

FCC RADIO TEST REPORT FCC ID: 2AB9SM53S

Product : Bluetooth Speaker Trade Name : Jonter , Steren , ARGENTO SC Model Name : SP2851 Serial Model: BOC-850

Prepared for

Shenzhen Jonter Digital Co.,Ltd

3F/4B, Hezhou Jinfo Industrial Park, Hezhou, Xixiang Street, Baoan District, Shenzhen, Guangdong, China

Prepared by

DongGuan Precise Testing Service Co.,Ltd.

Building D, Baoding Technology Park, Guangming Road 2, Guangming Community, Dongcheng District, Dongguan, Guangdong, China

TEST RESULT CERTIFICATION

Applicant's name Shenzhen Jonter Digital Co.,Ltd

Manufacture's Name... Shenzhen Jonter Digital Co.,Ltd

Product description

Product name Bluetooth Speaker Model and/or type reference SP2851

Serial Model BOC-850

In all, the original product and the alternative product are the same.

Standards FCC Part15.247

Test procedure ANSI C63.4-2014

This device described above has been tested by PTS, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of PTS,

this document may be altered or revised by PTS, personal only, and shall be noted in the revision of the document.

Date of TestDate (s) of performance of testsDate of IssueApr. 21, 2015Test ResultPass

2

waithe Huarg

Assistant

chim

Authorized Signatory:

Testing Engineer

Chris Du / Manager

2 Test Summary

Test Items	Test Requirement	Result	
	15.205(a)		
Spurious Radiated Emissions	15.209	PASS	
	15.247(d)		
Band edge Emissions	15.247(d)	PASS	
Conducted Emissions	15.207	PASS	
20dB Bondwidth	15.215c	DASS	
	15.247(a)(1)	PASS	
Maximum Peak Output Power	15.247(b)(1)	PASS	
Frequency Separation	15.247(a)(1)	PASS	
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS	
Dwell time	15.247(a)(1)(iii)	PASS	
Maximum Permissible Exposure	1 1207(b)(1)	DASS	
(Exposure of Humans to RF Fields)	1.1307(b)(1)	FA00	

TABLE OF CONTENTS

TEST SUMMARY	3
GENERAL INFORMATION	5
 3.1 GENERAL DESCRIPTION OF E.U.T. 3.2 DETAILS OF E.U.T. 3.3 CHANNEL LIST 3.4 DESCRIPTION OF SUPPORT UNITS 3.5 TEST FACILITY 	5 5 5 6 7
EQUIPMENT USED DURING TEST	8
4.1 EQUIPMENTS LIST4.2 MEASUREMENT UNCERTAINTY4.3 TEST EQUIPMENT CALIBRATION	8 8 8 8
CONDUCTED EMISSION	9
5.1 E.U.T. OPERATION5.2 EUT SETUP5.3 CONDUCTED EMISSION TEST RESULT	9 9 10
SPURIOUS RADIATED EMISSIONS	11
 6.1 EUT OPERATION : 6.2 TEST SETUP 6.3 SPECTRUM ANALYZER SETUP 6.4 TEST PROCEDURE 6.5 CORRECTED AMPLITUDE & MARGIN CALCULATION 6.6 SUMMARY OF TEST RESULTS 	11 12 13 14 14 15
BAND EDGE MEASUREMENT	18
7.1 TEST PROCEDURE7.2 TEST RESULT:	18 19
20 DB BANDWIDTH MEASUREMENT	22
8.1 TEST PROCEDURE:8.2 TEST RESULT:	22 22
	28
9.1 TEST PROCEDURE: 9.2 TEST RESULT:	28 28
HOPPING CHANNEL SEPARATION	34
10.1TEST PROCEDURE:10.2TEST RESULT:	34 34
NUMBER OF HOPPING FREQUENCY	40
11.1 TEST PROCEDURE:11.2 TEST RESULT:	40 40
DWELL TIME	42
12.1 TEST PROCEDURE:12.2 TEST RESULT:	42 42
ANTENNA REQUIREMENT	58
	TEST SUMMARYGENERAL INFORMATION3.1GENERAL DESCRIPTION OF E.U.T.3.2DETAILS OF E.U.T.3.3CHANNEL LIST3.4DESCRIPTION OF SUPPORT UNITS3.5TEST FACILITYEQUIPMENT USED DURING TEST4.1EQUIPMENT USED DURING TEST4.2MEASUREMENT UNCERTAINTY4.3TEST EQUIPMENT CALIBRATIONCONDUCTED EMISSION5.1E.U.T. OPERATION5.2EUT SETUP5.3CONDUCTED EMISSION TEST RESULTSPURIOUS RADIATED EMISSIONS6.1EUT OPERATION :6.2TEST SETUP6.3SPECTRUM ANALYZER SETUP6.4TEST PROCEDURE6.5CORRECTED AMPLITUDE & MARGIN CALCULATION6.6SUMMARY OF TEST RESULTSBAND EDGE MEASUREMENT7.1TEST PROCEDURE7.2TEST RESULT:DOR BANDWIDTH MEASUREMENT8.1TEST PROCEDURE:8.2TEST RESULT:MAXIMUM PEAK OUTPUT POWER9.1TEST PROCEDURE:9.2TEST RESULT:NUMBER OF HOPPING FREQUENCY1.1TEST PROCEDURE:1.2TEST RESULT:DWELL TIME12.1TEST PROCEDURE:12.2TEST RESULT:AUTOCEDURE:12.2TEST RESULT:AUTOCEDURE:12.1TEST PROCEDURE:12.2TEST RESULT:DWELL TIME12

