

FCC 47 CFR PART 15 SUBPART C

BLUETOOTH LOW ENERGY CERTIFICATION TEST REPORT

FOR

WIRELESS CHARGING BOWL

MODEL NUMBER: WIRELESS CHARGING BOWL

FCC ID: 2AB8ZND3

REPORT NUMBER: 14U19569-E2, Revision B

ISSUE DATE: DECEMBER 23, 2014

Prepared for INTEL CORPORATION 2200 MISSION COLLEGE BOULEVARD SANTA CLARA, CA 95052, U.S.A

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
	12/12/2014	Initial Issue	T. LEE
A	12/22/2014	Adding antenna for measurements from 18 – 25GHz in the test equipment list	M. Hua
В	12/23/2014	Corrected Test Methodology on Section 10	M. Hua

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 2 of 56

TABLE OF CONTENTS

1.	A	ITESTATION OF TEST RESULTS	4
2.	TE	EST METHODOLOGY	5
3.	FÆ	ACILITIES AND ACCREDITATION	5
4.	С	ALIBRATION AND UNCERTAINTY	5
4	1.1.	MEASURING INSTRUMENT CALIBRATION	5
4	1.2.	SAMPLE CALCULATION	5
4	1.3.	MEASUREMENT UNCERTAINTY	6
EQ	UIP	MENT UNDER TEST	7
4	4.4.	DESCRIPTION OF EUT	7
4	1.5.	MAXIMUM OUTPUT POWER	7
4	4.6.	DESCRIPTION OF AVAILABLE ANTENNAS	7
4	1.7.	SOFTWARE AND FIRMWARE	7
4	1.8.	WORST-CASE CONFIGURATION AND MODE	8
4	1.9.	DESCRIPTION OF TEST SETUP	9
5.	TE	EST AND MEASUREMENT EQUIPMENT1	1
6.	M	EASUREMENT METHODS12	2
6. 7.		EASUREMENT METHODS12 N TIME, DUTY CYCLE AND MEASUREMENT METHODS12	
7.			2
7 .	O I 7.1.	N TIME, DUTY CYCLE AND MEASUREMENT METHODS12	2 2
7. 7 8.	O I 7.1.	N TIME, DUTY CYCLE AND MEASUREMENT METHODS	2 2 4
7. 7 8. 8	OI 7.1. Al	N TIME, DUTY CYCLE AND MEASUREMENT METHODS	2 2 4 4
7. 7 8. 8	OI 7.1. Al 3.1. 3.2.	N TIME, DUTY CYCLE AND MEASUREMENT METHODS	2 2 4 4 8
7. 7 8. 8 8	OI 7.1. Al 3.1. 3.2.	N TIME, DUTY CYCLE AND MEASUREMENT METHODS	2 2 4 8 2
7. 7 8. 8 8 8 8 8	OI 7. 1. Al 3. 1. 3. 2. 3. 3.	N TIME, DUTY CYCLE AND MEASUREMENT METHODS	2 2 4 4 8 2 3
7. 7 8. 8 8 8 8 8 8 8 8 8	OI 7. 1. 8. 1. 3. 2. 3. 3. 3. 4.	N TIME, DUTY CYCLE AND MEASUREMENT METHODS	2 2 4 4 8 2 3 4
7. 7 8. 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	OI 7.1. AI 3.1. 3.2. 3.3. 3.4. 3.5. 3.6.	N TIME, DUTY CYCLE AND MEASUREMENT METHODS	2 4 4 8 2 3 4 8
7. 7 8. 8 8 8 8 8 8 8 8 8 9.	OI 7.1. AI 3.1. 3.2. 3.3. 3.4. 3.5. 3.6.	N TIME, DUTY CYCLE AND MEASUREMENT METHODS 12 ON TIME AND DUTY CYCLE RESULTS 12 NTENNA PORT TEST RESULTS 14 6 dB BANDWIDTH 14 99% BANDWIDTH 14 0UTPUT POWER 22 AVERAGE POWER 24 POWER SPECTRAL DENSITY 24 CONDUCTED SPURIOUS EMISSIONS 24	2 4 4 8 2 3 4 8 2 3 4 8 2
7. 7 8. 8 8 8 8 8 8 8 8 8 8 9. 9	OI 7.1. AI 3.1. 3.2. 3.3. 3.4. 3.5. 3.6. RI 0.1.	N TIME, DUTY CYCLE AND MEASUREMENT METHODS	2 4 4 8 2 3 4 8 2 2 2 2 2 2 2 2 2 2 3 4 8 2 2 3 4 8 2 2 3 4 8 2 2 3 4 8 2 3 4 8 2 3 4 8 2 3 4 8 2 3 4 8 2 3 4 8 2 3 4 8 8 2 3 4 8 8 2 3 4 8 8 8 8 8 8 8 8 8 8 8 8 8
7. 7 8. 8 8 8 8 8 8 8 8 8 8 9. 9	OI 7.1. 3.1. 3.2. 3.3. 3.4. 3.6. RJ 9.1. 9.2.	N TIME, DUTY CYCLE AND MEASUREMENT METHODS 12 ON TIME AND DUTY CYCLE RESULTS 12 NTENNA PORT TEST RESULTS 14 6 dB BANDWIDTH 14 99% BANDWIDTH 14 OUTPUT POWER 22 AVERAGE POWER 24 POWER SPECTRAL DENSITY 24 CONDUCTED SPURIOUS EMISSIONS 23 ADIATED TEST RESULTS 33 LIMITS AND PROCEDURE 34	2 2 4 4 8 2 3 4 8 2 2 3

Page 3 of 56

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	Intel Corporation 2200 Mission College Boulevard Santa Clara, Ca 95052, U.S.A	
EUT DESCRIPTION:	Wireless Charging Bowl	
MODEL:	Wireless Charging Bowl	
SERIAL NUMBER:	Not Available	
DATE TESTED:	DECEMBER 6 -11, 2014	
	APPLICABLE STANDARDS	
	STANDARD	TEST RESULTS
CFR 47	7 Part 15 Subpart C	Pass

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

Tested By:

TIM LEE PROGRAM MANAGER UL Verification Services Inc.

TRI PHAM EMC LAB ENGINEER UL Verification Services Inc.

Page 4 of 56

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
Chamber A	Chamber D
Chamber B	Chamber E
Chamber C	Chamber F
	🛛 Chamber G
	🛛 Chamber H

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers A through H are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-8, respectively.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

Page 5 of 56

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	± 3.52 dB
Radiated Disturbance, 30 to 1000 MHz	± 4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 56

EQUIPMENT UNDER TEST

4.4. DESCRIPTION OF EUT

The EUT is a wireless charger intended to charge Intel smart bracelet, Model MICA.

