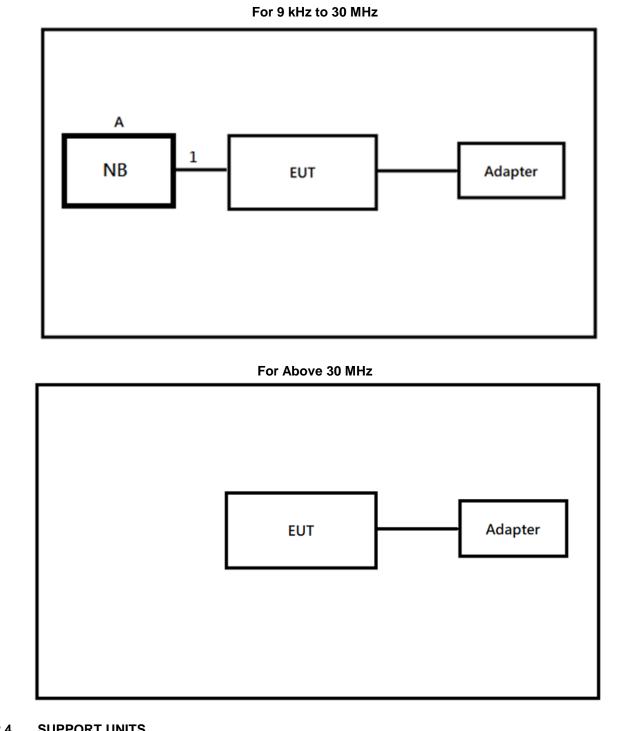
Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	N/A	N/A	PCB	N/A	-8.65

2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	2.4G_Normal	-	-
Transmitter Radiated Emissions (below 1GHz)	TX Mode_IEEE 802.11b	01	-
	TX Mode_IEEE 802.11b		
Transmitter Radiated Emissions (above 1GHz)	TX Mode_IEEE 802.11g	01/06/11	
	TX Mode_IEEE 802.11n (HT20)		
	TX Mode_IEEE 802.11b		
Bandwidth	TX Mode_IEEE 802.11g	01/06/11	-
	TX Mode_IEEE 802.11n (HT20)		
	TX Mode_IEEE 802.11b		
Output Power	TX Mode_IEEE 802.11g	01/06/11	-
	TX Mode_IEEE 802.11n (HT20)		
	TX Mode_IEEE 802.11b		
Power Spectral Density	TX Mode_IEEE 802.11g	01/06/11	-
	TX Mode_IEEE 802.11n (HT20)		
	TX Mode_IEEE 802.11b		
Antenna conducted Spurious Emission	TX Mode_IEEE 802.11g	01/06/11	-
	TX Mode_IEEE 802.11n (HT20)		

NOTE:

(1) The Radiated emissions test was verified based on the worst conducted power and Bandwidth test results reported in the original report.


(2) All X, Y and Z axes are evaluated, but only the worst case (Z axis) is recorded.

- (3) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Vertical) is recorded.
- (4) The Adapter EDAC / EA10681P-240 was found to be the worst case and used for final test.

BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 2.3

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

2.4 SUPPORT UNITS

Iter	n Equipment	Brand	Model No.	Series No.	Remarks
A	NB	HP	TPN-I119	N/A	5cg71818hd
Iter	n Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	2m	Console to USB	-

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use) Margin Level = Measurement Value – Limit Value Calculation example:

Reading Level		Correct Factor		Measurement Value		
38.22	+	3.45	П	41.67		

Measurement Value		Limit Value		Margin Level
41.67	I	60	Ι	-18.33

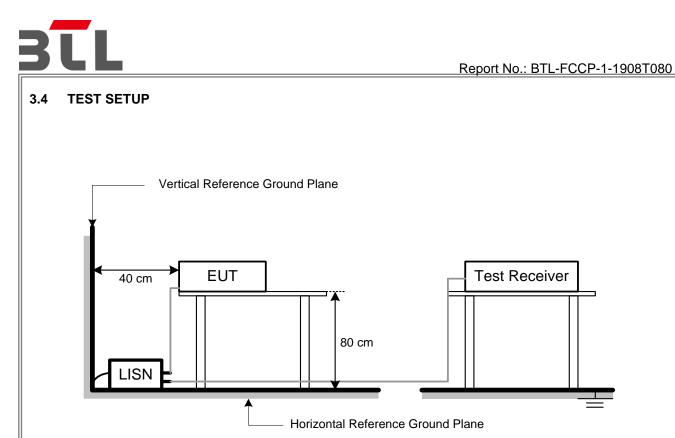
The following table is the setting of the receiver.

Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 All other support equipment were powered from an additional LISN(s).

The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.


- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable will be terminated, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 KHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency	Radiated I (dBu	Measurement Distance	
(MHz)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

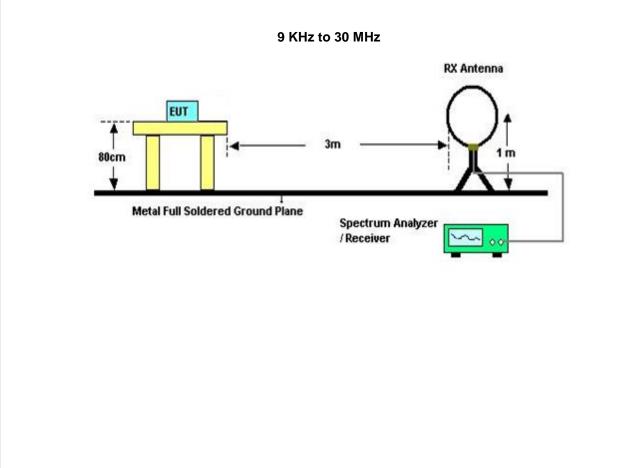
Calculation example:

Reading Level		Correct Factor		Measurement Value
19.11	+	2.11	Ш	21.22

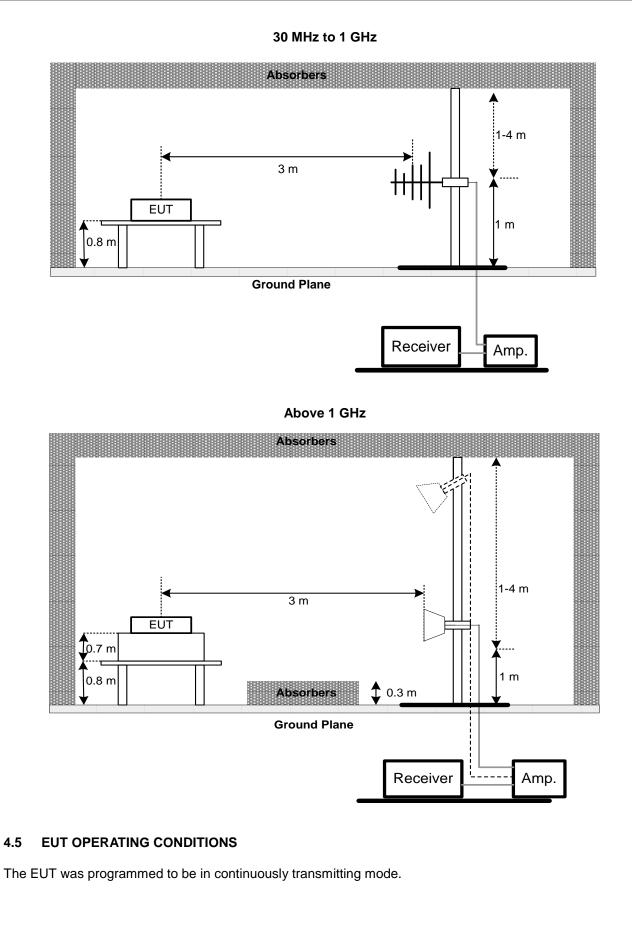
Measurement Value		Limit Value		Margin Level
21.22	1	54	=	-32.78

Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RBW / VBW	1MHz / 3MHz for Peak,		
(Emission in restricted band)	1MHz / 1/T for Average		

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector


4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. (above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.


