

Test Report

Report No.:	MTi220322005-01E1
Date of issue:	2022-05-27
Applicant:	Shenzhen Jonter Digital Co., Ltd
Product:	M18 PACKOUT RADIO + CHARGER
Model(s):	2792-20

FCC ID: 2AB9S-2792-20

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

Instructions

1. This test report shall not be partially reproduced without the written consent of the laboratory.

2. The test results in this test report are only responsible for the samples submitted

3. This test report is invalid without the seal and signature of the laboratory.

4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.

Any objection to this test report shall be submitted to the laboratory within
 15 days from the date of receipt of the report.

Contents

1	General Description	5
	1.1 Description of the EUT	5
	1.2 Description of test modes	
	1.3 Measurement uncertainty	
2	Summary of Test Result	7
3	Test Facilities and Accreditations	8
	3.1 Test laboratory	8
4	Equipment List	9
5	Test Result	10
	5.1 Antenna requirement	10
	5.2 AC power line conducted emissions	11
	5.3 20dB occupied bandwidth	
	5.4 Conducted peak output power	
	5.5 Carrier frequency separation	
	5.6 Average time of occupancy	
	5.7 Number of hopping channels	
	5.8 Conducted emissions at the band edge	32
	5.9 Conducted spurious emissions	
	5.10 Radiated spurious emission	39
P	hotographs of the Test Setup	61
P	hotographs of the EUT	62

Test Result Certification			
Applicant:	Shenzhen Jonter Digital Co., Ltd		
Address:	3F/4B, Hezhou Jinfo Industrial Park, Hezhou, Xixiang Street, Baoan District, Shenzhen, Guangdong, China.		
Manufacturer:	Shenzhen Jonter Digital Co., Ltd		
Address:	3F/4B, Hezhou Jinfo Industrial Park, Hezhou, Xixiang Street, Baoan District, Shenzhen, Guangdong, China.		
Factory:	Dongguan Jonter Digital Co., Ltd.		
Address:	Building 1, No. 5, Daguizi East Street, Tangjiao Village, Chashan Town, Dongguan, China		
Product description			
Product name:	M18 PACKOUT RADIO + CHARGER		
Trademark:	Milwaukee		
Model name:	2792-20		
Serial Model:	N/A		
Standards:	FCC 47 CFR Part 15 Subpart C		
Test method:	ANSI C63.10-2013		
Date of Test			
Date of test:	2022-03-31 ~ 2022-04-14		
Test result:	Pass		

Test Engineer :

undy aim

(Cindy Qin)

Reviewed By: :

loor chen

(Leon Chen)

Approved By: :

Tom Kue

(Tom Xue)

1 General Description

1.1 Description of the EUT

Product name:	M18 PACKOUT RADIO + CHARGER	
Model name:	2792-20	
Series Model:	N/A	
Model difference:	N/A	
Electrical rating:	Input: AC120V/60HZ or AC230V/50HZ	
Hardware version:	VER:05	
Software version:	V1.26	
Accessories:	N/A	
EUT serial number:	MTi210907019-01-S0001	
RF specification:		
Bluetooth version:	V5.0	
Operation frequency:	2402 MHz ~ 2480 MHz	
Modulation type:	GFSK, π/4-DQPSK,8DPSK	
Antenna designation:	PCB antenna, antenna Gain: 2.29 dBi	
Max. peak conducted output power:	3.32 dBm	

1.2 Description of test modes

1.2.1 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474

Page 6 of 62

Report No.: MTi220322005-01E1

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	-	-

1.2.2 Test channels

Chanel	Frequency
Lowest (CH0)	2402MHz
Middle (CH39)	2441MHz
Highest (CH78)	2480MHz

Note: The test software has been used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

1.2.3 Description of support units

Support equipment list					
Description Model Serial No. Manufacturer					
/	/	/	/		

1.3 Measurement uncertainty

Parameter	Measurement uncertainty
AC power line conducted emission (9 kHz~30 MHz)	±2.5 dB
Occupied Bandwidth	±3 %
Conducted RF output power	±0.16 dB
Conducted spurious emissions	±0.21 dB
Radiated emission (9 kHz ~ 30 MHz)	±4.0 dB
Radiated emission (30 MHz~1 GHz)	±4.2 dB
Radiated emission (above 1 GHz)	±4.3 dB

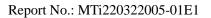
This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	FCC reference	Description of test	Result
1	§ 15.203	Antenna requirement	Pass
2	§ 15.207	AC power line conducted emissions	Pass
3	15.247(a)(1)	20dB occupied bandwidth	Pass
4	15.247(b)(1)	Conducted peak output power	Pass
5	15.247(a)(1)	Carrier Frequencies Separation	Pass
6	15.247(a)(1)	Average time of occupancy (Dwell time)	Pass
7	15.247(a)(1)	Number of hopping channels	Pass
8	15.247(d)	Conducted emission at the band edge	Pass
9	15.247(d)	Conducted spurious emissions	Pass
10	15.247(d)	Radiated spurious emissions	Pass

Note: N/A means not applicable.

3 Test Facilities and Accreditations


3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573

4 Equipment List

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
MTi-E002	EMI Test Receiver	R&S	ESCI3	101368	2021/06/02	2022/06/01
MTi-E023	Artificial power network	Schwarzbeck	NSLK8127	NSLK8127# 841	2021/06/02	2022/06/01
MTi-E025	Artificial power network	Schwarzbeck	NSLK8127	8127183	2021/06/02	2022/06/01
MTI-E043	EMI test receiver	R&S	ESCI7	101166	2021/06/02	2022/06/01
MTI-E046	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00044	2021/05/30	2023/05/29
MTI-E044	Broadband antenna	Schwarzbeck	VULB9163	9163-1338	2021/05/30	2023/05/29
MTI-E045	Horn antenna	Schwarzbeck	BBHA9120D	9120D-2278	2021/05/30	2023/05/29
MTI-E047	Pre-amplifier	Hewlett-Packard	8447F	3113A06184	2021/06/02	2022/06/01
MTI-E048	Pre-amplifier	Agilent	8449B	3008A01120	2021/06/02	2022/06/01
MTi-E120	Broadband antenna	Schwarzbeck	VULB9163	9163-1419	2021/05/30	2023/05/29
MTi-E121	Pre-amplifier	Hewlett-Packard	8447D	2944A09365	2021/04/16	2022/04/15
MTi-E123	Pre-amplifier	Agilent	8449B	3008A04723	2021/05/06	2022/05/05
MTi-E135	Horn antenna	Schwarzbeck	BBHA 9170	00987	2021/05/30	2023/05/29
MTi-E136	Pre-amplifier	Space-Dtronics	EWLAN1840G -G45	210405001	2021/06/02	2022/06/01
MTi-E062	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2021/06/23	2022/06/22
MTi-E067	RF Control Unit	Tonscend	JS0806-1	19D8060152	2021/06/02	2022/06/01
MTi-E068	RF Control Unit	Tonscend	JS0806-2	19D8060153	2021/06/02	2022/06/01
MTi-E069	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2021/06/02	2022/06/01
MTI-E010S	EMI Measurement Software	Farad	EZ-EMC Ver. EMEC-3A1	/	/	/
MTI-E014S		Tonscend	TS®JS1120 V2.6.88.0330	/	/	/

5 Test Result

5.1 Antenna requirement

15.203 requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Description of the antenna of EUT

The antenna of EUT is PCB antenna (Antenna Gain: 2.29 dBi). which is no consideration of replacement.

5.2 AC power line conducted emissions

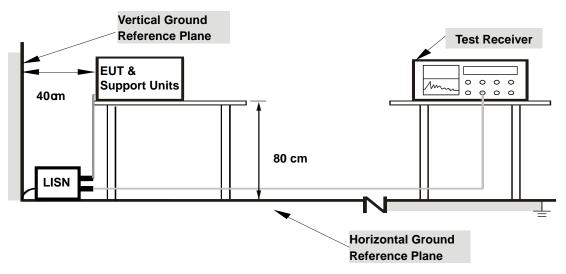
5.2.1 Limits

Frequency (MHz)	Detector type / Bandwidth	Limit-Quasi-peak dBµV	Limit-Average dBµV
0.15 -0.5		66 to 56	56 to 46
0.5 -5	Average / 9 kHz	56	46
5 -30		60	50

Note 1: the limit decreases with the logarithm of the frequency in the range of 0.15 MHz to 0.5 MHz.

5.2.2 Test Procedures

a) The test setup is refer to the standard ANSI C63.10-2013.


b) The EUT is connected to the main power through a line impedance stabilization network (LISN). All support equipment is powered from additional LISN(s).

c) Emissions were measured on each current carrying line of the EUT using an EMI test receiver connected to the LISN powering the EUT.

d) The test receiver scanned from 150 kHz to 30 MHz for emissions in each of the test modes described in Item 1.2.

e) The test data of the worst-case condition(s) was recorded.

5.2.3 Test setup

For the actual test configuration, please refer to the related item – Photographs of the test setup.

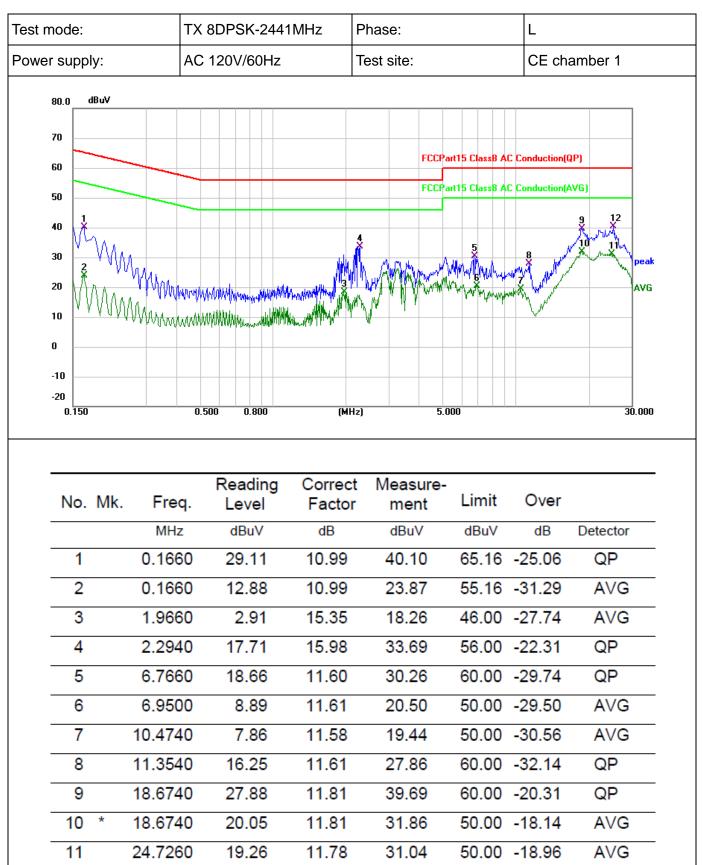
5.2.4 Test Result

Notes:

All modes of operation of the EUT were investigated, and only the worst-case results are reported.

