

# EMC TEST REPORT

Report No. : 150100371TWN-001

Model No. : BT Dongle Issued Date : Jul. 16, 2015

**Applicant:** Strength Master Fitness Tech Co. Ltd

No. 398, Sec. 1, Yaofeng Rd., Puxin Township, Changhua

County, Taiwan

Test Method/ Standard: 47 CFR FCC Part 15.247 & ANSI C63.4 2009

KDB 558074 D01 v03r03

Test By: Intertek Testing Services Taiwan Ltd.

No. 11, Lane 275, Ko-Nan 1 Street, Chia-Tung Li,

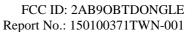
Shiang-Shan District, Hsinchu City, Taiwan

**FCC Laboratory** 

**Registration Number:** 93910

It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of Intertek Laboratory. The test result(s) in this report only applies to the tested sample(s).

**The test report was prepared by:** Sign on File


Evelyn Lee/ Officer

These measurements were taken by: Sign on File

Wayne Chen / Engineer

The test report was reviewed by:

Name Jimmy Yang
Title Senior Engineer





# **Table of Contents**

| 1. Summary of Test Data          | 3  |
|----------------------------------|----|
| 2. General Information           |    |
| 3. Maximum 6 dB Bandwidth        | 8  |
| 4. Maximum Output Power          | 12 |
| 5. Power Spectral Density        | 14 |
| 6. RF Antenna conducted Spurious | 18 |
| 7. Radiated Spurious Emission    | 22 |
| 8. Emission on Band Edge         | 28 |



# 1. Summary of Test Data

| Test Requirement                                                         | Applicable Rule<br>(Section 15.247)   | Result |
|--------------------------------------------------------------------------|---------------------------------------|--------|
| Minimum 6 dB Bandwidth                                                   | 15.247(a)(2)<br>KDB 558074 D01 v03r03 | Pass   |
| Maximum Peak Conducted Output Power                                      | 15.247(b)(3)                          | Pass   |
| Power Spectral Density                                                   | 15.247(e)                             | Pass   |
| Emissions In Non-Restricted Frequency Bands                              | 15.247(d)                             | Pass   |
| Emissions In Restricted Frequency Bands (Radiated emission measurements) | 15.247(d), 15.205, 15.209             | Pass   |
| Emission On The Band Edge                                                | 15.247(d), 15.205                     | Pass   |
| AC Power Line Conducted Emission                                         | 15.207                                | Pass   |
| Antenna Requirement                                                      | 15.203                                | Pass   |



#### 2. General Information

#### 2.1 Identification of the EUT

Product: BT Dongle
Model No: BT Dongle

FCC ID: 2AB9OBTDONGLE

Operating Frequency: 2402MHz ~ 2480MHz

Channel Number: 40 Channels

Access scheme: See section 2.3

Modulation: GFSK

Rated Power: DC 3.3V

Power Cord: N/A

Sample Received: Jul. 14, 2014

Sample condition: Workable

Test Date(s): Jan. 14, 2015 ~ Jul. 16, 2015

Note 1: This report is for the exclusive use of Intertek's Client and is provided

pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an

Intertek certification program.

Note 2: When determining the test conclusion, the Measurement Uncertainty of

test has been considered.



# 2.2 Description of EUT

| N. 1.1.4. 1     | Transmit path |
|-----------------|---------------|
| Modulation mode | Chain 0/Main  |
| BT 4.0          | V             |

# 2.3 Channel Number of EUT

| Channel<br>No. | Frequency | Channel<br>No. | Frequency | Channel<br>No. | Frequency | Channel<br>No. | Frequency |
|----------------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|
| 0              | 2402      | 10             | 2422      | 20             | 2442      | 30             | 2462      |
| 1              | 2404      | 11             | 2424      | 21             | 2444      | 31             | 2464      |
| 2              | 2406      | 12             | 2426      | 22             | 2446      | 32             | 2466      |
| 3              | 2408      | 13             | 2428      | 23             | 2448      | 33             | 2468      |
| 4              | 2410      | 14             | 2430      | 24             | 2450      | 34             | 2470      |
| 5              | 2412      | 15             | 2432      | 25             | 2452      | 35             | 2472      |
| 6              | 2414      | 16             | 2434      | 26             | 2454      | 36             | 2474      |
| 7              | 2416      | 17             | 2436      | 27             | 2456      | 37             | 2476      |
| 8              | 2418      | 18             | 2438      | 28             | 2458      | 38             | 2478      |
| 9              | 2420      | 19             | 2440      | 29             | 2460      | 39             | 2480      |



#### 2.4 Antenna description

The EUT uses a permanently connected antenna.

Antenna Gain : 0 dBi

Antenna Type : PCB Antenna

Connector Type: Fixed

# 2.5 Peripherals equipment

| Peripherals | Brand | Model No.     | Serial No. | Data cable        |
|-------------|-------|---------------|------------|-------------------|
| Notebook PC | DELL  | Latitude D610 | 1YWZK1S    | RS232 1 meter × 1 |

# 2.6 Operation mode

The EUT was supplied with DC 3.3V.



