

## FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-247 ISSUE 1

**CERTIFICATION TEST REPORT** 

FOR

SMART WATCH WITH 802.11B/G/N, BLUETOOTH AND BLE

**MODEL NUMBER: DW1** 

FCC ID: 2AB8ZND10 IC: 1000X-ND10

REPORT NUMBER: 15U21900-E1V1

**ISSUE DATE: OCTOBER 19, 2015** 

Prepared for INTEL CORPORATION 2200 MISSION COLLEGE BOULEVARD, SANTA CLARA, CA 95052, U.S.A

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

## **Revision History**

| Rev. | lssue<br>Date | Revisions                                                                                           | Revised By |
|------|---------------|-----------------------------------------------------------------------------------------------------|------------|
| V1   | 10/19/2015    | Initial Issue                                                                                       | C. Pang    |
| V2   | 10/22/2015    | Updated antenna gains in section 5.3, 7.2.2, 7.7.2<br>and fixed section 7.2.6 plots to match titles | C. Susa    |

Page 2 of 87

# TABLE OF CONTENTS

| 1.  | A                                                                                                 | ATTESTATION OF TEST RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                       |
|-----|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 2.  | т                                                                                                 | EST METHODOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                       |
| 3.  | F                                                                                                 | ACILITIES AND ACCREDITATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                       |
| 4.  | С                                                                                                 | CALIBRATION AND UNCERTAINTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                       |
|     | 4.1.                                                                                              | . MEASURING INSTRUMENT CALIBRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                                       |
|     | 4.2                                                                                               | SAMPLE CALCULATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                                       |
|     | 4.3                                                                                               | B. MEASUREMENT UNCERTAINTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                       |
| 5.  | E                                                                                                 | EQUIPMENT UNDER TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                       |
|     | 5.1.                                                                                              | . DESCRIPTION OF EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                       |
|     | 5.2                                                                                               | . MAXIMUM OUTPUT POWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                       |
|     | 5.3                                                                                               | DESCRIPTION OF AVAILABLE ANTENNAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                       |
|     | 5.4                                                                                               | SOFTWARE AND FIRMWARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                       |
|     | 5.5                                                                                               | WORST-CASE CONFIGURATION AND MODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                       |
|     | 5.6                                                                                               | DESCRIPTION OF TEST SETUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                                       |
| 6.  | т                                                                                                 | EST AND MEASUREMENT EQUIPMENT1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                       |
| 7   | Δ                                                                                                 | ANTENNA PORT TEST RESULTS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                       |
| ••• |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                       |
|     | 7.1.                                                                                              | . ON TIME AND DUTY CYCLE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                       |
|     | 7.1.<br>7                                                                                         | . ON TIME AND DUTY CYCLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5<br>5                                                  |
|     | 7.1.<br>7<br>7.2.<br>7                                                                            | ON TIME AND DUTY CYCLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5<br>5<br>7<br>7                                        |