Calculation formula:

Measurement (dB μ V) = Reading Level (dB μ V) + Correct Factor (dB) Over (dB) = Measurement (dB μ V) – Limit (dB μ V)


12

25.2979

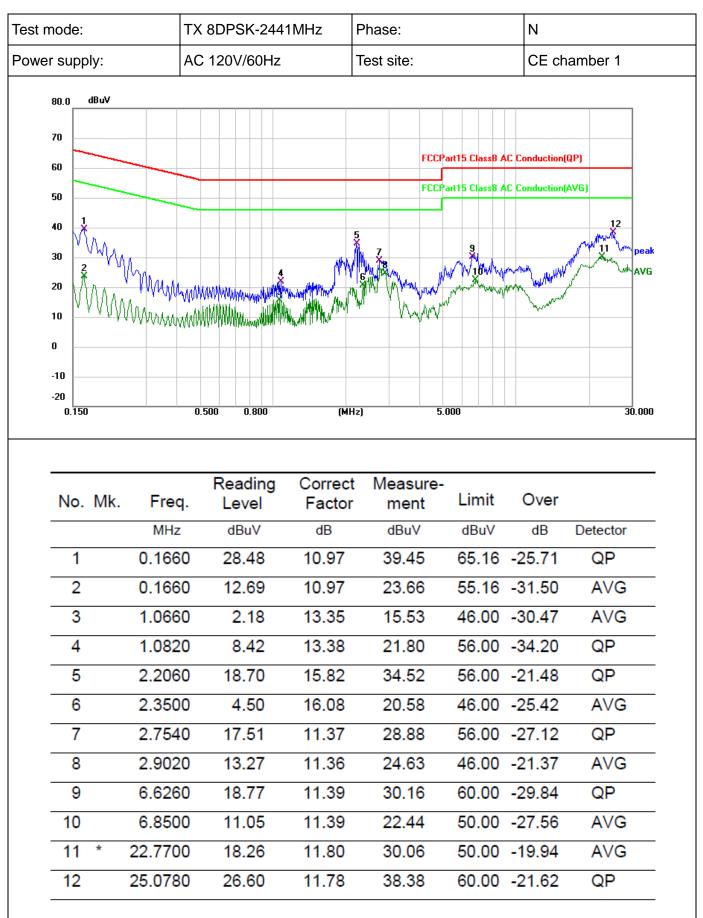
28.59

Page 12 of 62

Report No.: MTi220322005-01E1

11.78

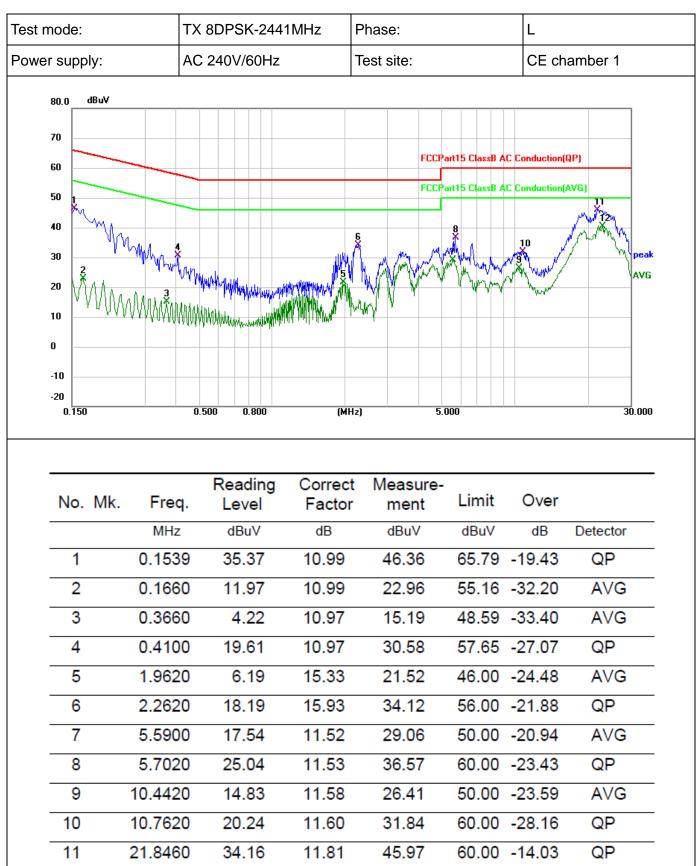
40.37


60.00 -19.63

QP

Page 13 of 62

Report No.: MTi220322005-01E1



12 *

Page 14 of 62

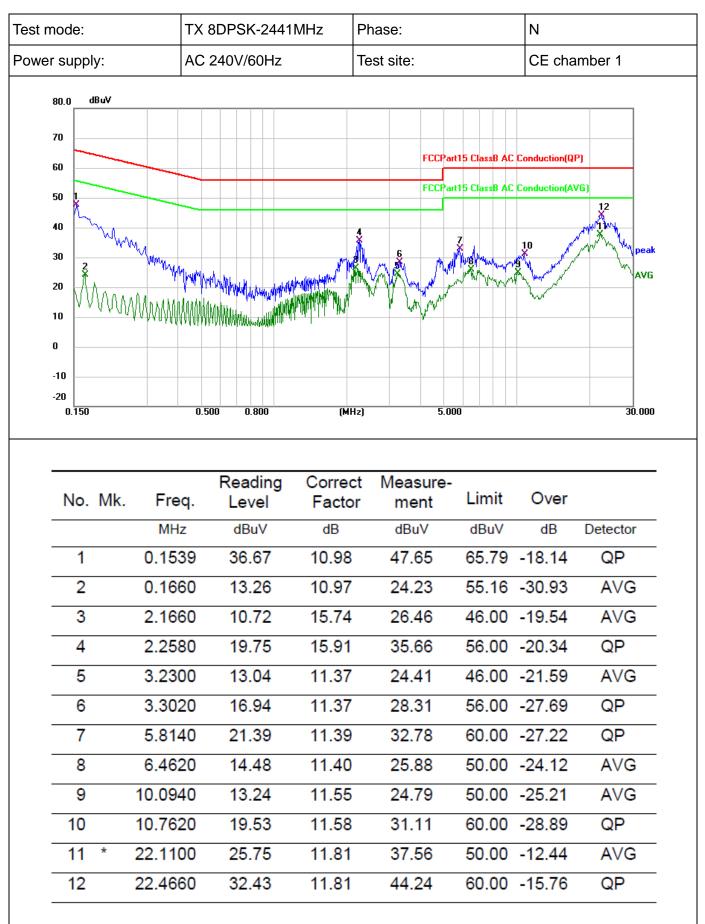
Report No.: MTi220322005-01E1

AVG

11.80

40.28

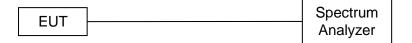
50.00 -9.72


28.48

23.0820

Page 15 of 62

Report No.: MTi220322005-01E1



5.3 20dB occupied bandwidth

5.3.1 Limits

None, for reporting purposes only.

5.3.2 Test setup

5.3.3 Test procedures

- a) Test method: ANSI C63.10-2013 Section 6.9.2.
- b) The transmitter output of EUT is connected to the spectrum analyzer.
- c) Spectrum analyzer setting: RBW=30 kHz, VBW=100 kHz, detector= Peak

5.3.4 Test results

Mode	Test channel	Frequency (MHz)	20dB Bandwidth (MHz)
	CH0	2402	1.034
GFSK	CH39	2441	1.014
	CH78	2480	0.9513
	CH0	2402	1.283
π/4-DQPSK	CH39	2441	1.283
	CH78	2480	1.332
	CH0	2402	1.259
8DPSK	CH39	2441	1.284
	CH78	2480	1.262

GFSK mode - 20dB occupied bandwidth

CH39

π /4-DQPSK mode - 20dB occupied bandwidth

CH39

	Analyzer - Occupied								
	RF 50 Ω AC 2.44100000		Center Freq: 2		ALIGNAUTO 12 101d: 300/300	Radio Std		Freq	uency
10 dB/div	Ref Offset 9.67 Ref 20.00 dE	dB	Fraces. ov ab		Mkr1	2.4410)84 GHz 82 dBm		
Log 10.0 0.00			~~~	1	~~ <u>`</u>				nter Freq 00000 GHz
-20.0 -30.0									
-40.0 -50.0 -60.0									
Center 2.44			43/1014/	400 klis			an 3 MHz		CF Step
#Res BW 30 Occupie	ed Bandwic	ith		100 kHz tal Power	10.9	dBm	p 3.2 ms	31 <u>Auto</u>	00.000 kHz Man
	1	I.1784 M	Hz					Fr	eq Offset
Transmit	Freq Error	83.257	kHz OE	W Power	99	9.00 %			0 Hz
x dB Ban	ndwidth	1.283 1	AHz x c	IB	-20.	00 dB			

CH78

8DPSK mode - 20dB occupied bandwidth

CH39

	n Analyzer - Occupi								
Center Fre	eq 2.4410000		Center Freq: 2		ALIGN AUTO 2 old: 300/300	01:32:14 / Radio Sto Radio Der		Freq	uency
10 dB/div	Ref Offset 9.6 Ref 20.00 c				Mkr1)78 GHz 08 dBm		
10.0 0.00					~				nter Freq 00000 GHz
-20.0									
-40.0 -50.0		~~				ch	·~~~		
70.0 Center 2.4						Sp	an 3 MHz		05.0445
#Res BW 🔅	30 kHz		#VBW	100 kHz		Swee	p 3.2 ms		CF Step 00.000 kHz
Occupi	ed Bandw			tal Power	11.0	dBm		<u>Auto</u>	Man
		1.1810 M	ĦΖ					Fr	eq Offset
Transmi	t Freq Error	85.375	kHz OB	W Power	99	0.00 %			0 Hz
x dB Ba	ndwidth	1.284 I	ΛHz xd	В	-20.	00 dB			

CH78

5.4 Conducted peak output power

5.4.1 Limits

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

5.4.2 Test setup

сит	Spectrum	
EUT	Analyzer	

5.4.3 Test procedure

a) Test method: ANSI C63.10-2013 Section 7.8.5.

b) The EUT was set to continuously transmitting in the max power during the test.

c) The transmitter output of EUT is connected to the spectrum analyzer.

d) Spectrum analyzer setting: RBW > 20dB occupied bandwidth, VBW ≥ RBW, detector= Peak

5.4.4 Test results

Mode	Test channel	Frequency (MHz)	Conducted peak output power (dBm)	Limit (dBm)
	CH0	2402	1.53	≤ 20.97
GFSK	CH39	2441	1.97	≤ 20.97
	CH78	2480	1.75	≤ 20.97
	CH0	2402	2.43	≤ 20.97
π/4-DQPSK	CH39	2441	2.79	≤ 20.97
	CH78	2480	2.65	≤ 20.97
	CH0	2402	2.86	≤ 20.97
8DPSK	CH39	2441	3.32	≤ 20.97
	CH78	2480	3.18	≤ 20.97

GFSK mode - peak conducted output power

CH39

CH78

CH0

$\pi/4\text{-}DQPSK$ mode - peak conducted output power

enter Freq 2.402000000 GHz PN0: Fast →→ #Atten: 40 dB Frequency #Avg Type: RMS AvgiHold: 100/100 Auto Tun 02 255 GI 2.430 dB Ref Offset 9.66 dB Ref 30.00 dBm Center Freq 2.40200000 GH **♦**¹ Start Freq 2.399500000 GH Stop Free 2.404500000 GH CF Stej 500.000 kH Auto Ma Freq Offse 0 H nter 2.402000 GHz es BW 3.0 MHz Span 5.000 MHz Sweep 1.000 ms (1001 pts #VBW 8.0 MHz

CH39

XI RL	um Analyzer - Swept SA RF סס AC req 2.44100000			SE:INT SOUR	E OFF Avg Type Avg Hold:		TRAC	Apr 03, 2022 E 1 2 3 4 5 6 M M M M M	Frequency
10 dB/div	Ref Offset 9.67 dB Ref 30.00 dBm	IFGain:Low	#Atten: 40				2.441 3	90 GHz 85 dBm	Auto Tune
20.0									Center Fre 2.441000000 GH
0.00				¢ ¹					Start Fre 2.438500000 GH
-10.0									Stop Fre 2.443500000 GH
30.0									CF Ste 500.000 kH <u>Auto</u> Ma
40.0 50.0									FreqOffse 0⊦
60.0									
Center 2. #Res BW	441000 GHz 3.0 MHz	#VBW	8.0 MHz			Sweep 1	Span 5 .000 ms (.000 MHz 1001 pts)	

8DPSK mode – peak conducted output power

CH39

Frequency	4 Apr 03, 2022 E 1 2 3 4 5 6 E M (MANANA) E P P P P P P P	TRAC		RCE OFF #Avg Typ Avg Hold	NSE:INT SC	. Trig: Fre	GHz PNO: Fast ↔	Ω AC	m Analyzer - S RF 50 eq 2.4410	RL
Auto Tur	75 GHz 19 dBm	2.440 8	Mkr1		0 dB	#Atten: 4	IFGain:Low		Ref Offset 9 Ref 30.00	dB/div
Center Fre 2.441000000 GH										
Start Fre 2.438500000 GH						↓ ¹	***			0.0 .00
Stop Fre 2.443500000 GH										
CF Ste 500.000 kH <u>Auto</u> Ma										0.0
Freq Offs 0 H										
	.000 MHz	Snan 5						-	41000 GH;	anter 24
	.000 MHz 1001 pts)		Sweep 1			/ 8.0 MHz	#VBW	-		enter 2.4 Res BW

5.5 Carrier frequency separation

5.5.1 Limits

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater

5.5.2 Test setup

	Spectrum
EUT	Analyzer

5.5.3 Test procedure

- a) Test method: ANSI C63.10-2013 Section 7.8.2.
- b) The EUT was set to hopping mode during the test.
- c) The transmitter output of EUT is connected to the spectrum analyzer.
- d) Spectrum Setting: RBW = 30 kHz, VBW = 100 kHz, detector= Peak.