## 2.7 Applied test modes and channels

| Test items                                        | Mode   | Channel   | Antenna |
|---------------------------------------------------|--------|-----------|---------|
| Minimum 6 dB Bandwidth                            | BT 4.0 | 0, 20, 39 | Chain0  |
| Maximum peak conducted output power               | BT 4.0 | 0, 20, 39 | Chain0  |
| Power Spectral Density                            | BT 4.0 | 0, 20, 39 | Chain0  |
| RF Antenna Conducted Spurious                     | BT 4.0 | 0, 20, 39 | Chain0  |
| Radiated spurious Emission 30MHz~1GHz             | BT 4.0 | 20        | Chain0  |
| Radiated Spurious Emission<br>10GHz~10th Harmonic | BT 4.0 | 0, 20, 39 | Chain0  |
| Emission on the Band Edge                         | BT 4.0 | 0, 39     | Chain0  |
| AC Power Line Conducted Emission                  | BT 4.0 | 0, 20, 39 | Chain0  |

# 2.8 Power setting of test software

Channels & power setting software provided by the client was used to change the operating channels as well as the output power level and is going to be installed in the final end product.

| Mode   | Software Version: ISRT.exe V 2.1.25.4149 |           |               |  |  |
|--------|------------------------------------------|-----------|---------------|--|--|
|        | Channel                                  | Frequency | Power setting |  |  |
|        | 0                                        | 2402      | 20            |  |  |
| BT 4.0 | 20                                       | 2442      | 20            |  |  |
|        | 39                                       | 2480      | 20            |  |  |

Note: The EUT was programmed to be in continuously transmitting mode and the transmit duty cycle is not less than 98%.



#### 3. Minimum 6 dB Bandwidth

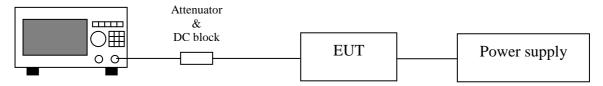
#### 3.1 Operating environment

| Temperature:              | 25           | $^{\circ}\!\mathbb{C}$ |
|---------------------------|--------------|------------------------|
| Relative Humidity:        | 50           | %                      |
| Atmospheric Pressure      | 1008         | hPa                    |
| Dequipment & Test method  | 15.247(a)(2) |                        |
| Requirement & Test method | KDB 558074   | D01 v03r03             |
| Channel number            | 0, 20,       | 39                     |

#### 3.2 Limit for minimum 6dB bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

#### 3.3 Measuring instrument setting


| Spectrum analyzer settings |                                      |  |  |
|----------------------------|--------------------------------------|--|--|
| Spectrum Analyzer function | Setting                              |  |  |
| Detector                   | Peak                                 |  |  |
| RBW                        | 100kHz                               |  |  |
| VBW                        | ≥3 x RBW                             |  |  |
| Sweep                      | Auto couple                          |  |  |
| Trace                      | Allow the trace to stabilize.        |  |  |
| Span                       | Between two times and five times the |  |  |
|                            | occupied bandwidth                   |  |  |
| Attenuation                | Auto                                 |  |  |

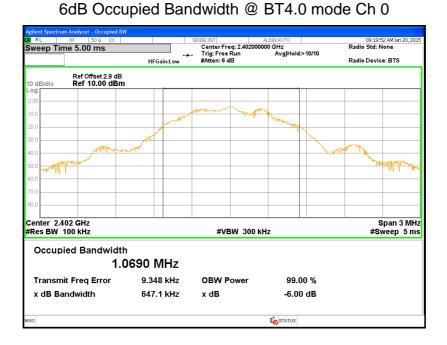
#### 3.4 Test procedure

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. Test was performed in accordance with clause 8.1 option1 of KDB 558074 D01
- 3. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

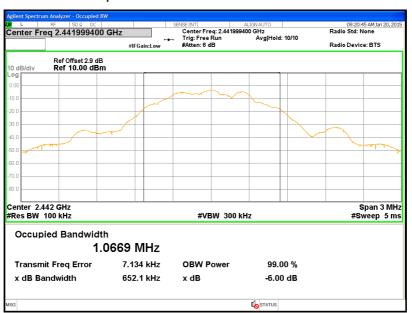


# 3.5 Test diagram



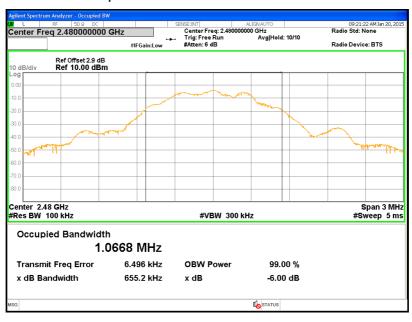

Spectrum Analyzer

# 3.6 Test results


| Mode   | Channel | Frequency (MHz) | 6dB Bandwidth (MHz) | Limit<br>(MHz) | Pass/Fail |
|--------|---------|-----------------|---------------------|----------------|-----------|
|        | 0       | 2402            | 0.6471              | 0.5            | Pass      |
| BT 4.0 | 20      | 2442            | 0.6521              | 0.5            | Pass      |
|        | 39      | 2480            | 0.6552              | 0.5            | Pass      |








