

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-247 ISSUE 1

BLUETOOTH LOW ENERGY CERTIFICATION TEST REPORT

FOR

BLE MODULE

MODEL NUMBER: 101

FCC ID: 2AB8ZND12 IC: 1000X-ND12

REPORT NUMBER: 15U21795-E1V4

ISSUE DATE: OCTOBER 09, 2015

Prepared for INTEL CORPORATION 2200 MISSION COLLEGE BOULEVARD, SANTA CLARA, CA 95052, U.S.A

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
V1	09/29/2015	Initial Issue	C. PANG
V2	10/05/2015	Updated Equipment list date	C. PANG
V3	10/07/2015	Address TCB's question	C. PANG
V4	10/09/2015	Update to RSS-247	C. Pang

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 2 of 63

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	5
2.	TES	ST METHODOLOGY	6
3.	FAC	CILITIES AND ACCREDITATION	6
4.	CAI	_IBRATION AND UNCERTAINTY	7
4	[!] .1.	MEASURING INSTRUMENT CALIBRATION	7
4	.2.	SAMPLE CALCULATION	7
4	.3.	MEASUREMENT UNCERTAINTY	7
5.	EQ	JIPMENT UNDER TEST	8
5	5.1.	DESCRIPTION OF EUT	8
5	5.2.	MAXIMUM OUTPUT POWER	8
5	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	8
5	5.4.	SOFTWARE AND FIRMWARE	8
5	5.5.	WORST-CASE CONFIGURATION AND MODE	8
5	5.6.	DESCRIPTION OF TEST SETUP	9
6.	TES	ST AND MEASUREMENT EQUIPMENT14	4
7.	AN	TENNA PORT TEST RESULTS1	5
7	.1.	MEASUREMENT METHODS	5
7	.2.	ON TIME, DUTY CYCLE	6
7	.3.	6 dB BANDWIDTH1	7
7	.4.	99% BANDWIDTH2	0
7	.5.	OUTPUT POWER2	3
7	.6.	AVERAGE POWER	6
7	.7.	POWER SPECTRAL DENSITY	7
7	.8.	CONDUCTED SPURIOUS EMISSIONS	0
8.	RAI	DIATED TEST RESULTS	4
8	8.1.	LIMITS AND PROCEDURE	4
8	8.2.	TRANSMITTER ABOVE 1 GHz	5
8	8.3.	WORST-CASE BELOW 1 GHz4	5
	8.3. 8.3	1. EUT WITH AC ADAPTER	5 7
Я	3.3. 8.4	WORST-CASE 18 to 26 GHz 4	9
•	• •		4
9.	AC	POWER LINE CONDUCTED EMISSIONS	1
		Page 3 of 63	

10	SETUP PHOTOS	56
9.2.	EUT WITH USB LAPTOP	54
9.1.	EUT WITH AC ADAPTER	52

Page 4 of 63

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	INTEL CORPORATION 2200 MISSION COLLEGE BO SANTA CLARA, CA 95052, U.	ULEVARD S.A.		
EUT DESCRIPTION:	BLE MODULE	BLE MODULE		
MODEL:	101			
SERIAL NUMBER:	AEDVT1SQ5360091 (CONDUCTED); AEDVT1SQ536009A (RADIATED)			
DATE TESTED:	SEPTEMBER 15 -18, 2015			
	APPLICABLE STANDARDS			
ST	ANDARD	TEST RESULTS		
CFR 47 P	art 15 Subpart C	Pass		
INDUSTRY CAN	ADA RSS-247 Issue 1	Pass		
INDUSTRY CAN	ADA RSS-GEN Issue 4	Pass		

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

CHIN PANG EMC SENIOR ENGINEER UL VERIFICATION SERVICES INC.

Tested By:

Mad the

CLIFFORD SUSA EMC ENGINEER UL VERIFICATION SERVICES INC.

Page 5 of 63

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, RSS-GEN Issue 4 and RSS-247 Issue 1.