5.5.4 Test results

Mode	Test channel	Test Result (MHz)	Limit (MHz)	Result
GFSK	Hop-mode	0.996	>=0.689	Pass
π/4-DQPSK	Hop-mode	0.996	>=0.888	Pass
8DPSK	Hop-mode	0.998	>=0.856	Pass

Carrier frequency separation

π/4-DQPSK

8DPSK

GFSK

5.6 Average time of occupancy

5.6.1 Limits

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

5.6.2 Test setup

5.6.3 Test procedure

- a) Test method: ANSI C63.10-2013 Section 7.8.4
- b) The EUT was set to hopping mode during the test.
- c) The tranistter output of EUT is connneted to the specturm analyzer.

d) Spectrum analyzer setting: RBW = 1MHz, VBW = 3MHz, Span = 0Hz, Detector = Peak, weep time: As necessary to capture the entire dwell time per hopping channel.

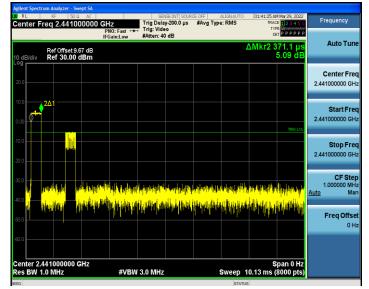
e) Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

f) The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements.

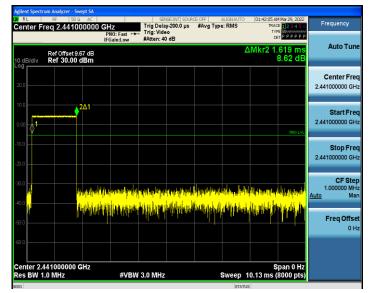
Mode	Data Packet	Frequency (MHz)	Pulse width (ms)	Number of pulses in 3.16 s	Average time of occupancy (s)	Limit (s)	Result
	DH1	2441	0.37	32	0.119	<=0.4	Pass
GFSK	DH3	2441	1.62	16	0.259	<=0.4	Pass
	DH5	2441	2.87	11	0.316	<=0.4	Pass
	2DH1	2441	0.38	32	0.121	<=0.4	Pass
π/4-DQPS K	2DH3	2441	1.63	16	0.261	<=0.4	Pass
	2DH5	2441	2.88	11	0.317	<=0.4	Pass
	3DH1	2441	0.38	32	0.121	<=0.4	Pass
8DPSK	3DH3	2441	1.63	16	0.261	<=0.4	Pass
	3DH5	2441	2.88	11	0.317	<=0.4	Pass

5.6.4 Test results

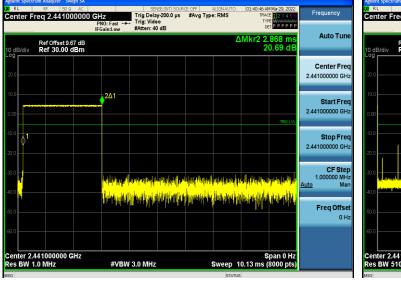
Notes:

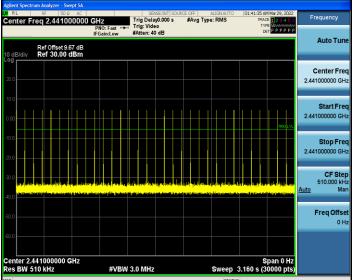

1. Period time = 0.4 (s) * 79 = 31.6(s)

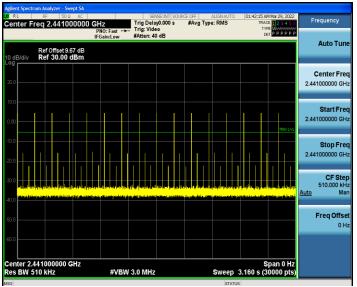
2. Average time of occupancy = Pulse width * Number of pulses in 3.16s * 10

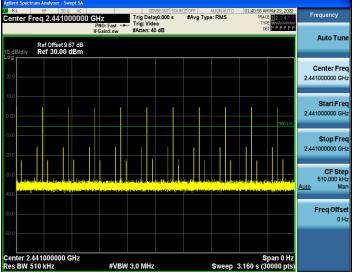


GFSK mode - Average time of occupancy


Pulse width – DH1

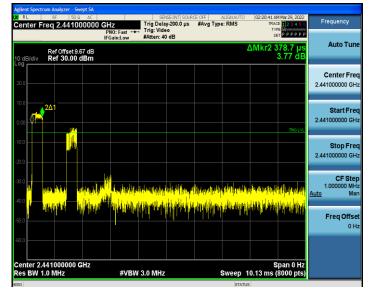

Pulse width – DH3


Pulse width – DH5

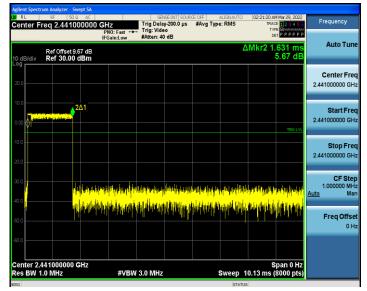

Number of pulses in 3.16 s – DH1

Number of pulses in 3.16 s – DH3

Number of pulses in 3.16 s – DH5

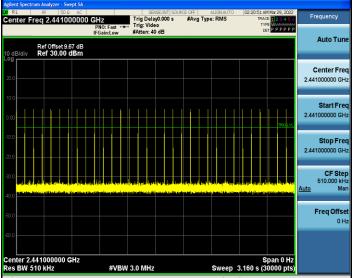


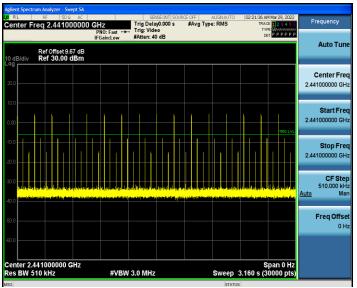
Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, ChinaTel: (86-755)88850135Fax: (86-755) 88850136Web: www.mtitest.comE-mail: mti@51mti.com

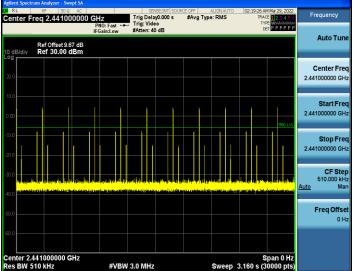


$\pi/4\text{-}D\text{QPSK}$ - Average time of occupancy

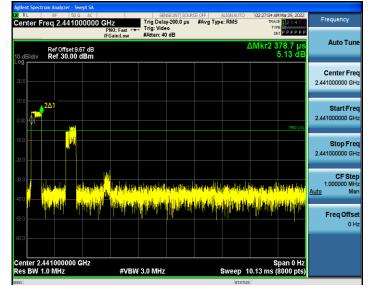

Pulse width – 2DH1

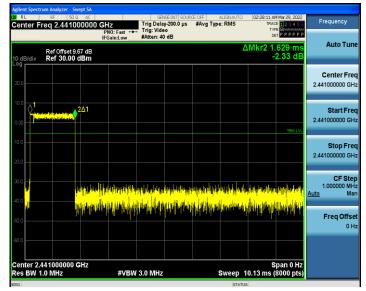

Pulse width – 2DH3


Pulse width - 2DH5

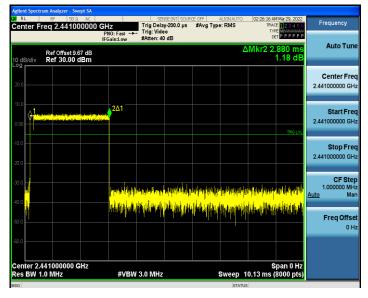

Number of pulses in 3.16 s - 2DH1

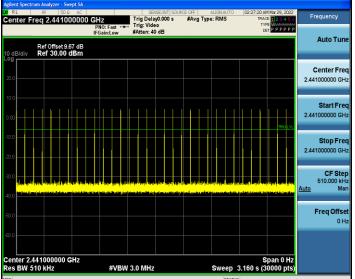
Number of pulses in 3.16 s – 2DH3

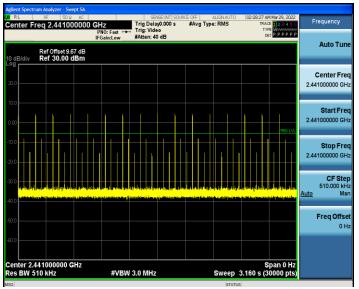

Number of pulses in 3.16 s – 2DH5

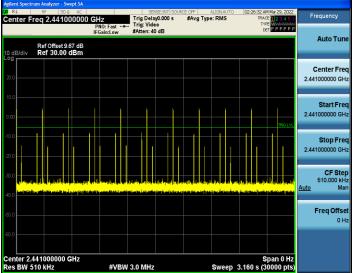


8DPSK - Average time of occupancy


Pulse width – 3DH1


Pulse width – 3DH3


Pulse width - 3DH5


Number of pulses in 3.16 s – 3DH1

Number of pulses in 3.16 s – 3DH3

Number of pulses in 3.16 s - 3DH5

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, ChinaTel: (86-755)88850135Fax: (86-755) 88850136Web: www.mtitest.comE-mail: mti@51mti.com

5.7 Number of hopping channels

5.7.1 Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

5.7.2 Test setup

БЛТ	Spectrum	
EUT	Analyzer	

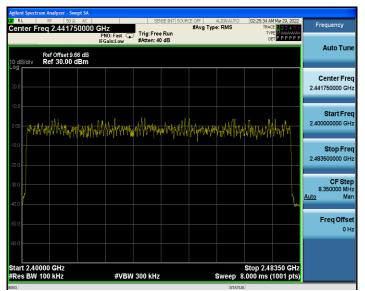
5.7.3 Test procedure

- a) Test method: ANSI C63.10-2013 Section 7.8.3
- b) The EUT was set to hopping mode during the test.
- c) The tranistter output of EUT is connneted to the specturm analyzer.
- d) Spectrum analyzer setting: RBW = 100 kHz, VBW = 300 kHz, Detector = Peak.

5.7.4 Test results

Mode	Quantity of Hopping Channel	Limit	Results
GFSK	79	≥15	Pass
π/4-DQPSK	79	≥15	Pass
8DPSK	79	≥15	Pass

GFSK


Number of hopping channels

π/4-DQPSK

IF Gainet ow #Atten: 40 dB CErminal ow In dBiddiv Ref 00ffset 9.66 dB Center 200 In dBiddiv In dBiddiv 200<	Center F	req 2.4417	2 AC 50000 GH	IZ NO: Fast	Trig: Free		CE OFF #Avg Typ	ALIGNAUTO e: RMS	TRAC	Mar 29, 2022 E 2 3 4 5 6 E 10000000	Frequency
200 Center 201 Center 202 Center 203 Center 204 Center 205 Center 206 Center 207 Center 208 Center 209 Center 200 Center 201 Center 202 Center 203 Center 204 Center 205 Center 206 Center 207 Center 208 Center 209 Center 200 Center </th <th></th> <th></th> <th>IF</th> <th></th> <th>#Atten: 40</th> <th>) dB</th> <th></th> <th></th> <th>D</th> <th>T</th> <th>Auto Tun</th>			IF		#Atten: 40) dB			D	T	Auto Tun
Image: Contract of the second secon											Center Fre 2.441750000 GH
300 300 500 500 500 500 500 500		www.	mannth	www.hav	t. Linger	Proveliants	hyungaya (WWW	www.upu	(twint)	Start Fre 2.400000000 G⊦
40.0 40.0 Freq O											Stop Fre 2.483500000 GH
	1										CF Ste 8.350000 Mi <u>Auto</u> Ma
	50.0										Freq Offs 0 F
Start 2.40000 GHz Stop 2.48350 GHz									Stop 24	2350 CHz	

8DPSK

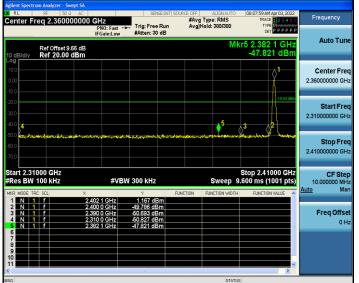
5.8 Conducted emissions at the band edge

5.8.1 Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

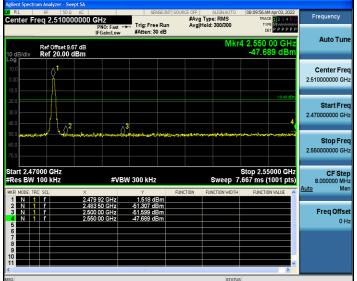
5.8.2 Test setup

5.8.3 Test procedure


- a) Test method: ANSI C63.10-2013 Section 6.10.4
- b) The EUT was set to non-hopping mode & hopping mode during the test.
- c) The transmitter output of EUT is connected to the spectrum analyzer.
- d) Spectrum analyzer setting: RBW = 100 kHz, VBW = 300 kHz, Detector = Peak.