4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP

4.6 TEST RESULT – 9 kHZ TO 30 MHZ

Please refer to the APPENDIX B

4.7 TEST RESULT – 30 MHZ TO 1 GHZ

Please refer to the APPENDIX C.

4.8 TEST RESULT – ABOVE 1 GHZ

Please refer to the APPENDIX D.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 BANDWIDTH TEST

5.1 LIMIT

FCC Part15, Subpart C (15.247)			
Section	Limit		
15.247(a)	6 dB Bandwidth	500 kHz	

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

5.3 DEVIATION FROM TEST STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

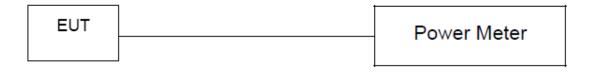
5.6 TEST RESULT

Please refer to the APPENDIX E.

6 OUTPUT POWER TEST

6.1 LIMIT

FCC Part15, Subpart C (15.247)				
Section	Limit			
15.247(b)	Maximum Output Power	1 Watt or 30dBm		


6.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- b. The maximum peak conducted output power was performed in accordance with method 9.1.2 of FCC KDB 558074 D01 DTS Meas Guidance.

6.3 DEVIATION FROM TEST STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

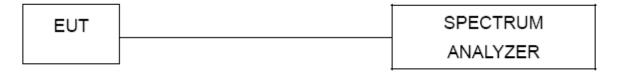
6.6 TEST RESULT

Please refer to the APPENDIX F.

7 POWER SPECTRAL DENSITY

7.1 LIMIT

FCC Part15, Subpart C (15.247)				
Section	Test Item	Limit		
15.247(e)	Power Spectral Density	8 dBm (in any 3 kHz)		


7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW = 3 kHz, VBW = 10 kHz, Sweep time = Auto.

7.3 DEVIATION FROM TEST STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULT

Please refer to the APPENDIX G.

8 ANTENNA CONDUCTED SPURIOUS EMISSIONS TEST

8.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW = 100 kHz, VBW=300 kHz, Sweep time = Auto.
- c. Offset = antenna gain + cable loss.

8.3 DEVIATION FROM TEST STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULT

Please refer to the APPENDIX H.

9 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until			
1	TWO-LINE V-NETWORK	R&S	ENV216	101050	2019/3/18	2020/3/17			
2	Test Cable	EMCI	EMCCFD300-BM -BMR-6000	170715	2019/8/7	2020/8/6			
3	EMI Test Receiver	R&S	ESR7	101433	2018/12/5	2019/12/4			
4	Measurement Software	EZ	EZ_EMC (Version NB-03A)	N/A	N/A	N/A			

	Radiated Emissions							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	Preamplifier	EMCI	EMC001340	980555	2019/4/12	2020/4/11		
2	Preamplifier	EMCI	EMC02325B	980217	2019/4/12	2020/4/11		
3	Preamplifier	EMCI	EMC012645B	980267	2019/4/12	2020/4/11		
4	Test Cable	EMCI	EMC104-SM-SM- 800	150207	2019/4/12	2020/4/11		
5	Test Cable	EMCI	EMC104-SM-SM- 3000	151205	2019/4/12	2020/4/11		
6	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2019/4/12	2020/4/11		
7	MXE EMI Receiver	Agilent	N9038A	MY55420127	2019/3/26	2020/3/25		
8	Signal Analyzer	Agilent	N9010A	MY56480554	2019/6/6	2020/6/5		
9	Loop Ant	EMCO	EMCI-LPA600	274	2019/5/31	2020/5/30		
10	Horm Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2019/6/10	2020/6/9		
11	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	000992	2019/5/29	2020/5/28		
12	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0508	2019/5/29	2020/5/28		

			Bandwidth			
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP40	100129	2019/5/23	2020/5/22

	Output Power							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	Spectrum Analyzer	R&S	FSP40	100129	2019/5/23	2020/5/22		
2	Power Meter	Anritsu	ML2495A	1128008	2018/12/6	2019/12/5		
3	Power Sensor	Anritsu	MA2411B	1126001	2018/12/6	2019/12/5		

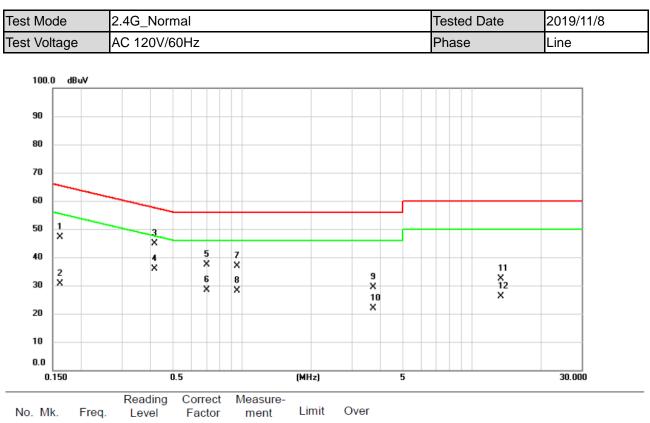
	Power Spectral Density						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP40	100129	2019/5/23	2020/5/22	

	Antenna conducted Spurious Emission												
Item Kind of Equipment		Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until							
1	Spectrum Analyzer	R&S	FSP40	100129	2019/5/23	2020/5/22							

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

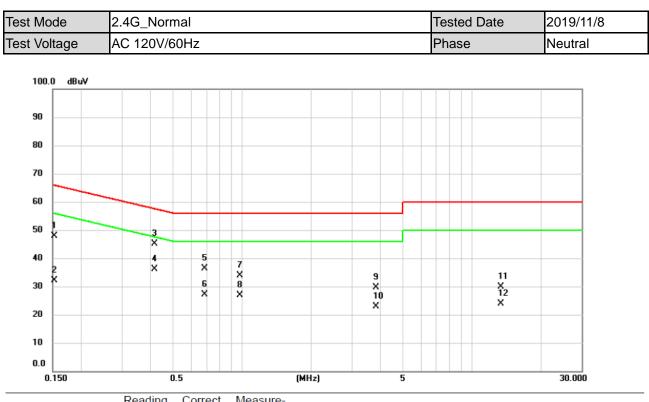
10 EUT TEST PHOTO

Please refer to document Appendix No.: TP-1908T080-FCCP-1 (APPENDIX-TEST PHOTOS).


11 EUT PHOTOS

Please refer to document Appendix No.: EP-1908T080-1 (APPENDIX-EUT PHOTOS).