#### 6dB Occupied Bandwidth @ BT4.0 mode Ch 20





## 6dB Occupied Bandwidth @ BT4.0 mode Ch 39





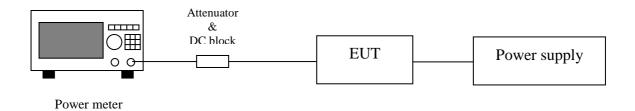
# 4. Maximum Peak Conducted Output Power

#### 4.1 Operating environment

| Temperature:                | 25                    | $^{\circ}\!\mathbb{C}$ |
|-----------------------------|-----------------------|------------------------|
| Relative Humidity:          | 50                    | %                      |
| Atmospheric Pressure        | 1008                  | hPa                    |
| Degramment % Test meetles d | 15.247                | ′(b)(3)                |
| Requirement & Test method   | KDB 558074 D01 v03r03 |                        |
| Channel number              | 0, 20                 | ), 39                  |

#### 4.2 Limit for maximum peak conducted output power

For systems using digital modulation in the 2400-2483.5 MHz: 1 Watt (30dBm)


#### 4.3 Measuring instrument setting

| Power meter         |                                         |  |
|---------------------|-----------------------------------------|--|
| Power meter Setting |                                         |  |
| D 1 114             | 65MHz bandwidth is greater than the EUT |  |
| Bandwidth           | emission bandwidth                      |  |
| Detector            | Peak & Average                          |  |

#### 4.4 Test procedure

Test procedures refer to clause 9.1.3 peak power meter method and clause 9.2.3.2 measurement using a gated RF average power meter of KDB 558074 D01.

#### 4.5 Test diagram





#### 4.6 Test result

| Mode   | Channel | Frequency | Output<br>Power<br>(AV)<br>(dBm) | Total Power (AV) (mW) | Maximum<br>power<br>(PK)<br>(dBm) | Maximum<br>power<br>(PK)<br>(mW) | Limit<br>(dBm) | Margin (dB) |
|--------|---------|-----------|----------------------------------|-----------------------|-----------------------------------|----------------------------------|----------------|-------------|
|        | 0       | 2402      | -3.83                            | 0.41                  | -3.34                             | 0.46345                          | 30             | -33.34      |
| BT 4.0 | 20      | 2442      | -4.43                            | 0.36                  | -4.01                             | 0.39719                          | 30             | -34.01      |
|        | 39      | 2480      | -3.52                            | 0.44                  | -3.14                             | 0.48529                          | 30             | -33.14      |

Note: The relevant measured result has the offset with cable loss already.



# 5. Power Spectral Density

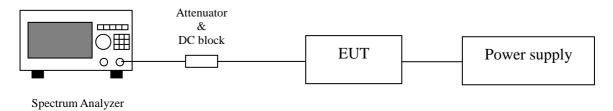
# **5.1 Operating environment**

| Temperature:                | 25                    | $^{\circ}\!\mathbb{C}$ |  |
|-----------------------------|-----------------------|------------------------|--|
| Relative Humidity:          | 50                    | %                      |  |
| Atmospheric Pressure        | 1008                  | hPa                    |  |
| Degramment % Test meetles d | 15.247(e)             |                        |  |
| Requirement & Test method   | KDB 558074 D01 v03r03 |                        |  |
| Channel number              | 0, 20, 39             |                        |  |

#### 5.2 Limit for power spectrum density

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

#### 5.3 Measuring instrument setting


| Spectrum analyzer settings |                           |  |  |  |
|----------------------------|---------------------------|--|--|--|
| Spectrum Analyzer function | Setting                   |  |  |  |
| Detector                   | Peak                      |  |  |  |
| RBW                        | ≥3 kHz                    |  |  |  |
| VBW                        | ≥3 x RBW                  |  |  |  |
| Sweep                      | Auto couple               |  |  |  |
| Trace                      | Max hold                  |  |  |  |
| Span                       | 1.5 times x 6dB bandwidth |  |  |  |
| Attenuation                | Auto                      |  |  |  |



## 5.4 Test procedure

- 1. Test procedure refers to clause 10.2 method PKPSD (peak PSD) of KDB 558074 D01.
- 2. Using the maximum conducted output power in the fundamental emission demonstrates compliance. The EUT must be configured to transmit continuously at full power over the measurement duration.
- 3. Use the peak marker function to determine the maximum amplitude level within the RBW.

#### 5.5 Test diagram



#### 5.6 Test results

| Mode   | Channel | Frequency<br>(MHz) | PSD<br>(dBm/ 100kHz) | Limit (dBm/ 3kHz) | Margin (dB) |
|--------|---------|--------------------|----------------------|-------------------|-------------|
|        | 0       | 2402               | -3.53                | 8                 | -11.53      |
| BT 4.0 | 20      | 2442               | -2.76                | 8                 | -10.76      |
|        | 39      | 2480               | -2.70                | 8                 | -10.70      |

Note: The relevant measured result has the offset with cable loss already.