5.8.4 Test results

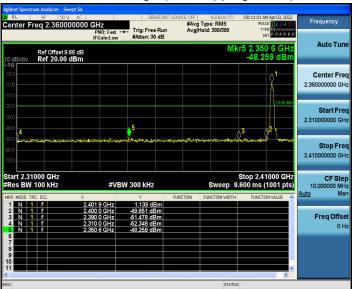
GFSK mode - conducted emissions at the band edge


Low band-edge (no-hopping mode mode)

Low band-edge (hopping mode)

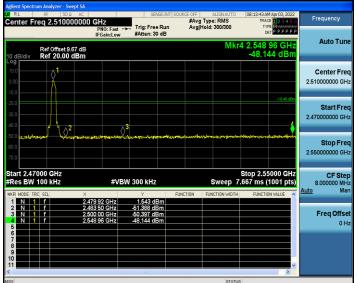
	Analyzer - Swep									
art Freg 2	RF 50 Ω 2.3000000	AC 00 GHz			ISE:INT SO	#Avg	ALIGN AUTO Type: RMS	TRA	M Apr 03, 2022 CE 123456	Frequency
dB/div	Ref Offset 9.6 (Ref 20.00 dl	dB	NO: Fast 🤇 Sain:Low	Trig: Free #Atten: 30		Avg	Hoia:>300/300 Mkr5	2.376 2	230 GHz 59 dBm	Auto Tun
										Center Fre 2.352500000 GH
	∆ ⁴						5		-1918d9m	Start Fre 2.300000000 GH
1.0 	A	*****	an a	nghurina launi n	n drager Mar		apantanakin yangin	andere-Sected;	heshade ^{XI}	Stop Fre 2.405000000 GH
art 2.3000 tes BW 10			#VB	W 300 kHz			Sweep 1	Stop 2.4 0.07 ms	0500 GHz (1001 pts)	CF Ste 10.500000 MH Auto Ma
IN 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1	SCL f f f f f f	× 2.401 958 2.400 000 2.390 000 2.310 000 2.376 230) GHz) GHz) GHz	V -50.064 dE -51.223 dE -50.170 dE -48.459 dE	Sm Sm Sm Sm	INCTION	FUNCTION WIDTH	FUNCTI	ON VALUE	Freq Offs
7 B 9 0 1										
						_				

High band-edge (non-hopping mode)


High band-edge (hopping mode)

Agilent Spectrum Analyzer - Swept SA				
RL RF 50 AC	GHz	INT SOURCE OFF ALIGNAUTO #Avg Type: RMS un Avg Hold: 300/300	08:18:38 AM Apr 03, 2022 TRACE 2 3 4 5 6 TYPE MUMANN	Frequency
Ref Offset 9.67 dB 10 dB/div Ref 20.00 dBm	PNO: Fast Trig: Free R IFGain:Low #Atten: 30 dB	3	_{сет} реререр 4 2.527 04 GHz -47.859 dBm	Auto Tune
Log 10.0 10.0 10.0 10.0 10.0				Center Freq 2.510000000 GHz
-20.0		4	-18.86 dBm	Start Freq 2.470000000 GHz
-50.0	antanaturaturkanta atantzarrangina	mataniharidati mahakarina	ynd,phineye,hendolphine	Stop Freq 2.550000000 GHz
Start 2.47000 GHz #Res BW 100 kHz	#VBW 300 kHz	Sweep 7	Stop 2.55000 GHz .667 ms (1001 pts) FUNCTION VALUE	CF Step 8.000000 MHz <u>Auto</u> Man
2 N 1 f 2.45 3 N 1 f 2.50 4 N 1 f 2.52 5	78 16 GHz 1.136 dBm 33 50 GHz 51.661 dBm 30 00 GHz 50.950 dBm 27 04 GHz 47.859 dBm			Freq Offset 0 Hz
6 7 8 9 10				
K ISG	ш	STATUS	>	

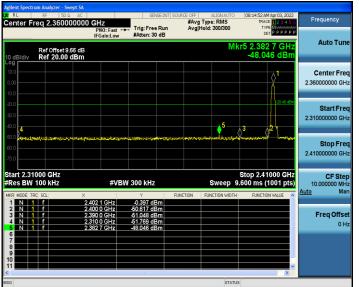
π /4-DQPSK mode - conducted emissions at the band edge


Low band-edge (non-hopping mode)

Low band-edge (hopping mode)

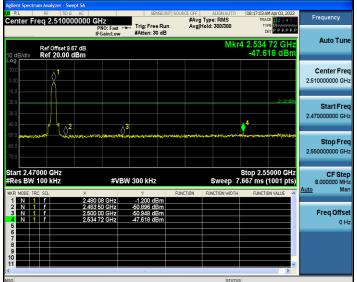
RL	RF 50 \$			SE	ISE:INT SO		ALIGN AUTO		M Apr 03, 2022	Frequency
enter Fr	req 2.3525	00000	PNO; Fast	Trig: Free			Type: RMS Iold: 300/300	T		riequeiley
			IFGain:Low	#Atten: 3) dB					Auto Tu
0 dB/div	Ref Offset 9 Ref 20.00						MKR		010 GHz 72 dBm	
og 10.0									1	Center Fr
1.00									<u> </u>	2.352500000 G
0.0									1446	
10.0									-23.13 dBe	Start Fre
10.0				;				.,		2.30000000 G
0.0 	-	alle also and all	AND	Adapterson	يەر يالىرىيە 1941-يىيە	ገንኛምሌታ	www.	-	und 2	
0.0										Stop Fr 2,40500000 G
70.0										2.4000000000
	000 GHz								0500 GHz	CF Ste
Kes BW	100 kHz	X	#VE	W 300 kHz		NCTION	EINGTION WIDTH		(1001 pts)	10.500000 MI Auto M
1 N 1	f	2.402	165 GHz	-3.150 di	Bm	NUTION	FUNCTION WIDTH	H FUNCT	UN VALUE	
2 N 1 3 N 1	f	2.390	000 GHz 000 GHz	-51.685 di -50.233 di	3m					Freq Offs
4 N 1 5 N 1	f		000 GHz 010 GHz	-51.886 di -48.872 di	3m 3m				-	01
7										
9										
1									~	
G				Ш			STATU	21	>	
							onard			

High band-edge (non-hopping mode)


High band-edge (hopping mode)

Agilent Spectr	rum Analyzer	- Swept SA		0510	E:INT SOURCE OF		00.40.45.4		
		00000 GHz	PNO: Fast		#A	F ALIGNAUTO vg Type: RMS alHold:>300/300	TRA Th	M Apr 03, 2022 CE 123456 (PE M M M	Frequency
10 dB/div	Ref Offse Ref 20.0	li t 9.67 dB	Gain:Low	#Atten: 30		Mk	r4 2.537	68 GHz 12 dBm	Auto Tune
	woodely								Center Fre 2.510000000 GH
20.0 30.0 40.0				3			4-	-20.45 dBm	Start Fre 2.470000000 GH
50.0 60.0 70.0			at a start and a start and a	wishing the termination	- hystlateontoodooyst	an a	400 mga Palan di un	an gan an a	Stop Fre 2.550000000 GH
	7000 GHz 100 kHz	x	#VB\	N 300 kHz	FUNCTION	Sweep	7.667 ms	5000 GHz (1001 pts)	CF Ste 8.000000 MH <u>Auto</u> Ma
1 N 2 N 3 N 4 N 5	f f f f	2.470 2.483 2.500	08 GHz 50 GHz 00 GHz 68 GHz	-0.452 dBi -50.146 dBi -51.602 dBi -47.812 dBi	m m m				Freq Offse 0 H
6 7 8 9 10 11									
sg				Ш		STAT	บร	>	

8DPSK mode - conducted emissions at the band edge


Low band-edge (non-hopping mode)

Low band-edge (hopping mode)

RL BE 503	vept SA	SENSE-INT	SOURCE OFF ALIGN AUTO	08:20:40 AM Anr 03, 2022	_
tart Freq 2.30000			#Avg Type: RMS AvglHold:>300/300	TRACE	Frequency
Ref Offset 9 dB/div Ref 20.00	IFGain:Lo			5 2.340 005 GHz -48.864 dBm	Auto Tur
99 0.0 00					Center Fre 2.352500000 GH
1.0 1.0 1.0		5			Start Fre 2.300000000 Gi
	4	apfactoreactorphysion	ana an		Stop Fre 2.405000000 GH
tart 2.30000 GHz Res BW 100 kHz	#	/BW 300 kHz	Sweep	Stop 2.40500 GHz 10.07 ms (1001 pts)	10.500000 MH
(R MODE TRC SCL 1 N 1 F	× 2.401 955 GHz 2.400 000 GHz		FUNCTION FUNCTION WIDT	H FUNCTION VALUE	
3 N 1 F 4 N 1 F 5 N 1 F 6	2.390 000 GHz 2.310 000 GHz 2.340 005 GHz	-50.376 dBm			Freq Offs 0 H
7 B					
9					

High band-edge (non-hopping mode)

High band-edge (hopping mode)

Agilent Spectrum Analyzer - Swept SA						
Center Freq 2.510000000				ALIGNAUTO Type: RMS Iold: 300/300	08:20:16 AM Apr 03, 2022 TRACE 2 3 4 5 TYPE M	Frequency
Ref Offset 9.67 dB 10 dB/div Ref 20.00 dBm	PNO: Fast +++ IFGain:Low	#Atten: 30 dB	Avgin		4 2.546 16 GHz -48.467 dBm	Auto Tune
10.0 10.0						Center Freq 2.510000000 GHz
-20.0 -30.0 -40.0					4_	Start Freq 2.470000000 GHz
-50.0	uduriyeharayihasyihada	ngentetiken ministerne	saptertina.trochime		hanner og nær frædskapper i nær fre	Stop Freq 2.55000000 GHz
Start 2.47000 GHz #Res BW 100 kHz	#VBW	300 kHz Y -2.017 dBm	FUNCTION		Stop 2.55000 GH2 .667 ms (1001 pts FUNCTION VALUE	8.000000 MHz
2 N 1 f 2.48 3 N 1 f 2.50	9 84 GH2 33 50 GHz 00 00 GHz 16 16 GHz	-2.017 dBm -50.846 dBm -50.273 dBm -48.467 dBm				Freq Offset 0 Hz
7 8 9 10						
K MSG		Ш		STATUS	>	