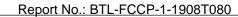
APPENDIX A AC POWER LINE CONDUCTED EMISSIONS


No. M	k. Freq.	Level	Factor	ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1613	37.60	9.57	47.17	65.40	-18.23	QP	
2	0.1613	21.14	9.57	30.71	55.40	-24.69	AVG	
3	0.4155	35.34	9.62	44.96	57.54	-12.58	QP	
4 *	0.4155	26.31	9.62	35.93	47.54	-11.61	AVG	
5	0.7012	27.78	9.65	37.43	56.00	-18.57	QP	
6	0.7012	18.74	9.65	28.39	46.00	-17.61	AVG	
7	0.9532	27.19	9.63	36.82	56.00	-19.18	QP	
8	0.9532	18.57	9.63	28.20	46.00	-17.80	AVG	
9	3.7253	19.57	9.72	29.29	56.00	-26.71	QP	
10	3.7253	12.13	9.72	21.85	46.00	-24.15	AVG	
11	13.3800	22.49	9.89	32.38	60.00	-27.62	QP	
12	13.3800	16.27	9.89	26.16	50.00	-23.84	AVG	
-								

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.

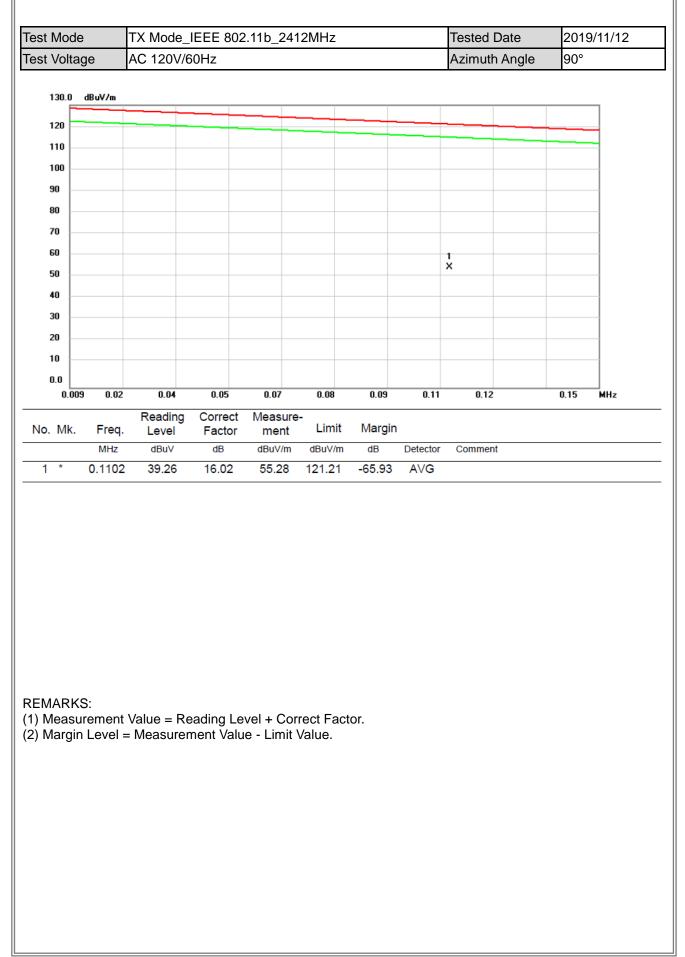
(2) Margin Level = Measurement Value - Limit Value.



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1522	38.28	9.61	47.89	65.88	-17.99	QP	
2		0.1522	22.51	9.61	32.12	55.88	-23.76	AVG	
3		0.4177	35.36	9.67	45.03	57.49	-12.46	QP	
4	*	0.4177	26.55	9.67	36.22	47.49	-11.27	AVG	
5		0.6855	26.72	9.69	36.41	56.00	-19.59	QP	
6		0.6855	17.38	9.69	27.07	46.00	-18.93	AVG	
7		0.9802	24.31	9.68	33.99	56.00	-22.01	QP	
8		0.9802	17.27	9.68	26.95	46.00	-19.05	AVG	
9		3.8310	19.95	9.76	29.71	56.00	-26.29	QP	
10		3.8310	13.03	9.76	22.79	46.00	-23.21	AVG	
11		13.3305	20.03	9.96	29.99	60.00	-30.01	QP	
12		13.3305	13.98	9.96	23.94	50.00	-26.06	AVG	

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.


(2) Margin Level = Measurement Value - Limit Value.

APPENDIX B RADIATED EMISSIONS - 9 KHZ TO 30 MHZ

est Moo	le	TX Mode_	IEEE 802	2.11b_241	2MHz			Tested Date		2019/11/12		
est Volt	age	AC 120V/6	60Hz					Azimuth	Angle	90°		
130.0	130.0 dBuV/m											
120											_	
110											-	
100											-	
90											-	
80											-	
70											-	
60												
50	1											
I	×		2 X			4 ×						
30 20			×	3 X			5 X		6 X			
10												
0.0												
0.1	50 3.14	6.12	9.10	12.09	15.08	18.06	21.04	24.03		30.00	MHz	
No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin						
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment				
1 *	0.5675		3.48	41.02	73.79	-32.77	QP					
2	8.0006	35.38	-3.78	31.60	72.72	-41.12	QP					

72.26 -45.48

70.88 -43.42

-37.26

-44.88

71.41

70.24

QP

QP

QP

QP

REMARKS:

3

4

5

6

11.1646

17.0750

20.6868

25.1341

30.87

38.90

32.70

32.87

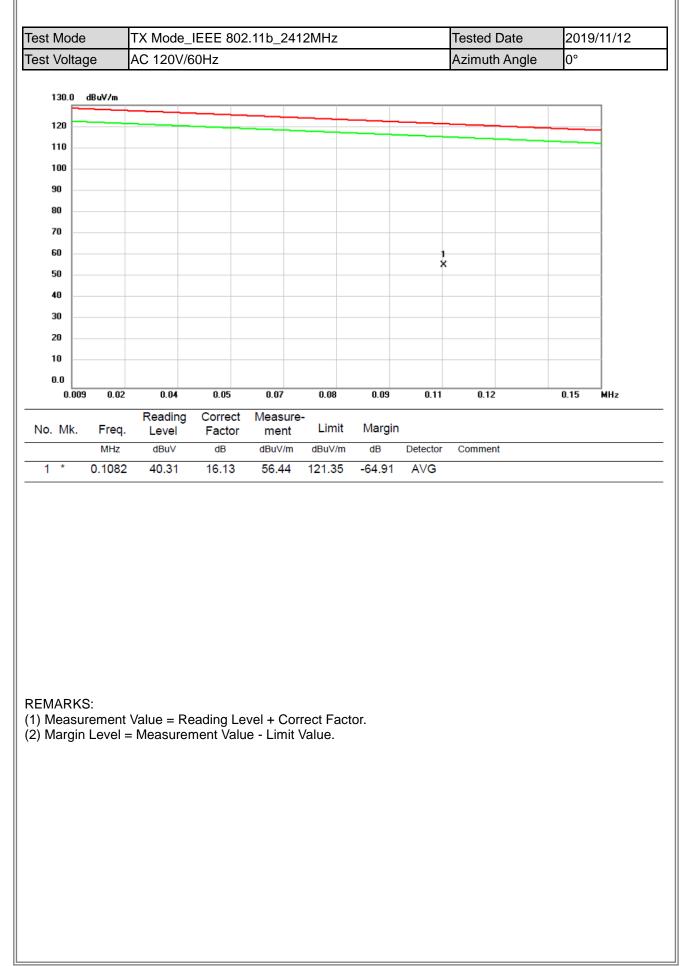
-4.09

-4.75

-5.24

-7.51

26.78


34.15

27.46

25.36

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

est Mode	•	TX Mode_	IEEE 802	.11b_2412	Tested Date	2019	2019/11/12			
est Voltage	e ,	AC 120V/6	60Hz					Azimuth Angle	0°	
130.0 dl	Bu¥/m									_
120										_
110										-
100										-
90										-
80										-
70										-
60										
50 1										-
40 X										-
30			2 X	3 X		4 ×		5 X	6 X	
20								^		1
10 0.0										1
0.150	3.14	6.12	9.10	12.09	15.08	18.06	21.04	24.03	30.00	 MHz
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin				
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment		
	0.9858	42.51	0.26	42.77	73.73	-30.96	QP			
2 8	8.9260	31.27	-4.11	27.16	72.58	-45.42	QP			

72.28 -46.28

71.32 -45.97

70.62 -46.46

-44.68

69.77

QP

QP

QP

QP

REMARKS:

3

4

5

6

11.0152

17.7013

22.5076

28.4180

30.10

30.30

29.82

30.41

-4.10

-4.95

-5.66

-5.32

26.00

25.35

24.16

25.09

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX C RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Test Mo	de	TX Mode	_IEEE 802	2.11b_241	2MHz			Tested Date	2019/11/12	2019/11/12	
Test Vol	ltage	AC 120V	/60Hz			Polarization	Vertical				
80.0	dBuV/m										
70											
60											
50									6		
40		1 × ×		3 X	4 ×				× I		
30							5 X				
20											
10											
0.0 30	0.000 127.0			418.00	515.00	612.00) 709.0	0 806.00	1000.00 MHz		
No. MI	k. Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Margin	1				
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment			
1	189.0800	50.66	-13.65	37.01	43.50	-6.49	QP				
2	216.2400	51.60	-14.80	36.80	46.00	-9.20	peak				
3	357.8600	44.33	-9.57	34.76	46.00	-11.24	peak				
4	526.6400	40.92	-5.68	35.24	46.00	-10.76	peak				
-											

46.00 -16.20

-4.54

46.00

peak

QP

REMARKS:

5

6 *

702.2100

888.4500

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

32.31

41.30

-2.51

0.16

29.80

41.46

Test Mo	de	TX Mode	e_IEEE 802	2.11b_2412		Tested Date	2019/11/12		
Test Vol	tage	AC 120\	//60Hz				Polarization	Horizontal	
80.0	dBu¥/m								
70									
60									
50									
40		1 x2 ×			3 4 X X		5 X	<u>é</u>	
30									
20									
10									
0.0 30	.000 127.0	0 224.0	0 321.00	418.00	515.00	612.0	0 709.0	0 806.00	1000.00 MHz
No. Mł		Readin		Measure- ment		Margir			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1 !	174.5300		-12.19	39.10	43.50	-4.40	QP		
2	189.0800		-13.65	37.24	43.50	-6.26	QP		
3 !	499.4800		-6.15	41.89	46.00	-4.11	QP		
4 *	526.6400		-5.68	42.29	46.00	-3.71	QP		
5!	647.8900	43.73	-3.08	40.65	46.00	-5.35	QP		

46.00 -10.23

peak

REMARKS:

6

769.1400

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

-0.92

35.77

36.69

APPENDIX D RADIATED EMISSIONS - ABOVE 1 GHZ

st Mode	TX Mode	_IEEE 80	2.11b_241	2 MHz			Tested Date	2019/11/11
st Voltage	AC 120V	/60Hz					Polarization	Vertical
120.0 dBu¥	/m							
110				3				
100				×				
90				{	\rightarrow			
80			/	/	-			
70								
60	Vouquerenterenterente	num markage	and the second second		\	Witten Martin 14	the and the Marian and a state of the	a walkana ka waka waka ku
50		2 X						
40								
30								
20								
10								
0.0 2362.000	2372.00 238	82.00 239	2.00 2402.0	0 2412.00	2422.0	0 2432	.00 2442.00	2462.00 MH;
No. Mk. F	Readi req. Leve			e- Limit	Margin)		
N	Hz dBu	/ dB	dBu√/m	dBuV/m	dB	Detector	Comment	
1 2388.				74.00	-13.71	peak		
2 2388.				54.00	-7.09	AVG		
3 X 2412.				74.00	33.12	peak	No Limit	
4 * 2412.	000 72.5	4 31.3	4 103.88	54.00	49.88	AVG	No Limit	

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

est Mode	TX Mode	_IEEE 802.1	1b_2462 MI	Ηz		Tested Date	2019/11/11
est Voltage	AC 120V/	60Hz				Polarization	Vertical
120.0 dBuV	/m						
110							
100				*			
90							
80							
70							
60			-		Low work	anna ann ann ann ann ann ann ann ann an	and the state
50	dan Sraph Alexins dryph years of South	and the second second				where and a start of the second s	and the second
40						4 ×	
30							
20							
10							
0.0 2412.000	2422 00 - 243	2.00 2442.00	2452.00	2462.00 247	2.00 2482	2.00 2492.00	2512.00 MHz
2412.000	Readii		Measure-	2402.00 241	2.00 2402	2432.00	2312.00 MH2
No. Mk. – F	req. Leve			_imit Man	gin		
N	lHz dBu∿	/ dB	dBuV/m dB	3u√/m dB	Detector	Comment	

54.00 45.50

54.00 -12.99

-14.82

74.00

No Limit

AVG

peak

AVG

REMARKS:

* 2462.000

2491.900

2491.900

2

4

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

67.94

27.49

9.32

31.56

31.69

31.69

99.50

59.18

41.01

st Mode	TX Mod	e_IEEE 8	02.11g_24	12 MHz			Tested	Date	2019/11/11
est Voltage	AC 120	V/60Hz					Polariza	ation	Vertical
120.0 dBu¥	//m								
110				3					
100				4	masure				
90				×					
80									
70		1	whith the ful			ų			
70	un and a start	LIL WAR AN	M. Marrie and			Mught wanted			anardushada
60	www.manner.						and the color where	whenthe	nnerydenheidenden
50		×							
40									
30									
20									
10									
0.0									
2362.000	2372.00 2	382.00 23	92.00 2402	.00 2412.0	00 2422	2.00 243	2.00 244	42.00	2462.00 MHz
No. Mk. – F	Rea req. Lev			A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Marg	in			
N	1Hz dB	u∨ dE	dBuV/i	n dBuV/m	n dB	Detecto	r Comme	ent	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2389.600	37.01	31.25	68.26	74.00	-5.74	peak	
2		2389.600	19.75	31.25	51.00	54.00	-3.00	AVG	
3	Х	2412.000	75.88	31.34	107.22	74.00	33.22	peak	
4	*	2412.000	65.12	31.34	96.46	54.00	42.46	AVG	

est Mode	TX Mo	ode_IE	EE 802.1	1g_2462	MHz		Te	sted Date	2019/11/11
est Voltage	AC 12	20V/60H	Ηz				Po	larization	Vertical
120.0 dBuV	'/m								
110					1				
100				- (2 X	m l			
90									
80				- Dal		-			
70			. IN MAR	Mr. Mape			WWWWWW		
60 month	n-t-turbertail	www.white	howmandowight				· ""\	Madeministration	manananananananan
50							4 X		
40									
30									
20									
10 0.0									
2412.000	2422.00	2432.00	2442.00	2452.00	2462.00	2472.00	2482.00	2492.00	2512.00 MHz
No. Mk. F		eading .evel	Correct Factor	Measure- ment	Limit	Margin			
N	1Hz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector C	Comment	