3 General Information

3.1 General Description of E.U.T.

Product Name	: Bluetooth Speaker
Model No.	: SP2851
Brand Name	: Jonter , Steren , ARGENTO SC
Model Description	: Series Production
Operation Frequency Type of Modulation	: 2400MHz ~ 2483MHz,79 channels in total, separated by 1MHz : GFSK, Pi/4DQPSK, 8DPSK
Oscillator	: 26MHz for RF module
Antenna installation	: PCB Printed Antenna
Bluetooth version	: EDR+2.1
Antenna Gain	:0dBi
hardware version	:V3.0
Software version	:V2.9
Serial number	:01

3.2 Details of E.U.T.

Technical Data

: (1)DC 3.7V from battery (2)AC 100-240V, 0.5A

3.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2402	2	2403	3	2404	4	2405
5	2406	6	2407	7	2408	8	2409
9	2410	10	2411	11	2412	12	2413
13	2414	14	2415	15	2416	16	2417
17	2418	18	2419	19	2420	20	2421
21	2422	22	2423	23	2424	24	2425
25	2426	26	2427	27	2428	28	2429
29	2430	30	2431	31	2432	32	2433
33	2434	34	2435	35	2436	36	2437
37	2438	38	2439	39	2440	40	2441
41	2442	42	2443	43	2444	44	2445
45	2446	46	2447	47	2448	48	2449
49	2450	50	2451	51	2452	52	2453
53	2454	54	2455	55	2456	56	2457
57	2458	58	2459	59	2460	60	2461
61	2462	62	2463	63	2464	64	2465
65	2466	66	2467	67	2468	68	2469
69	2470	70	2471	71	2472	72	2473
73	2474	74	2475	75	2476	76	2477
77	2478	78	2479	79	2480	-	-

3.4 Description of Support Units

No.	Equipment	Manufacturer	Model No.	Serial No.
1.	Adapter	SAMSUNG	ETA-U90CBC	N/A

3.5 Test Facility

·

The test facility has a test site registered with the following organizations:

Dongguan Quality Supervision Testing Center

Add.: B#, Dongguan Quality Supervision Testing Center, NO.2 South Industry Road, Songshan Lake, Dongguan City, 523808, China.