|     | 7.1.<br>7<br>7.2.<br>7<br>7                                                                       | . ON TIME AND DUTY CYCLE       1         Y.1.1. ON TIME AND DUTY CYCLE RESULTS       1         P. BASIC DATA RATE GFSK MODULATION       1         Y.2.1. 20 dB AND 99% BANDWIDTH       1         Y.2.2. OUTPUT POWER       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5<br>5<br>7<br>7                                        |
|     | 7.1.<br>7<br>7.2.<br>7<br>7<br>7                                                                  | ON TIME AND DUTY CYCLE       1         Y.1.1. ON TIME AND DUTY CYCLE RESULTS       1         P. BASIC DATA RATE GFSK MODULATION       1         Y.2.1. 20 dB AND 99% BANDWIDTH       1         Y.2.2. OUTPUT POWER       2         Y.2.3. CONDUCTED SPURIOUS EMISSIONS       2         Y.2.4. UODDING EDECULENCY SEDADATION       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>5<br>7<br>7<br>0<br>3                              |
|     | 7.1.<br>7<br>7.2.<br>7<br>7<br>7<br>7<br>7<br>7                                                   | ON TIME AND DUTY CYCLE       1         Y.1.1. ON TIME AND DUTY CYCLE RESULTS       1         BASIC DATA RATE GFSK MODULATION       1         Y.2.1. 20 dB AND 99% BANDWIDTH       1         Y.2.2. OUTPUT POWER       2         Y.2.3. CONDUCTED SPURIOUS EMISSIONS       2         Y.2.4. HOPPING FREQUENCY SEPARATION       2         Y.2.5. NUMBER OF HOPPING CHANNELS       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5<br>5<br>5<br>7<br>7<br>20<br>23<br>80                 |
|     | 7.1.<br>7<br>7.2.<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                              | ON TIME AND DUTY CYCLE       1         Y.1.1. ON TIME AND DUTY CYCLE RESULTS       1         BASIC DATA RATE GFSK MODULATION       1         Y.2.1. 20 dB AND 99% BANDWIDTH       1         Y.2.2. OUTPUT POWER       2         Y.2.3. CONDUCTED SPURIOUS EMISSIONS       2         Y.2.4. HOPPING FREQUENCY SEPARATION       2         Y.2.5. NUMBER OF HOPPING CHANNELS       3         Y.2.6. AVERAGE TIME OF OCCUPANCY       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5<br>5<br>5<br>7<br>7<br>20<br>23<br>80<br>4            |
|     | 7.1.<br>7<br>7.2.<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                         | ON TIME AND DUTY CYCLE17.1.1. ON TIME AND DUTY CYCLE RESULTS19. BASIC DATA RATE GFSK MODULATION17.2.1. 20 dB AND 99% BANDWIDTH17.2.2. OUTPUT POWER27.2.3. CONDUCTED SPURIOUS EMISSIONS27.2.4. HOPPING FREQUENCY SEPARATION27.2.5. NUMBER OF HOPPING CHANNELS37.2.6. AVERAGE TIME OF OCCUPANCY33. AVERAGE POWER3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5<br>5<br>7<br>7<br>20<br>23<br>80<br>4<br>99           |
|     | 7.11<br>7<br>7.2.<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7.6.<br>7                  | ON TIME AND DUTY CYCLE       1         Y.1.1. ON TIME AND DUTY CYCLE RESULTS       1         BASIC DATA RATE GFSK MODULATION       1         Y.2.1. 20 dB AND 99% BANDWIDTH       1         Y.2.2. OUTPUT POWER       2         Y.2.3. CONDUCTED SPURIOUS EMISSIONS       2         Y.2.4. HOPPING FREQUENCY SEPARATION       2         Y.2.5. NUMBER OF HOPPING CHANNELS       3         Y.2.6. AVERAGE TIME OF OCCUPANCY       3         Y.2.7.6. AVERAGE TIME OF OCCUPANCY       3         Y.2.7.7.6. AVERAGE TIME OF OCCUPANCY       3         Y.2.7.7 | 5 5 7 7 20 23 28 00 4 39 00 0                           |
|     | 7.1.<br>7<br>7.2.<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | ON TIME AND DUTY CYCLE17.1.1. ON TIME AND DUTY CYCLE RESULTS17.1.1. ON TIME AND DUTY CYCLE RESULTS17.1.1. ON TIME AND 99% BANDWIDTH17.2.1. 20 dB AND 99% BANDWIDTH17.2.2. OUTPUT POWER27.2.3. CONDUCTED SPURIOUS EMISSIONS27.2.4. HOPPING FREQUENCY SEPARATION27.2.5. NUMBER OF HOPPING CHANNELS37.2.6. AVERAGE TIME OF OCCUPANCY37.2.6. AVERAGE TIME OF OCCUPANCY37.2.6. AVERAGE TIME OF OCCUPANCY37.2.6. AVERAGE POWER37.6.1. BASIC DATA RATE GFSK MODULATION47.6.2. DATA RATE PI/4-DQPSK MODULATION47.6.3. ENHANCED DATA RATE 8PSK MODULATION4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 5 7 7 20 3 28 00 4 99 00 00                           |
|     | 7.1.<br>7<br>7.2.<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7.6.<br>7<br>7<br>7<br>7<br>7<br>7        | ON TIME AND DUTY CYCLE11.1. ON TIME AND DUTY CYCLE RESULTS12. BASIC DATA RATE GFSK MODULATION11.2.1. 20 dB AND 99% BANDWIDTH11.2.2. OUTPUT POWER22.3. CONDUCTED SPURIOUS EMISSIONS22.4. HOPPING FREQUENCY SEPARATION22.5. NUMBER OF HOPPING CHANNELS32.6. AVERAGE TIME OF OCCUPANCY33. AVERAGE POWER34.6.1. BASIC DATA RATE GFSK MODULATION44.6.3. ENHANCED DATA RATE 8PSK MODULATION44. ENHANCED DATA RATE 8PSK MODULATION4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 5 7 7 20 3 800 4 90 00 0 1                            |
|     | 7.1.<br>7<br>7.2.<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | ON TIME AND DUTY CYCLE11.1. ON TIME AND DUTY CYCLE RESULTS12. BASIC DATA RATE GFSK MODULATION12.1. 20 dB AND 99% BANDWIDTH11.2.2. OUTPUT POWER22.3. CONDUCTED SPURIOUS EMISSIONS22.4. HOPPING FREQUENCY SEPARATION22.5. NUMBER OF HOPPING CHANNELS32.6. AVERAGE TIME OF OCCUPANCY33. AVERAGE POWER34.6.1. BASIC DATA RATE GFSK MODULATION44.6.3. ENHANCED DATA RATE 8PSK MODULATION44.7.1. 20dB AND 99% BANDWIDTH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 5 7 7 20 3 800 4 90 00 0 11 11                        |