54.00

74.00

54.00

42.85

-4.99

-5.68

AVG

peak

AVG

REMARKS:

2 * 2462.000

2483.600

2483.600

3

4

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

65.29

37.35

16.66

31.56

31.66

31.66

96.85

69.01

48.32

st Mode	TX N	lode_	IEEE 8	02.1	1n (H	T20)	_2412	2 MHz			Teste	d Date	2019/11	/11
est Voltage	AC 1	20V/6	30Hz								Polari	zation	Vertical	
120.0 dBu\	//m													
110							3							
100						~~~~	4 ×	my						
90								۱ ۱	ι—					
80														
70		l lata	I AND	ut a start a st	h. M				W/ Mar	line i				
60	deserver the	, have the second	2								nother sheers	n-sementingen	unter and the second and	
40														1
30														
20														
10														
0.0 2362.000		2382.		92.00	2402		2412.0		2.00	2432		2442.00	2462.00	

	NO.	IVIK.	Freq.	Level	Factor	ment	LIIIIL	waryin		
_			MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment
_	1	2	2389.100	38.05	31.25	69.30	74.00	-4.70	peak	
	2	2	2389.100	21.16	31.25	52.41	54.00	-1.59	AVG	
_	3	Х 2	2412.000	75.11	31.34	106.45	74.00	32.45	peak	No Limit
_	4	* 2	2412.000	64.68	31.34	96.02	54.00	42.02	AVG	No Limit

st Mode	TX N	/lode_	IEEE 8	02.1	1n (H	T20)	_246	2 MH	2		Tes	ted I	Date	2019/11	/11
st Voltage	AC 1	120V/6	60Hz								Pola	ariza	ation	Vertical	
120.0 dBu¥	1														
	7.00														1
110							1								-
100				_		~	X 2	marke							
90						[×		1						
80						[
					in side				h						-
70			un ben Althe	the photophone	A.M.				1	will when when	, X			n Muhambalan Manaka Manaka Manaka Manaka M	1
60 Munut	hand	neder	and and April								. A All I	the lost	when and a start with	www.wahara	•
50											4 ×				1
40									_						
30									_						{
20															
10															
0.0															
2412.000	2422.00	2432	.00 24	42.00	245	2.00	2462	.00 2	472.00) 2482	2.00	249	2.00	2512.00	MHz
lo Mir E		Readin			Meas		Lim	+ NA	argin						
lo. Mk. – F	req.	Level	Fac	LOL	me	T IĽ		L 1910	ayın						

73.26

62.98

35.07

13.81

31.56

31.56

31.66

31.66

104.82

94.54

66.73

45.47

74.00

54.00

74.00

54.00

30.82

40.54

-8.53

No Limit

No Limit

peak

AVG

peak AVG

REMARKS:

1 X 2462.000

2 *

3

4

2462.000

2484.200

2484.200

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

est Mode	TX Mode_	IEEE 802.1	1b_2412	MHz			Tested [Date	2019/11/11
est Voltage	AC 120V/6	60Hz					Polariza	tion	Vertical
	iV/m								
70 60 50									
40 30 20	1 2 X								
10 0.0									
1000.000	3550.00 6100.	00 8650.00	11200.00) 13750.0	0 16300	.00 1885	50.00 2140	00.00	26500.00 MHz
No. Mk. I	Reading Freq. Level	g Correct Factor	Measure ment	- Limit	Margin	1			
	MHz dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Commer	nt	
	4.000 54.83	-10.52	44.31	74.00	-29.69	peak			
2 * 4824	4.000 42.22	-10.52	31.70	54.00	-22.30	AVG			

est Mode	TX Mode_IE	EEE 802.1	1b_2412	MHz			Tested [Date	2019/11/11
est Voltage	AC 120V/60)Hz					Polariza	tion	Horizontal
120.0 dBu 110 100 90	V/m								
80 70 60									
50 40 30	2 X								
20 10 0.0 1000.000	3550.00 6100.00) 8650.00	11200.00	13750.00	16300.00	0 1885	0.00 214	00.00	26500.00 MHz
No. Mk. F	Reading Freq. Level	Correct Factor	Measure- ment	Limit	Margin				
	MHz dBu∨	dB	dBư∨/m	dBuV/m		Detector	Commer	nt	
1 4824		-10.52	44.64	74.00	-29.36	peak			
2 * 4824	.000 42.25	-10.52	31.73	54.00	-22.27	AVG			

est Mode	TX Mode_I	EEE 802.1	1b_2437 I	MHz			Testeo	Date	2019/11/1
est Voltage	AC 120V/6)Hz					Polariz	zation	Vertical
120.0 dBu\	<i></i>								
110									
100									
90									
80									
70									
60									
50	1 X								
40									
30	2 X								
20									
10									
0.0	3550.00 6100.0	0 8650.00	11200.00	13750.00	16300.0	0 1885	0.00 2	1400.00	26500.00 MHz
1000.000	Reading		Measure-	13130.00	10500.0	1005	0.00 2	1400.00	20300.00 MHZ
lo. Mk. – F	req. Level	Factor	ment	Limit	Margin				
	/Hz dBu∨	dB		dBuV/m		Detector	Comm	nent	
1 4874 2 * 4874		-10.40 -10.40	44.41 31.63		-29.59 -22.37	peak AVG			
Z ~ 4874	.000 42.03	-10.40	31.03	54.00	-22.31	AVG			

est Mod	e TX	Mode_IE	EE 802.	11b_2437	MHz			Teste	d Date	2019/11/11
est Volta	ige AC	C 120V/60)Hz					Polar	ization	Horizontal
120.0 1100 90 80 70 60	dBu¥/m									
50		1 X								
40 30		2 X								
20										
10										
0.0										
100	0.000 3550.0	0 6100.00	0 8650.00) 11200.00	13750.0	0 1630	0.00 1885	50.00	21400.00	26500.00 MHz
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Margi	n			
	MHz	dBu∨	dB	dBư∨/m	dBuV/m	dB	Detector	Com	ment	
	4874.000	54.63	-10.40	44.23	74.00	-29.77	-			
2 * 4	4874.000	42.03	-10.40	31.63	54.00	-22.37	' AVG			