Testing for radiated emissions above 1GHz was performed with the EUT elevated at 1.5m instead of 0.8m. 1.5m is the required height in ANSI C63.10:2013 as referenced by RSS GEN issue 4. This test height has been permitted by FCC as discussed in FCC/TCB conference call in December 2014.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
Chamber A	Chamber D
Chamber B	🛛 Chamber E
Chamber C	Chamber F
	Chamber G
	Chamber H

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers A through H are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-8, respectively.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

Page 6 of 63

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	± 3.52 dB
Radiated Disturbance, 30 to 1000 MHz	± 4.94 dB
Radiated Disturbance, 1 to 6 GHz	± 3.86 dB
Radiated Disturbance, 6 to 18 GHz	± 4.23 dB
Radiated Disturbance, 18 to 26 GHz	± 5.30 dB
Radiated Disturbance, 26 to 40 GHz	± 5.23 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 7 of 63

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a BLE module

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	BLE	3.87	2.44

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a trace antenna, with a maximum gain of 0 dBi.

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was DVT Eng. Build.

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z, it was determined that Z orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Z orientation.

Worst-case data rates as provided by the client were:

BLE: 1 Mbps.

Page 8 of 63

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List						
Description	Manufacturer	Model	Serial Number	FCC ID		
Laptop	Lenovo	Yoga 2 11	YB04499042	N/A		
AC Adapter	Lenovo	ADLX45NCC3A	11S45N0297ZSH4430	N/A		
Test Board	Zitrades	CP2102	X0000IXYXP3	N/A		

I/O CABLES

	I/O Cable List							
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks		
1	AC	1	3-Prong	Un-Shielded	1.8	N/A		
2	DC	1	DC	Un-Shielded	1	N/A		
3	AC/DC	1	DC	Un-Shielded	1.6	N/A		
4	USB	1	USB	Un-Shielded	0.2	Laptop to Test Board		
5	TX/RX/GND Pins	1	TX/RX/GND Pins	Un-Shielded	0.1	Test board to EUT		
6	Antenna	1	SMA	Un-Shielded	0.025	To Spectrum Analyzer		
7	USB	1	USB	Shielded	1.8	N/A		

TEST SETUP

Test software exercised the radio card.

Page 9 of 63

SETUP DIAGRAM FOR CONDUCTED TESTS

Page 10 of 63

SETUP DIAGRAM FOR RADIATED TESTS

Page 11 of 63

SETUP DIAGRAM 1 FOR LINE CONDUCTED TEST

Page 12 of 63

SETUP DIAGRAM 2 FOR LINE CONDUCTED TEST

Page 13 of 63

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List							
Description	Manufacturer	Model	T No.	Cal Due			
Radiated Software	UL	UL EMC	Ver 9.5,	June 24, 2015			
Conducted Software	UL	UL EMC	N N	/er 3.3			
Spectrum Analyzer PSA, 3Hz to 44GHz	Keysight	E4446A	T123	10/21/15			
Power Meter	Keysight	N1911A	T1244	04/02/16			
Power Sensor	Keysight	N1921A	T1226	05/06/16			
Spectrum Analyzer PXA, 3Hz to 44GHz	Keysight	N9030A	T917	03/31/16			
Antenna, Horn 1-18GHz	ETS Lindgren	3117	T346	02/10/16			
Antenna, Broadband Hybrid 30MHz to 2000MHz	Sunol Sciences	JB3	T408	01/14/16			
Amplifier, 1 - 18GHz	Miteq	AFS42-00101800-25-S-42	T741	04/29/16			
Amplifier, 10KHz to 1GHz	Sonoma	310N	T285	06/08/16			
Spectrum Analyzer PXA, 3Hz to 44GHz	Keysight	N9030A	T342	06/29/16			
LISN, 30MHz	FCC	50/250-25-2	24	01/16/16			
EMI Test Receiver, 9kHz to	Rhode & Schwarz	ESCI 7	1124	09/30/15			

Page 14 of 63

7. ANTENNA PORT TEST RESULTS

7.1. MEASUREMENT METHODS

<u>6 dB BW</u>: KDB 558074 D01 v03r03, Section 8.1.

