

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

BTL's report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **BTL-self**, extracts from the test report shall not be reproduced except in full with **BTL**'s authorized written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO Guide 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Table of Contents

REPORT IS	SSUED HISTORY	5
1 CE	ERTIFICATION	6
2 SL	JMMARY OF TEST RESULTS	7
2.1 TE	EST FACILITY	8
2.2 ME	EASUREMENT UNCERTAINTY	8
3 GE	ENERAL INFORMATION	9
3.1 GE	ENERAL DESCRIPTION OF EUT	9
3.2 DE	ESCRIPTION OF TEST MODES	10
3.3 BL	LOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
3.4 DE	ESCRIPTION OF SUPPORT UNITS	11
4 CC	ONDUCTED EMISSION	12
4.1 LIN	MITS	12
4.2 TE	EST PROCEDURES	12
4.3 TE	EST SETUP LAYOUT	13
4.4 DE	EVIATION FROM TEST STANDARD	13
4.5 EU	JT OPERATING CONDITIONS	13
4.6 EU	JT TEST CONDITIONS	13
4.7 TE	EST RESULTS	13
5 RA	ADIATED EMISSION	14
5.1 LIN	MITS	14
5.2 TE	EST PROCEDURE	15
5.3 DE	EVIATION FROM TEST STANDARD	16
5.4 TE	EST SETUP	16
5.5 EU	JT OPERATING CONDITIONS	16
5.6 EU	JT TEST CONDITIONS	17
5.7 TE	EST RESULTS (BELOW 30MHZ) - FCC PART 15.209	17
5.8 TE	EST RESULTS - (30-1000MHZ) - FCC PART 15.209	17
5.9 TE	EST RESULTS- FCC PART 15.225	17
6 FR	REQUENCY STABILITY	18
6.1 LIN	MITS	18
6.2 TE	EST PROCEDURE	18
6.3 DE	EVIATION FROM TEST STANDARD	18
6.4 EU	JT OPERATING CONDITIONS	18
6.5 EU	JT TEST CONDITIONS	18
6.6 TE	EST RESULTS	18
7 ME	EASUREMENT INSTRUMENTS LIST	19
8 EU	JT TEST PHOTO	20
ATTACHME	ENT A - CONDUCTED EMISSION	23

Table of Contents

ATTACHMENT B - RADIATED EMISSION (9KHZ-30MHZ)	26
ATTACHMENT C - RADIATED EMISSION (30MHZ TO 1000MHZ)	31
ATTACHMENT D - RADIATED EMISSION (FCC PART 15.225)	34
ATTACHMENT E - FREQUENCY STABILITY MEASUREMENT	37

REPORT ISSUED HISTORY

Issue No	Description	Issued Date
Issue No. BTL-FCCP-1-1707042	Description Original Issue.	Issued Date Jul. 17, 2017
·	<u> </u>	,

BTL

1 CERTIFICATION

Equipment : Brand Name :	Nobel Superfine 3D Printer
	Nobel Superfine
Series Model :	
	XYZprinting, Inc.
	Cal-Comp Electronics (Thailand) Public Company Limited
	138, Moo 4, Phechkasem Road, Sapang, Koawyoi, Petchaburi 76140, Thailand.
Factory :	Cal-Comp Electronics (Thailand) Public Company Limited
Address :	138, Moo 4, Phechkasem Road, Sapang, Koawyoi, Petchaburi 76140, Thailand.
Date of Test	Jul. 10, 2017 ~ Jul. 14, 2017
	Engineering Sample
•	FCC Part 15, Subpart C (15.225)
	ANSI C63.10-2013

The above equipment has been tested and found in compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FCCP-1-1707042) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

2 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

Standard Section	Test Item	Result
15.207	Conducted emission	PASS
15.35 / 15.205 / 15.209 / 15.225	Radiated emission	PASS
15.225(e)	Frequency Stability	PASS
15.203	Antenna Requirement	PASS

NOTE:

(1) N/A denotes test is not applicable in this test report

2.1 TEST FACILITY

The test facilities used to collect the test data in this report:

Conducted emission Test:

C05: (VCCI RN: C-4742; FCC RN:965108; FCC DN:TW1082)

No. 68-1, Ln. 169, Sec.2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan Radiated emission Test:

CB15: (FCC RN:674415; FCC DN:TW0659)

No. 68-1, Ln. 169, Sec.2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

2.2 MEASUREMENT UNCERTAINTY

The measurement uncertainty is not specified by FCC rules and for reference only.