4.5. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	BLE	-0.24	0.95

4.6. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an Inverted-F antenna (IFA), with a maximum gain of 2.0 dBi.

4.7. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was xmm6321_xges2_ndg_mckee2

Page 7 of 56

4.8. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X, Y, Z, it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

Worst-case data rates based on the baseline scan: BLE: 1 Mbps.

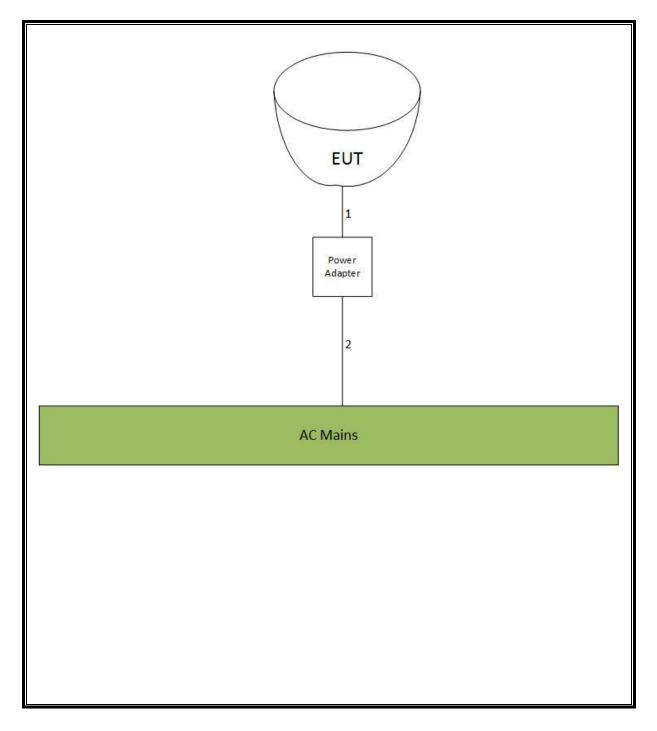
Page 8 of 56

4.9. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List							
Description Manufacturer Model Serial Number F							
DC Power Supply	Darfon	1901	BK1A45J101-14A2-45-S-00022	N/A			

I/O CABLES


	I/O Cable List									
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks				
1	DC	1	Barrel	Unshielded	1.7					
2	AC	2	3 Prong	Unshielded	0.9					

TEST SETUP

Test software exercised the EUT during test. Refer to the following diagram for testing configurations.

Page 9 of 56

SETUP DIAGRAM FOR TESTS

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 10 of 56

5. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List								
Description	Manufacturer	Model	Serial Number	Cal Due				
Antenna, Horn 1-18GHz	ETS Lindgren	3117	165319	04/14/15				
Antenna, Horn 18-26.5GHz	ARA	SWH-28	1007	05/9/15				
Spectrum Analyzer, PXA, 3Hz- 44GHz	Agilent	N9030A	MY53310959	05/07/15				
Antenna, Broadband Hybrid, 30Mhz - 2000Mhz	Sunol Sciences	JB3	A051314-1	03/28/15				
Power Meter, P-series single channel	Agilent	N1911A	MY53060007	09/15/15				
Power Sensor, Peak and average, 50MHz-6 GHz, 5MHz BW	Agilent	E9323A	MY530770013	05/02/15				

Line Conducted Emissions

Test Equipment List								
Description	Manufacturer	Model	Local ID (T No.)	Cal Date	Cal Due			
EMI Test Receiver, 9KHz to 7GHz	Rohde & Schwarz	ESCI 7	284	09/16/2014	09/16/2015			
LISN	FCC	50/250-25-2	24	01/17/2014	01/17/2015			
LISN	Solar	8012-50-R-24-BNC	29	05/07/2014	05/07/2015			
Thermometer	Cole-Palmer	99760-00	437	04/08/2014	04/08/2015			
Conducted Software	UL	UL EMC	Ver 9.5, May 17 2012					

Page 11 of 56

6. MEASUREMENT METHODS

6 dB BW: KDB 558074 D01 v03r02

Output Power: KDB 558074 D01 v03r02.

Power Spectral Density: KDB 558074 D01 v03r02.

Out-of-band emissions in non-restricted bands: KDB 558074 D01 v03r02.

Out-of-band emissions in restricted bands: KDB 558074 D01 v03r02.

7. ON TIME, DUTY CYCLE AND MEASUREMENT METHODS

<u>LIMITS</u>

None; for reporting purposes only.

PROCEDURE

KDB 789033 Zero-Span Spectrum Analyzer Method.

7.1. ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
BLE	2.124	2.217	0.958	95.8%	0.186	0.471

Page 12 of 56

DUTY CYCLE PLOT

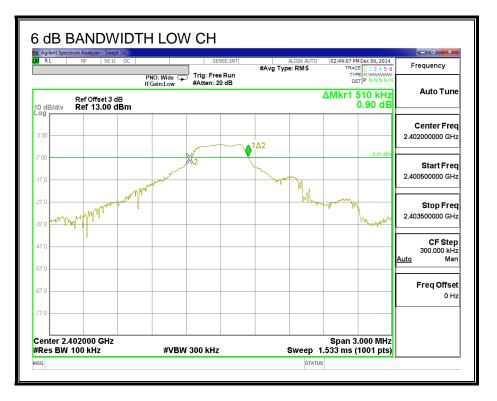
RL RL	ctrum Analyzer · RF	50 Ω DC			SENSE	:INT		ALIGN AUTO		M Dec 06, 2014	Frequency
			PNO: Fas		Trig: Free R Atten: 30 d		#Avg 1	ype: RMS	TY	DE 1 2 3 4 5 6 PE WWWWWWW ET P NNNNN	
10 dB/div	Ref Offs Ref 22.	et 3 dB 00 dBm						Ĺ		.217 ms 0.42 dB	Auto Tune
Log 12.0											
2.00		1 Xa								0103∆4	Center Free 2.402000000 GH
-8.00		/\\2									
-18.0											Start Free
-28.0											2.402000000 GH
-38.0		5								1 de la companya de l	
-48.0		~								17.	Stop Free
-58.0											2.402000000 GH
-68.0											
Center 2 Res BW	.4020000	00 GHz		(D)M	50 MHz			Sweep 3		Span 0 Hz	CF Step 8.000000 MH
			#		JUININZ	E.	CTION	Sweep 3			Auto Mar
MKR MODE T 1 Δ2	1 t (Δ)	X	2.124 ms		1.18 dE	3	CTION	FUNCTION WIDTH	FUNCTI	ON VALUE	
2 F 3 Δ4	1 t 1 t (Δ)		585.0 µs 2.217 ms		-2.12 dBn 0.42 dB						Freq Offse
4 F 5	1 t		585.0 µs		-2.12 dBn	1				-	0 H:
6 7											
8											
9 10											
11											