#### Power Spectral Density @ BT4.0 mode channel 0



#### Power Spectral Density @ BT4.0 mode channel 20





## Power Spectral Density @ BT4.0 mode channel 39





# 6. Emissions In Non-Restricted Frequency Bands

#### **6.1 Operating environment**

| Temperature:         | 25        | $^{\circ}\!\mathbb{C}$ |
|----------------------|-----------|------------------------|
| Relative Humidity:   | 50        | %                      |
| Atmospheric Pressure | 1008      | hPa                    |
| Requirement          | 15.247(d  | )                      |
| Channel number       | 0, 20, 39 | )                      |

#### 6.2 Limit for emissions in non-restricted frequency bands

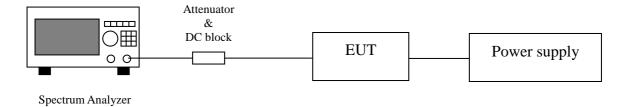
The peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz

#### 6.3 Measuring instruments setting

#### Reference level measurement

| Spectrum analyzer settings |                         |  |  |  |
|----------------------------|-------------------------|--|--|--|
| Spectrum Analyzer function | Setting                 |  |  |  |
| Detector                   | Peak                    |  |  |  |
| RBW                        | ≥100 kHz                |  |  |  |
| VBW                        | $\geq 3 \text{ x RBW}$  |  |  |  |
| Sweep                      | Auto couple             |  |  |  |
| Trace                      | Max hold                |  |  |  |
| Span                       | ≥1.5 time 6dB bandwidth |  |  |  |
| Attenuation                | Auto                    |  |  |  |




#### **Emission level measurement**

| Spectrum analyzer settings |                     |  |  |  |
|----------------------------|---------------------|--|--|--|
| Spectrum Analyzer function | Setting             |  |  |  |
| Detector                   | Peak                |  |  |  |
| RBW                        | ≥100 kHz            |  |  |  |
| VBW                        | $\geq 3 \times RBW$ |  |  |  |
| Sweep                      | Auto couple         |  |  |  |
| Trace                      | Max hold            |  |  |  |
| Attenuation                | Auto                |  |  |  |

#### **6.4** Test procedure

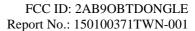
- 1. The procedure was used in antenna-port conducted and connected to the spectrum analyzer.
- 2. Set instrument center frequency to center frequency
- 3. Use the parameter configured in clause 6.3 to measure
- 4. Use the peak marker function to determine the maximum amplitude level.

#### 6.5 Test diagram



Page 19 of 35




#### 6.6 Test results

#### Conducted Spurious @ BT4.0\_Chain0\_2402MHz



#### Conducted Spurious @ BT4.0\_Chain0\_2442MHz







# Conducted Spurious @ BT4.0\_Chain0\_2480MHz





# 7. Emissions In Restricted Frequency Bands (Radiated emission measurements)

#### 7.1 Operating environment

| Temperature:         | 25                 | $^{\circ}\! \mathbb{C}$ |  |
|----------------------|--------------------|-------------------------|--|
| Relative Humidity:   | 50                 | %                       |  |
| Atmospheric Pressure | 1008               | hPa                     |  |
| Dogwinsmant          | 15.247(d), 15.205, |                         |  |
| Requirement          | 15.209             |                         |  |
| Channel number       | 0, 20, 39          | )                       |  |

# 7.2 Limit for emission in restricted frequency bands (Radiated emission measurement)

| Frequency (MHz) | Field Strength (microvolts/meter) | Measurement distance (meters) |  |
|-----------------|-----------------------------------|-------------------------------|--|
| , ,             | ,                                 |                               |  |
| 0.009~0.490     | 2400/F(kHz)                       | 300                           |  |
| 0.490~1.705     | 2400/F(kHz)                       | 30                            |  |
| 1.705~30        | 30                                | 30                            |  |
| 30-88           | 100                               | 3                             |  |
| 88-216          | 150                               | 3                             |  |
| 216-960         | 200                               | 3                             |  |
| Above 960       | 500                               | 3                             |  |

#### Remark:

- 1. In the above table, the tighter limit applies at the band edges.
- 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system