The reported uncertainty of measurement $y \pm U$, where expanded uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

A. Conducted emission test:

Test Site	Method	Measurement Frequency Range	U, (dB)
C05	CISPR	150 kHz~30MHz	2.04

B. Radiated emission test:

Test Site	Method	Measurement Frequency Range	U, (dB)
CB15	CISPR	9kHz ~ 150kHz	2.96
(3m)	CISER	150kHz ~ 30MHz	2.74

Test Site	Method	Measurement Frequency Range	Ant. H / V	U, (dB)
		30MHz ~ 200MHz	V	4.76
CB15	CISPR	30MHz ~ 200MHz	Н	4.28
(3m)	CISER	200MHz ~ 1,000MHz	V	5.08
		200MHz ~ 1,000MHz	H	4.50

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Nobel Superfine 3D Printer	
Brand Name	XYZprinting	
Test Model	Nobel Superfine	
Series Model	N/A	
Model Difference	N/A	
Draduat Description	Operation Frequency	13.56 MHz
Product Description	Antenna Designation	LOOP Antenna
Power Source	DC voltage supplied from AC/DC A	dapter.
Power Rating	I/P: 100-240V~ 1.5A, 50-60Hz C)/P: 24V 2.5A
Products Covered 1 * Adapter: FSP/ FSP060-DAAN2 1 * USB cable 1 * Power cord 1 * USB Flash Drive		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description	
Mode 1	13.56MHz Transmit	
	Conducted emission test	
Final Test Mode	Description	
Mode 1	13.56MHz Transmit	
	Radiated emission test	
Final Test Mode	Description	
Mode 1	13.56MHz Transmit	
Frequency Stability test		

Frequency Stability test		
Final Test Mode Description		
Mode 1 13.56MHz Transmit		

Antenna Requirement test		
Final Test Mode Description		
Mode 1	13.56MHz Transmit	

3.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.
-	-	-	-	-	-

Item	Shielded Type	Ferrite Core	Length	Note
1	YES	YES	1.0m	Power Line

Note:

(1) The support equipment was authorized by Declaration of Conformity (DOC).

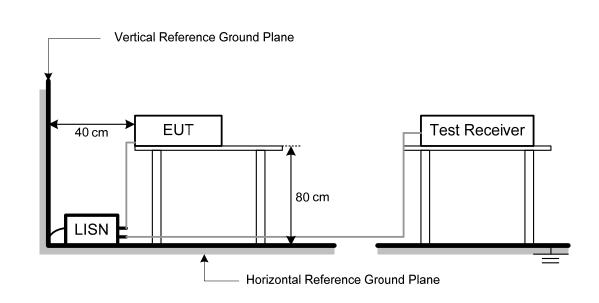
4 CONDUCTED EMISSION

4.1 LIMITS

FREQUENCY	(dBuV)					
(MHz)	Quasi-peak	Average				
0.15 - 0.5	66 - 56 *	56 - 46 *				
0.50 - 5.0	56.00	46.00				
5.0 - 30.0	60.00	50.00				

NOTE:

- 1. The tighter limit applies at the band edges.
- 2. The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value – Limit Value


4.2 TEST PROCEDURES

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.

e. For the actual test configuration, please refer to the related Item –EUT Test Photos. **NOTE:**

- a. Reading in which marked as Peak, QP or AVG means measurements by using are Quasi-Peak or Average Mode with Detector BW=9 kHz (6 dB Bandwidth).
- b. All readings are Peak Mode value unless otherwise stated QP or AVG in column of Note. If the Peak or QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only Peak or QP Mode was measured, but AVG Mode didn't perform.