Output Power: KDB 558074 D01 v03r03, Section 9.1.2.

Power Spectral Density: KDB 558074 D01 v03r03, Section 10.2.

Out-of-band emissions in non-restricted bands: KDB 558074 D01 v03r03, Section 11.0.

Out-of-band emissions in restricted bands: KDB 558074 D01 v03r03, Section 12.1.

Band-edge: KDB 558074 D01 v03r03, Section 12.1

Page 15 of 63

7.2. ON TIME, DUTY CYCLE

None; for reporting purposes only.

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

Mode	Mode ON Time Period		Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
BLE	0.155	0.627	0.247	24.72%	6.07	6.452

DUTY CYCLE PLOTS

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 16 of 63

7.3. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

IC RSS-247 (5.2) (1)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.647	0.5
Middle	2440	0.662	0.5
High	2480	0.649	0.5

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 17 of 63

6 dB BANDWIDTH

Page 18 of 63

Page 19 of 63

7.4. 99% **BANDWIDTH**

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	0.96643
Middle	2440	0.96116
High	2480	0.99044

Page 20 of 63

99% BANDWIDTH

Page 21 of 63

Page 22 of 63

7.5. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-247 (5.4) (4)

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

RESULTS

Channel	Frequency	Peak Power Reading	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	3.87	30	-26.13
Middle	2440	3.67	30	-26.33
High	2480	3.37	30	-26.63

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 23 of 63

OUTPUT POWER

Page 24 of 63

🔆 Agilent 11:5	6:31 Sep 15, 2	015		L	Freq/Channel
Ref 10 dBm Peak	Atten 10	dB	Mkr1	2.479 82 GHz 3.37 dBm	Center Freq 2.48000000 GHz
_og					
dB/					Start Freq 2.47850000 GHz
10.2 dB					Stop Freq 2.48150000 GHz
*PAvg					CF Step 300.000000 kHz <u>Auto</u> Man
M1 S2 S3 FC					Freq Offset 0.00000000 Hz
€(f): -Tun Swp					Signal Track On <u>Off</u>
Center 2.480 00) GHz			Span 3 MHz	

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 25 of 63

7.6. AVERAGE POWER

LIMITS

None; for reporting purposes only.

RESULTS

The cable assembly insertion loss of 10.25 dB (including 10 dB pad and 0.25 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	3.74
Middle	2440	3.53
High	2480	3.17

7.7. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

IC RSS-247 (5.2) (2)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

RESULTS

Channel	Frequency (MHz)	PSD (dBm)	Limit (dBm)	Margin (dB)
Low	2402	-8.94	8	-16.94
Middle	2440	-8.78	8	-16.78
High	2480	-8.53	8	-16.53

Page 27 of 63

POWER SPECTRAL DENSITY

Page 28 of 63

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 29 of 63

7.8. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-247 (5.5)

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

Page 30 of 63

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

Page 31 of 63

SPURIOUS EMISSIONS, MID CHANNEL

Page 32 of 63

SPURIOUS EMISSIONS, HIGH CHANNEL

Page 33 of 63

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-GEN Clause 8.9 and 8.10

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 34 of 63

8.2. TRANSMITTER ABOVE 1 GHz

RESTRICTED BANDEDGE (LOW CHANNEL)

<u>DATA</u>

Mark	Frequen	Meter	Det	AF T346	Amp/Cbl	DC Corr	Correct	Average	Margi	Peak	PK	Azimut	Heigh	Polarit
er	су	Readin		(dB/m)	/Fltr/Pad	(dB)	ed	Limit	n	Limit	Margin	h	t	У
	(GHz)	g			(dB)		Reading	(dBuV/m	(dB)	(dBuV/m	(dB)	(Degs)	(cm)	
		(dBuV)					(dBuV/))				
							m)							
1	* 2.39	43.93	Pk	32.1	-23.2	0	52.83	-	-	74	-21.17	126	143	н
2	* 2.348	49.91	Pk	32	-23.2	0	58.71	-	-	74	-15.29	126	143	н
3	* 2.39	30.24	RMS	32.1	-23.2	6.07	45.21	54	-8.79	-	-	126	143	Н
4	* 2.348	32.75	RMS	32	-23.2	6.07	47.62	54	-6.38	-	-	126	143	Н