Voltage AC 120V/60Hz Polarization Vertical 100 #8w/n		е ТХ	K Mode_IE	EE 802.1	1b_2462 I	MHz			Teste	ed Date	2019/11/11
110	Volta	ige AC	C 120V/60	Hz					Pola	rization	Vertical
2 X Image: Section of the section o	110 100 30 70 50	dBuV/m									
0			2 ×								
0.0 0											
1000.000 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 MI Mk. Freq. Level Correct Factor Measure- ment Limit Margin MHz dBuV dB dBuV/m dB Detector Comment 4924.000 56.17 -10.28 45.89 74.00 -28.11 peak											
Mk.Freq.LevelFactormentLimitMarginMHzdBuVdBdBuV/mdBDetectorComment4924.00056.17-10.2845.8974.00-28.11peak		0.000 3550.0	00 6100.00	8650.00	11200.00	13750.00	16300	.00 188	50.00	21400.00	26500.00 MHz
4924.000 56.17 -10.28 45.89 74.00 -28.11 peak	. Mk.		Level	Factor	ment		_		· Cor	nment	
2 * 4924.000 42.34 -10.28 32.06 54.00 -21.94 AVG	2										
				40.20	32.06	54.00	-21.94	AVG			
/ARKS:			42.34	-10.28			21.04	/			

est Mode	TX Mode_	EEE 802.1	1b_2462 I	MHz			Teste	d Date	2019/11/11
est Voltage	AC 120V/6	0Hz					Polar	ization	Horizontal
120.0 dBu	//m								
110									
90									
80									
70									
60 50									
40	1 X								
30	2 ×								
20									
10 0.0									
1000.000	3550.00 6100.	00 8650.00	11200.00	13750.0	D 16300).00 188	50.00	21400.00	26500.00 MHz
lo. Mk. F	Reading req. Level	g Correct Factor	Measure- ment	Limit	Margir				
Ν	/Hz dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Com	ment	
1 4924	.000 55.33	-10.28	45.05	74.00	-28.95	peak			
2 * 4924	.000 42.33	-10.28	32.05	54.00	-21.95	AVG			

est Mode	TX Mode_I	EEE 802.1	1g_2412	MHz		Testec	Date	2019/11/11
est Voltage	AC 120V/60)Hz				Polariz	zation	Vertical
						•		•
120.0 dBu\	//m							
110								
100								
90								
80								
70								
60								
50								
40	1 X							
30	2 X							
20								
10								
0.0								
1000.000				13750.00	16300.00	18850.00 2 ⁻	1400.00	26500.00 MHz
No. Mk. F	Reading req. Level	Correct Factor	Measure- ment	Limit	Margin			
٨	/Hz dBu∨	dB	dBuV/m	dBuV/m	dB Det	tector Comm	nent	
1 4824		-10.52	44.42			eak		
2 * 4824	.000 42.00	-10.52	31.48	54.00	-22.52 A	VG		

est Mo	de	TX Mode_I	EEE 802.1	1g_2412	MHz			Tested Date	2019/11/11
est Vol	tage	AC 120V/60)Hz					Polarization	Horizontal
120.	0 dBuV/m								
110									
100									
90									
80									
70									
60									
50		1 X							
40 30		2 X							
20									
10									
0.0	000 000 05	-0.00 0100 0	0 0050 00	11200.00	10750.00	10000.0	0 1005	0.00 01400.00	20500.00 1444
	000.000 35	6100.00 6100.0		11200.00 Measure-	13750.00	16300.0	0 1885	0.00 21400.00	26500.00 MHz
No. M	k. Fred		Factor	ment	Limit	Margin			
	MHz		dB	dBuV/m	dBuV/m		Detector	Comment	
1	4824.00		-10.52	44.41	74.00	-29.59	peak		
2 *	4824.00	0 42.23	-10.52	31.71	54.00	-22.29	AVG		

t Mode	TX Mod	e_IEEE 80)2.11g_2437	MHz		Te	ested Date	2019/11/1
t Voltage	AC 120	//60Hz				Po	olarization	Vertical
120.0 dBu	V/m							
100								
90								
80 70								
60								
50	1 X							
40 30	2 X							
20								
10								
0.0 1000.000	3550.00 61	100.00 865	0.00 11200.00	13750.00	16300.0	0 18850.00) 21400.00	26500.00 MHz
o. Mk. F	Read Freq. Lev			Limit	Margin			
I	MHz dBu	u∨ dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1 4874				74.00	-29.94	peak		
2 * 4874	.000 42.	07 -10.4	0 31.67	54.00	-22.33	AVG		

(2) Margin Level = Measurement Value - Limit Value.

st Mode	TX Mode_	IEEE 802.1	1 <u>g_</u> 2437	MHz		Т	ested Date	2019/11/11
st Voltage	AC 120V/6	60Hz				Р	olarization	Horizontal
120.0 dBu 110 90 80 70 60	V/m							
50	ł							
30	2 X							
20								
0.0								
1000.000				13750.00	16300.0	18850.0	0 21400.00	26500.00 MHz
	Reading Freq. Level	Factor	Measure- ment	Limit	Margin			
	MHz dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1 4874 2 * 4874		-10.40 -10.40	44.26 31.66		-29.74 -22.34	peak AVG		

(2) Margin Level = Measurement Value - Limit Value.

st Voltage 120.0 dBu¥/m 110	AC 120V/60		19_2 102	MHz			Tested [Date	2019/11/11
		HZ					Polariza	tion	Vertical
	m								
110									
100									
90									
80									
70									
60									
50	1 X								
40	2 ×								
30									
20									
10 0.0									
1000.000 35	550.00 6100.00	0 8650.00	11200.00) 13750.0	00 16300).00 1885	50.00 2140	0.00	26500.00 MHz
No. Mk. Fre	Reading eq. Level	Correct Factor	Measure- ment	- Limit	Margir				
MH: MH:		dB	dBuV/m	dBuV/m	dB	Detector	Commer	nt	
1 4924.00		-10.28	44.21	74.00	-29.79				
2 * 4924.00	00 42.37	-10.28	32.09	54.00	-21.91	AVG			

st Voltage	e AC	1001/1001		1g_2462 I	MHz			Teste	ed Date	2019/11/12
120.0 d		120V/60H	Ηz					Pola	rization	Horizontal
110 100 90 80	BuV/m									
70 60										
50 40		1 X 2								
30 20		×								
10 0.0										
1000.0	00 3550.00	6100.00 Reading	8650.00 Correct	11200.00 Measure-	13750.0) 16300.	.00 1885	60.00	21400.00	26500.00 MHz
lo. Mk.	Freq.	Level	Factor	ment	Limit	Margin				
1 49	MHz 24.000	dBu∨ 54.87	dB -10.28	dBu∨/m 44.59	dBuV/m 74.00	dB -29.41	Detector peak	Con	nment	
	24.000	42.34	-10.28	32.06	54.00	-21.94	AVG			