4.3 TEST SETUP LAYOUT

4.4 DEVIATION FROM TEST STANDARD

No deviation

4.5 EUT OPERATING CONDITIONS

The EUT used during radiated and/or conducted emission measurement was designed to exercise in a manner similar to a typical use.

4.6 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

4.7 TEST RESULTS

Please refer to the Attachment A.

Remark:

- (2) Measuring frequency range from 150KHz to 30MHz.

5 RADIATED EMISSION

5.1 LIMITS

FCC Part 15.209								
Frequency	Field Streng Limitation		Field Strength Limitation at 3m Measurement Dist					
(MHz)	(uV/m)	Dist	(uV/m)	(dBuV/m)				
0.009 - 0.490	2400 / F(KHz)	300m	10000 * 2400/F(KHz)	20log 2400/F(KHz) + 80				
0.490 - 1.705	24000 / F(KHz)	30m	100 * 24000/F(KHz)	20log 24000/F(KHz) + 40				
1.705 - 30.00	30	30m	100* 30	20log 30 + 40				
30.0 - 88.0	- 88.0 100 3r		100	20log 100				
88.0 - 216.0	- 216.0 150		150	20log 150				
216.0 - 960.0	960.0 200		200	20log 200				
Above 960.0	500	3m	500	20log 500				
		FCC Pa	art 15.225(a)/(b)/(c)					
Frequency	Field Streng Limitation		Field Strength Limitation at 3m Measurement Dist					
(MHz)	(uV/m)	Dist	(uV/m)	(dBuV/m)				
13.553 – 13.567	15,848	30 m	15,848*100	124				
13.567 – 13.710	334	30 m	334*100	90.5				
13.110 – 13.410 13.710 – 14.010	106	30 m	106*100 80.5					

NOTE:

(1) The tighter limit shall apply at the boundary between two frequency range.

(2) Limitation expressed in dBuV/m is calculated by 20log Emission Level (uV/m).

(3) If measurement is made at 3m distance, then F.S Limitation at 3m distance is adjusted by using the formula of $L_{d1} = L_{d2} * (d_2/d_1)^2$.

Example:

F.S Limit at 30m distance is 30uV/m , then F.S Limitation at 3m distance is adjusted as L_{d1} = L_1 = 30uV/m * (10) 2 = 100 * 30 uV/m

(4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value – Limit Value

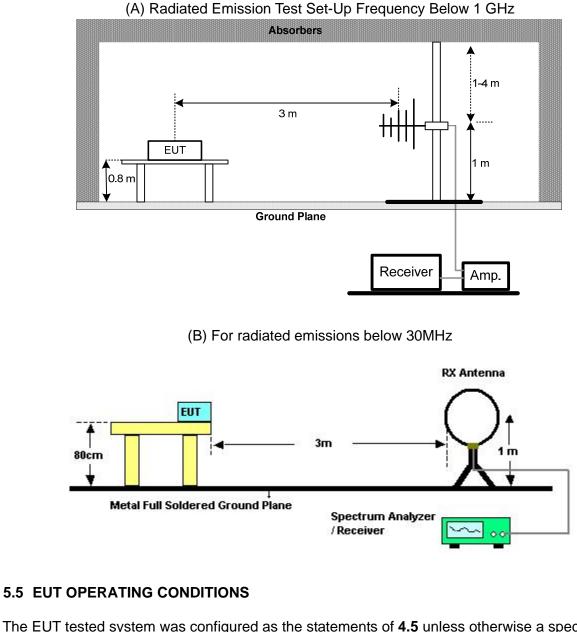
5.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- d. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

NOTE: (FCC PART 15.209)

- a. Reading in which marked as QP or Peak means measurements by using are Quasi-Peak Mode with Detector BW=120 kHz.
- b. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.

NOTE: (FCC PART 15.225)


- a. Spectrum Setting:
 9 KHz 150 KHz, RBW= 200Hz, VBW=200Hz, Sweep time = 200 ms.
 150 K Hz 30 MHz, RBW= 10 KHz, VBW=10 KHz, Sweep time = 200 ms.
 30 MHz 1000 MHz, RBW= 100KHz, VBW=100KHz, Sweep time = 200 ms.
- b. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- c. The Log-Bicon Antenna will use to test frequency range from 30MHz to 1000MHz and the Loop Antenna will use to test frequency below 30MHz.