FCC Registration No.: 817095; IC Registration No.: 6843A-1

4 Equipment Used during Test

4.1 Equipments List

Mains Terminal Disturbance Voltage (Conducted Emission)								
ltem	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval		
1.	EMI Test Receiver	R&S	ESCI	100229	Sep.17,2014	1 Year		
2.	LISN	SCHWARZBECK	NSLK 8128	8127437	Sep.17,2014	1 Year		
3.	Cable	LARGE	RF300	-	Sep.17,2014	1 Year		
3m S	emi-anechoic Cha	amber for Radiatio	on					
ltem	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval		
1	EMI Test Receiver	R&S	ESCI	100229	2014/10/25	2015/10/24		
2	Trilog-Broadband Antenna	SCHWARZBECK	VULB9163	9613-248	2014/11/01	2015/10/31		
3	Horn antenna (1~18GHz)	R&S	HF906	EC348	2014/11/01	2015/10/31		
4	Horn antenna (18~25GHz)	SCHWARZBECK	BBHA9170	9170517	2014/10/25	2015/10/24		
5	Pre-amplifer	SCHWARZBECK	BBV 9718	9718-269	2014/10/25	2015/10/24		
6	Signal Conditioning Unit	R&S	SCU-08	10008	2014/10/25	2015/10/24		
7	Pre-amplifer	Agilent	83006A	5241A1	2014/10/25	2015/10/24		
8	Pre-amplifer	R&S	SCU-01	10049	2014/10/25	2015/10/24		
9	Active Loop Antenna	DAZE	ZN30900A	DZ026	2014/11/01	2015/10/31		
10	Spectrum Analyzer	Agilent	E4408B	MY44211125	2014/10/25	2015/10/24		
11	Antenna connector	Тор	DQT011	032	2014/10/25	2015/10/24		
12	Coaxial Cable (below 1GHz)	DTB	966 cable 2#	-	2014/11/01	2015/10/31		
13	Coaxial Cable (above 1GHz)	DTB	966 cable 3#	EW02014-7	2014/11/01	2015/10/31		

4.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
Bandwidth	$\pm 1.5 \times 10^{-6}$
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
Temperature	±1 °C
DC Source	±0.05%
	± 5.03 dB
Padiated Emissions test	(Bilog antenna 30M~1000MHz)
Radialed Emissions lest	± 4.74 dB
	(Horn antenna 1000M~25000MHz)
Conducted Emissions test	3.64dB (150kHz~30MHz)

4.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

5 Conducted Emission

Test Requirement:	FCC CFR 47 Part 15 Section 15.207
Test Method:	ANSI C63.4:2014
Test Result:	PASS
Frequency Range:	150kHz to 30MHz
Class:	Class B
Limit:	66-56 dBµV between 0.15MHz & 0.5MHz
	56 dB μ V between 0.5MHz & 5MHz
	$60 \text{ dB}\mu\text{V}$ between 5MHz & 30MHz
Detector:	Peak for pre-scan (9kHz Resolution Bandwidth) Quasi-
	Peak & Average if maximised peak within 6dB of Average
	Limit

5.1 E.U.T. Operation

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH Atmospheric Pressure: 1012 mbar Voltage: AC 120V/60Hz

EUT Operation:

The EUT was tested according to ANSI C63.4:2014. The frequency spectrum from 150kHz to 30MHz was investigated.

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

The EUT was in transmitting mode, The worst mode was GFSK low channel, the data was recording in the report.

5.2 EUT Setup

The EUT was placed on the test table in shielding room.

Conducted Emission Test Result 5.3

Freq MHz	Reading dBuV	Result dBuV/m	Limit	Over dBu∀/m	Limit dB	Remark
0.17	20.54	31.74	54.72	-22.98	Average	LINE
0.17	34.89	46.09	64.72	-18.63	QP -	LINE
1.86	12.71	24.01	46.00	-21.99	Average	LINE
1.86	28.49	39.79	56.00	-16.21	QP	LINE
4.65	12.94	24.27	46.00	-21.73	Average	LINE
4.65	26.37	37.70	56.00	-18.30	QP	LINE

Neutral line:

6 Spurious Radiated Emissions

Test Requirement:	FCC CFR47 Part 15 Section 15.209 & 15.247
Test Method:	DA 00-705
Test Result:	PASS
Measurement Distance:	3m

Limit:

_	Field Strength		Field Strength Limit at 3m Measurement Dist	
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾

6.1 EUT Operation :

Operating Environment:

Temperature: 25.5 °C

Humidity: 51 % RH

Atmospheric Pressure:1010 mbar

Voltage: DC 3.7V Operation Mode:

The EUT was tested in transmitting mode, and the data were shown as follow.

6.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4: 2014.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

6.3 Spectrum Analyzer Setup

According to FCC Part15 Rules, the system was tested 9kHz to 25000MHz.