|     | 7.1.<br>7<br>7.2.<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | ON TIME AND DUTY CYCLE.       1         Y.1.1. ON TIME AND DUTY CYCLE RESULTS.       1         P. BASIC DATA RATE GFSK MODULATION.       1         Y.2.1. 20 dB AND 99% BANDWIDTH       1         Y.2.2. OUTPUT POWER       2         Y.2.3. CONDUCTED SPURIOUS EMISSIONS       2         Y.2.4. HOPPING FREQUENCY SEPARATION       2         Y.2.5. NUMBER OF HOPPING CHANNELS       3         Y.2.6. AVERAGE TIME OF OCCUPANCY       4         Y.2.6. AVERAGE TIME OF OCCUPANCY       3         Y.2.6. AVERAGE TIME OF OCCUPANCY       3         Y.2.6. AVERAGE TIME OF OCCUPANCY       4         Y.2.7. DATA RATE GFSK MODULATION       4         Y.2.8. DATA RATE BFSK MODULATION       4         Y.2.9. DATA RATE PI/4-DQPSK MODULATION       4         Y.2.1. 20dB AND 99% BANDWIDTH       4         Y.2.2. OUTPUT POWER       4         Y.2.3. CONDUCTED SPURIOUS EMISSIONS       4                                                                                                                                                                           |                                                         |
|     | 7.1.<br>7<br>7.2.<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | ON TIME AND DUTY CYCLE       1         1.1. ON TIME AND DUTY CYCLE RESULTS       1         BASIC DATA RATE GFSK MODULATION       1         2.1. 20 dB AND 99% BANDWIDTH       1         2.2. OUTPUT POWER       2         2.3. CONDUCTED SPURIOUS EMISSIONS       2         2.4. HOPPING FREQUENCY SEPARATION       2         2.5. NUMBER OF HOPPING CHANNELS       3         2.6. AVERAGE TIME OF OCCUPANCY       3         3. AVERAGE POWER       3         4.6.1. BASIC DATA RATE GFSK MODULATION       4         4.6.2. DATA RATE GFSK MODULATION       4         4.6.3. ENHANCED DATA RATE 8PSK MODULATION       4         4.7.1. 20dB AND 99% BANDWIDTH       4         4.7.2. OUTPUT POWER       4         4.7.3. CONDUCTED SPURIOUS EMISSIONS       4         4.7.3. CONDUCTED SPURIOUS EMISSIONS       4                                                                                                                                                                                                                                                                                                                                                                                                       | 5 5 5 7 7 2 3 8 0 4 9 0 0 0 4 1 4 7 3                   |
| 8.  | 7.1.<br>7<br>7.2.<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | ON TIME AND DUTY CYCLE       1         1.1. ON TIME AND DUTY CYCLE RESULTS       1         1.1. ON TIME AND DUTY CYCLE RESULTS       1         1.2. BASIC DATA RATE GFSK MODULATION       1         1.2.1. 20 dB AND 99% BANDWIDTH       1         1.2.2. OUTPUT POWER       2         1.2.3. CONDUCTED SPURIOUS EMISSIONS       2         1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>5</b> 5 5 7 7 9 3 8 0 4 9 0 0 0 1 1 4 7 <b>2</b> 2   |
| 8.  | 7.1.<br>7<br>7.2.<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | ON TIME AND DUTY CYCLE       1         1.1. ON TIME AND DUTY CYCLE RESULTS       1         1.1. ON TIME AND DUTY CYCLE RESULTS       1         1.2. BASIC DATA RATE GFSK MODULATION       1         1.2.1. 20 dB AND 99% BANDWIDTH       1         1.2.2. OUTPUT POWER       2         2.3. CONDUCTED SPURIOUS EMISSIONS       2         2.4. HOPPING FREQUENCY SEPARATION       2         2.5. NUMBER OF HOPPING CHANNELS       3         2.6. AVERAGE TIME OF OCCUPANCY       3         2.6. AVERAGE POWER       3         2.6.1. BASIC DATA RATE GFSK MODULATION       4         7.6.2. DATA RATE PI/4-DQPSK MODULATION       4         7.6.3. ENHANCED DATA RATE 8PSK MODULATION       4         7.1. 20dB AND 99% BANDWIDTH       4         7.2. OUTPUT POWER       4         7.3. CONDUCTED SPURIOUS EMISSIONS       4         7.4 ADOVE 1 CHT PASIC DATA PATE CESK MODULATION       4         7.5. LIMITS AND PROCEDURE       5         7.5. LIMITS AN | 5 5 5 7 7 2 3 8 0 4 9 0 0 0 1 1 4 7 2 2 2               |
| 8.  | 7.1.<br>7<br>7.2.<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | ON TIME AND DUTY CYCLE       1         1.1. ON TIME AND DUTY CYCLE RESULTS       1         BASIC DATA RATE GFSK MODULATION       1         2.1. 20 dB AND 99% BANDWIDTH       1         1.2.2. OUTPUT POWER       2         2.3. CONDUCTED SPURIOUS EMISSIONS       2         2.4. HOPPING FREQUENCY SEPARATION       2         2.5. NUMBER OF HOPPING CHANNELS       3         2.6. AVERAGE TIME OF OCCUPANCY       3         3. AVERAGE TOWER       3         4.1. BASIC DATA RATE GFSK MODULATION       4         6.2. DATA RATE PI/4-DQPSK MODULATION       4         6.3. ENHANCED DATA RATE 8PSK MODULATION       4         7.1. 20dB AND 99% BANDWIDTH       4         7.2. OUTPUT POWER       4         7.3. CONDUCTED SPURIOUS EMISSIONS       4         8ADIATED TEST RESULTS       5         1. LIMITS AND PROCEDURE       5         1. TX ABOVE 1 GHZ BASIC DATA RATE GFSK MODULATION       5                                                                                                                                                                                                                                                                                                               | <b>5</b> 5 5 7 7 0 3 8 0 4 9 0 0 0 1 1 4 7 <b>2</b> 2 3 |