Page 13 of 56

8. ANTENNA PORT TEST RESULTS 8.1. 6 dB BANDWIDTH

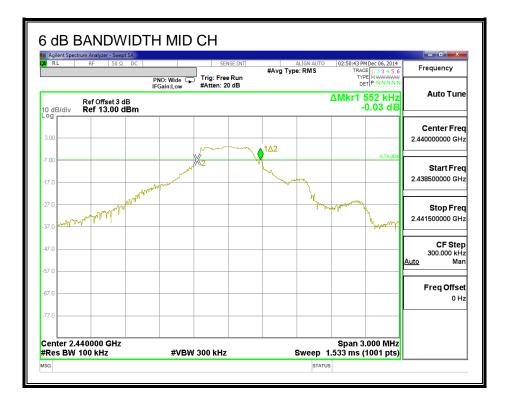
LIMITS

FCC §15.247 (a) (2)

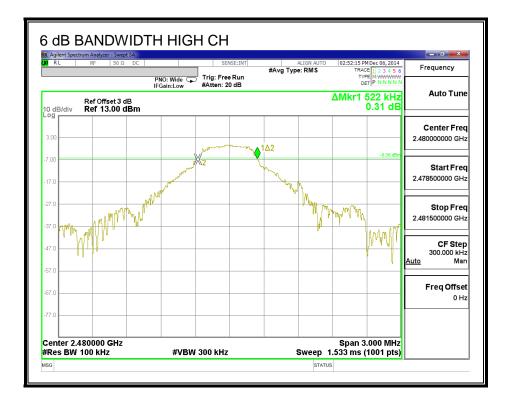

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.5100	0.5
Middle	2440	0.5520	0.5
High	2480	0.5220	0.5


Page 14 of 56

6 dB BANDWIDTH


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701I TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 15 of 56

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 16 of 56

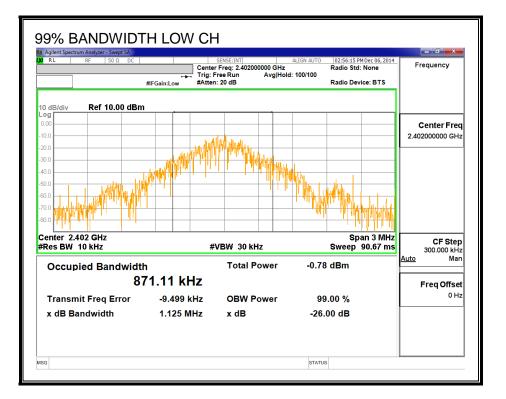
Page 17 of 56

8.2. 99% **BANDWIDTH**

LIMITS

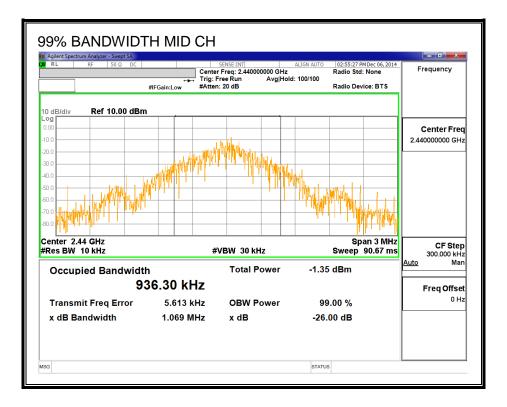
None; for reporting purposes only.

TEST PROCEDURE

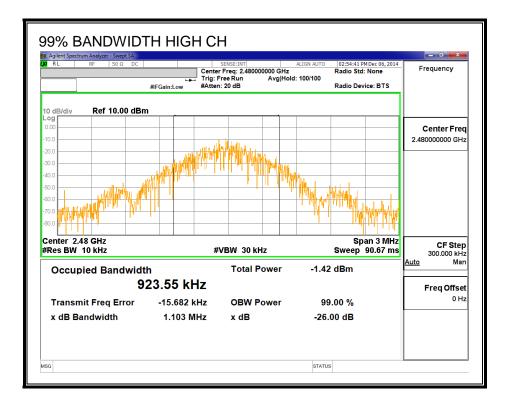

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	0.871
Middle	2440	0.936
High	2480	0.923


Page 18 of 56

99% BANDWIDTH


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 19 of 56

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 20 of 56

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701I TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 21 of 56

8.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

KDB 558074 D01 v03r02 "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under 15.247".

<u>RESULTS</u>

Channel	Frequency	Peak Power Reading	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	-0.814	30	-30.814
Middle	2440	-0.695	30	-30.695
High	2480	-0.240	30	-30.240

Page 22 of 56

8.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

<u>RESULTS</u>

The cable assembly insertion loss of 3 dB (including 3 dB pad) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	-0.97
Middle	2440	-0.65
High	2480	-0.3

Page 23 of 56

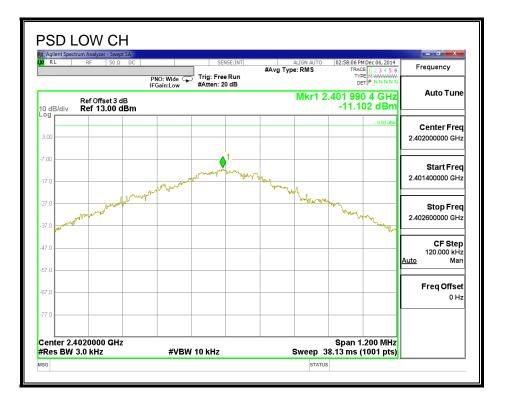
8.5. POWER SPECTRAL DENSITY

<u>LIMITS</u>

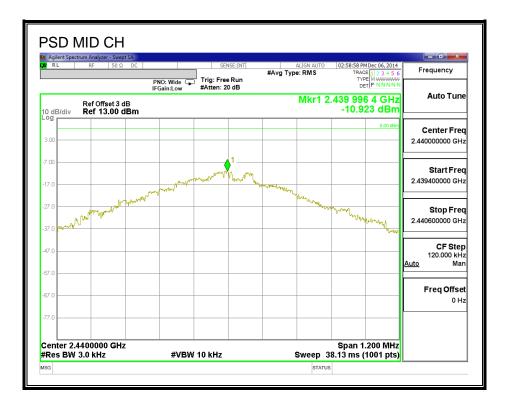
FCC §15.247 (e)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

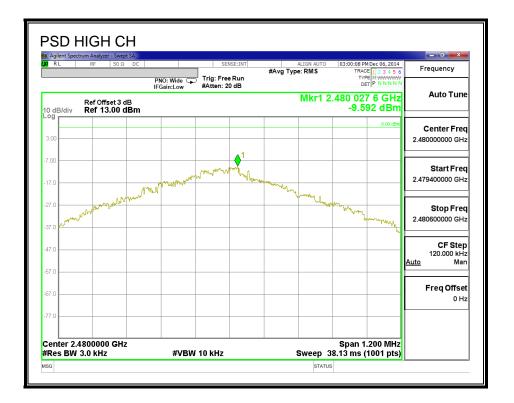

KDB 558074 D01 v03r02 "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under 15.247".