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

Pk - Peak detector

RMS - RMS detection

DATA

Mark er	Frequen cy (GHz)	Meter Readin g (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl /Fltr/Pad (dB)	DC Corr (dB)	Correct ed Reading (dBuV/ m)	Average Limit (dBuV/m)	Margi n (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimut h (Degs)	Heigh t (cm)	Polarit y
2	* 2.348	50.76	Pk	32	-23.2	0	59.56	-	-	74	-14.44	67	339	V
4	* 2.348	33.97	RMS	32	-23.2	6.07	48.84	54	-5.16	-	-	67	339	V
1	* 2.39	43.79	Pk	32.1	-23.2	0	52.69	-	-	74	-21.31	67	339	V
3	* 2.39	30	RMS	32.1	-23.2	6.07	44.97	54	-9.03	-	-	67	339	V

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

Pk - Peak detector

RMS - RMS detection

Page 36 of 63

RESTRICTED BANDEDGE (HIGH CHANNEL)

DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl/Fit r/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	44.48	Pk	32.2	-22.9	0	53.78	-	-	74	-20.22	342	165	н
3	* 2.484	29.91	RMS	32.2	-22.9	6.07	45.28	54	-8.72	-	-	342	165	Н
4	* 2.493	37.97	RMS	32.2	-22.9	6.07	53.34	54	66	-	-	342	165	Н
2	2.526	53.58	Pk	32.2	-22.8	0	62.98	-	-	74	-11.02	342	165	н

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

Pk - Peak detector

RMS - RMS detection

Page 37 of 63

<u>DATA</u>

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl/Fit r/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	43.47	Pk	32.2	-22.9	0	52.77	-	-	74	-21.23	142	203	V
3	* 2.484	29.6	RMS	32.2	-22.9	6.07	44.97	54	-9.03	-	-	142	203	V
2	* 2.493	50.8	Pk	32.2	-22.9	0	60.1	-	-	74	-13.9	142	203	V
4	* 2.493	36.15	RMS	32.2	-22.9	6.07	51.52	54	-2.48	-	-	142	203	V

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

Pk - Peak detector

RMS - RMS detection

Page 38 of 63

HARMONICS AND SPURIOUS EMISSIONS

Page 39 of 63

DATA

Marker	Frequency	Meter	Det	AF T346	Amp/Cbl/	DC Corr	Corrected	Avg Limit	Margin	Peak	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	Fltr/Pad	(dB)	Reading	(dBuV/m)	(dB)	Limit	(dB)	(Degs)	(cm)	
		(dBuV)			(dB)		(dBuV/m)			(dBuV/m)				
1	* 2.348	51.21	PK2	32	-23.2	0	60.01	-	-	74	-13.99	141	101	Н
	* 2.348	33.6	MAv1	32	-23.2	6.07	48.47	54	-5.53	-	-	141	101	н
2	* 2.348	51.16	PK2	32	-23.2	0	59.96	-	-	74	-14.04	49	342	V
	* 2.348	34.11	MAv1	32	-23.2	6.07	48.98	54	-5.02	-	-	49	342	V
7	* 4.804	49.39	PK2	34.1	-29.8	0	53.69	-	-	74	-20.31	347	291	н
	* 4.804	40.39	MAv1	34.1	-29.8	6.07	50.76	54	-3.24	-	-	347	291	н
8	* 4.805	50.36	PK2	34.1	-29.8	0	54.66	-	-	74	-19.34	237	313	V
	* 4.804	41.64	MAv1	34.1	-29.8	6.07	52.01	54	-1.99	-	-	237	313	V
4	2.466	51.1	Pk	32.1	-23	0	60.2	-	-	74	-13.8	0-360	100	Н
3	2.466	49.13	Pk	32.1	-23	0	58.23	-	-	74	-15.77	0-360	200	V
5	2.481	41.75	Pk	32.1	-22.9	0	50.95	-	-	74	-23.05	0-360	100	н
6	2.481	41.33	Pk	32.1	-22.9	0	50.53	-	-	74	-23.47	0-360	200	V
9	7.205	33.51	Pk	35.5	-27.6	0	41.41	-	-	74	-32.59	0-360	200	Н
10	7.206	35.07	Pk	35.5	-27.6	0	42.97	-	-	74	-31.03	0-360	200	V