# 7.3 Measuring instrument setting

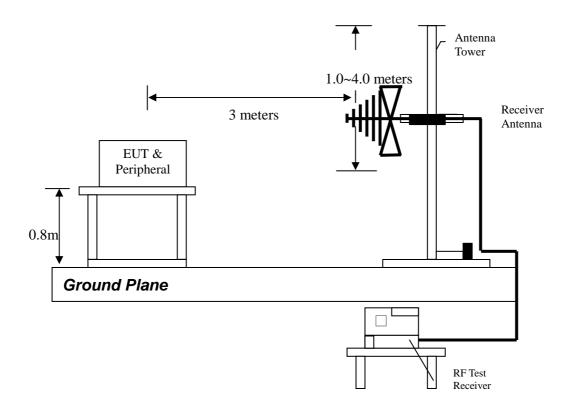
#### **Below 1GHz measurement**

| Receiver settings |                          |  |  |  |
|-------------------|--------------------------|--|--|--|
| Receiver function | Setting                  |  |  |  |
| Detector          | QP                       |  |  |  |
|                   | 9-150 kHz ; 200-300 Hz   |  |  |  |
| RBW               | 0.15-30 MHz; 9-10 kHz    |  |  |  |
|                   | 30-1000 MHz; 100-120 kHz |  |  |  |
| VBW               | ≥3 x RBW                 |  |  |  |
| Sweep             | Auto couple              |  |  |  |
| Attenuation       | Auto                     |  |  |  |

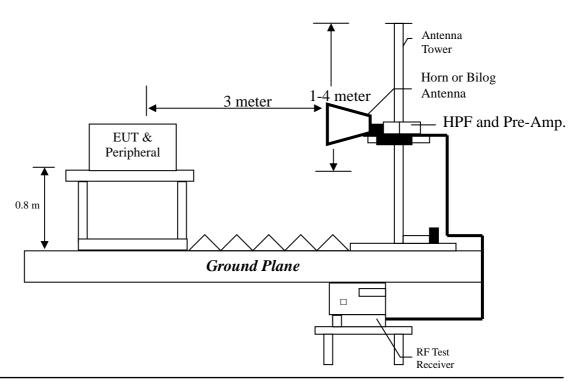
#### **Above 1GHz measurement**

| Spectrum analyzer settings |                                 |  |  |  |
|----------------------------|---------------------------------|--|--|--|
| Spectrum Analyzer function | Setting                         |  |  |  |
| Detector                   | Peak                            |  |  |  |
| RBW                        | 1MHz                            |  |  |  |
| VBW                        | 3MHz for Peak; 10Hz for Average |  |  |  |
| Sweep                      | Auto couple                     |  |  |  |
| Start Frequency            | 1GHz                            |  |  |  |
| Stop Frequency             | Tenth harmonic                  |  |  |  |
| Attenuation                | Auto                            |  |  |  |




#### 7.4 Test procedure

- 1. The center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the companion devices. The turntable was rotated by 360 degree to find the position of the maximum emission level.
- 3. The height of the receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of the both horizontal and vertical polarization
- 4. If find the frequencies above the limit or below within 3dB, the antenna tower was scan (from 1m to 4m) and then the turntable was rotated to find the maximum reading.
- 5. Set the test-receiver system to peak or CISPR quasi-peak detector with specified bandwidth under maximum hold mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
  - Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.
- 7. If the emissions level of the EUT in peak mode was 3dB lower than the average limit specified then testing will be stopped and peak values of the EUT will be reported. Otherwise, the emissions which do not have 3dB margin will be measured using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, The emissions level of the EUT in peak mode was lower than average limit, then testing will be stopped and peak values of the EUT will be reported, otherwise, the emission will be measured in average mode again and reported.




## 7.5 Test configuration

#### 7.5.1 Radiated emission below 1GHz using Bilog Antenna



#### 7.5.2 Radiated emission above 1GHz using Horn Antenna





#### 7.6 Test result

#### 7.6.1 Measurement results: frequencies below 1 GHz

The test was performed on EUT continuously transmitting mode. The worst case occurred at chain 0: BT4.0 Tx channel 20.

EUT : BT Dongle

Worst Case : BT4.0 Tx channel 20

| Antenna  | Freq.  | Receiver | Corr.  | Reading | Corrected | Limit    | Margin |
|----------|--------|----------|--------|---------|-----------|----------|--------|
| Polariz. |        |          | Factor |         | Level     | @ 3 m    |        |
| (V/H)    | (MHz)  | Detector | (dB/m) | (dBµV)  | (dBµV/m)  | (dBµV/m) | (dB)   |
| V        | 191.02 | QP       | 13.98  | 20.92   | 34.90     | 43.50    | -8.60  |
| V        | 224.00 | QP       | 14.75  | 17.92   | 32.67     | 46.00    | -13.33 |
| V        | 270.56 | QP       | 16.50  | 15.30   | 31.79     | 46.00    | -14.21 |
| V        | 288.02 | QP       | 17.06  | 15.17   | 32.23     | 46.00    | -13.77 |
| V        | 352.04 | QP       | 18.79  | 15.55   | 34.34     | 46.00    | -11.66 |
| V        | 400.54 | QP       | 19.92  | 14.81   | 34.73     | 46.00    | -11.27 |
| Н        | 191.02 | QP       | 13.98  | 20.03   | 34.01     | 43.50    | -9.49  |
| Н        | 270.56 | QP       | 16.49  | 16.65   | 33.14     | 46.00    | -12.86 |
| Н        | 288.02 | QP       | 17.06  | 18.17   | 35.23     | 46.00    | -10.77 |
| Н        | 319.06 | QP       | 17.92  | 16.39   | 34.31     | 46.00    | -11.69 |
| Н        | 336.52 | QP       | 18.38  | 20.20   | 38.58     | 46.00    | -7.42  |
| Н        | 352.04 | QP       | 18.79  | 15.11   | 33.89     | 46.00    | -12.11 |

#### Remark:

- 1. Corr. Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Corr. Factor

Note: The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.