RESULTS


Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	-11.10	8	-19.10
Middle	2440	-10.92	8	-18.92
High	2480	-9.59	8	-17.59

Page 24 of 56

POWER SPECTRAL DENSITY



Page 25 of 56

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 26 of 56

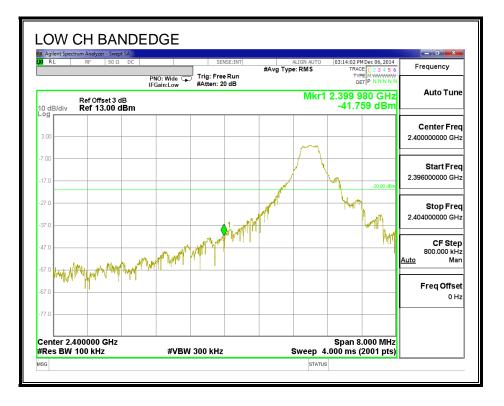
Page 27 of 56

8.6. CONDUCTED SPURIOUS EMISSIONS

<u>LIMITS</u>

FCC §15.247 (d)

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

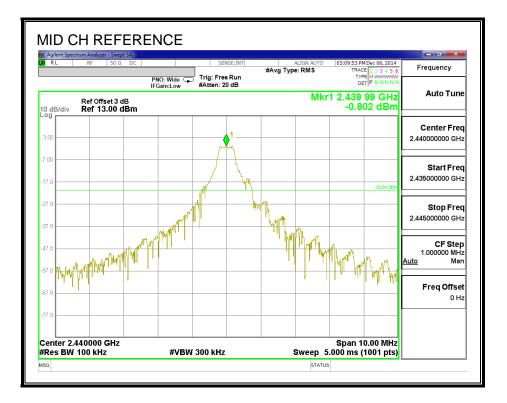

TEST PROCEDURE

KDB 558074 D01 v03r02 "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under 15.247".

Page 28 of 56

RESULTS

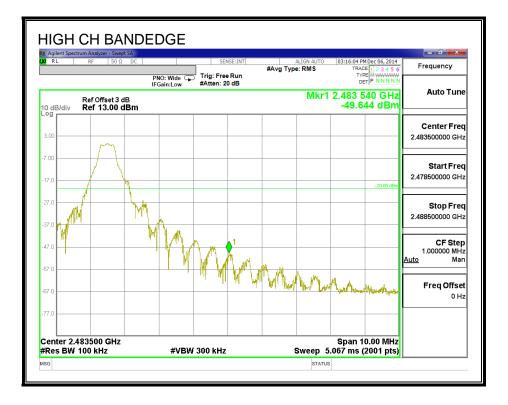
SPURIOUS EMISSIONS, LOW CHANNEL

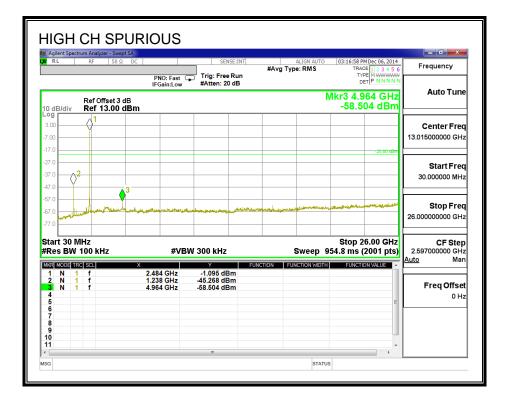


XI RL	ctrum Analyzer - Sw RF 50		SENSE:INT	ALIGN AUTO #Avg Type: RMS	03:12:48 PM Dec 06, 2014 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
10 dB/div	Ref Offset 3 Ref 13.00	IFGain:Low	#Atten: 20 dB		DET P NNNNN Mkr3 4.808 GHz -47.286 dBm	Auto Tune
3.00 -7.00					-20.80 dBm	Center Fred 13.015000000 GHz
-27.0 -37.0 -47.0) ²	3				Start Free 30.000000 MH;
-57.0 -67.0 -77.0	hand have not	and particular and a second		na i tanatari ang kanalang kan	Lift Haltanited Transmission and the second distance of the second d	Stop Freq 26.000000000 GHz
Start 30 #Res BW	/ 100 kHz	#VB		Sweep (Stop 26.00 GHz 954.8 ms (2001 pts) FUNCTION VALUE	CF Step 2.597000000 GHz <u>Auto</u> Mar
2 N 3 N 4 5 6 7 8 9	1 f 1 f 1 f	2.406 GHz 1.199 GHz 4.808 GHz	-1.837 dBm -46.394 dBm -47.286 dBm		E	Freq Offset 0 Hz
10 11			m			

Page 29 of 56

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.