| 8.3.  | TX ABOVE 1 GHz ENHANCED DATA RATE 8PSK MODULATION | 63 |
|-------|---------------------------------------------------|----|
| 8.4.  | WORST-CASE BELOW 1 GHz                            | 73 |
| 9. AC | POWER LINE CONDUCTED EMISSIONS                    | 75 |
| 9.1.  | EUT WITH AC ADAPTER                               | 76 |
| 9.2.  | EUT WITH USB LAPTOP                               | 80 |
| 10. S | ETUP PHOTOS                                       | 82 |

Page 4 of 87

Pass

# **1. ATTESTATION OF TEST RESULTS**

**INDUSTRY CANADA RSS-GEN Issue 4** 

| COMPANY NAME:                                                   | DMPANY NAME:INTEL CORPORATION2200 MISSION COLLEGE BOULEVARDSANTA CLARA, CA 95052, U.S.A. |              |  |  |  |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------|--|--|--|
| EUT DESCRIPTION:                                                | /g/n, Bluetooth and BLE                                                                  |              |  |  |  |
| MODEL: DW1                                                      |                                                                                          |              |  |  |  |
| SERIAL NUMBER: TIDPC3FZ52800CH (Radiated); TIDPC1FZ536009X (Con |                                                                                          |              |  |  |  |
| <b>DATE TESTED:</b> OCTOBER 15 – 20, 2015                       |                                                                                          |              |  |  |  |
|                                                                 | APPLICABLE STANDARDS                                                                     | 6            |  |  |  |
|                                                                 | STANDARD                                                                                 | TEST RESULTS |  |  |  |
| CFR 47                                                          | 7 Part 15 Subpart C                                                                      | Pass         |  |  |  |
| INDUSTRY C                                                      | ANADA RSS-247 Issue 1                                                                    | Pass         |  |  |  |

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

Chin Pany

CHIN PANG SENIOR ENGINEER UL VERIFICATION SERVICES INC.

Tested By:

JUSTIN KO EMC ENGINEER UL VERIFICATION SERVICES INC.

Page 5 of 87

# 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, RSS-GEN Issue 4 and RSS-247 Issue 1.

# 3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

| 47173 Benicia Street   | 47266 Benicia Street   |
|------------------------|------------------------|
| Chamber A(IC: 2324B-1) | Chamber D(IC: 2324B-4) |
| Chamber B(IC: 2324B-2) | Chamber E(IC: 2324B-5) |
| Chamber C(IC: 2324B-3) | Chamber F(IC: 2324B-6) |
|                        | Chamber G(IC: 2324B-7) |
|                        | Chamber H(IC: 2324B-8) |

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers A through H are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-8, respectively.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

# 4. CALIBRATION AND UNCERTAINTY

## 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

# 4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

Page 6 of 87

## 4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| PARAMETER                             | UNCERTAINTY |
|---------------------------------------|-------------|
| Conducted Disturbance, 0.15 to 30 MHz | ± 3.52 dB   |
| Radiated Disturbance, 30 to 1000 MHz  | ± 4.94 dB   |
| Radiated Disturbance, 1 to 6 GHz      | ± 3.86 dB   |
| Radiated Disturbance, 6 to 18 GHz     | ± 4.23 dB   |
| Radiated Disturbance, 18 to 26 GHz    | ± 5.30 dB   |
| Radiated Disturbance, 26 to 40 GHz    | ± 5.23 dB   |

Uncertainty figures are valid to a confidence level of 95%.

Page 7 of 87

# 5. EQUIPMENT UNDER TEST

# 5.1. DESCRIPTION OF EUT

The EUT is a smart watch with SMART WATCH with 802.11b/g/n, Bluetooth and BLE

## 5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

| Frequency Range | Frequency Range Mode |       | Output Power |
|-----------------|----------------------|-------|--------------|
| (MHz)           |                      | (dBm) | (mW)         |
| 2402 - 2480     | Basic GFSK           | 11.09 | 12.85        |
| 2402 - 2480     | Enhanced 8PSK        | 9.02  | 7.98         |

Note: GFSK, Pi/4-DQPSK, 8PSK average Power are all investigated, The GFSK & 8PSK Power are the worst case. Testing is based on this mode to showing compliance. For average power data please refer to section 8.6.

# 5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a trace antenna, with a maximum gain of -0.84 dBi.

# 5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was DVT Eng. Build.

## 5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z, it was determined that Z orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Z orientation.