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 40 of 63

Page 41 of 63

DATA

Marker	Frequenc v	Meter Reading	Det	AF T346 (dB/m)	Amp/Cbl/ Fltr/Pad	DC Corr (dB)	Corrected Reading	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
	(GHz)	(dBuV)			(dB)		(dBuV/m)		. ,	(dBuV/m)		(.0.)	. ,	
1	* 2.348	49.63	PK2	32	-23.2	0	58.43	-	-	74	-15.57	0	101	Н
	* 2.348	33.04	MAv1	32	-23.2	6.07	47.91	54	-6.09	-	-	0	101	Н
6	* 2.348	50.6	PK2	32	-23.2	0	59.4	-	-	74	-14.6	85	267	V
	* 2.348	33.15	MAv1	32	-23.2	6.07	48.02	54	-5.98	-	-	85	267	V
10	* 4.88	46.15	PK2	34.1	-30.4	0	49.85	-	-	74	-24.15	172	102	Н
	* 4.88	35.64	MAv1	34.1	-30.4	6.07	45.41	54	-8.59	-	-	172	102	н
11	* 4.881	45.92	PK2	34.1	-30.4	0	49.62	-	-	74	-24.38	257	125	V
	* 4.88	36.07	MAv1	34.1	-30.4	6.07	45.84	54	-8.16	-	-	257	125	V
12	* 7.32	40.96	PK2	35.5	-26.2	0	50.26	-	-	74	-23.74	276	100	V
	* 7.32	29.02	MAv1	35.5	-26.2	6.07	44.39	54	-9.61	-	-	276	100	V
2	2.404	44.93	Pk	32.1	-23.2	0	53.83	-	-	74	-20.17	0-360	200	н
7	2.405	44.74	Pk	32.1	-23.2	0	53.64	-	-	74	-20.36	0-360	200	V
3	2.434	47.48	Pk	32.1	-23.2	0	56.38	-	-	74	-17.62	0-360	101	н
8	2.434	45.72	Pk	32.1	-23.2	0	54.62	-	-	74	-19.38	0-360	200	V
9	2.465	47.23	Pk	32.1	-23	0	56.33	-	-	74	-17.67	0-360	200	V
4	2.466	50.31	Pk	32.1	-23	0	59.41	-	-	74	-14.59	0-360	101	н
5	2.481	43.11	Pk	32.1	-22.9	0	52.31	-	-	74	-21.69	0-360	101	Н

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 42 of 63

Page 43 of 63

<u>DATA</u>

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl/Fltr /Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	2.465	50.43	Pk	32.1	-23	0	59.53	-	-	74	-14.47	0-360	100	Н
4	2.465	46.01	Pk	32.1	-23	0	55.11	-	-	74	-18.89	0-360	200	V
2	2.526	48.26	Pk	32.2	-22.8	0	57.66	-	-	74	-16.34	0-360	100	н
5	2.526	45.37	Pk	32.2	-22.8	0	54.77	-	-	74	-19.23	0-360	200	V
3	2.596	47.31	Pk	32.4	-22.7	0	57.01	-	-	74	-16.99	0-360	100	н
6	2.596	43.32	Pk	32.4	-22.7	0	53.02	-	-	74	-20.98	0-360	101	V