SPURIOUS EMISSIONS, MID CHANNEL



XI RL RF 50 Ω DI	PNO: Fast G	SENSE:INT Trig: Free Run #Atten: 20 dB	ALIGN AUTO #Avg Type: RMS	03:11:37 PM Dec 06, 2014 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N	Frequency
Ref Offset 3 dB 10 dB/div Ref 13.00 dBr	n		Ν	/kr3 4.873 GHz -51.12 dBm	Auto Tune
1 3.00 -7.00 -17.0					Center Freq 13.015000000 GHz
-27.0 -37.0 -47.0				-20.80 dBm	Start Freq 30.000000 MHz
-67.0	يية إب عمي ره الجيمية م يري <mark>خي</mark>	an alan an a	ماده توریخه میکند. ماده توریخه میکند. ماده میکند.	Children and sea for the sea of the second se	Stop Freq 26.000000000 GHz
Start 30 MHz #Res BW 100 kHz	#VB\	N 300 kHz	Sweep 9	Stop 26.00 GHz 54.8 ms (2001 pts) FUNCTION VALUE	CF Step 2.597000000 GHz <u>Auto</u> Man
1 N 1 f 2 N 1 f 3 N 1 f 4 5 6 7 8 9	2.445 GHz 1.225 GHz 4.873 GHz	-1.916 dBm -45.75 dBm -51.12 dBm		E	Freq Offset 0 Hz
10 11				•	

Page 30 of 56

SPURIOUS EMISSIONS, HIGH CHANNEL

Page 31 of 56

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

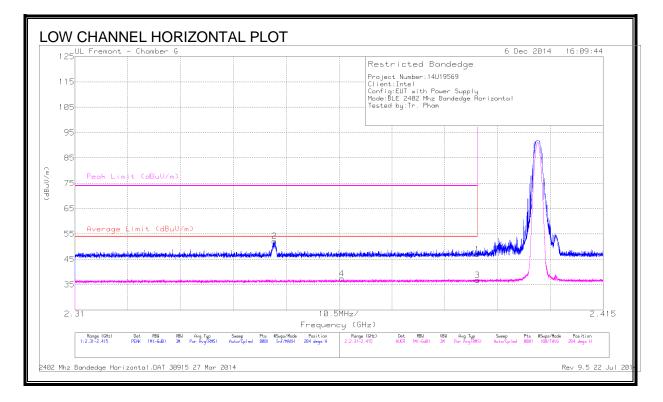
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10-2009,. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and and as applicable for average measurements.


For 2.4 GHz band, the spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

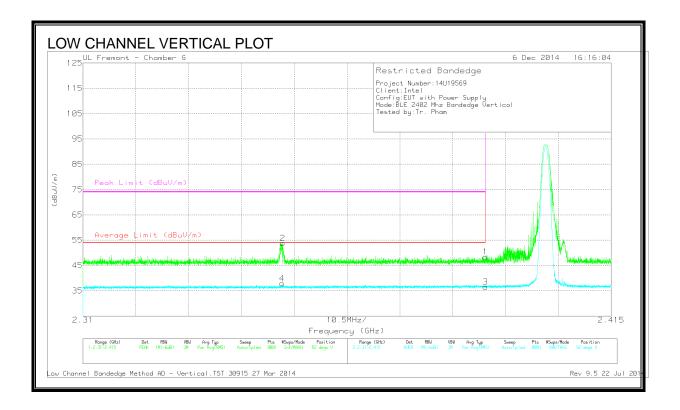
The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 32 of 56

9.2. TRANSMITTER ABOVE 1 GHz

RESTRICTED BANDEDGE (LOW CHANNEL)

DATA


Marker	Frequency (GHz)	Meter Reading	Det	AF T862 (dB/m)	Amp/Cbl/ Fltr/Pad	DC Corr (dB)	Corrected Reading	Average Limit	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)			(dB)		(dBuV/m)	(dBuV/m)						
2	* 2.35	45.51	PK	31.7	-25	0	52.21	-	-	74	-21.79	284	333	Н
4	* 2.363	30.55	RMS	31.7	-24.9	.186	37.536	54	-16.46	-	-	284	333	Н
1	* 2.39	40.06	РК	31.8	-24.9	0	46.96	-	-	74	-27.04	284	333	Н
3	* 2.39	29.84	RMS	31.8	-24.9	.186	36.926	54	-17.07	-	-	284	333	Н

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

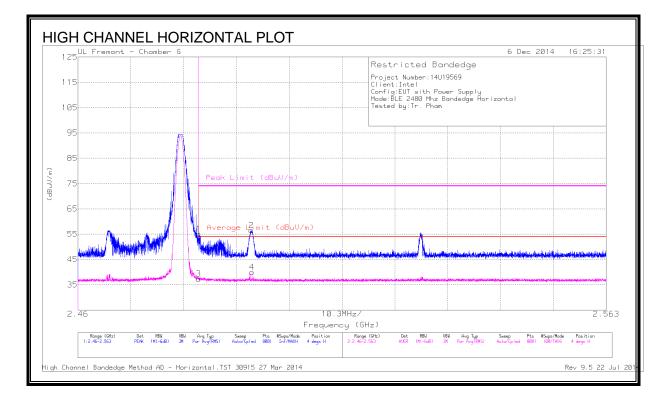
PK - Peak detector

RMS - RMS detection

Page 33 of 56

<u>DATA</u>

Marker	Frequency	Meter	Det	AF T862	Amp/Cbl/	DC Corr	Corrected	Average	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	Fltr/Pad	(dB)	Reading	Limit	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)			(dB)		(dBuV/m)	(dBuV/m)						
1	* 2.39	41.56	PK	31.8	-24.9	0	48.46	-	-	74	-25.54	92	343	V
2	* 2.35	47.05	РК	31.7	-25	0	53.75	-	-	74	-20.25	92	343	V
3	* 2.39	29.61	RMS	31.8	-24.9	.186	36.696	54	-17.304	-	-	92	343	V
4	* 2.35	31.23	RMS	31.7	-25	.186	38.116	54	-15.88	-	-	92	343	V


* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

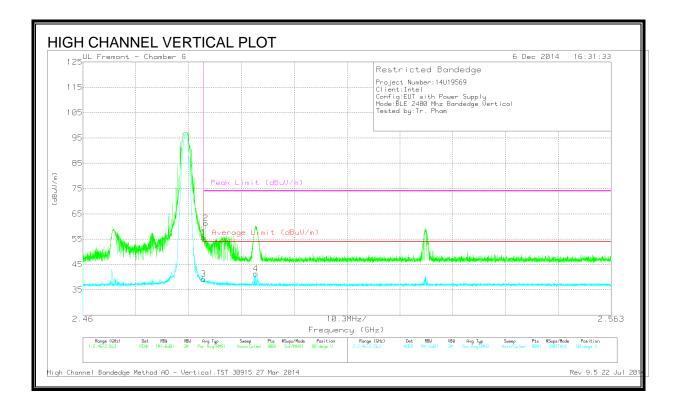
PK - Peak detector

RMS - RMS detection

Page 34 of 56

RESTRICTED BANDEDGE (HIGH CHANNEL)