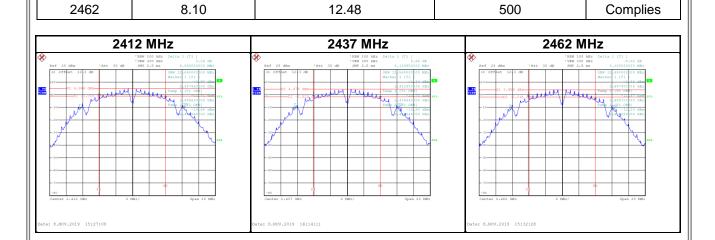
est Mode	TX Mode_I	EEE 802.11	n (HT20)_2	2412 MHz	Tested Date	2019/11/11
est Voltage	AC 120V/60)Hz			Polarization	Vertical
120.0 dBuV	7m					
110						
100						
90						
80						
70						
60						
50	1					
40	1 X					
30	2 X					
20						
10						
0.0						
1000.000	3550.00 6100.0	0 8650.00	11200.00	13750.00 16300.00	18850.00 21400.00	26500.00 MHz
No. Mk. F	Reading req. Level	Correct N Factor	Measure- ment l	_imit Margin		
N	1Hz dBu∀	dB	dBư∨/m d£	3u∨/m dB Det	tector Comment	
1 4824.	000 53.59	-10.52	43.07 7	4.00 -30.93 pe	eak	
2 * 4824.	000 41.79	-10.52	31.27 5	4.00 -22.73 A	VG	

est Mode	TX Mode_I	EEE 802. ²	l1n (HT20)_2412	MHz		Tested	Date	2019/11/11
est Voltage	AC 120V/6	0Hz					Polariza	ation	Horizontal
110 100 90	V/m								
80 70									
60 50	1								
40 30	1 2 X								
20									
0.0									
1000.000	3550.00 6100.0	0 8650.00	11200.00	13750.0	D 16300.	.00 1885	50.00 214	00.00	26500.00 MHz
No. Mk F	Reading Freq. Level) Correct Factor	Measure- ment	Limit	Margin				
	MHz dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comme	nt	
	.000 54.22	-10.52	43.70	74.00	-30.30	peak			
2 * 4824	41.59	-10.52	31.07	54.00	-22.93	AVG			

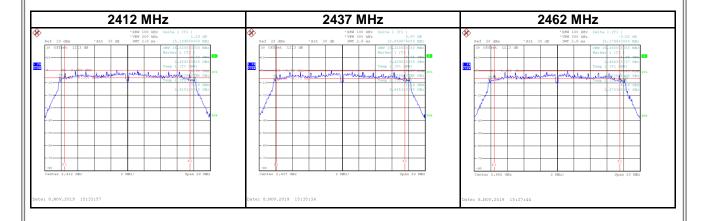
Voltage AC 120V/60Hz Polarization Vertical 120.0 dBuV/m	Mode	TX Mode	e_IEEE 8	02.11n (HT2	20)_2437	MHz	Tes	ted Date	2019/11/11
110	Voltage	AC 120\	//60Hz				Pola	arization	Vertical
110									
110	100.0 10	<u></u>							
100	120.0 dBu	iV/m							
90 80 80 80 80 80 80 80 80 80 80 80 80 80	110								
80	100								
70 -	90								
60	80								
50 -	70								
40 1	60								
40 2 2 1	50	1							
20 -	40								
10 0.0 355.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 MHz 10 0.0.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 MHz . Mk. Freq. Reading Level Correct Factor Measurement Limit Margin Margin MHz dBuV dB dBuV/m dB Detector Comment Measurement 4874.000 54.66 -10.40 44.26 74.00 -29.74 peak Margin	30	x							
0.0 0.0 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 MHz 1.000.000 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 MHz . Mk. Freq. Reading Level Correct Factor Measure- ment Limit Margin Margin MHz MHz dBuV dB dBuV/m dB Detector Comment MHz 4874.000 54.66 -10.40 44.26 74.00 -29.74 peak	20								
1000.000 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 MHz . Mk. Freq. Level Correct Factor Measure- ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB Detector Comment 4874.000 54.66 -10.40 44.26 74.00 -29.74 peak	10								
Reading . Mk.Correct LevelMeasure- mentLimit LimitMarginMHzdBuVdBdBuV/mdBDetector Comment4874.00054.66-10.4044.2674.00-29.74peak									
Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dB Detector Comment 4874.000 54.66 -10.40 44.26 74.00 -29.74 peak	1000.000					0 16300.00	18850.00	21400.00	26500.00 MHz
4874.000 54.66 -10.40 44.26 74.00 -29.74 peak	. Mk. F				ə- Limit	Margin			
·		MHz dBu	ı∨ dB	dBuV/m	dBuV/m	dB D	Detector Co	mment	
* * 4874.000 42.24 -10.40 31.84 54.00 -22.16 AVG									
	* 4874	4.000 42.2	24 -10.4	0 31.84	54.00	-22.16	AVG		
	MARKS:								

st Mode	TX Mode	_IEEE 802	2.11n (HT2	0)_2437	MHz		Test	ed Date	2019/11
st Voltage	AC 120V	/60Hz					Pola	rization	Horizor
120.0 dBu	V/m								
110									
100									
90									
80									
70									
60									
50	ł								
40									
30	2 X								
20									
10									
0.0	3550.00 610	0.00 8650	.00 11200.0	0 13750.0	0 1630	0 00 188	50.00	21400.00	26500.00 M
	Readi				0 1030	0.00 100	30.00	21400.00	20300.00 M
lo. Mk. – F	Freq. Leve	l Facto		,- Limit	Margi	n			
	MHz dBu\		dBuV/m	dBuV/m	dB	Detecto	r Con	nment	
	.000 54.9			74.00	-29.50				
2 * 4874	.000 42.3	5 -10.40	31.95	54.00	-22.05	5 AVG			

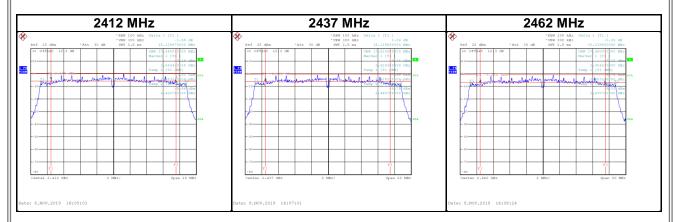
Mode	TX M	ode_II	EEE 802	2.11n (H	T20)_2	462	MHz		Test	ed Date	2019/	11/11
Voltage	AC 12	20V/60)Hz						Pola	rization	Vertica	al
100.0 10 1												
120.0 dBu	//m											1
110												
100 90												1
80												
70												-
60												
50	1	ļ										
40		2 2 4										
30	>	<										
20												
10 0.0												1
1000.000		6100.0				3750.0	0 1630	0.00 188	50.00	21400.00	26500.00	MHz
Mk. F		eading .evel	Correc Facto			mit	Margi	in				
		dBu∨	dB	dBuV		.l∨/m	dB	Detecto		nment		
4924 * 4924		55.36 12.17	-10.28			.00	-28.92					
4324	.000 -	+2.17	-10.20	51.0	19 04	.00	-22.11	- AVO				
/ARKS:												
/ARKS: /leasuren /largin Le	nent Val	ue = R	Reading	Level +		t Fac	ctor.					


est Mode	тх 🕴	(Mode_IE	EEE 802.	11n (HT2)	0)_2462	MHz		Tested I	Date	2019/11/11
est Voltaç	ge AC	C 120V/60)Hz					Polariza	tion	Horizontal
120.0 110 100 90	dBuV/m									
80										
70										
60 50		1								
40		1 2 X								
30 20		×								
10										
0.0	.000 3550.0)0 6100.00	0 8650.00	11200.00	0 13750.0	00 1630	0.00 1885	i0.00 21 4	00.00	26500.00 MHz
No. Mk.	Freq.	Reading Level	Correct Factor	Measure ment		Margi				
10. MR.	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	nt	
1 4	924.000	54.96	-10.28	44.68	74.00	-29.32				
2 * 4	924.000	42.51	-10.28	32.23	54.00	-21.77	AVG			