3TL

5.3 DEVIATION FROM TEST STANDARD

No deviation

5.4 TEST SETUP

The EUT tested system was configured as the statements of **4.5** unless otherwise a special operating condition is specified in the follows during the testing.

5.6 EUT TEST CONDITIONS

Temperature: 23°C Relative Humidity: 70% Test Voltage: AC 120V/60Hz

5.7 TEST RESULTS (BELOW 30MHZ) - FCC PART 15.209

Please refer to the Attachment B.

5.8 TEST RESULTS - (30-1000MHZ) - FCC PART 15.209

Please refer to the Attachment C.

5.9 TEST RESULTS- FCC PART 15.225

Please refer to the Attachment D.

6 FREQUENCY STABILITY

6.1 LIMITS

FCC Part 15.225(e)

The frequency tolerance of the carrier signal shall be maintained within +/-0.01% of the operating frequency over a temperature variation of - 20 degrees to + 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

For battery operated equipment, the equipment tests shall be performed using a new battery.

6.2 TEST PROCEDURE

- a. The equipment under test was connected to an external AC power supply and the RF output was connected to a frequency counter via feed through attenuators. The EUT was placed inside the temperature chamber.
 After the temperature stabilized for approximately 20 minutes, the frequency of the output signal was recorded from the counter.
- b. At room temperature (25±5°C), an external variable AC power supply was connected to the EUT. The frequency of the transmitter was measured for 115%, 100% and 85% of the nominal operating input voltage.

6.3 DEVIATION FROM TEST STANDARD

No deviation

6.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **4.5**. unless otherwise a special operating condition is specified in the follows during the testing.

6.5 EUT TEST CONDITIONS

Temperature: 22°C Relative Humidity: 66% Test Voltage: AC 120V/60Hz

6.6 TEST RESULTS

Please refer to the Attachment E.

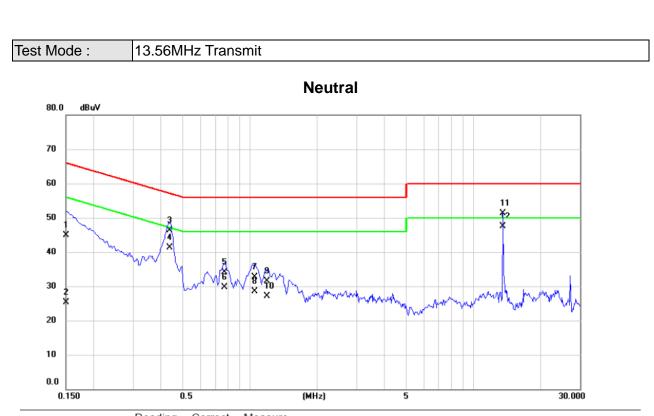
7 MEASUREMENT INSTRUMENTS LIST

	Conducted Emission Measurement									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until					
1	TWO-LINE V-NETWORK	R&S	ENV216	101050	Jan. 25, 2018					
2	Test Cable	TIMES CFD300-NL		C02	Jun. 15, 2018					
3	EMI Test Receiver	R&S	ESR7	101433	Dec. 09, 2017					
4	Measurement Software	EZ	EZ_EMC (Version NB-03A)	N/A	N/A					

	Radiated Emission Measurement									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until					
1	Preamplifier	EMCI	EMC02325	980217	Dec. 29, 2017					
2	Test Cable	EMCI	EMC104-SM-SM- 8000	8m	Jan. 04, 2018					
3	Test Cable	EMCI	EMC104-SM-SM- 800	150207	Jan. 04, 2018					
4	Test Cable	EMCI	EEMC104-SM-S M-3000	151205	Jan. 04, 2018					
5	MXE EMI Receiver	Agilent	N9038A	MY55420127	Jan. 09, 2018					
6	Loop Ant	EMCO	6502	42960	Nov. 24, 2017					
7	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-548	Jan. 16, 2018					
8	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0623	Jan. 16, 2018					