Page 8 of 87

## 5.6. DESCRIPTION OF TEST SETUP

#### SUPPORT EQUIPMENT

| Support Equipment List                              |        |             |                        |     |  |  |
|-----------------------------------------------------|--------|-------------|------------------------|-----|--|--|
| Description Manufacturer Model Serial Number FCC ID |        |             |                        |     |  |  |
| Laptop                                              | Lenovo | Yoga 2 11   | YB04282152             | N/A |  |  |
| AC adapter                                          | Lenovo | ADLX45NCC3A | 11S45N0297Z1ZSH443G0XE | N/A |  |  |

### I/O CABLES

| I/O Cable List |         |                |           |             |                     |                          |  |
|----------------|---------|----------------|-----------|-------------|---------------------|--------------------------|--|
| Cable          | Port    | # of identical | Connector | Cable Type  | <b>Cable Length</b> | Remarks                  |  |
| No             |         | ports          | Туре      |             | (m)                 |                          |  |
| 1              | AC      | 1              | 3-Prong   | Un-Shielded | 1.8                 | N/A                      |  |
| 2              | DC      | 1              | DC        | Un-Shielded | 1                   | N/A                      |  |
| 3              | USB     | 1              | USB       | Un-Shielded | 0.9                 | Laptop to EUT            |  |
| 4              | Antenna | 1              | SMA       | Shielded    | 0.3                 | EUT to spectrum Analyzer |  |
| 5              | AC/DC   | 1              | USB Micro | Un-Shielded | 0.9                 |                          |  |

### TEST SETUP

Test software exercised the radio card.

Page 9 of 87

### SETUP DIAGRAM FOR CONDUCTED TESTS



Page 10 of 87

### SETUP DIAGRAM FOR RADIATED TESTS



Page 11 of 87

### SETUP DIAGRAM 1 FOR LINE CONDUCTED TEST



Page 12 of 87

### SETUP DIAGRAM 2 FOR LINE CONDUCTED TEST



Page 13 of 87

# 6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

| Test Equipment List                |                 |                    |                        |          |          |  |  |
|------------------------------------|-----------------|--------------------|------------------------|----------|----------|--|--|
| Description                        | Manufacturer    | Model              | T No.                  | Cal Date | Cal Due  |  |  |
| Radiated Software                  | UL              | UL EMC             | Ver 9.5, June 24, 2015 |          |          |  |  |
| Conducted Software                 | UL              | UL EMC             |                        | Ver 3.5  |          |  |  |
| Spectrum Analyzer,                 | Keysight        | N9030A             | 342                    | 06/29/15 | 06/29/16 |  |  |
| PXA, 3Hz to 44GHz                  |                 |                    |                        |          |          |  |  |
| Spectrum Analyzer,                 | Keysight        | N9030A             | 905                    | 06/16/15 | 05/26/16 |  |  |
| PXA, 3Hz to 44GHz                  |                 |                    |                        |          |          |  |  |
| Antenna,                           | ETS Lindgren    | 3117               | 862                    | 04/10/15 | 04/10/16 |  |  |
| Horn 1-18GHz                       |                 |                    |                        |          |          |  |  |
| Antenna,                           | Sunol Sciences  | JB3                | 899                    | 04/30/15 | 04/30/16 |  |  |
| Broadband Hybrid, 30 to            |                 |                    |                        |          |          |  |  |
| 2000MHz                            |                 |                    |                        |          |          |  |  |
| Filter, HPF, 3.0GHz                | Micro-Tronics   | HPM17543           | 898                    | 04/25/15 | 04/25/16 |  |  |
| Amplifier, 1-18GHz                 | Miteq           | AFS42-00101800-25- | 491                    | 04/25/15 | 04/25/16 |  |  |
|                                    |                 | S-42               |                        |          |          |  |  |
| Amplifier,                         | Sonoma          | 310N               | 834                    | 06/08/15 | 06/08/16 |  |  |
| 10kHz to 1GHz, 32dB                |                 |                    |                        |          |          |  |  |
| Power Meter                        | Keysight        | N1911A             | 1244                   | 07/02/15 | 07/02/16 |  |  |
| Power Sensor                       | Keysight        | N1921A             | 1228                   | 07/06/15 | 07/06/16 |  |  |
| LISN, 30MHz                        | FCC             | 50/250-25-2        | 24                     | 01/16/15 | 01/16/16 |  |  |
| EMI Test Receiver, 9kHz to<br>7GHz | Rhode & Schwarz | ESCI 7             | 212                    | 08/07/15 | 08/07/16 |  |  |

Page 14 of 87

# 7. ANTENNA PORT TEST RESULTS

# 7.1. ON TIME AND DUTY CYCLE

## <u>LIMITS</u>

None; for reporting purposes only.

## PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.

| Mode           | ON Time | Period | Duty Cycle | Duty   | Duty Cycle               | 1/B         |
|----------------|---------|--------|------------|--------|--------------------------|-------------|
|                | В       |        | x          | Cycle  | <b>Correction Factor</b> | Minimum VBW |
|                | (msec)  | (msec) | (linear)   | (%)    | (dB)                     | (kHz)       |
| 2.4 GHz band   |         |        |            |        |                          |             |
| Bluetooth GFSK | 2.884   | 3.752  | 0.769      | 76.87% | 1.14                     | 0.347       |
| Bluetooth 8PSK | 2.751   | 3.752  | 0.733      | 73.32% | 1.35                     | 0.364       |

## 7.1.1. ON TIME AND DUTY CYCLE RESULTS

Page 15 of 87

#### **DUTY CYCLE PLOTS**





Page 16 of 87

## 7.2. BASIC DATA RATE GFSK MODULATION

## 7.2.1. 20 dB AND 99% BANDWIDTH

### **GFSK MODULATION**

#### <u>LIMIT</u>

None; for reporting purposes only.

#### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to  $\geq$  1% of the 20 dB bandwidth. The VBW is set to  $\geq$  RBW. The sweep time is coupled.

#### **RESULTS**

| Channel | Frequency 20 dB Bandwidth |         | 99% Bandwidth |  |
|---------|---------------------------|---------|---------------|--|
|         | (MHz)                     | (kHz)   | (kHz)         |  |
| Low     | 2402                      | 922.231 | 903.4774      |  |
| Middle  | 2441                      | 917.852 | 906.6329      |  |
| High    | 2480                      | 892.633 | 900.2181      |  |

Page 17 of 87

#### 20 dB AND 99% BANDWIDTH



| BANDWIDTH MID CH                                                                                                                                                                            | Measure                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|                                                                                                                                                                                             | rieasure               |
| Ch Freq 2.441 GHz Trig Free<br>Occupied Bandwidth Averages: 20                                                                                                                              | Meas Off               |
|                                                                                                                                                                                             | Channel Power          |
| Hrvs.5(092315),CX, Conducted H                                                                                                                                                              |                        |
| Ker 30 dBm         Htten 30 dB           #Samp                                                                                                                                              | Occupied BW            |
| 10<br>dB/<br>Offst<br>10.7<br>Market (10)<br>10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -                                                                                                        | ACP                    |
| dB<br>Center 2.441 000 GHz<br>Span 2 MHz                                                                                                                                                    | Multi Carrier<br>Power |
| #Kes ви зи кнг         #VBW 91 kHz         #Sweep 100 ms (1001 pts)           Occupied Bandwidth         Осс ВИ % Риг         99.00 %           906.6329 kHz         × dB         -20.00 dB | Power Stat<br>CCDF     |
| Transmit Freq Error 14.460 kHz<br>× dB Bandwidth 917.852 kHz*                                                                                                                               | More<br>1 of 2         |
| Copyright 2000-2010 Agilent Technologies                                                                                                                                                    |                        |

Page 18 of 87



Page 19 of 87

## 7.2.2. OUTPUT POWER

## <u>LIMIT</u>

§15.247 (b) (1)

IC RSS-247 (5.1) (2)

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

### <u>RESULTS</u>

| Channel | Frequency | Output Power | Directional   | Limit | Margin |
|---------|-----------|--------------|---------------|-------|--------|
|         | (MHz)     | (dBm)        | Gain<br>(dBi) | (dBm) | (dB)   |
| Low     | 2402      | 11.09        | -0.84         | 30    | -18.91 |
| Middle  | 2441      | 10.88        | -0.84         | 30    | -19.12 |
| High    | 2480      | 10.44        | -0.84         | 30    | -19.56 |

Page 20 of 87

#### **OUTPUT POWER**





Page 21 of 87

| 🔆 Agilent 09:05:49 Oc                 | et 20, 2015 | RT                                  | Freq/Channel                                |  |
|---------------------------------------|-------------|-------------------------------------|---------------------------------------------|--|
| Ref 20 dBm A                          | tten 20 dB  | Mkr1 2.479 910 GHz<br>10.44 dBm     | Certer Freq<br>2.48000000 GHz               |  |
| Log<br>10<br>dB/                      |             |                                     | Start Freq<br>2.47850000 GHz                |  |
| dB                                    |             |                                     | Stop Freq<br>2.48150000 GHz                 |  |
| LgAv                                  |             |                                     | CF Step<br>300.000000 kHz<br><u>Auto Ma</u> |  |
| M1 S2<br>S3 FC<br>AA                  |             |                                     | Freq Clfset<br>0.00000000 Hz                |  |
| a(1):<br>FTun<br>Swp                  |             |                                     | Signal Track<br><sup>On <u>Ci</u>t</sup>    |  |
| Center 2.480 000 GHz<br>#Res BW 3 MHz | #VBW 3 MHz  | Span 3 MHz<br>Sweep 1 ms (1001 pts) |                                             |  |

Page 22 of 87

## 7.2.3. CONDUCTED SPURIOUS EMISSIONS

### LIMITS

FCC §15.247 (d)

IC RSS-247 (5.5)

Limit = -20 dBc

## TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

Page 23 of 87

#### **RESULTS**

#### SPURIOUS EMISSIONS, LOW CHANNEL





Page 24 of 87

#### SPURIOUS EMISSIONS, MID CHANNEL





Page 25 of 87

#### SPURIOUS EMISSIONS, HIGH CHANNEL





Page 26 of 87

### SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON





Page 27 of 87

## 7.2.4. HOPPING FREQUENCY SEPARATION

## LIMIT

FCC §15.247 (a) (1)

IC RSS-247 (5.1) (2)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

#### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 910 kHz. The sweep time is coupled.