5.9 Conducted spurious emissions

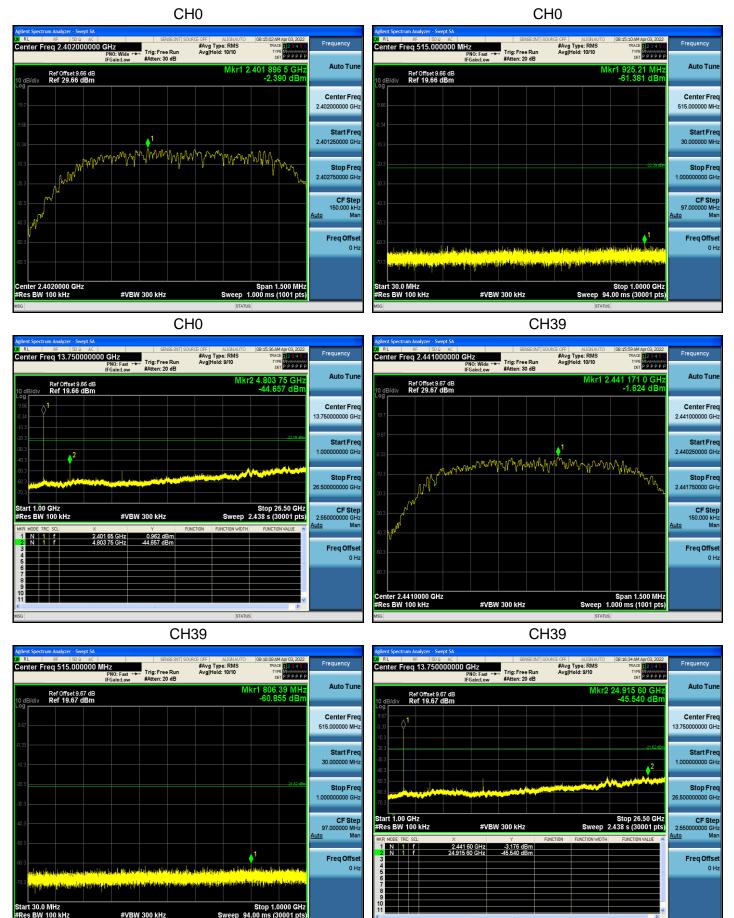
5.9.1 Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

5.9.2 Test setup

5.9.3 Test procedure

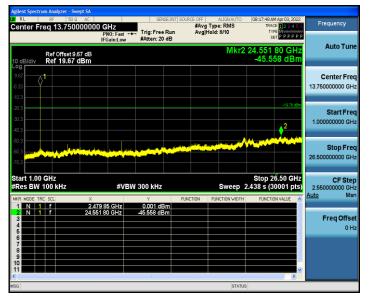
- a) Test method: ANSI C63.10-2013 Section 6.10.4
- b) The EUT was set to non-hopping mode & hopping mode during the test.
- c) The transmitter output of EUT is connected to the spectrum analyzer.
- d) Spectrum analyzer setting: RBW = 100 kHz, VBW = 300 kHz, Detector = Peak.


5.9.4 Test results

Notes:

All modes of operation of the EUT were investigated, and only the worst-case results are reported. The worst-case mode: TX mode (8DPSK).

Conducted spurious emissions -8DPSK mode


Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, ChinaTel: (86-755)88850135Fax: (86-755) 88850136Web: www.mtitest.comE-mail: mti@51mti.com

Conducted spurious emissions -8DPSK mode

CH78

CH78 Frequency nter Freq 515.000000 MHz #Avg Type: RMS Avg|Hold: 10/10 Trig: Free Run #Atten: 20 dB Auto Tun Ref Offset 9.67 dB Ref 19.67 dBm 60.317 dB Center Freq 515.000000 MH; Start Free 30.000000 MH Stop Free 1.00000000 GH CF Step 97.000000 ML Ma Freq Offse 0 H; tart 30.0 MHz Res BW 100 kHz 00 GHz Sweep 94.00 ms #VBW 300 kHz

5.10 Radiated spurious emission

5.10.1 Limits

§ 15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

§ 15.209 Radiated emission limits; general requirements.

Note 1: the tighter limit applies at the band edges.

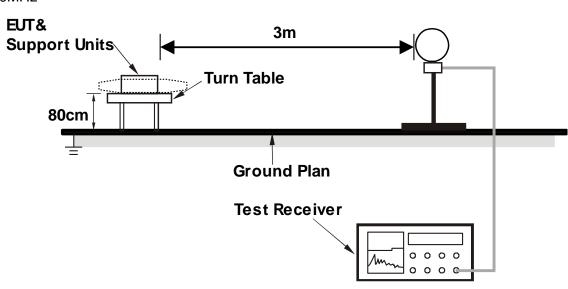
Note 2: the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector

§ 15.35 (b) requirements:

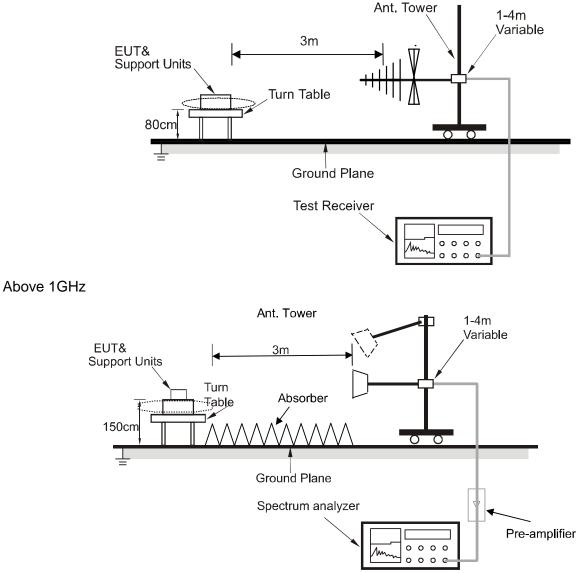
When average radiated emission measurements are specified in this part, including average emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency emissions. Unless otherwise specified, e.g., see §§ 15.250, 15.252, 15.253(d), 15.255, 15.256, and 15.509 through 15.519, the limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

According to ANSI C63.10-2013, the tests shall be performed in the frequency range shown in the following table:

Frequency range of measurements for unlicensed wireless device


Lowest frequency generated in the device	Upper frequency range of measurement
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to 40 GHz, whichever is lower
At or above 10 GHz to below 30 GHz	5th harmonic of highest fundamental frequency or to 100 GHz, whichever is lower
At or above 30 GHz	5th harmonic of highest fundamental frequency or to 200 GHz, whichever is lower, unless otherwise specified

Frequency range of measurements for unlicensed wireless device with digital device


Highest frequency generated or used in the device or on which the device operates or tunes	Upper frequency range of measurement
Below 1.705 MHz	30 MHz
1.705 MHz to 108 MHz	1000 MHz
108 MHz to 500 MHz	2000 MHz
500 MHz to 1000 MHz	5000 MHz
	5th harmonic of the highest frequency or 40 GHz, whichever is lower

5.10.2 Test setup Below 30MHz

30MHz~1GHz

For the actual test configuration, please refer to the related item - Photographs of the test setup.

5.10.3 Test procedure

a) Test method: ANSI C63.10-2013 Section 6.3, 6.4, 6.5, 6.6, 6.10.

b) The EUT is placed on an on-conducting table 0.8 meters above the ground plane for measurement below 1GHz, 1.5 meters above the ground plane for measurement above 1GHz.

c) Emission blew 18 GHz were measured at a 3 meters test distance, above 18 GHz were measured at 1.5-meter test distance with the application of a distance correction factor

d) The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

KDB 558074 D01 15.247 Meas Guidance v05r02

The use of a duty cycle correction factor (DCCF) is permitted for calculating average radiated field strength emission levels for an FHSS device in 15.247. This DCCF can be applied when the unwanted emission limit is subject to an average field strength limit (e.g., within a Government Restricted band) and the conditions specified in Section 15.35(c) can be satisfied. The average radiated field strength is calculated by subtracting the DCCF from the maximum radiated field strength level as determined through measurement. The maximum radiated field strength level represents the worst-case (maximum amplitude) RMS measurement of the emission(s) during continuous transmission (i.e., not including any time intervals during which the transmitter is off or is transmitting at a reduced power level). It is also acceptable to apply the DCCF to a measurement performed with a peak detector instead of the specified RMS power averaging detector. Note that Section 15.35(c) specifies that the DCCF shall represent the worst-case (greatest duty cycle) over any 100 msec transmission period.

Test instrument setup

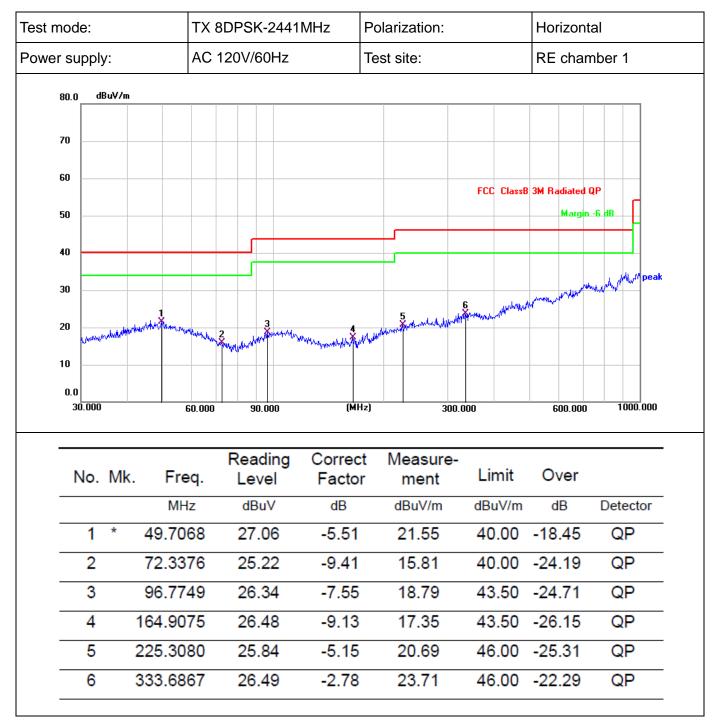
Frequency	Test receiver / Spectrum analyzer setting
9 kHz ~ 150 kHz	Quasi Peak / RBW: 200 Hz
150 kHz ~ 30 MHz	Quasi Peak / RBW: 9 kHz
30 MHz ~ 1 GHz	Quasi Peak / RBW: 120 kHz
Above 1 GHz	Peak / RBW: 1 MHz, VBW: 3MHz, Peak detector AVG / RBW: 1 MHz, VBW: 1/T, Peak detector

5.10.4 Test results

Notes:

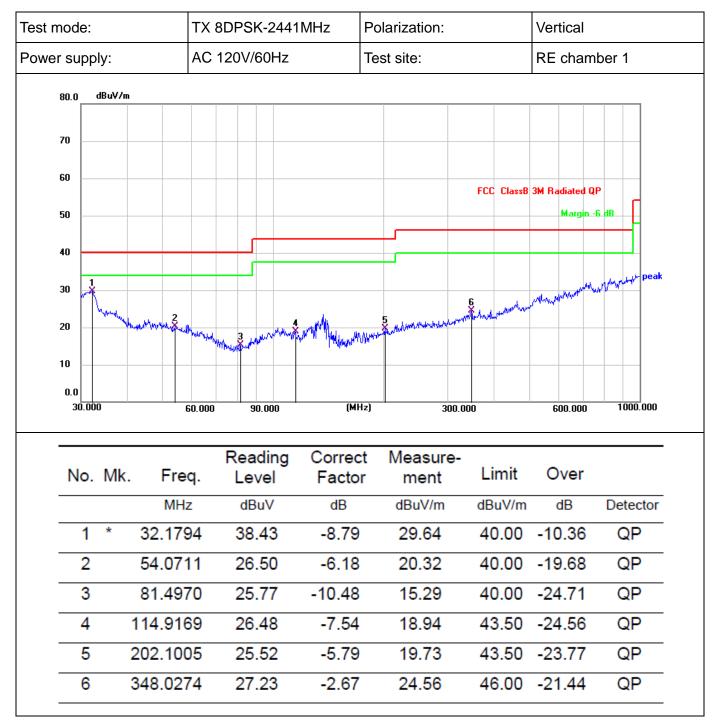
The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported.


There were no emissions found below 30MHz within 20dB of the limit.