Below 30MHz

	Sweep Speed IF Bandwidth Video Bandwidth	Auto 10kHz 10kHz
	Resolution Bandwidth	10kHz
30MHz ~ 1GHz	2	
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	100kHz
	Video Bandwidth	300kHz
Above 1GHz		
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	1MHz
	Video Bandwidth	3MHz
	Detector	Ave.
	Resolution Bandwidth	1MHz
	Video Bandwidth	10Hz

6.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.

4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

6. Repeat above procedures until the measurements for all frequencies are complete.

7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

6.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

6.6 Summary of Test Results

Test Frequency :Below 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency : 30MHz ~ 18GHz

Test mode: transmitting

Test Frequency: 18~25GHz

The measurements were more than 20 dB below the limit and not reported.

All the modulation modes were tested, the data of the worst mode (GFSK) were recorded in the following pages.

	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2	Part 09/205
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GFSK Lo	ower Cha	nnel 240	02MHz			
183.20	22.17	PK	356	1.8	н	11.13	33.30	40.00	-6.70
183.20	24.73	PK	91	1.3	V	11.13	35.86	40.00	-4.14
4804.00	52.30	PK	17	1.4	н	-1.06	51.24	74.00	-22.76
4804.00	44.17	Ave	17	1.4	V	-1.06	43.11	54.00	-10.89
7206.00	42.05	PK	231	1.7	н	1.33	43.38	74.00	-30.62
7206.00	40.20	Ave	231	1.7	V	1.33	41.53	54.00	-12.47
2343.54	46.46	PK	91	1.2	н	-13.19	33.27	74.00	-40.73
2343.54	38.67	Ave	91	1.2	V	-13.19	25.48	54.00	-28.52
2366.84	44.86	PK	323	1.5	н	-13.14	31.72	74.00	-42.28
2366.84	37.58	Ave	323	1.5	V	-13.14	24.44	54.00	-29.56
2489.91	44.41	PK	100	1.2	н	-13.08	31.33	74.00	-42.67
2489.91	36.45	Ave	100	1.2	V	-13.08	23.37	54.00	-30.63

Receiver	Turn RX Antenna		Corrected		FCC Part 15.247/209/205				
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GFSK Ce	enter Cha	nnel 24	41MHz			
183.20	22.94	PK	133	1.7	Н	11.13	34.07	40.00	-5.93
183.20	23.69	PK	98	1.9	V	11.13	34.82	40.00	-5.18
4882.00	49.87	PK	164	1.5	Н	-0.62	49.25	74.00	-24.75
4882.00	41.92	Ave	164	1.5	V	-0.62	41.30	54.00	-12.70
7323.00	46.96	PK	63	1.4	Н	2.21	49.17	74.00	-24.83
7323.00	38.31	Ave	63	1.4	V	2.21	40.52	54.00	-13.48
2340.63	45.98	PK	134	1.9	Н	-13.19	32.79	74.00	-41.21
2340.63	39.75	Ave	134	1.9	V	-13.19	26.56	54.00	-27.44
2363.54	44.29	PK	271	1.1	Н	-13.14	31.15	74.00	-42.85
2363.54	36.65	Ave	271	1.1	V	-13.14	23.51	54.00	-30.49
2486.61	43.94	PK	171	1.9	н	-13.08	30.86	74.00	-43.14
2486.61	37.24	Ave	171	1.9	V	-13.08	24.16	54.00	-29.84

Receiver		Turn	RX An	tenna Corrected			FCC F 15.247/2	Part 09/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GFSK U	oper Cha	nnel 248	80MHz			
183.20	20.91	PK	343	1.5	н	11.13	32.04	40.00	-7.96
183.20	24.82	PK	316	2.0	V	11.13	35.95	40.00	-4.05
4960.00	52.77	PK	299	1.7	н	-0.24	52.53	74.00	-21.47
4960.00	44.73	Ave	299	1.7	V	-0.24	44.49	54.00	-9.51
7440.00	46.81	PK	205	1.8	н	2.84	49.65	74.00	-24.35
7440.00	39.03	Ave	205	1.8	V	2.84	41.87	54.00	-12.13
2315.09	45.39	PK	314	1.7	н	-13.19	32.20	74.00	-41.80
2315.09	37.08	Ave	314	1.7	V	-13.19	23.89	54.00	-30.11
2389.64	44.16	PK	269	1.2	Н	-13.14	31.02	74.00	-42.98
2389.64	36.82	Ave	269	1.2	V	-13.14	23.68	54.00	-30.32
2490.41	44.66	PK	354	1.8	Н	-13.08	31.58	74.00	-42.42
2490.41	38.17	Ave	354	1.8	V	-13.08	25.09	54.00	-28.91

Test Frequency :Above 18GHz The measurements were more than 20 dB below the limit and not reported.