Pk - Peak detector

Page 44 of 63

8.3. WORST-CASE BELOW 1 GHz

8.3.1. EUT WITH AC ADAPTER

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

DATA

Marker	Frequency	Meter	Det	AF T408	Amp/Cbl	Corrected	QPk Limit	Margin	Azimuth	Height	Polarity
	(MHz)	Reading		(dB/m)	(dB)	Reading	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)				(dBuV/m)					
6	* 129.5775	46.39	Pk	13.7	-31.2	28.89	43.52	-14.63	0-360	201	н
5	* 118.825	45.82	Pk	13.7	-31.2	28.32	43.52	-15.2	0-360	100	V
7	* 324.4	50.43	Pk	13.9	-30.3	34.03	46.02	-11.99	0-360	100	н
8	* 324.4	48.14	Pk	13.9	-30.3	31.74	46.02	-14.28	0-360	99	V
1	30.595	41.99	Pk	21	-31.8	31.19	40	-8.81	0-360	100	V
2	57.6675	58.13	Pk	7.5	-31.7	33.93	40	-6.07	0-360	100	V
3	57.795	57.12	Pk	7.5	-31.6	33.02	40	-6.98	0-360	401	Н
4	145.3875	52.14	Pk	12.6	-31	33.74	43.52	-9.78	0-360	201	Н

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

Pk - Peak detector

8.3.2. EUT WITH USB LAPTOP

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

Page 47 of 63

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

<u>DATA</u>

Marker	Frequency	Meter	Det	AF T408	Amp/Cbl (dB)	Corrected	QPk Limit	Margin	Azimuth	Height	Polarity
	(MHz)	Reading		(dB/m)		Reading	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)				(dBuV/m)					
3	* 119.93	48.03	Pk	13.8	-31.2	30.63	43.52	-12.89	0-360	201	Н
1	41.1775	47.77	Pk	13.2	-31.8	29.17	40	-10.83	0-360	100	V
2	66.5925	40.99	Pk	8.4	-31.5	17.89	40	-22.11	0-360	100	V
4	181.8525	47.14	Pk	11.4	-30.9	27.64	43.52	-15.88	0-360	100	V
5	225	45.33	Pk	10.7	-30.7	25.33	46.02	-20.69	0-360	99	V
8	666.7	43.03	Pk	19.6	-29.2	33.43	46.02	-12.59	0-360	201	н
6	666.7	47.61	Pk	19.6	-29.2	38.01	46.02	-8.01	0-360	99	V
10	750.6	41.86	Pk	20.5	-29	33.36	46.02	-12.66	0-360	99	V
9	833.3	38.31	Pk	21.1	-28.6	30.81	46.02	-15.21	0-360	301	Н
7	833.4	46.9	Pk	21.1	-28.6	39.4	46.02	-6.62	0-360	99	V

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

Pk - Peak detector

8.4. WORST-CASE 18 to 26 GHz

SPURIOUS EMISSIONS 18 to 26 GHz (WORST-CASE CONFIGURATION)

R5										16	Sep 2015	00	3:35:2
						RF Er	missio	ns					
95						Order Client Config	Number: t:INTEL guration:	EUT WIT	H AC ADA	PTER			
85						Tested	d by / SN	C. XIO	NG				
75 <mark>Peak Li</mark>	mit (dBuV∕m)												
65													
ee Avg Lim	it (dBuV/m)												
22													
45										2			
45	A water the Marine		1	Warrand and an and a start of the	nonstananten	hummun	Mulanyahiti	yhanghangh	Mallound	2 Roman	3. Marina	dynam.	solen (newspape)
45 35 ^{1/1/1/1} /	have a second and the second	en and the high providence of the	1 Vyrade na NoRallonn	Munahan wala	Kornsteinen Merch	han market	Multinayahan	yharichtet	hauth	2. Romanda	JAMAN BA	dywyn	Marchaelder
45 35	hang and a start	mar the hadepart	l hymneu na hallenna	Moughterente	Normania	han the second second	Mulanupation	ulanishi bala	hall	2 Romandy	3. Marina	dyna yw	oden (normali
45	lucal market with some the second second	nood-think hadippointe	nun nan san sa	Wooddaard M	Mondown/mA	han the second second	Julinayakan ^{an}	ydanich stady	Mallana	2. Romanaly		hyinm	odere or on our of the
45 35 25 15	lucation the test of the second second	en et an	muu waka	Kongh gerwy ^{ge}	Ministeries MM	here the second second	Julinaya wa	ydonigh Me	mun	.2. 		dyn, m	odens mande
45 35 25 15	lizenterteten josen josen k	marten udaparte	muu miliiku.	Kradbad (1997)	normonyanoon	hendelin hen		ydenydd ard	hand	2 Romanda	JANNA MAL	dyn, m	oden model
45 35 25 15 18			muurnadon,			(GHz)	/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	yterydd ywlei	Mallion and a	2		hunn	when we want
45 35 25 15 18 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		Det/fing Typ	mm Pho 10	۲۰۰۰ ۲۰۰۰ ۲۰۰۰	no dan cy	(GHz)	Mudunuyududd RBU/VEU	nder og de	Det/Avg Typ	2	3. M ^{ar} man M ^{arg} h Pts 1Suport	ide Li	inderstrands inder