### **RESULTS**

Page 28 of 87

#### **HOPPING FREQUENCY SEPARATION**



Page 29 of 87

## 7.2.5. NUMBER OF HOPPING CHANNELS

## LIMIT

FCC §15.247 (a) (1) (iii)

IC RSS-247 (5.1) (4)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 nonoverlapping channels.

### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

### <u>RESULTS</u>

Normal Mode: 79 Channels observed.

Page 30 of 87

#### NUMBER OF HOPPING CHANNELS



Page 31 of 87





Page 32 of 87



Page 33 of 87

## 7.2.6. AVERAGE TIME OF OCCUPANCY

## <u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-247 (5.1) (4)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels \* 0.4 s) is equal to 10 \* (# of pulses in 3.16 s) \* pulse width.

### **RESULTS**

| DH Packet        | Pulse<br>Width | Number of<br>Pulses in | Average Time<br>of Occupancy | Limit | Margin |  |  |  |
|------------------|----------------|------------------------|------------------------------|-------|--------|--|--|--|
|                  | (msec)         | 3.16<br>seconds        | (sec)                        | (sec) | (sec)  |  |  |  |
| GFSK Normal Mode |                |                        |                              |       |        |  |  |  |
| DH1              | 0.305          | 16                     | 0.049                        | 0.4   | -0.351 |  |  |  |
| DH3              | 0.928          | 11                     | 0.102                        | 0.4   | -0.298 |  |  |  |
| DH5              | 2.912          | 8                      | 0.233                        | 0.4   | -0.167 |  |  |  |

Page 34 of 87

#### PULSE WIDTH - DH1



#### NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH1



Page 35 of 87

#### PULSE WIDTH - DH3



### NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH3



Page 36 of 87
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 37 of 87

#### PULSE WIDTH – DH5



#### NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH5



Page 38 of 87

# 7.6. AVERAGE POWER

#### <u>LIMIT</u>

None; for reporting purposes only.

#### TEST PROCEDURE

The transmitter output is connected to a power meter.

#### **RESULTS**

The cable assembly insertion loss of 10.3 dB (including 10 dB pad and 0.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Page 39 of 87

# 7.6.1. BASIC DATA RATE GFSK MODULATION

| Channel | Frequency | Average Power |  |  |  |  |
|---------|-----------|---------------|--|--|--|--|
|         | (MHz)     | (dBm)         |  |  |  |  |
| Low     | 2402      | 10.3          |  |  |  |  |
| Middle  | 2441      | 10.2          |  |  |  |  |
| High    | 2480      | 10.1          |  |  |  |  |
| Worst   |           | 10.3          |  |  |  |  |

## 7.6.2. DATA RATE PI/4-DQPSK MODULATION

| Channel | Frequency | Average Power |
|---------|-----------|---------------|
|         | (MHz)     | (dBm)         |
| Low     | 2402      | 6.7           |
| Middle  | 2441      | 6.4           |
| High    | 2480      | 6.2           |
| Worst   |           | 6.7           |

## 7.6.3. ENHANCED DATA RATE 8PSK MODULATION

| Channel | Frequency<br>(MHz) | Average Power<br>(dBm) |  |  |  |  |
|---------|--------------------|------------------------|--|--|--|--|
| Low     | 2402               | 6.7                    |  |  |  |  |
| Middle  | 2441               | 6.4                    |  |  |  |  |
| High    | 2480               | 6.2                    |  |  |  |  |
| Worst   |                    | 6.7                    |  |  |  |  |

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701I TEL: (510) 771-1000 FAX: (510) 661-0888

Page 40 of 87

# 7.7. ENHANCED DATA RATE 8PSK MODULATION

## 7.7.1. 20dB AND 99% BANDWIDTH

#### <u>LIMIT</u>

None; for reporting purposes only.

#### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to  $\geq$  1% of the 20 dB bandwidth. The VBW is set to  $\geq$  RBW. The sweep time is coupled.

#### **RESULTS**

| Channel | Frequency | 20 dB Bandwidth | 99% Bandwidth |
|---------|-----------|-----------------|---------------|
|         | (MHz)     | (MHz)           | (MHz)         |
| Low     | 2402      | 1.333           | 1.233         |
| Middle  | 2441      | 1.299           | 1.230         |
| High    | 2480      | 1.295           | 1.217         |

Page 41 of 87

#### 20 dB AND 99% BANDWIDTH





Page 42 of 87



Page 43 of 87

# 7.7.2. OUTPUT POWER

#### <u>LIMIT</u>

§15.247 (b) (1)

RSS-247 (5.4) (2)

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

#### TEST PROCEDURE

The transmitter output is connected to a wideband peak and average power meter.