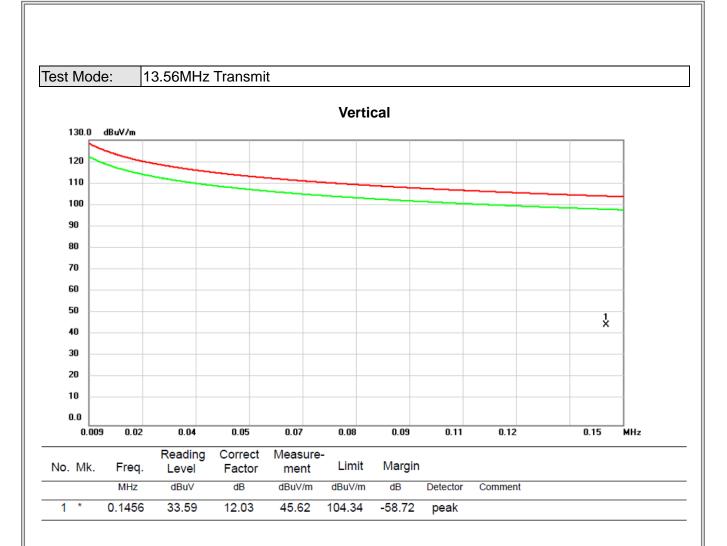
	Frequency Stability Measurement									
ltem	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until					
1	Spectrum Analyzer	Agilent	N9020A	MY51160196	Jul. 27, 2017					

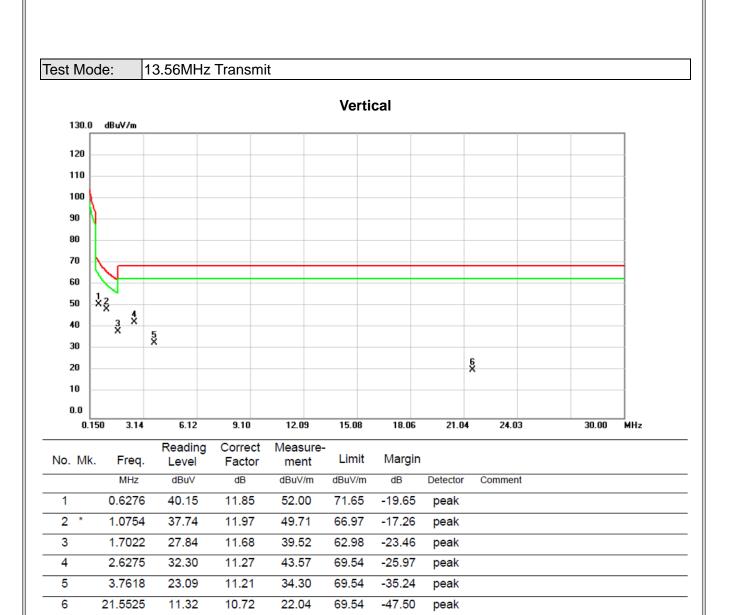
Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.