7 Band Edge Measurement

Section 15.247(d) In any 100 kHz bandwidth outside the frequency
band in which the spread spectrum or digitally modulated intentional
radiator is operating, the radio frequency power that is produced by
the intentional radiator shall be at least 20 dB below that in the 100
kHz bandwidth within the band that contains the highest level of the
desired power, based on either an RF conducted or a radiated
measurement, provided the transmitter demonstrates compliance
with the peak conducted power limits. If the transmitter complies
with the conducted power limits based on the use of RMS averaging
over a time interval, as permitted under paragraph (b)(3) of this
section, the attenuation required under this paragraph shall be 30
dB instead of 20 dB. Attenuation below the general limits specified
in Section 15.209(a) is not required.
DA 00-705
40.0 dBuV/m between 30MHz & 88MHz;
43.5 dBuV/m between 88MHz & 216MHz;
46.0 dBuV/m between 216MHz & 960MHz;
54.0 dBuV/m above 960MHz.
74.0 dBuV/m for peak above 1GHz
54.0 dBuV/m for AVG above 1GHz

7.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set to span from the lowest frequency generated in the device up to and including the tenth harmonic of the highest fundamental frequency

4.continuous transmitting

5. Both hopping-on mode and hopping-off mode had been pre-tested and only the worst case (hopping–off mode) was recorded in the test report.

7.2 Test Result:

Test result plots shown as follows:

GFSK: Band edge-right side

8 20 dB Bandwidth Measurement

Test Requirement:	FCC CFR47 Part 15 Section 15.247
Test Method:	DA 00-705
Test Mode:	Test in fixing operating frequency at low, Middle, high channel.

8.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

8.2 Test Result:

Modulation	Test Channel	Bandwidth(MHz)
	Lower	0.847
GFSK	Middle	0.845
	Upper	0.851
Pi/4DQPSK	Lower	1.202
	Middle	1.209
	Upper	1.212
8DPSK	Lower	1.208
	Middle	1.211
	Upper	1.211

Test result plot as follows:

Modulation:GFSK

🔆 Agilent R Т Trace/View 2.441 GHz Ch Freq Trig Free Trace Occupied Bandwidth 2 3 Clear Write Ref 0 dBm Atten 10 dB #Peak Log Max Hold Q, ≻ 10 dB/ Min Hold View Center 2.441 GHz Span 3 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 5 ms (401 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % Blank x dB -20.00 dB 825.6799 kHz -2.561 kHz More Transmit Freq Error 1 of 2 x dB Bandwidth 844.948 kHz

Middle Channel

Modulation: Pi/4DQPSK

Middle Channel

🔆 Agilent R Т Trace/View 2.48 GHz Ch Freq Trig Trace Occupied Bandwidth 2 3 Clear Write Ref 0 dBm Atten 10 dB #Peak Max Hold Log 10 merdB/ Min Hold View Center 2.48 GHz Span 3 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 5 ms (401 pts) Occupied Bandwidth 99.00 % Occ BW % Pwr Blank x dB -20.00 dB 1.1909 MHz More Transmit Freq Error -11.646 kHz 1 of 2 x dB Bandwidth 1.212 MHz

Upper Channel

Modulation: 8DPSK

		maare	enamer		
朱 Agilent				RT	Trace/View
Ch Freq Occupied Bandwidt	2.441 GHz h			Trig Free	Trace
Ref 0 dBm	Atten 10 dB				Clear Write
#Peak Log	→ →		~~e		Max Hold
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Min Hold
Center 2.441 GHz #Res BW 100 kHz	#VB\	N 300 kHz	Sweep 5	Span 3 MHz	View
Occupied B	andwidth	, C	cc BW % Pwr x dB	99.00 % -20.00 dB	Blank
Transmit Freq Error x dB Bandwidth	13.990 kHz 1.211 MHz	• 			More 1 of 2