## 7.6.2 Measurement results: frequency above 1GHz

EUT : BT Dongle

Test Condition : BT4.0 Tx channel 0, 20, 39

| Mode       | Freq. | Spectrum | Ant.  | Preamp. | Correction | Reading | Corrected     | Limit         | Margin |
|------------|-------|----------|-------|---------|------------|---------|---------------|---------------|--------|
|            |       | Analyzer | Pol.  | Gain    | Factor     |         | Reading       | @ 3 m         |        |
|            | (MHz) | Detector | (H/V) | (dB)    | (dB/m)     | (dBµV)  | $(dB\mu V/m)$ | $(dB\mu V/m)$ | (dB)   |
|            | 3990  | PK       | V     | 40.38   | -1.57      | 44.55   | 42.98         | 74.00         | -31.02 |
| Channel 37 | 4804  | PK       | V     | 40.13   | -0.10      | 47.31   | 47.21         | 74.00         | -26.79 |
|            | 4804  | PK       | Н     | 40.13   | -0.10      | 50.18   | 50.08         | 74.00         | -23.92 |
|            | 3990  | PK       | V     | 40.38   | -1.57      | 44.08   | 42.51         | 74.00         | -31.49 |
| Channel 18 | 4884  | PK       | V     | 39.99   | 0.16       | 44.17   | 44.33         | 74.00         | -29.67 |
|            | 4884  | PK       | Н     | 39.99   | 0.16       | 52.08   | 52.24         | 74.00         | -21.76 |
|            | 3990  | PK       | V     | 40.38   | -1.57      | 43.69   | 42.12         | 74.00         | -31.88 |
| Channel 39 | 4960  | PK       | V     | 39.84   | 0.41       | 46.39   | 46.80         | 74.00         | -27.20 |
| Chamile 39 | 4960  | PK       | Н     | 39.84   | 0.41       | 55.71   | 56.12         | 74.00         | -17.88 |
|            | 4960  | AV       | Н     | 39.84   | 0.41       | 32.87   | 33.28         | 54.00         | -20.72 |

Remark: Correction Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Pre\_Amplifier Gain



# 8. Emission On Band Edge

# **8.1 Operating environment**

| Temperature:         | 25            | $^{\circ}\!\mathbb{C}$ |
|----------------------|---------------|------------------------|
| Relative Humidity:   | 50            | %                      |
| Atmospheric Pressure | 1008          | hPa                    |
| Requirement          | 15.247(d), 15 | 5.205,                 |
| Channel              | 0, 29         |                        |

# 8.2 Measuring instrument setting

| Spectrum analyzer settings |                                 |  |  |  |  |  |
|----------------------------|---------------------------------|--|--|--|--|--|
| Spectrum Analyzer function | Setting                         |  |  |  |  |  |
| Detector                   | Peak                            |  |  |  |  |  |
| RBW                        | 1MHz                            |  |  |  |  |  |
| VBW                        | 3MHz for Peak; 10Hz for Average |  |  |  |  |  |
| Sweep                      | Auto couple                     |  |  |  |  |  |
| Restrict bands             | 2310~2390MHz                    |  |  |  |  |  |
| Restrict bands             | 2483.5 ~2500MHz                 |  |  |  |  |  |
| Attenuation                | Auto                            |  |  |  |  |  |

# 8.3 Test procedure

The test procedure is the same as clause 7.4



## 8.4 Test results

EUT : BT Dongle

Test Condition : BT4.0

|       | Freq.   | Spectrum | Ant.  | Correction | Reading | Corrected     | Limit    | Margin | Restricted  |
|-------|---------|----------|-------|------------|---------|---------------|----------|--------|-------------|
| Mode  |         | Analyzer | Pol.  | Factor     |         | Reading       | @ 3 m    |        | band        |
|       | (MHz)   | Detector | (H/V) | (dB/m)     | (dBµV)  | $(dB\mu V/m)$ | (dBµV/m) | (dB)   | (MHz)       |
|       | 2318.20 | PK       | V     | 32.25      | 29.27   | 61.52         | 74       | -12.48 | 2310~2390   |
| BT4.0 | 2390.00 | AV       | V     | 32.51      | 15.20   | 47.71         | 54       | -6.29  | 2310~2390   |
| D14.0 | 2497.90 | PK       | V     | 32.89      | 29.33   | 62.22         | 74       | -11.78 | 2483.5~2500 |
|       | 2483.50 | AV       | V     | 32.84      | 16.34   | 49.18         | 54       | -4.82  | 2463.3~2300 |