APPENDIX E BANDWIDTH



Test Mode	Test Mode IEEE 802.11b					
Test Voltage AC 120V/60Hz						
Frequency (MHz)	6dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Limit (kHz)	Result		
2412	8.06	12.64	500	Complies		
2437	8.11	12.56	500	Complies		


Test Mode	IEEE 802.11g	
Test Voltage	AC 120V/60Hz	

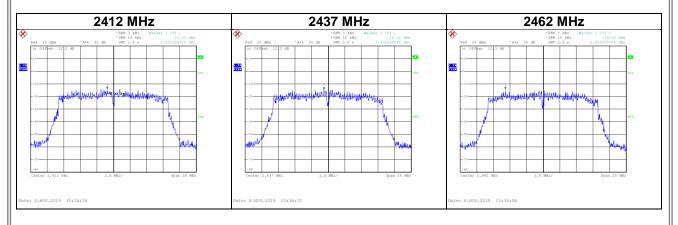
Frequency (MHz)	6dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Limit (kHz)	Result
2412	15.20	16.32	500	Complies
2437	15.56	16.32	500	Complies
2462	15.18	16.36	500	Complies

Test Mode	Test Mode IEEE 802.11n (HT20)						
Test Voltage	Test Voltage AC 120V/60Hz						
Frequency (MHz)	6dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Limit (kHz)	Result			
2412	15.14	17.48	500	Complies			
2437	15.12	17.52	500	Complies			
2462	15.14	17.48	500	Complies			

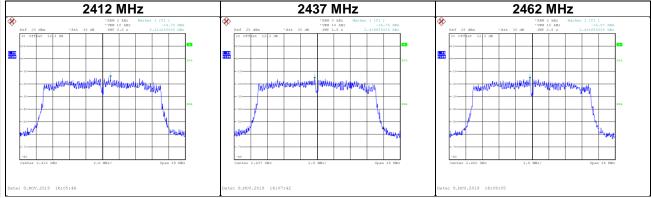
APPENDIX F OUTPUT POWER

Test Mode	IEEE 802.11b			Tested Date	2018/11/8
Test Voltage	AC 120V/60Hz				
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Limit (dBm)	Limit (W)	Result
2412	16.07	0.0405	30.00	1.0000	Complies
2437	15.47	0.0352	30.00	1.0000	Complies
2462	15.06	0.0321 30.00		1.0000	Complies
Test Mode	IEEE 802.11g			Tested Date	2018/11/8
Test Voltage	AC 120V/60Hz				
Frequency	Conducted Power	Conducted Power (W)	Limit	Limit	Result
(MHz)	(dBm)		(dBm)	(W)	
2412	21.05	0.1274	30.00	1.0000	Complies
2437	19.95	0.0989	30.00	1.0000	Complies
2462	19.06	0.0805	30.00	1.0000	Complies
					-
Test Mode	IEEE 802.11n (HT2	20)		Tested Date	2018/11/8
Test Voltage	AC 120V/60Hz				
Frequency	Conducted Power		Limit	Limit	
		Conducted Power (W)			Result
(MHz)	(dBm)		(dBm)	(W)	
2412	19.90	0.0977	30.00	1.0000	Complies
2437	19.28	0.0847	30.00	1.0000	Complies
	19.28 0.0847				

APPENDIX G POWER SPECTRAL DENSITY

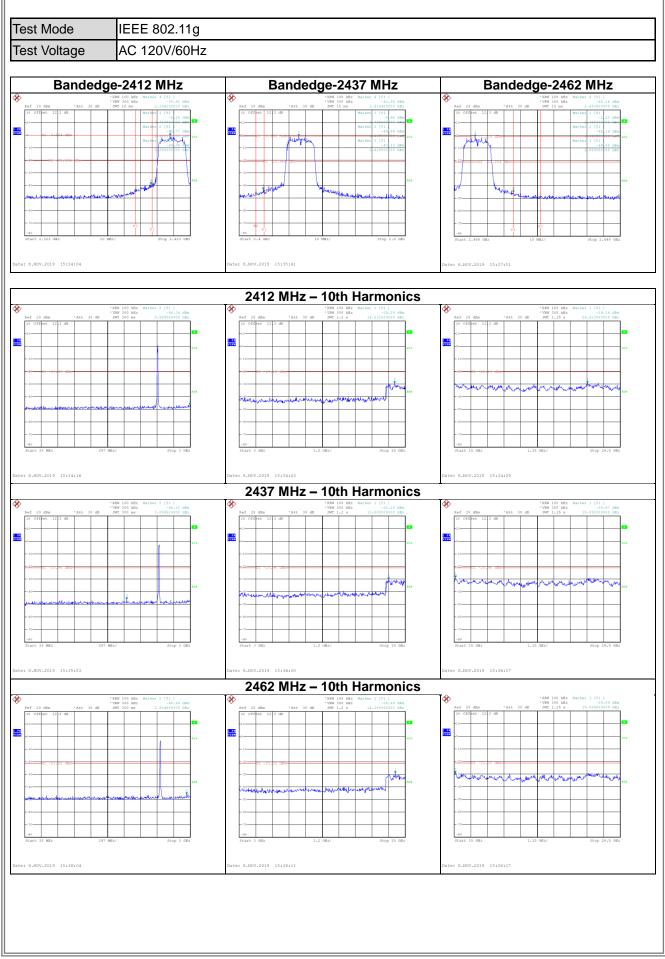


Test Mode	IEEE 802	.11b				
Fest Voltage	AC 120V/	60Hz				
Frequen (MHz)	-		ower Density dBm/3kHz)	Limit (dBm)		Result
2412			-9.77	8.00		Complies
2437			-9.55	8.00		Complies
2462			-10.81	8.00		Complies
241	2 MHz		2437	MHz		2462 MHz
<u>م</u>	SWT 2.0 s 2.4112500	77 dfm 00 0ffz 53 6/FL 58	• VEW	3 ME - Nother 1 (71.) 10 ME	Pef 23 dDm 0 offlet 123 c -10 -10 -20	-2000 3.000 - 2000 3.000 - 101 1 -1010 1.0001010 1.000 -2000 2.0 av 2000 2


Test Mode	IEEE 802.11g	
	AC 120V/60Hz	

Frequency	Power Density	Limit	Result
(MHz)	(dBm/3kHz)	(dBm)	Result
2412	-13.91	8.00	Complies
2437	-14.16	8.00	Complies
2462	-14.08	8.00	Complies


Test Mode	de IEEE 802.11n (HT20)					
Test Voltage	Fest Voltage AC 120V/60Hz					
Frequer	су	Power Density	Limit	Result		
(MHz)	1	(dBm/3kHz)	(dBm)	Result		
2412		-14.70	8.00	Complies		
2437		-15.76	8.00	Complies		
2462		-15.87	8.00	Complies		
L			1			



APPENDIX H ANTENNA CONDUCTED SPURIOUS EMISSIONS