ATTACHMENT A - CONDUCTED EMISSION

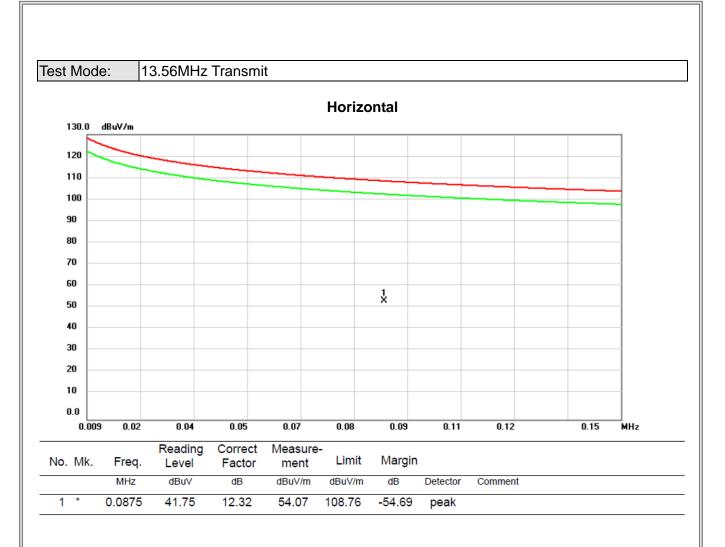
зīг

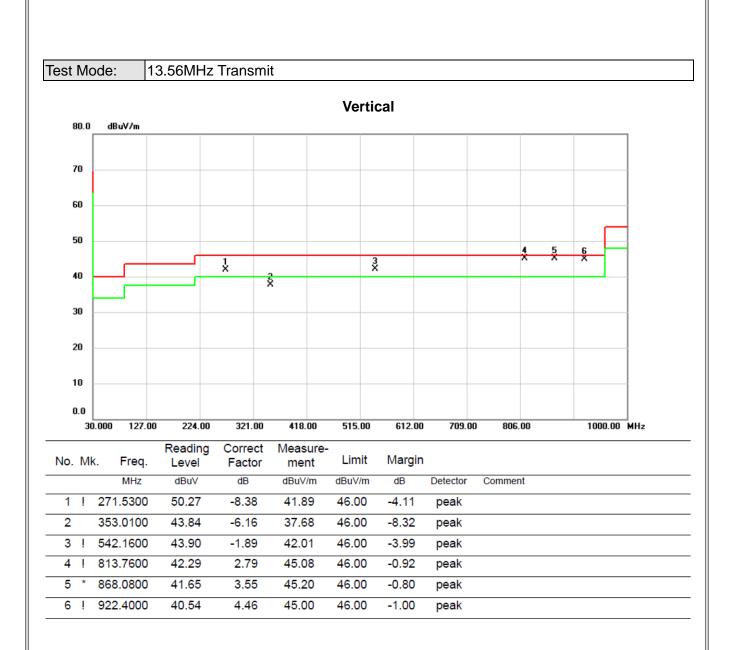
No. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1500	34.70	9.76	44.46	66.00	-21.54	QP	
2	0.1500	15.70	9.76	25.46	56.00	-30.54	AVG	
3	0.4377	36.20	9.75	45.95	57.11	-11.16	QP	
4	0.4377	31.30	9.75	41.05	47.11	-6.06	AVG	
5	0.7790	21.50	9.78	31.28	56.00	-24.72	QP	
6	0.7790	17.20	9.78	26.98	46.00	-19.02	AVG	
7	1.1750	22.60	9.80	32.40	56.00	-23.60	QP	
8	1.1750	16.90	9.80	26.70	46.00	-19.30	AVG	
9	1.6700	22.30	9.82	32.12	56.00	-23.88	QP	
10	1.6700	17.70	9.82	27.52	46.00	-18.48	AVG	
11	13.5500	42.20	10.00	52.20	60.00	-7.80	QP	
12 *	13.5500	37.60	10.00	47.60	50.00	-2.40	AVG	