<u>DATA</u>


Marker	Frequency (GHz)	Meter Reading	Det	AF T862 (dB/m)	Amp/Cbl/ Fltr/Pad	DC Corr (dB)	Corrected Reading	Average Limit	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)			(dB)		(dBuV/m)	(dBuV/m)						
1	* 2.484	47.98	РК	32	-24.9	0	55.08	-	-	74	-18.92	4	342	Н
3	* 2.484	30.22	RMS	32	-24.9	.186	37.506	54	-16.494	-	-	4	342	Н
2	* 2.494	49.35	РК	32	-24.9	0	56.45	-	-	74	-17.55	4	342	Н
4	* 2.494	32.92	RMS	32	-24.9	.186	40.206	54	-13.794	-	-	4	342	Н

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

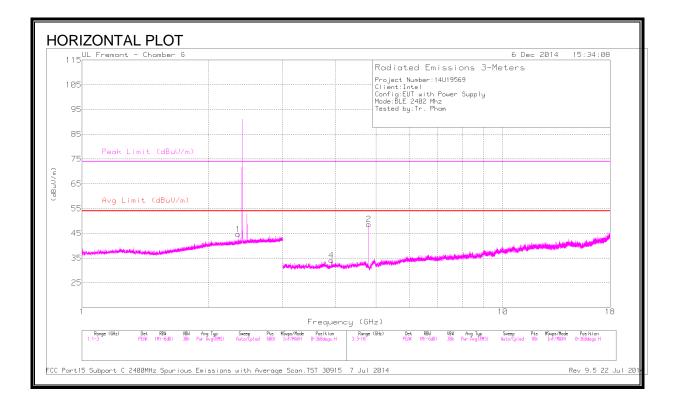
PK - Peak detector

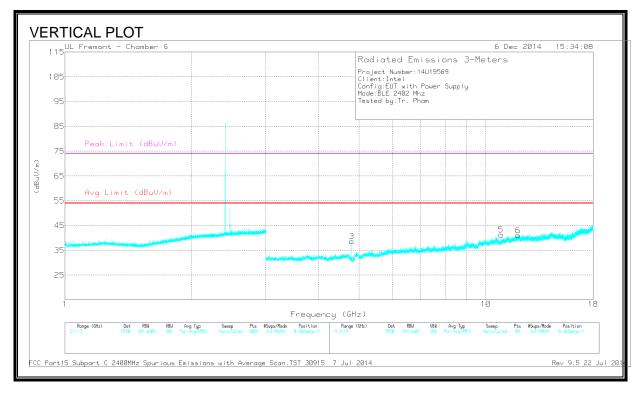
RMS - RMS detection

Page 35 of 56

DATA

Marker	Frequency	Meter	Det	AF T862	Amp/Cbl/	DC Corr	Corrected	Average	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	Fltr/Pad	(dB)	Reading	Limit	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)			(dB)		(dBuV/m)	(dBuV/m)						
1	* 2.484	48.48	PK	32	-24.9	0	55.58	-	-	74	-18.42	80	389	V
2	* 2.484	54.22	РК	32	-24.9	0	61.32	-	-	74	-12.68	80	389	V
3	* 2.484	32.08	RMS	32	-24.9	.186	39.366	54	-14.634	-	-	80	389	V
4	* 2.494	34.24	RMS	32	-24.9	.186	41.526	54	-12.474	-	-	80	389	V


* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band


PK - Peak detector

RMS - RMS detection

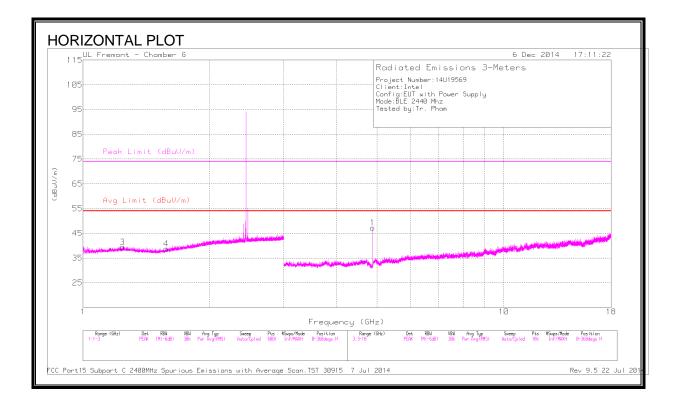
Page 36 of 56

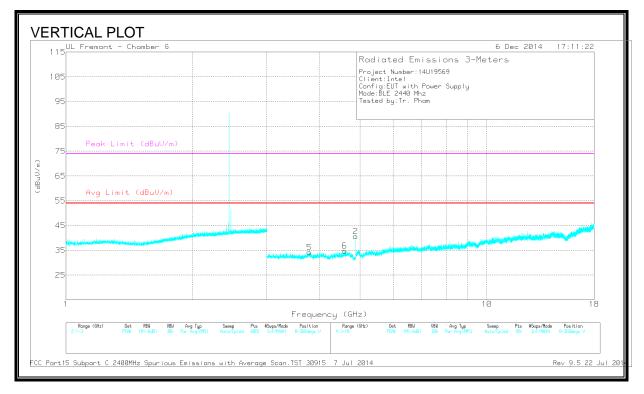
LOW CHANNEL HARMONICS AND SPURIOUS EMISSIONS

Page 37 of 56

DATA

Frequency (GHz)	Meter Reading (dBuV)	Det	AF T862 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
* 2.35	44.97	PK2	31.7	-25	0	51.67	-	-	74	-22.33	282	109	Н
* 2.35	31.12	MAv1	31.7	-25	.186	38.006	54	-15.994	-	-	282	109	Н
* 4.804	56.73	PK2	34.1	-33.2	0	57.63	-	-	74	-16.37	267	229	Н
* 4.804	44.5	MAv1	34.1	-33.2	.186	45.586	54	-8.414	-	-	267	229	Н
* 3.916	40.69	PK2	33.2	-33.7	0	40.19	-	-	74	-33.81	267	229	Н
* 3.917	30	MAv1	33.2	-33.7	.186	29.686	54	-24.314	-	-	267	229	Н
* 4.804	51.34	PK2	34.1	-33.2	0	52.24	-	-	74	-21.76	336	250	V
* 4.804	38.7	MAv1	34.1	-33.2	.186	39.786	54	-14.214	-	-	336	250	V
* 10.874	36.32	PK2	37.7	-26.8	0	47.22	-	-	74	-26.78	336	250	V
* 10.874	25.37	MAv1	37.7	-26.8	.186	36.456	54	-17.544	-	-	336	250	V
* 11.941	36.9	PK2	38.8	-26.3	0	49.4	-	-	74	-24.6	336	250	V
* 11.941	25.11	MAv1	38.8	-26.3	.186	37.796	54	-16.204	-	-	336	250	V


* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band


PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

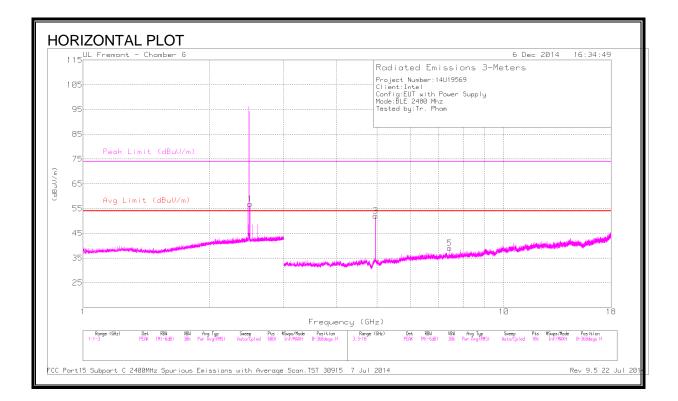
Page 38 of 56

MID CHANNEL HARMONICS AND SPURIOUS EMISSIONS

Page 39 of 56

DATA

Frequency (GHz)	Meter Reading	Det	AF T862 (dB/m)	Amp/Cbl/ Fltr/Pad	DC Corr (dB)	Corrected Reading	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
	(dBuV)			(dB)		(dBuV/m)							
* 1.242	44.54	PK2	29.2	-26.1	0	47.64	-	-	74	-26.36	325	124	н
* 1.242	32.68	MAv1	29.2	-26.1	.186	35.966	54	-18.034	-	-	325	124	н
* 1.578	44.11	PK2	28.4	-25.5	0	47.01	-	-	74	-26.99	300	139	н
* 1.578	32.38	MAv1	28.4	-25.5	.186	35.466	54	-18.534	-	-	300	139	н
* 4.88	56.57	PK2	34.1	-33	0	57.67	-	-	74	-16.33	270	249	н
* 4.88	45.86	MAv1	34.1	-33	.186	46.96	54	-6.854	-	-	270	249	н
* 4.88	52.83	PK2	34.1	-33	0	53.93	-	-	74	-20.07	125	337	V
* 4.88	41.96	MAv1	34.1	-33	.186	43.246	54	-10.754	-	-	125	337	V
* 3.789	42.3	PK2	33	-32.9	0	42.4	-	-	74	-31.6	125	337	V
* 3.789	30.82	MAv1	33	-32.9	.186	31.106	54	-22.894	-	-	125	337	V
* 4.595	41.83	PK2	33.9	-33.3	0	42.43	-	-	74	-31.57	125	337	V
* 4.594	30.59	MAv1	33.9	-33.3	.186	31.376	54	-22.624	-	-	125	337	V


* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK2 - KDB558074 Method: Maximum Peak

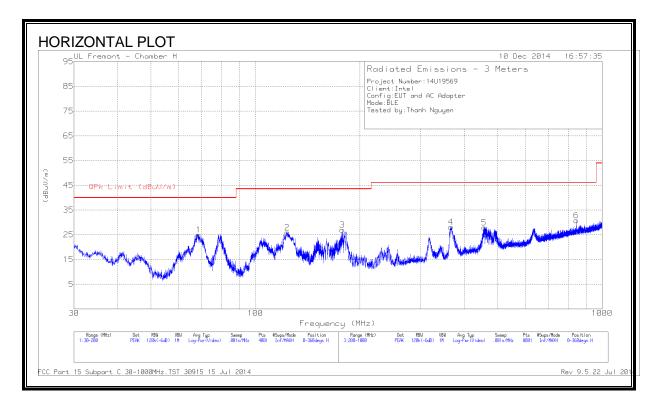
MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 40 of 56

HIGH CHANNEL HARMONICS AND SPURIOUS EMISSIONS

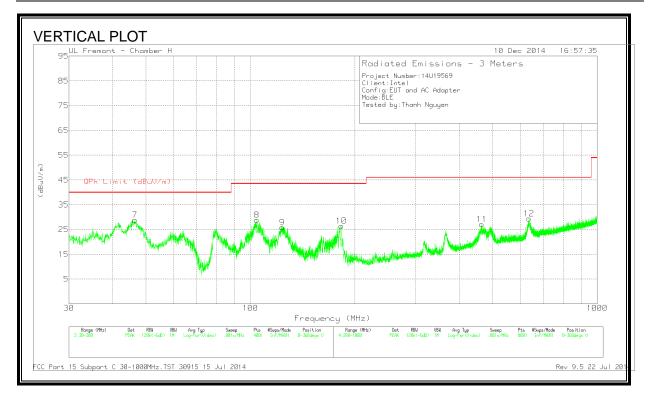
Page 41 of 56

DATA


Frequency (GHz)	Meter Reading	Det	AF T862 (dB/m)	Amp/Cbl/ Fltr/Pad	DC Corr (dB)	Corrected Reading	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
(612)	(dBuV)		(ub/iii)	(dB)	(ub)	(dBuV/m)	(ubuv/iii)	(ub)	(ubuv/iii)	(ub)	(Degs)	(ciii)	
* 2.494	52.72	PK2	32	-24.9	0	59.82	-	-	74	-14.18	281	249	Н
* 2.494	33.83	MAv1	32	-24.9	.186	41.116	54	-12.884	-	-	281	249	Н
* 2.494	53.79	PK2	32	-24.9	0	60.89	-	-	74	-13.11	84	396	V
* 2.494	34.49	MAv1	32	-24.9	.186	41.776	54	-12.224	-	-	84	396	V
* 4.96	58.1	PK2	34.1	-32.9	0	59.3	-	-	74	-14.7	280	217	Н
* 4.96	51.68	MAv1	34.1	-32.9	.186	53.066	54	934	-	-	280	217	Н
* 7.44	42.68	PK2	35.6	-31.4	0	46.88	-	-	74	-27.12	321	319	Н
* 7.44	33.68	MAv1	35.6	-31.4	.186	38.066	54	-15.934	-	-	321	319	Н
* 4.96	52.66	PK2	34.1	-32.9	0	53.86	-	-	74	-20.14	116	143	V
* 4.96	45.99	MAv1	34.1	-32.9	.186	47.376	54	-6.624	-	-	116	143	V
* 7.438	40.87	PK2	35.6	-31.4	0	45.07	-	-	74	-28.93	116	143	V
* 7.44	31.18	MAv1	35.6	-31.4	.186	35.566	54	-18.434	-	-	116	143	V

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK2 - KDB558074 Method: Maximum Peak


MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 42 of 56

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL & VERTICAL)