# 9. AC Power Line Conducted Emission

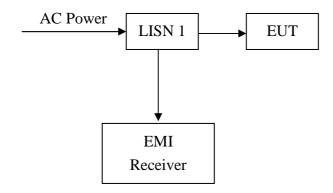
# 9.1 Operating environment

| Temperature:         | 25     | $^{\circ}\!\mathbb{C}$ |
|----------------------|--------|------------------------|
| Relative Humidity:   | 50     | %                      |
| Atmospheric Pressure | 1008   | hPa                    |
| Requirement          | 15.207 |                        |

## 9.2 Limit for AC power line conducted emission

| Freq.     | Conducted Limit (dBuV) |          |  |  |  |
|-----------|------------------------|----------|--|--|--|
| (MHz)     | Q.P.                   | Ave.     |  |  |  |
| 0.15~0.50 | 66 – 56*               | 56 – 46* |  |  |  |
| 0.50~5.00 | 56                     | 46       |  |  |  |
| 5.00~30.0 | 60                     | 50       |  |  |  |

# 9.3 Measuring instrument setting


| Receiver settings |         |  |  |  |  |  |
|-------------------|---------|--|--|--|--|--|
| Receiver function | Setting |  |  |  |  |  |
| Detector          | QP      |  |  |  |  |  |
| Start frequency   | 0.15MHz |  |  |  |  |  |
| Stop frequency    | 30MHz   |  |  |  |  |  |
| IF bandwidth      | 9 kHz   |  |  |  |  |  |
| Attenuation       | 10dB    |  |  |  |  |  |



#### 9.4 Test procedure

- 1. The EUT or host of EHT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network.
- 3. All the companion devices are connected to the other LISN. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 kHz to 30MHz was searched
- 5. Set the test-receiver system to peak detector and specified bandwidth with maximum hold mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

#### 9.5 Test diagram

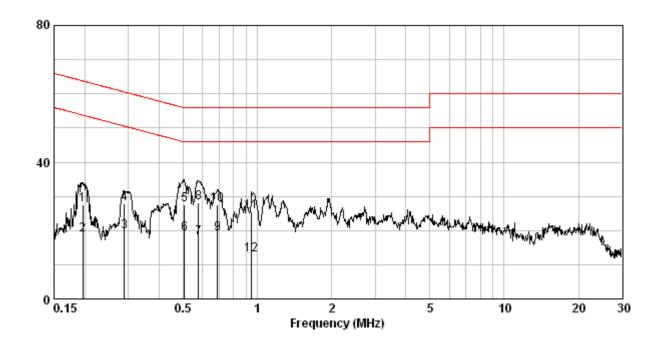


**Note:** The EUT was tested while in normal communication mode.



#### 9.6 Test results

Phase : Line


EUT : BT Dongle Test Condition : Tx mode

Test Voltage : 120 Vac, 60 Hz

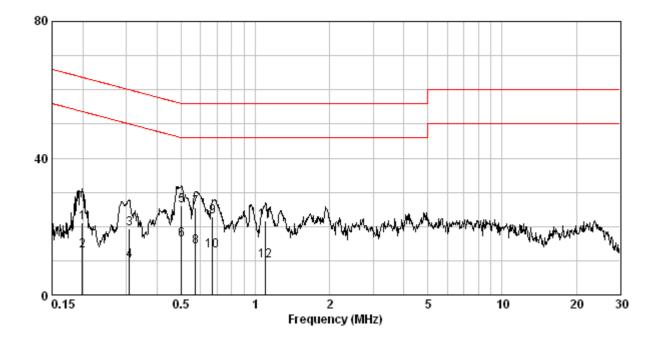
| Frequency | Corr.<br>Factor | Level<br>Qp | Limit<br>Qp | Level<br>Av | Limit<br>Av | Over Li<br>(d) |        |
|-----------|-----------------|-------------|-------------|-------------|-------------|----------------|--------|
| (MHz)     | (dB)            | (dBuV)      | (dBuV)      | (dBuV)      | (dBuV)      | Qр             | Av     |
|           |                 |             |             |             |             |                |        |
| 0.197     | 0.39            | 27.59       | 63.76       | 18.67       | 53.76       | -36.17         | -35.09 |
| 0.289     | 0.39            | 27.94       | 60.54       | 19.62       | 50.54       | -32.60         | -30.92 |
| 0.507     | 0.40            | 27.46       | 56.00       | 19.15       | 46.00       | -28.54         | -26.85 |
| 0.576     | 0.40            | 28.17       | 56.00       | 17.96       | 46.00       | -27.83         | -28.04 |
| 0.690     | 0.40            | 27.56       | 56.00       | 18.99       | 46.00       | -28.44         | -27.01 |
| 0.948     | 0.41            | 25.47       | 56.00       | 12.81       | 46.00       | -30.53         | -33.19 |

#### Remark:

- 1. Correction Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)