Calculation formula:

Measurement ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Correct Factor (dB/m) Over (dB) = Measurement ($dB\mu V/m$) – Limit ($dB\mu V/m$)



Radiated emissions between 30MHz – 1GHz

Radiated emissions between 30MHz – 1GHz

Test mode:	TX 8	8DPSK – 240	02 MHz	Polarization:		Horizo	ontal
Power supply:	AC	120V/60Hz		Test site:		RE ch	amber 2
86.9 dBuV/m							
77						FCC ABOV	E_1G_PEAK
67	1						
47	×	Jan Mary Mary	and the second design of the second	www.thoreward.	Muningen gerand	FCC ABOX	F.4.1.5-AMA.
37	Annander			<u>^</u>			
27							
7							
-3							
-13							
-33							
1000.000 270	00.00 4400.00	6100.00 78	:00.00 (MI	lz) 11200.00	12900.00	14600.00 10	5300.00 18000.00
No. Mk.	Freq.	Reading Level	Correc Factor		Limit	Over	
No. Mk.	Freq. MHz	-			Limit dBuV/m	Over dB	Detector
	-	Level	Factor	· ment	dBuV/m		Detector peak
1 4	MHz	Level dBuV 56.06 51.43	Factor dB	dBuV/m	dBuV/m 74.00	dB	
$ \begin{array}{c} 1 & 4 \\ 2 & * & 4 \\ 3 & 7 \end{array} $	MHz 804.000 804.000 206.000	Level dBuV 56.06 51.43 42.06	Factor dB 1.52 1.52 5.46	ment dBuV/m 57.58 52.95 47.52	dBuV/m 74.00 54.00 74.00	dB -16.42 -1.05 -26.48	peak AVG peak
$ \begin{array}{r} 1 & 4 \\ 2 & * & 4 \\ 3 & 7 \\ 4 & 7 \end{array} $	MHz 804.000 804.000 206.000 206.000	Level dBuV 56.06 51.43 42.06 38.13	Factor dB 1.52 1.52 5.46 5.46	ment dBuV/m 57.58 52.95 47.52 43.59	dBuV/m 74.00 54.00 74.00 54.00	dB -16.42 -1.05 -26.48 -10.41	peak AVG peak AVG
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MHz 804.000 804.000 206.000	Level dBuV 56.06 51.43 42.06	Factor dB 1.52 1.52 5.46	ment dBuV/m 57.58 52.95 47.52	dBuV/m 74.00 54.00 74.00 54.00	dB -16.42 -1.05 -26.48 -10.41 -24.42	peak AVG peak

Test mode:	TX 8DPSK – 24	02 MHz F	Polarization:		Vertica	d
Power supply:	AC 120V/60Hz	г	lest site:		RE cha	amber 2
86.9 dBuV/m	i					
77					FCC ABOVE	E_1G_PEAK
57	1					16 AVG
47	1 X X X X X X X X X X X X X X X X X X X	at an and a second second	how have been adapted and the second s	n man mark	photos and a series of the series	
37	And the second	×				
27 🕵 🗸						
7						
-3						
-13						
-23						
22						
-33 1000.000 2700.00	4400.00 6100.00 7	800.00 (MHz)) 11200.00 1	12900.00 1	4600.00 16	300.00 18000.0(
1000.000 2700.00	4400.00 6100.00 74 Reading req. Level	^{воо.оо} (мна Correct Factor		12900.00 1 Limit	4600.00 16 Over	300.00 18000.0(
1000.000 2700.00 No. Mk. Fi	Reading	Correct	Measure-			300.00 18000.00
1000.000 2700.00 No. Mk. Fi	Reading req. Level IHz dBuV	Correct Factor	Measure- ment	Limit dBuV/m	Over	
No. Mk. Fi	Reading Level IHz dBuV 000 55.05	Correct Factor dB	Measure- ment dBuV/m	Limit dBuV/m	Over dB -17.43	Detector
No. Mk. Fr 1000.000 2700.00	Reading Level IHz dBuV 000 55.05 000 49.81	Correct Factor dB 1.52	Measure- ment dBuV/m 56.57	Limit dBuV/m 74.00 54.00	Over dB -17.43	Detector peak
No. Mk. Fi 1000.000 2700.00 No. Mk. Fi M 1 4804. 2 * 4804.	Reading Level IHz dBuV 000 55.05 000 49.81 000 40.19	Correct Factor dB 1.52 1.52	Measure- ment dBuV/m 56.57 51.33	Limit dBuV/m 74.00 54.00 74.00	Over dB -17.43 -2.67	Detector peak AVG
No. Mk. Fr Mo. Mk. Fr 1 4804. 2 * 4804. 3 7206.	Reading Level IHz dBuV 000 55.05 000 49.81 000 40.19 000 36.93	Correct Factor dB 1.52 1.52 5.46	Measure- ment dBuV/m 56.57 51.33 45.65	Limit dBuV/m 74.00 54.00 74.00 54.00	Over dB -17.43 -2.67 -28.35	Detector peak AVG peak

Test mode:	TX 8DPSK - 2441 MH	z Polarization:	Horizontal
Power supply:	AC 120V/60Hz	Test site:	RE chamber 2
86.9 dBuV/m			
77			FCC ABOVE_1G_PEAK
67			
47		www.m. June man and and and and and and and and and a	FCCABOVELLE AMENN
37	Norm from the second states		
27			
17			
-3			
-13			
-23			
-33 1000.000 2700.00	4400.00 6100.00 7800.00	(MHz) 11200.00 12900.00	14600.00 16300.00 18000.00
	Pooding Cor	root Mooguro	
No. Mk. F	. v	rrect Measure- ctor ment Limit	Over
		ctor ment Limit	
	req. Level Fa MHz dBuV d	ctor ment Limit B dBuV/m dBuV/m	
N	req. Level Fa MHz dBuV d .000 52.55 1.	ctor ment Limit B dBuV/m dBuV/m 68 54.23 74.00	dB Detector
1 4882 2 * 4882 3 7323	Freq. Level Fa MHz dBuV d .000 52.55 1. .000 46.53 1. .000 41.01 5.	ctor ment Limit B dBuV/m dBuV/m 68 54.23 74.00 68 48.21 54.00 45 46.46 74.00	dB Detector -19.77 peak -5.79 AVG -27.54 peak
1 4882 2 * 4882 3 7323 4 7323	ireq. Level Fa MHz dBuV d .000 52.55 1. .000 46.53 1. .000 41.01 5. .000 34.87 5.	ctor ment Limit B dBuV/m dBuV/m 68 54.23 74.00 68 48.21 54.00 45 46.46 74.00 45 40.32 54.00	dB Detector -19.77 peak -5.79 AVG -27.54 peak -13.68 AVG
1 4882 2 * 4882 3 7323	ireq. Level Fa MHz dBuV d .000 52.55 1. .000 46.53 1. .000 41.01 5. .000 34.87 5. .000 44.71 6.	ctormentLimitBdBuV/mdBuV/m6854.2374.006848.2154.004546.4674.004540.3254.003751.0874.00	dB Detector -19.77 peak -5.79 AVG -27.54 peak

est mode:	TX 8DPSK - 2441 MH	z Polarization:	Vertica	I
ower supply:	AC 120V/60Hz	Test site:	RE cha	amber 2
86.9 dBuV/m				
77			FCC ABOVE	_1G_PEAK
67		5		10 440 444
47	3 3 martin Martin Martin	mututurum	May mark who want the state of	a I Gung M Genner
37 July				
27				
17				
-3				
-13				
-23				
-33 1000.000 2700.00	4400.00 6100.00 7800.00	(MHz) 11200.00 1290	0.00 14600.00 16	300.00 18000.0
No. Mk. F	Reading Cor Freq. Level Fa		imit Over	
		ctor ment L	imit Over BuV/m dB	Detector
	Freq. Level Fa	ctor ment L B dBuV/m dE		Detector peak
N	Freq. Level Fa MHz dBuV d 2.000 50.91 1.	ctor ment L B dBuV/m dB .68 52.59 7	BuV/m dB	
1 4882	Freq. Level Fa MHz dBuV d 2.000 50.91 1. 2.000 46.84 1.	ctor ment L B dBuV/m dB .68 52.59 7 .68 48.52 5	BuV/m dB 4.00 -21.41	peak
1 4882 2 4882	Freq. Level Fa MHz dBuV d 2.000 50.91 1. 2.000 46.84 1. 3.000 40.73 5.	ctor ment L B dBuV/m dE .68 52.59 7 .68 48.52 5 .45 46.18 7	BuV/m dB 4.00 -21.41 4.00 -5.48	peak AVG
1 4882 2 4882 3 7323	Freq. Level Fa MHz dBuV d 2.000 50.91 1. 2.000 46.84 1. 3.000 40.73 5. 3.000 36.72 5.	ctor ment L B dBuV/m dE .68 52.59 7 .68 48.52 5 .45 46.18 7 .45 42.17 5	BuV/m dB 4.00 -21.41 4.00 -5.48 4.00 -27.82	peak AVG peak

est mode:		TX 8DPS	SK – 2480	MHz	Polariza	tion:		Horizor	ntal
ower supply:		AC 120V	//60Hz		Test site	:		RE cha	mber 2
98.9 dBuV/	/m								
89									
79								500 L D D L D	
69								FCC ABOVE	_IG_PEAK
59		1,			_				man and the second
49		3	3	Madrolon Allerty de	5	ىلىمىلىچىنىچەتچەتچەتچەتچەتچەتىر			
39	hanne	mannahan	4 ×		^				
29	/ .								
19									
9									
-1									
-11									
-11 -21 1000.000	2700.00 44	400.00 610	0.00 7800.	.00 (MH;	z) 112	00.00 1	2900.00	14600.00 163	300.00 1800
-21	2700.00 44	400.00 610	0.00 7800.	.00 (MH:	z] 112	00.00 1	2900.00	14600.00 163	800.00 1800
-21 1000.000		Rea	ading	оо (мн: Correct		00.00 1 Sure-			300.00 1800
-21		Rea			Mea	sure-	2900.00	0ver	300.00 1800
-21 1000.000		Rea eq. Le	ading	Correct	Mea	sure- ent		Over	300.00 1800 Detector
-21 1000.000	k. Fre	Rea eq. Le z di	ading evel	Correct Factor	Meas	sure- ent //m	Limit dBuV/m	Over	
-21 1000.000 No. M	k. Fre MH	Rea :q. Le z di 00 55	ading evel BuV	Correct Factor dB	Meas me dBu\	sure- ent //m 47	Limit dBuV/m	Over dB -16.53	Detector
-21 1000.000 No. M	k. Fre МН 4960.00	Rea eq. Le z di 00 55 00 46	ading evel BuV 5.64	Correct Factor dB 1.83	Meas me dBu\ 57.4	sure- ent //m 47 97	Limit dBuV/m 74.00 54.00	Over dB -16.53	Detector peak
-21 1000.000 No. M 1 2 *	k. Fre MH 4960.00 4960.00	Rea 2 df 00 55 00 46 00 42	ading evel BuV 5.64 6.14	Correct Factor dB 1.83 1.83	Meas me dBu 57.4	sure- ent //m 47 97 09	Limit dBuV/m 74.00 54.00 74.00	Over dB -16.53 -6.03	Detector peak AVG
-21 1000.000 No. M 1 2 * 3	k. Fre MH 4960.00 4960.00	Rea iq. Le iz di 00 55 00 46 00 42 00 36	ading evel BuV 5.64 5.14 2.66	Correct Factor dB 1.83 1.83 5.43	Meas me dBu 57.4 47.1 48.1	sure- ent //m 47 97 09 37	Limit dBuV/m 74.00 54.00 74.00 54.00	Over dB -16.53 -6.03 -25.91	Detector peak AVG peak