Middle Channel

Upper Channel

Page 26 of 58

-∰ Agilent		RT	Trace/View
Ch Fre Occupied Bandwi	nq 2.48 GHz idth J	Trig Free	Trace 1 2 3
Ref 0 dBm	Atten 10 dB		Clear Write
#Peak Log 10		~~~~~~~	Max Hold
dB/			Min Hold
Center 2.48 GHz #Res BW 100 kHz	z #VBW 300 kH	Span 3 MHz z Sween 5 ms (401 nts)	View
Occupied	Bandwidth 1 1741 MHz	Occ BW % Pwr 99.00 % x dB -20.00 dB	Blank
Transmit Freq En x dB Bandwidth	ror 7.632 kHz 1.211 MHz		More 1 of 2
Occupied Transmit Freq En × dB Bandwidth	Bandwidth 1.1741 MHz ror 7.632 kHz 1.211 MHz	Occ BW % Pwr 99.00 % x dB -20.00 dB	BI

# 9 Maximum Peak Output Power

Test Requirement:	FCC CFR47 Part 15 Section 15.247				
Test Method:	DA 00-705				
Test Limit:	Regulation 15.247 (b)(1), For frequency hopping systems				
	operating in the 2400-2483 MHz band employing at least 75				
	non-overlapping hopping channels, and all frequency hopping				
	systems in the 5725-5850 MHz band: 1 watt. For all other				
	frequency hopping systems in the 2400-2483 MHz band: 0.125				
	watts.				
	Refer to the result "Number of Hopping Frequency" of this				
	document. The 1watts (30 dBm) limit applies.				
Test mode:	Test in fixing frequency transmitting mode.				

### 9.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 3 MHz. VBW = 3 MHz. Sweep = auto; Detector Function = Peak.

3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

### 9.2 Test Result:

Modulation	Test Channel	Output Power (dBm)	Limit (dBm)
	Lower	-3.07	30
GFSK	Middle	-4.48	30
	Upper	-6.88	30
	Lower	-4.33	21
Pi/4DQPSK	Middle	-5.72	21
	Upper	-7.76	21
	Lower	-4.09	21
8DPSK	Middle	-5.56	21
	Upper	-7.76	21

Test result plot as follows:









Modulation: Pi/4DQPSK















# **10 Hopping Channel Separation**

Test Requirement:	FCC CFR47 Part 15 Section 15.247
Test Method:	DA 00-705
Test Limit:	Regulation 15.247(a)(1) Frequency hopping systems shall have
	hopping channel carrier frequencies separated by a minimum of 25
	kHz or the 20 dB bandwidth of the hopping channel, whichever is
	greater. Alternatively, frequency hopping systems operating in the
	2400-2483 MHz band may have hopping channel carrier frequencies
	that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of
	the hopping channel, whichever is greater, provided the systems
	operate with an output power no greater than 1W.
Test Mode:	Test in hopping transmitting operating mode.

### **10.1 Test Procedure:**

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 100KHz. VBW = 100KHz , Span = 6MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

### 10.2 Test Result:

Modulation	Test Channel	Separation (MHz)
	Lower	1.006
GFSK	Middle	1.006
	Upper	1.006
	Lower	1.006
Pi/4DQPSK	Middle	1.006
	Upper	1.006
8DPSK	Lower	1.006
	Middle	1.006
	Upper	1.006

Test result plot as follows:





Page 35 of 58



### Modulation: Pi/4DQPSK





Upper Channel





Modulation: 8DPSK Lower Channel





# 11 Number of Hopping Frequency

Test Requirement:	FCC CFR47 Part 15 Section 15.247
Test Method:	DA 00-705
Test Limit:	Regulation 15.247 (a)(1)(iii) Frequency hopping systems in the
	2400-2483

MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

### 11.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 1MHz. VBW = 1MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.

4. Set the spectrum analyzer: Centre Frequency = 2.441GHz, Span = 86MHz. Sweep=auto;

### 11.2 Test Result:

Total Channels are 79 Channels.