A2	IC	16 Sep 2015 00:35:25
		RF Emissions
95		Order Number: Client:INTEL Configuration:EUT WITH AC ADAPTER
85		Tested by / SN:C. XIDNG
75 <mark>Peak</mark>	≺ Limit (dBuU/m)	
65		
55 <mark>Avg</mark>	Limit (dBuV/m)	
45		6
	4	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
35	A Mark and a sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-	*
35		
35 25		
35 25 15		
35		
35 25 15 18		Frequency (GHz)
35 25 15 18 Range	e (Sfz) R8U/U8U Ref/Attn Det/Avg Typ	2 Frequency (GHz) Sweep Pts Moya/Node Label 2 Range (Mtz) Ref/Rttn Det/Ang Type Sweep Pts Moya/Node Label 2 Range (Mtz) Ref/Rttn Det/Ang Type Sweep Pts Moya/Rode Label 2 Range (Mtz) Ref/Rttn Det/Ang Type Sweep Pts Moya/Rode Label 2 Range (Mtz) Ref/Rttn Det/Ang Type Sweep Pts Moya/Rode Label 2 Range (Mtz) Ref/Rttn Det/Ang Type Sweep Pts Moya/Rode Label 2 Range (Mtz) Ref/Rttn Det/Ang Type Sweep Pts Moya/Rode Label 2 Range (Mtz) Ref/Rttn Det/Ang Type Sweep Pts Moya/Rode Label 2 Range (Mtz) Ref/Rttn Det/Ang Type Sweep Pts Moya/Rode Label 2 Range (Mtz) Ref/Rttn Det/Ang Type Sweep Pts Moya/Rttn Det/Ang Type Sweep Pts Moya/Rtt

Page 49 of 63

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

<u>DATA</u>

Marker	Frequency	Meter	Det	T89 AF	Amp/Cbl	Dist Corr	Corrected	Avg Limit	Margin	Peak Limit	PK Margin
	(GHz)	Reading		(dB/m)	(dB)	(dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	(dB)
		(dBuV)					(dBuVolts)				
1	20.505	39.9	Pk	32.7	-25.1	-9.5	38	54	-16	74	-36
2	23.948	43.83	Pk	33.3	-24.3	-9.5	43.33	54	-10.66	74	-30.66
3	25.021	43.13	Pk	34.1	-24.4	-9.5	43.33	54	-10.66	74	-30.66
4	19.139	41.5	Pk	32.2	-24.7	-9.5	39.5	54	-14.5	74	-34.5
5	21.197	41.13	Pk	33	-24.8	-9.5	39.83	54	-14.16	74	-34.16
6	25.384	43.2	Pk	33.7	-24.4	-9.5	43	54	-11	74	-31

Pk - Peak detector

Page 50 of 63

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 8.8

Frequency of Emission (MHz)	Conducted Limit (dBµV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10-2013