Test mode:	TX 8DPSK – 2	2480 MHz F	Polarization:		Vertica	l
Power supply:	AC 120V/60H	z 1	lest site:		RE cha	amber 2
86.9 dBuV/m						
77					FCC ABOVE	16_PEAK
67 57			5		FCC ABOVE	in 1 fin Alderman
47		3	The production of the second	-with the second states and the second states and the second states and the second states and the second states	and the second	
37	and the second	X				
27						
7						
-3						
-13						
-23						
-23 -33 1000.000 2700.00	4400.00 6100.00	7800.00 (MHz) 11200.00 1	2900.00 1	4600.00 16	300.00 18000.00
-33 1000.000 2700.00	4400.00 6100.00 Reading req. Level			2900.00 1 Limit	4600.00 16 Over	300.00 18000.0(
-33 1000.000 2700.00 No. Mk. Fi	Reading	g Correct	Measure-			300.00 18000.00 Detector
-33 1000.000 2700.00 No. Mk. Fi	Reading req. Level Hz dBuV	g Correct Factor	Measure- ment	Limit dBuV/m	Over	
-33 1000.000 2700.00 No. Mk. Fr	Reading req. Level Hz dBuV 000 49.93	g Correct Factor dB	Measure- ment dBuV/m	Limit dBuV/m	Over dB	Detector
-33 1000.000 2700.00 No. Mk. Fr M 1 4960.	Reading req. Level Hz dBuV 000 49.93 000 45.52	g Correct Factor dB 1.83	Measure- ment dBuV/m 51.76	Limit dBuV/m 74.00 54.00	Over dB -22.24	Detector peak
-33 1000.000 2700.00 No. Mk. Fr M 1 4960. 2 4960.	Reading req. Level Hz dBuV 000 49.93 000 45.52 000 41.59	g Correct Factor dB 1.83 1.83	Measure- ment dBuV/m 51.76 47.35	Limit dBuV/m 74.00 54.00 74.00	Over dB -22.24 -6.65	Detector peak AVG
-33 1000.000 2700.00 No. Mk. Fr M 1 4960. 2 4960. 3 7440.	Reading req. Level Hz dBuV 000 49.93 000 45.52 000 41.59 000 37.62	g Correct Factor dB 1.83 1.83 5.43	Measure- ment dBuV/m 51.76 47.35 47.02	Limit dBuV/m 74.00 54.00 74.00 54.00	Over dB -22.24 -6.65 -26.98	Detector peak AVG peak

Radiated emissions above 18 GHz

Test m	oue.					PSK – 2					Horizontal	
Power	supply	y:		AC	2120	V/60Hz	z	Test site	e:		RE chamb	oer 2
80.0	dBu∀/π	n								Î	- 500 J.D.O.	
70											FCC ABOV	/E 16-PK
~												
60		_					1	3			5 X FCC ABOV	E 1G-AV
50	n de haarde de heerde de heerde Na heerde de	-4-MONA	and the second secon	- Arrent Martinetter	and man	with the second	2 X	4 *	Concernant of the second s	They are date and	Ř	and the state
40												
30 -												
20												
10												
0												
-10												
-20	0.000 1	8700.0	D 194	00.00	2010	00.00 2	20800.00 (M	Hz) 22	200.00	22900.00 2	3600.00 243	300.00 25000.0
-20	0.000 1 Mk.		D 194		Rea	o.oo 2 Iding vel	20800.00 (M Correc Facto	t Me	asure		3600.00 243 Over	300.00 25000.0
-20					Rea Le	Iding	Correc	t Me	asure	-	Over	300.00 25000.0
-20	Mk.		Freq		Rea Le	iding vel	Correc Facto	r n	asure nent	- Limit	Over dB	Detector
-20	Mk.	207	Freq MHz		Rea Le ^a dE	i ding vel ^{3u∨}	Correc Facto	t Me r n dB	e asure nent luV/m	- Limit dBuV/m	Over dB -18.53	Detector
-20 1800	Mk.	207	Freq MHz 72.0		Rea Le ^r dE 63	ding vel 3u∨ .37	Correc Facto dB -7.90	t Me or n dE 0 5:	easure nent ouV/m 5.47	- Limit dBuV/m 74.00	Over dB -18.53 -5.77	Detector peak
-20 1800 No. 1 2	Mk.	207 207 215	Freq MHz 72.00		Rea Le dE 63 56 62	uding vel 3u∨ .37 .13	Correc Facto dB -7.90 -7.90	t Me r n dE) 5:	easure nent uV/m 5.47 8.23	- Limit dBuV/m 74.00 54.00	Over dB -18.53 -5.77 -18.31	Detector peak AVG
-20 1800 No. 1 2 3	Mk .	207 207 215 215	Freq MHz 72.00 72.00		Rea Le 63 56 62 56	ding vel 3u∨ .37 .13 .98	Correc Facto dB -7.90 -7.90 -7.29	t Me or n dE 5 0 4 0 5 0 4	asure nent uV/m 5.47 8.23 5.69	- Limit dBuV/m 74.00 54.00 74.00	Over dB -18.53 -5.77 -18.31 -4.78	Detector peak AVG peak AVG
-20 1800 No. 1 2 3 4	Mk .	207 207 215 215 235	Freq MHz 72.00 72.00 07.00		Rea Le 63 56 62 56	ding vel 3u∨ .37 .13 .98 .51	Correc Facto dB -7.90 -7.90 -7.29 -7.29	t Me or n dE 0 5: 0 4: 0 5: 0 4: 0 5:	asure nent 5.47 5.69 9.22	- Limit dBuV/m 74.00 54.00 74.00 54.00	Over dB -18.53 -5.77 -18.31 -4.78 -17.08	Detector peak AVG peak AVG

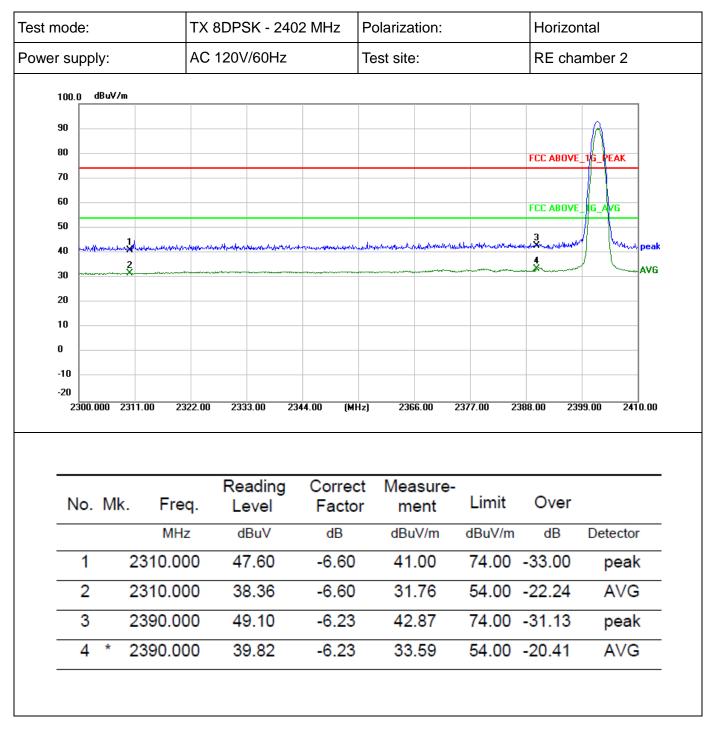
Test mo	ode:		TX 8D	PSK – 24	102 MHz	Polarizat	tion:		Vertical	
ower :	supply:		AC 12	0V/60Hz		Test site			RE chambe	er 2
80.0	dBu¥/m									
									FCC ABOV	E 1G-PK
70										
60							1 X		3 FCC ABOVI	16- \$ /
50 🏧	wohnender and m	n na hanna an hanna a	properties and the second	anan kana kana ka	a who have a second of the	hand stated and a state of the state	2 X	Notes of the other states	4	- E
40										
30										
20										
10										
0										
-10	0 000 1970	10.00 1940	IO OO 201	100.00 20		4-1 223	200.00	22900 00 23	F00 00 243	0.00 25000
-20	0.000 1870	0.00 1940			800.00 (MI				600.00 2430	00.00 25000.
-20	0.000 1870 Mk.	00.00 1940 Freq.	Rea	100.00 20 ading evel	Correc Facto	t Mea	asure-		600.00 2430 Over	0.00 25000.
-20			Rea	ading	Correc	t Mea r m	asure-			00.00 25000.
-20	Mk.	Freq.	Re: Le	ading evel	Correc Facto	t Mea r m dBu	asure- ient	Limit dBuV/m	Over	
-20 18000	Mk. 22	Freq.	Re: Le d	ading evel	Correc Facto dB -6.27	t Mea r m dBu 55	asure- ent uV/m	Limit dBuV/m 74.00	Over dB	Detector peak
-20 18000 No.	Mk. 22 22 23	Freq. MHz 2298.00 2298.00 3572.00	Re: Le d 53	ading evel ^{BuV} 1.43	Correc Facto dB -6.27 -6.27	t Mea r m dBu 55 47	asure- ent IV/m 5.16	Limit dBuV/m 74.00 54.00	Over dB -18.84	Detector peak AVG
-20 18000 No. 1 2	Mk. 22 22 23	Freq. MHz 2298.00	Re: Le d 53	ading evel ^{BuV} 1.43 3.52	Correc Facto dB -6.27 -6.27	t Mea r m dBu 55 47 56	asure- ent IV/m 5.16 7.25	Limit dBu∀/m 74.00 54.00 74.00	Over dB -18.84 -6.75	Detector peak AVG
-20 18000 No. 1 2 3	Mk. 22 23 23	Freq. MHz 2298.00 2298.00 3572.00	Re: Le 0 61 0 53	ading evel Bu∨ 1.43 3.52 1.72	Correc Facto dB -6.27 -6.27 -5.30 -5.30	t Mea r m 55 47 56 48	asure- ent IV/m 5.16 7.25 5.42	Limit dBuV/m 74.00 54.00 74.00 54.00	Over dB -18.84 -6.75 -17.58	Detector peak AVG peak

Page 53 of 62

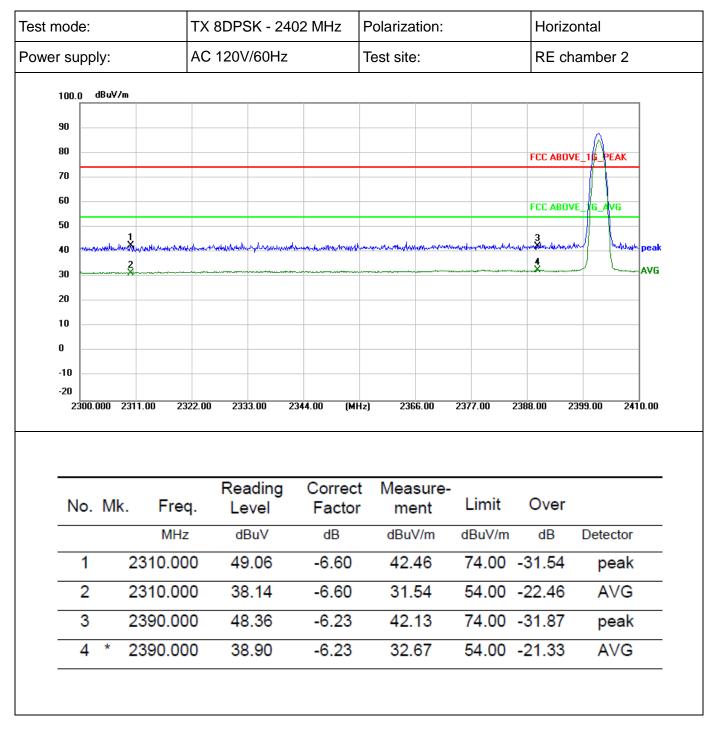
Report No.: MTi220322005-01E1

Fest m	ode:		TX 8D)PSK – 2	441 MHz	Polarization:		Horizontal	
Power	supply:		AC 12	20V/60Hz		Test site:		RE chambe	er 2
80.0	dBu¥/m								
70								FCC ABOVE	. 1G-PK
10									
60 -			1 X.		3	5	or water to construct our	FCC ABOVE	16-AV
50	-	"Normalantan and an and an and an and	2 X	Amaga of the Property	4 ×	6 ×	to a clower with	an a	Anna 1997 Anna 1997 Anna 1997
40									
30									
20									
10									
0									
-10									
-20									
1800	00.000 187	00.00 1940	0.00 20	100.00 2	0800.00 (MI	1z) 22200.00 22	2900.00 2	3600.00 2430	0.00 25000.0
			Re	ading	Correc	t Measure-			
No.	Mk.	Freq		evel	Facto		Limit	Over	
		MHz	C	IBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	1	9673.00) 6	3.46	-8.12	55.34	74.00	-18.66	peak
2			<u>،</u>						
2	1	9673.00) 5	7.09	-8.12	48.97	54.00	-5.03	AVG
3		9673.00 1122.00	`	7.09 3.11	-8.12 -7.71			-5.03 -18.60	AVG peak
	2) 6			55.40		-18.60	
3	2	1122.00) 6) 5	3.11	-7.71	55.40 49.01	74.00	-18.60 -4.99	peak
3	2 2 2	1122.00 1122.00) 6) 5) 6	3.11 6.72	-7.71 -7.71	55.40 49.01 57.00	74.00 54.00	-18.60 -4.99 -17.00	peak AVG