Page 43 of 56

Page 44 of 56

HORIZONTAL AND VERTICAL DATA

Marker	Frequency	Meter	Det	SS JB3 SN	Amp/Cbl	Corrected	QPk Limit	Margin	Azimuth	Height	Polarity
	(MHz)	Reading		A051314-1	(dB)	Reading	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)				(dBuV/m)					
2	* 123.6275	38.84	PK	16.8	-29.8	25.84	43.52	-17.68	0-360	201	н
9	* 123.7125	38.85	РК	16.8	-29.8	25.85	43.52	-17.67	0-360	100	V
7	46.49	46.95	PK	12.6	-30.7	28.85	40	-11.15	0-360	100	V
1	68.59	44.11	РК	11.3	-30.4	25.01	40	-14.99	0-360	401	н
8	104.4175	44.83	РК	14.1	-30	28.93	43.52	-14.59	0-360	100	V
3	178.24	41.95	РК	14.5	-29.4	27.05	43.52	-16.47	0-360	201	н
10	182.83	41.54	РК	14.3	-29.4	26.44	43.52	-17.08	0-360	100	V
4	366.8	38.56	РК	17.7	-28.1	28.16	46.02	-17.86	0-360	100	н
5	457.6	35.55	РК	19.9	-27.6	27.85	46.02	-18.17	0-360	201	н
11	464.5	34.68	PK	20.1	-27.6	27.18	46.02	-18.84	0-360	100	V
12	635.3	33.98	РК	22.5	-27.1	29.38	46.02	-16.64	0-360	100	V
6	843.1	32.12	РК	24.6	-25.9	30.82	46.02	-15.2	0-360	301	Н

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 45 of 56

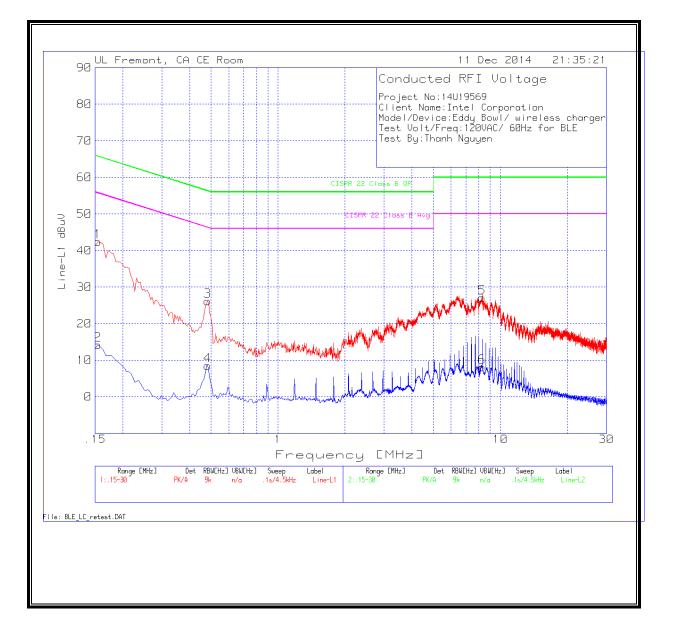
10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

Frequency of Emission (MHz)	Conducted I	Limit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 °	56 to 46 "
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.


TEST PROCEDURE

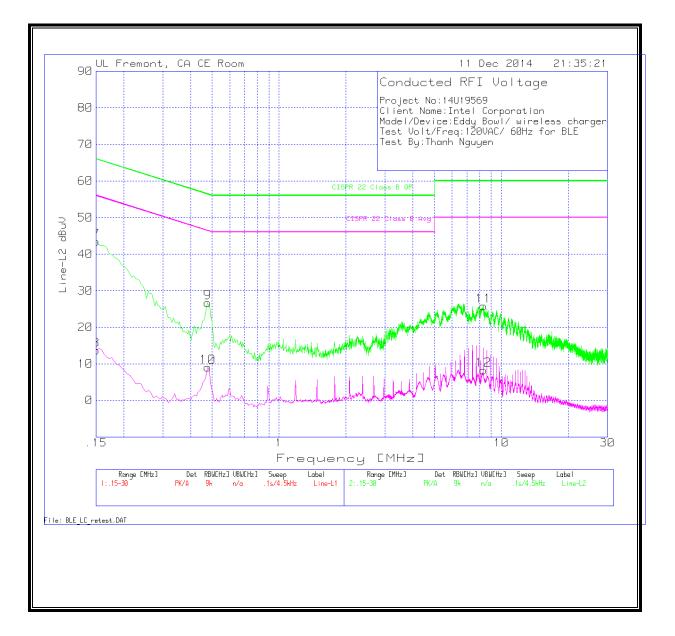
ANSI C63.10

Page 46 of 56

RESULTS

LINE 1 RESULTS

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP47011 TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.


Page 47 of 56

Trace Markers

Marker	Frequency	Meter	Det	T24 IL L1	LC Cables	Corrected	CISPR 22	Margin to	CISPR 22	Margin to
	(MHz)	Reading		(dB)	1&3 (dB)	Reading	Class B QP	Limit (dB)	Class B Avg	Limit (dB)
		(dBuV)				dBuV				
1	.1545	41.18	РК	1.3	0	42.48	65.8	-23.32	-	-
2	.1545	12.94	Av	1.3	0	14.24	-	-	55.8	-41.56
3	.483	25.76	РК	.4	0	26.16	56.3	-30.14	-	-
4	.483	8.09	Av	.4	0	8.49	-	-	46.3	-37.81
5	8.25	26.82	РК	.2	.1	27.12	60	-32.88	-	-
6	8.25	7.83	Av	.2	.1	8.13	-	-	50	-41.87

Page 48 of 56

LINE 2 RESULTS

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701I FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 49 of 56

Trace Markers

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	T24 IL L2 (dB)	LC Cables 2&3 (dB)	Corrected Reading dBuV	CISPR 22 Class B QP	Margin to Limit (dB)	CISPR 22 Class B Avg	Margin to Limit (dB)
7	.15	41.91	РК	1.5	0	43.41	66	-22.59	-	-
8	.15	12.19	Av	1.5	0	13.69	-	-	56	-42.31
9	.4785	26.3	PK	.4	0	26.7	56.4	-29.7	-	-
10	.4785	8.61	Av	.4	0	9.01	-	-	46.4	-37.39
11	8.295	25.48	РК	.2	.1	25.78	60	-34.22	-	-
12	8.295	7.94	Av	.2	.1	8.24	-	-	50	-41.76

PK - Peak detector

Av - average detection

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 50 of 56