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines

RESULTS

Page 51 of 63

9.1. EUT WITH AC ADAPTER

LINE 1 RESULTS

<u>DATA</u>

Range 1: Line-L1 .15 - 30MHz

Marker	Frequency	Meter	Det	T24 IL L1	LC Cables	Corrected	CFR 47	Margin	CFR 47	Margin
	(MHz)	Reading			1&3	Reading	Part 15	(dB)	Part 15	(dB)
		(dBuV)				dBuV	Class B QP		Class B	
									Avg	
1	.177	44.17	Pk	1.1	0	45.27	64.63	-19.36	54.63	-9.36
2	.186	29.29	Av	1	0	30.29	-	-	54.21	-23.92
3	.2535	46.17	Pk	.7	0	46.87	61.64	-14.77	51.64	-4.77
4	.2535	33.19	Av	.7	0	33.89	-	-	51.64	-17.75
5	.3795	45.43	Pk	.4	0	45.83	58.29	-12.46	48.29	-2.46
6	.3795	33.66	Av	.4	0	34.06	-	-	48.29	-14.23

Pk - Peak detector

Av - Average detection

Page 52 of 63

LINE 2 RESULTS

<u>DATA</u>

Range 2: Line-L2 .15 - 30MHz

Marker	Frequency	Meter	Det	T24 IL L2	LC Cables	Corrected	CFR 47	Margin	CFR 47	Margin
	(MHz)	Reading			2&3	Reading	Part 15	(dB)	Part 15	(dB)
		(dBuV)				dBuV	Class B QP		Class B	
									Avg	
7	.177	46.56	Pk	1.2	0	47.76	64.63	-16.87	54.63	-6.87
8	.186	31.86	Av	1.1	0	32.96	-	-	54.21	-21.25
9	.2355	43.57	Pk	.8	0	44.37	62.25	-17.88	52.25	-7.88
10	.2445	31.56	Av	.8	0	32.36	-	-	51.94	-19.58
11	.2985	35.46	Pk	.6	0	36.06	60.28	-24.22	50.28	-14.22
12	.2985	21.05	Av	.6	0	21.65	-	-	50.28	-28.63

Pk - Peak detector

Av - Average detection

9.2. EUT WITH USB LAPTOP

LINE 1 RESULTS

<u>DATA</u>

Range 1: Line-L1 .15 - 30MHz

Marker	Frequency	Meter	Det	T24 IL L1	LC Cables	Corrected	CFR 47	Margin	CFR 47	Margin
	(MHz)	Reading			1&3	Reading	Part 15	(dB)	Part 15	(dB)
		(dBuV)				dBuV	Class B QP		Class B	
									Avg	
1	.1905	52	Pk	1	0	53	64.01	-11.01	54.01	-1.01
2	.195	36.37	Av	1	0	37.37	-	-	53.82	-16.45
3	.2535	46.21	Pk	.7	0	46.91	61.64	-14.73	51.64	-4.73
4	.258	30.9	Av	.7	0	31.6	-	-	51.5	-19.9
5	3.372	43.11	Pk	.2	.1	43.41	56	-12.59	46	-2.59
6	3.372	26.94	Av	.2	.1	27.24	-	-	46	-18.76

Pk - Peak detector

Av - Average detection

LINE 2 RESULTS

<u>DATA</u>

Range 2: Line-L2 .15 - 30MHz

Marker	Frequency	Meter	Det	T24 IL L2	LC Cables	Corrected	CFR 47	Margin	CFR 47	Margin
	(MHz)	Reading			2&3	Reading	Part 15	(dB)	Part 15	(dB)
		(dBuV)				dBuV	Class B QP		Class B	
									Avg	
7	.1905	52	Pk	1.1	0	53.1	64.01	-10.91	54.01	91
8	.195	34.19	Av	1	0	35.19	-	-	53.82	-18.63
9	.2715	46.85	Pk	.7	0	47.55	61.07	-13.52	51.07	-3.52
10	.2625	32.4	Av	.7	0	33.1	-	-	51.35	-18.25
11	1.788	42.6	Pk	.2	.1	42.9	56	-13.1	46	-3.1
12	1.7745	26.26	Av	.2	.1	26.56	_	-	46	-19.44

Pk - Peak detector

Av - Average detection