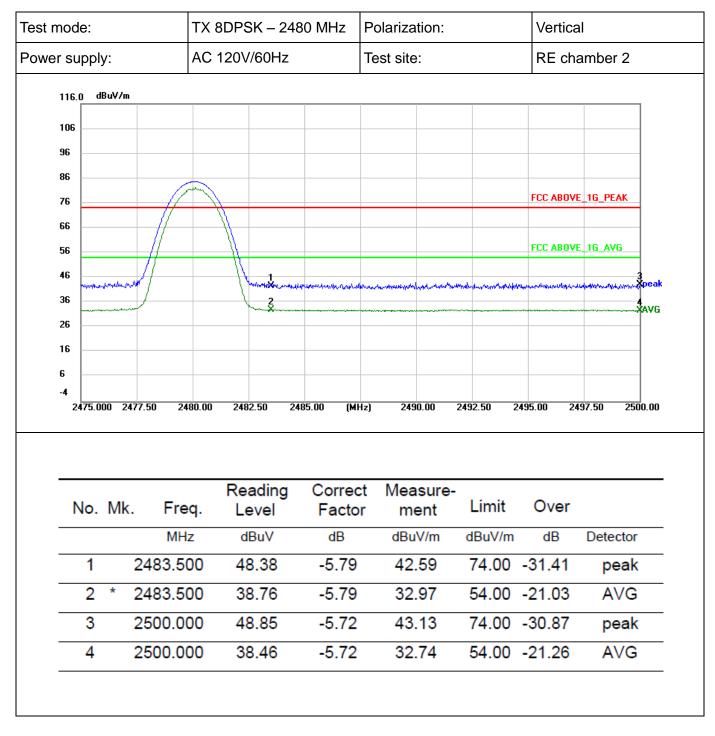
	ode:		TX 81	DPSK - 2	441 MHz	Polarizat	tion:		Vertical	
Power	supply	y:	AC 1	20V/60Hz	2	Test site	:		RE cham	nber 2
80.0	dBuV/n	n								
									FCC AB	OVE 1G-PK
70 –										
60 -		a manak kawada ar			1	and a stand and a stand a stan stand a stan stand a st	wanne	-	- ECG. AB	AXE JA: AV
50	00-09 ¹⁰⁻⁰ 004 ¹⁰⁻⁰ 0		4	and the state of t	2 X	×				×
40										
30										
20										
10										
0										
-10 -20										
	00.000 1	8700.00 194	00.00 2	0100.00 2	20800.00 (M	Hz) 222	200.00	22900.00	23600.00 2	4300.00 2500
			Re	eading	Correct	t Mea	sure-			24300.00 2500
	o. 000 1	. Freq	Re I. L	eading .evel	Correct Factor	t Mea me	sure- ent	Limit	Over	
No). Mk	. Frec	Re I. L	eading .evel dBu∀	Correct Factor	t Mea me dBu	sure- ent √/m	Limit dBuV/m	Over	Detector
). Mk	. Fred MHz 20772.0	Re I. L 0 6	eading .evel dBu∀ 33.87	Correct Factor dB -7.90	dBu 55.	sure- ent V/m 97	Limit dBuV/m 74.00	Over	
No). Mk	. Frec	Re I. L 0 6	eading .evel dBu∀	Correct Factor	t Mea me dBu	sure- ent V/m 97	Limit dBuV/m 74.00	Over	Detector
No	. Mk	. Fred MHz 20772.0	Re I. L 0 6 0 5	eading .evel dBu∀ 33.87	Correct Factor dB -7.90	dBu 55.	sure- ent V/m 97 69	Limit dBuV/m 74.00 54.00	Over dB -18.03	Detector peak
No 1 2). Mk	. Freq MHz 20772.0 20772.0		eading .evel dBuV 33.87 56.59	Correct Factor dB -7.90 -7.90	t Mea me dBu 55.	sure- ent V/m 97 69 16	Limit dBuV/m 74.00 54.00 74.00	Over dB -18.03 -5.31	Detector peak AVG
No 1 2 3). Mk 2 3	. Freq MHz 20772.0 20772.0 21787.0		eading .evel dBu∨ 33.87 56.59 53.13	Correct Factor dB -7.90 -7.90 -6.97	t Mea me dBu 55. 48. 56.	sure- ent 7/m 97 69 16 39	Limit dBuV/m 74.00 54.00 74.00 54.00	Over dB -18.03 -5.31 -17.84	Detector peak AVG peak



	mode		Т	X 8DPSK	– 2480 MHz	Polarizati	ion:		Horizontal	
Powe	er sup	ply:	A	C 120V/6	0Hz	Test site:			RE chamb	er 2
BO.O	dBu¥∕	'm								
70									FCC ABO	VE 1G-PK
										F
50 -	personal second	water and the second	north water		parter adjustment	annow Minharper	man	have a start which have no	A FR. ARR	VE 1 G. AV
50							×		×	×
10										
30 -										
20										
10 -										
0										
10										
-20										
		18700.00 1	9400.00	20100.00	20800.00 (M	Hz) 222	00.00	22900.00 2	3600.00 24	300.00 25000
No). Mł			Readir	ng Corre	ct Mea	asure		3600.00 24 Over	
No	o. Mł		eq.		ng Corre	ct Mea		÷	Over	
No		k. Fre	eq. z	Readir Level	ng Corre Facto dB	ct Mea or m dBu	asure ent	≻ Limit dBuV/m	Over	Detector
1		к. Fre MH	:q. z	Readir Level dBuV	ng Corre Facto dB 2 -5.79	ct Mea or m dBu	asure ent ıV/m	≻ Limit dBuV/m 74.00	Over dB	Detector 7 peak
1	2	к. Fre мн 22606.1	eq. z 00 00	Readir Level dBuV 62.52	ng Corre Facto dB 2 -5.79	ct Mea or m dBu) 56) 49	asure ent iV/m	→ Limit dBuV/m 74.00 54.00	Over dB -17.27	Detector peak AVG
1	1 2 3	к. Fre мн 22606.1 22606.1	eq. z	Readir Level dBuV 62.52	ng Corre Facto dB 2 -5.79 5 -5.79 2 -5.30	ct Mea or m dBu) 56) 49) 57	asure ent iV/m 3.73	→ Limit dBuV/m 74.00 54.00 74.00	Over dB -17.27 -4.03	Detector 2 peak AVG 3 peak
1	1 2 3 1 *	<. Fre мн 22606. 22606. 23572.	z 2 00 00 00 00	Readir Level dBuV 62.52 55.76 62.72	ng Corre Facto dB 2 -5.79 5 -5.79 2 -5.30 2 -5.30	ct Mea or m dBu) 56) 49) 57) 51	asure ent 773 9.97	→ Limit dBuV/m 74.00 54.00 74.00 54.00	Over dB -17.27 -4.03 -16.58	Detector 7 peak AVG 8 peak AVG
1	1 2 3 4 *	<. Fre мн 22606. 22606. 23572. 23572.	zq. z 00 00 00 00 00	Readir Level dBuV 62.52 55.76 62.72 56.32	ng Corre Facto dB 2 -5.79 5 -5.79 2 -5.30 2 -5.30 7 -5.14	ct Mea or m dBu 0 56 0 49 0 57 0 51	asure ent iv/m 3.73 9.97 7.42 .02	 Limit dBuV/m 74.00 54.00 74.00 54.00 74.00 	Over dB -17.27 -4.03 -16.58 -2.98	Detector 2 peak AVG 3 peak AVG 2 peak
1	1 2 3 4 *	<. Fre Мн 22606.0 23572.0 23572.0 24825.0	zq. z 00 00 00 00 00	Readir Level dBuV 62.52 55.76 62.72 56.32 62.77	ng Corre Facto dB 2 -5.79 5 -5.79 2 -5.30 2 -5.30 7 -5.14	ct Mea or m dBu 0 56 0 49 0 57 0 51	asure ent .73 .97 .42 .02 .63	 Limit dBuV/m 74.00 54.00 74.00 54.00 74.00 	Over dB -17.27 -4.03 -16.58 -2.98 -16.37	Detecto 7 peak AVG 8 peak AVG 7 peak



Test	mc	ode:			Т	X 8D	PSK	- 24	80 MI	Ηz	Pola	arizat	ion:			Ve	ertical				
Pow	/er s	supp	ly:		A	C 12	20V/60)Hz			Tes	t site:				RI	E chai	mber	2		
80.0	d	BuV/m	1																		
70																	FCC /	ABOVE	1G-PK		
60										1	1							3			
50	rewal.	and the second sec	the state of the s	hhundudg	yny yr yn	webyty	anna	and the second	mun	<u>مېرىمەر</u> 2 *	Marchille	mythia	manya	<u>duran</u>	adore, ipabi	None-rafe	FCC /	XUXE X	<u>. 19-20</u> 	Weather	
40																					
30																					
20																					
10																					
0																				_	
-10																				_	
-20 18	000.	000 1:	8700.0	0 19	400.00	201	00.00	208	300.00	(MH	zÌ	222	200.00	229	00.00	236	00.00	2430	0.00	2500)0.0
N	0.	Mk		Fre	eq.		eadir .eve	_		rrec			easur nent	-e-	Lim	nit	O	ver			
				MH	Iz		dBuV	1		dB		dE	BuV/m		dBu	//m	c	IB	De	etect	to
	1		21	507.	00	6	64.48	3	-7	7.29)	5	7.19		74.	00	-16	.81	pe	eak	,
	2		21	507.	00	5	56.62	2	-7	7.29)	4	9.33		54.	00	-4.	67	A	٧G	
	3		24	118.	00	6	\$2.27	7	-{	5.36	;	5	6.91		74.	00	-17	.09	pe	eak	
	4	*	24	118.	00	5	5.57	7	-{	5.36	;	5	0.21		54.	00	-3.	79	A	٧G	
	5		246	678.	00	6	61.37	7	-{	5.18	}	5	6.19		74.	00	-17	.81	pe	eak	
	6		240	678.	00	5	5.2°	1	-5	5.18	}	5	0.03		54.	00	-3.	97	A	٧G	



est mode:			TX 8D	PSK – 2	2480 MHz	Polariz	zation:		Vertica	I	
ower supply	y:		AC 12	0V/60Hz	Z	Test si	te:		RE cha	mber 2	
116.0 dE	BuV/m								·		
106											
96											
86			and the second s								
76									FCC ABOVE	_1G_PEAK	
66		-//		\							
56)	\\					FCC ABOVE	16_AVG	
46	unu	J //		1 minister	Annam as abarbara	un kahara sama manana sa	an an an an an an an	Wildows and a state of the state of the	minumenter and the street	- makeuro - Autor - Like	neak
36		/		2		44 Y 31 X 34 W 44 Y 37 Y 44 Y	14				AVG
26											A40
16											
16 6											
6 -4											
6	00 24	177.50 24	80.00	2482.50	2485.00 (M	[Hz] 2	490.00	2492.50	2495.00 24	97.50 250	0.00
6 -4	00 24	477.50 24	80.00	2482.50	2485.00 (M	(Hz) 2	490.00	2492.50	2495.00 24	37.50 250	0.00
6 -4	00 24	177.50 24			-		490.00 asure	-	2495.00 24	97.50 250	0.00
6 -4			R	2482.50 Reading Level	-	ct Me			2495.00 249 0ver	97.50 250	0.00
6 -4 2475.00			R q.	eading	Correc	ct Me or m	asure	-	Over	97.50 250 Detector	0.00
6 -4 2475.00	Mk	. Fre	R q. 2	leading Level	Correc Facto	ct Me or m	asure nent	- Limit dBuV/m	Over		0.00
6 -4 2475.00	Mk	. Fre	R q. 2 00	eading Level dBuV	Correc Facto dB	ct Me or m dB	asure nent suV/m	Limit dBuV/m 74.00	Over dB	Detector	0.00
6 -4 2475.00 No.	Mk.	. Free MHz 2483.50	R q. 2 00	eading Level dBuV 48.99	Correc Facto dB -5.79	ct Me or m dB 43	asure nent uV/m 3.20	- Limit dBuV/m 74.00 54.00	Over dB -30.80	Detector peak	

Photographs of the Test Setup

See the appendix – Test Setup Photos.

Photographs of the EUT

See the appendix - EUT Photos.

----End of Report----