зīг

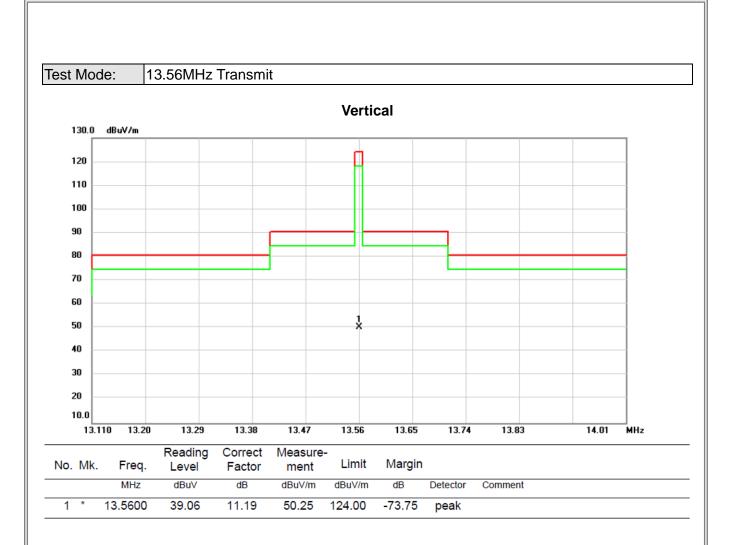

No. Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1507	35.20	9.68	44.88	65.96	-21.08	QP	
2	0.1507	15.60	9.68	25.28	55.96	-30.68	AVG	
3	0.4370	36.60	9.69	46.29	57.12	-10.83	QP	
4	0.4370	31.70	9.69	41.39	47.12	-5.73	AVG	
5	0.7700	24.30	9.73	34.03	56.00	-21.97	QP	
6	0.7700	20.00	9.73	29.73	46.00	-16.27	AVG	
7	1.0490	23.00	9.75	32.75	56.00	-23.25	QP	
8	1.0490	18.80	9.75	28.55	46.00	-17.45	AVG	
9	1.1930	21.80	9.75	31.55	56.00	-24.45	QP	
10	1.1930	17.30	9.75	27.05	46.00	-18.95	AVG	
11	13.5500	41.30	10.00	51.30	60.00	-8.70	QP	
12 *	13.5500	37.60	10.00	47.60	50.00	-2.40	AVG	

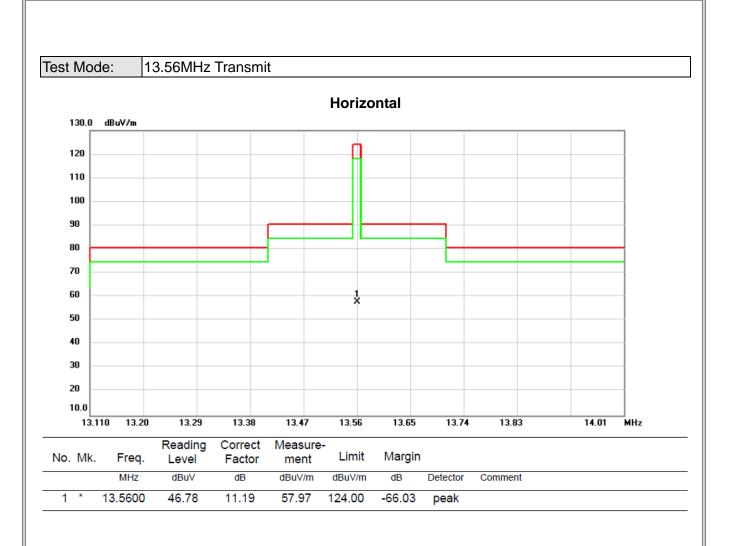
ATTACHMENT B - RADIATED EMISSION (9KHZ-30MHZ)


зīг



ATTACHMENT C - RADIATED EMISSION (30MHZ TO 1000MHZ)





ATTACHMENT D - RADIATED EMISSION (FCC PART 15.225)

BTL

ATTACHMENT E - FREQUENCY STABILITY MEASUREMENT

	Frequency Stability Versus Environmental Temperature										
	Temperature (°C)	Voltage (AC)	Frequency (MHz)	Frequency Error (kHz)	Limit (kHz)	Result					
	25	120V	13.55962	-	-	-					
0 min	50	120V	13.55962	0.000	+/- 1.356	PASS					
	-20	120V	13.55974	0.120	+/- 1.356	PASS					
2 min	50	120V	13.55974	0.120	+/- 1.356	PASS					
	-20	120V	13.55982	0.200	+/- 1.356	PASS					
5 min	50	120V	13.55982	0.200	+/- 1.356	PASS					
	-20	120V	13.55978	0.160	+/- 1.356	PASS					
10 min	50	120V	13.55974	0.120	+/- 1.356	PASS					
	-20	120V	13.55982	0.200	+/- 1.356	PASS					

Fuequency Stability Versus Input Voltage										
Temperature	Voltage		Frequency	Frequency Error Limit		Decult				
(°C)	(AC)		(MHz)	(kHz)	(kHz)	Result				
25	V-nom	120	13.55974	-	-	-				
25	V-min	102	13.55982	0.08	+/- 1.356	PASS				
25	V-max	138	13.55982	0.08	+/- 1.356	PASS				