Phase : Neutral
EUT : BT Dongle
Test Condition : TX mode

Test Voltage : 120 Vac, 60 Hz

| Frequency | Corr.<br>Factor | Level<br>Qp | Limit<br>Qp | Level<br>Av | Limit<br>Av | 0ver Li<br>(dl |        |
|-----------|-----------------|-------------|-------------|-------------|-------------|----------------|--------|
| (MHz)     | (dB)            | (dBuV)      | (dBuV)      | (dBuV)      | (dBuV)      | Qp             | Āν     |
|           |                 |             |             |             |             |                |        |
| 0.199     | 0.37            | 21.07       | 63.67       | 12.97       | 53.67       | -42.60         | -40.70 |
| 0.308     | 0.38            | 19.42       | 60.02       | 9.96        | 50.02       | -40.60         | -40.06 |
| 0.502     | 0.38            | 26.21       | 56.00       | 16.02       | 46.00       | -29.79         | -29.98 |
| 0.573     | 0.39            | 25.42       | 56.00       | 14.02       | 46.00       | -30.58         | -31.98 |
| 0.672     | 0.39            | 22.97       | 56.00       | 12.85       | 46.00       | -33.03         | -33.15 |
| 1.100     | 0.40            | 21.82       | 56.00       | 10.07       | 46.00       | -34.18         | -35.93 |

#### Remark:

- 1. Correction Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)





# Appendix A: Test equipment list

| Equipment                 | Brand                     | Model No.             | Serial No.  | Calibration<br>Date | Next<br>Calibration<br>Date |
|---------------------------|---------------------------|-----------------------|-------------|---------------------|-----------------------------|
| ESCI EMI Test<br>Receiver | Rohde & Schwarz           | ESCI                  | 100018      | 2014/12/02          | 2015/12/01                  |
| Spectrum<br>Analyzer      | Rohde & Schwarz           | FSP30                 | 100137      | 2014/06/16          | 2015/06/15                  |
| Horn Antenna (1-18G)      | Schwarzbeck               | BBHA 9120 D           | 9120D-456   | 2014/08/29          | 2017/08/27                  |
| Horn Antenna (14-42G)     | SHWARZBECK                | BBHA 9170             | BBHA9170159 | 2014/09/16          | 2017/09/14                  |
| Broadband<br>Antenna      | Schwarzbeck               | VULB 9168             | 9168-172    | 2013/08/08          | 2015/08/07                  |
| Pre-Amplifier             | AML                       | AML0120L3401          | 0419-114    | 2015/05/25          | 2016/05/23                  |
| Pre-Amplifier             | MITEQ                     | JS4-260040002<br>7-8A | 828825      | 2014/09/15          | 2015/09/14                  |
| Power Meter               | Anritsu                   | ML2495A               | 0844001     | 2014/11/12          | 2015/11/11                  |
| Power Sensor              | Anritsu                   | MA2411B               | 0738452     | 2014/11/12          | 2015/11/11                  |
| Two-Line<br>V-Network     | Rohde & Schwarz           | ESH3-Z5               | 838979/014  | 2014/10/05          | 2015/10/04                  |
| Singal Analyzer           | Agilent                   | N9030A                | MY51380492  | 2014/09/19          | 2015/09/18                  |
| Loop Antenna              | RolfHeine                 | LA-285                | 02/10033    | 2014/03/18          | 2017/03/16                  |
| 966-2(A) Cable            | SUHNER                    | SMA / EX 100          | N/A         | 2015/05/06          | 2016/05/04                  |
| 966-2(B) Cable            | SUHNER                    | SUCOFLEX<br>104P      | CB0005      | 2015/05/06          | 2016/05/04                  |
| RF Cable                  | SUHNER                    | SUCOFLEX 102          | CB0006      | 2015/05/06          | 2016/05/04                  |
| Bore Sight Antenna mast   | Max-Full Antenna<br>Corp. | MFA-520BS             | N/A         | N/A                 | N/A                         |



# **Appendix B: Measurement Uncertainty**

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.

| Item                                                                                                                                               | Uncertainty |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Vertically polarized radiated disturbances from 30MHz~1GHz in a semi-anechoic chamber at a distance of 3m                                          | 5.15 dB     |
| Horizontally polarized radiated disturbances from 30MHz~1GHz in a semi-anechoic chamber at a distance of 3m                                        | 5.23 dB     |
| Vertically polarized Radiated disturbances from 1GHz~18GHz in a semi-anechoic chamber at a distance of 3m                                          | 4.19 dB     |
| Horizontally polarized Radiated disturbances from 1GHz~18GHz in a semi-anechoic chamber at a distance of 3m                                        | 4.3 dB      |
| Vertically polarized Radiated disturbances from 18GHz~40GHz in a semi-anechoic chamber at a distance of 3m                                         | 4.19 dB     |
| Horizontally polarized Radiated disturbances from 18GHz~40GHz in a semi-anechoic chamber at a distance of 3m                                       | 4.3 dB      |
| Conducted Output power                                                                                                                             | 0.86 dB     |
| Radiated electromagnetic disturbances in the frequency range from 9kHz to 30MHz                                                                    | 2.92 dB     |
| Conducted disturbance measurements at a mains port from 9 kHz to 30 MHz using a 50 $\Omega$ /50 $\mu$ H +5 $\Omega$ artificial mains network (AMN) | 2.5dB       |