# 12 Dwell Time

Test Requirement:	FCC CFR47 Part 15 Section 15.247
Test Method:	DA 00-705
Test Limit:	Regulation 15.247(a)(1)(iii) Frequency hopping systems in
	the 2400-2483
	MHz band shall use at least 15 channels. The average time of
	occupancy on any channel shall not be greater than 0.4
	seconds within a period of 0.4 seconds multiplied by the
	number of hopping channels employed. Frequency hopping
	systems may avoid or suppress transmissions on a particular
	hopping frequency provided that a minimum of 15 channels are
	used.
Test Mode:	Test in hopping transmitting operating mode.

lest in hopping transmitting operating mode.

### 12.1 Test Procedure:

1.Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2.Set spectrum analyzer span = 0. centred on a hopping channel;

3.Set RBW = 1MHz and VBW = 1MHz. Sweep = as necessary to capture the entire dwell time per hopping channel.

4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

### 12.2 Test Result:

Dwell time = Pulse wide x (Hopping rate / Number of channels) x Period

The test period: T = 0.4(s) * 79 = 31.6 (s)

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 / 2 hops per second in each channel (1 time slot RX, 1 time

slot TX). So, the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)		
DH5	1600/79/6*31.6*(MkrDelta)/1000		
DH3	1600/79/4*31.6*(MkrDelta)/1000		
DH1	1600/79/2*31.6*(MkrDelta)/1000		
Remark	Mkr Delta is single pulse time.		

Modulation	Frequency	Data Packet	Mkr Delta(ms)	Dwell Time(s)	Limits(s)
GFSK	Lower channel	DH1	0.428	0.137	0.400
	Middle channel		0.432	0.138	0.400
	Upper channel		0.436	0.140	0.400
	Lower channel	DH3	1.704	0.273	0.400
	Middle channel		1.686	0.270	0.400
	Upper channel		1.692	0.271	0.400
	Lower channel		2.950	0.315	0.400
	Middle channel	DH5	2.958	0.316	0.400
	Upper channel		2.982	0.318	0.400
	Lower channel		0.444	0.142	0.400
	Middle channel	DH1	0.440	0.141	0.400
	Upper channel		0.440	0.141	0.400
	Lower channel	DH3	1.696	0.271	0.400
Pi/4DQPSK	Middle channel		1.684	0.269	0.400
	Upper channel		1.696	0.271	0.400
	Lower channel	DH5	2.970	0.317	0.400
	Middle channel		2.930	0.313	0.400
	Upper channel		2.938	0.313	0.400
	Lower channel	DH1	0.440	0.141	0.400
	Middle channel		0.440	0.141	0.400
	Upper channel		0.444	0.142	0.400
	Lower channel	DH3	1.698	0.272	0.400
8DPSK	Middle channel		1.716	0.275	0.400
	Upper channel		1.710	0.274	0.400
	Lower channel	DH5	2.966	0.316	0.400
	Middle channel		2.998	0.320	0.400
	Upper channel		2.982	0.318	0.400



٠ Offs 0.50 dB * RBW 1 MHz * Att 30 dB * VBW 1 MHz D1[1] 0.66 dB Ref 10.00 dBm SWT 2ms 432.00000000 µs -47.59 dBm 744.00000000 μs M1[1] 1Pk 0 dBm View -10 dBr -20 dBr -30 dBn -40 dBn Where the work of the second second WHAT I -WH MA SGL -60 dBi -70 dBr -80 dBn CF 2.441 GHz 200.0 µs/







### Data Packet:DH3,Lower channel



Data Packet:DH3,Middle channel



Data Packet:DH3,Upper channel



Data Packet:DH5,Lower channel







### Data Packet:DH5,Upper channel







Data Packet:DH1,Middle channel







Data Packet:DH3,Middle channel





Data Packet:DH3,Upper channel





Data Packet:DH5,Middle channel







### Modulation: 8DPSK Data Packet:DH1,Lower channel

### Data Packet:DH1,Middle channel





Data Packet:DH1,Upper channel







Data Packet:DH3,Middle channel



Data Packet:DH3,Upper channel



Data Packet:DH5,Lower channel



Data Packet:DH5,Middle channel



Data Packet:DH5,Upper channel

# 13 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has a PCB printed antenna, fulfill the requirement of this section.

======== End of Test Report ==========