#### <u>RESULTS</u>

For 75 or more hopping channels

| Channel | Frequency | Output Power | Directional   | Limit | Margin |
|---------|-----------|--------------|---------------|-------|--------|
|         | (MHz)     | (dBm)        | Gain<br>(dBi) | (dBm) | (dB)   |
| Low     | 2402      | 9.02         | -0.84         | 21    | -11.98 |
| Middle  | 2441      | 8.57         | -0.84         | 21    | -12.43 |
| High    | 2480      | 8.08         | -0.84         | 21    | -12.92 |

Page 44 of 87

#### **OUTPUT POWER**



|                                   |             |           | Mkr1    | 2.440 880 GHz               |                                             |
|-----------------------------------|-------------|-----------|---------|-----------------------------|---------------------------------------------|
| Ref 20 dBm<br>#Peak               | Atten 20 dB |           |         | 8.57 dBm                    | Center Freq<br>2.44100000 GHz               |
| Log<br>10<br>dB/<br>Offst         |             | 1<br>•    |         |                             | Start Freq<br>2.43950000 GHz                |
| 10.7<br>dB                        |             |           |         |                             | Stop Freq<br>2.44250000 GHz                 |
| LgAv                              |             |           |         |                             | CF Step<br>300.000000 kHz<br><u>Auto Ma</u> |
| M1 S2<br>S3 FC<br>AA              |             |           |         |                             | Freq Clfset<br>0.00000000 Hz                |
| ¤(f):<br>FTun<br>Swp              |             |           |         |                             | Signal Track<br><sup>On <u>C</u>i</sup>     |
| Center 2.441 000<br>#Res BW 3 MHz | GHz<br>#\   | /BW 3 MHz | Sweep 1 | Span 3 MHz<br>ms (1001 pts) |                                             |

Page 45 of 87

| PEAK POW                          | ER HIGH CH<br>:30 Oct 20, 2015 | R T                                    | Freq/Channel                             |
|-----------------------------------|--------------------------------|----------------------------------------|------------------------------------------|
| Ref 20 dBm                        | Atten 20 dB                    | Mkr1 2.479 880 GHz<br>8.08 dBm         | Center Freq<br>2.48000000 GHz            |
| Log<br>10<br>dB/                  |                                |                                        | Start Freq<br>2.47850000 GHz             |
| Offst<br>10.7<br>dB               |                                |                                        | Stop Freq<br>2.48150000 GHz              |
| LgAv                              |                                |                                        | CF Step<br>300.000000 kHz<br>Auto Man    |
| M1 S2<br>S3 FC<br>AA              |                                |                                        | Freq Clfset<br>0.00000000 Hz             |
| ¤(f):<br>FTun<br>Swp              |                                |                                        | Signal Track<br><sup>On <u>Cif</u></sup> |
| Center 2.480 000<br>#Res BW 3 MHz | GHz<br>#VBW 3 M                | Span 3 MHz<br>Hz Sweep 1 ms (1001 pts) |                                          |

Page 46 of 87

## 7.7.3. CONDUCTED SPURIOUS EMISSIONS

#### LIMITS

FCC §15.247 (d)

IC RSS-247 (5.5)

Limit = -20 dBc

#### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

Page 47 of 87

#### **RESULTS**

#### SPURIOUS EMISSIONS, LOW CHANNEL





Page 48 of 87

#### SPURIOUS EMISSIONS, MID CHANNEL





Page 49 of 87

#### SPURIOUS EMISSIONS, HIGH CHANNEL





Page 50 of 87

#### SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON





Page 51 of 87

# 8. RADIATED TEST RESULTS

# 8.1. LIMITS AND PROCEDURE

#### <u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-GEN, Section 8.9 and 8.10.

| Frequency Range<br>(MHz) | Field Strength Limit<br>(uV/m) at 3 m | Field Strength Limit<br>(dBuV/m) at 3 m |  |  |  |
|--------------------------|---------------------------------------|-----------------------------------------|--|--|--|
| 30 - 88                  | 100                                   | 40                                      |  |  |  |
| 88 - 216                 | 150                                   | 43.5                                    |  |  |  |
| 216 - 960                | 200                                   | 46                                      |  |  |  |
| Above 960                | 500                                   | 54                                      |  |  |  |

#### TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T (10 Hz) video bandwidth with peak detector for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions

Page 52 of 87

FAX: (510) 661-0888

#### TX ABOVE 1 GHz BASIC DATA RATE GFSK MODULATION 8.2.

#### **RESTRICTED BANDEDGE (LOW CHANNEL)**



#### **Trace Markers**

| Marker | Frequency | Meter   | Det  | AF T119 | Amp/Cbl/ | Corrected | Average  | Margin | Peak Limit | PK Margin | Azimuth | Height | Polarity |
|--------|-----------|---------|------|---------|----------|-----------|----------|--------|------------|-----------|---------|--------|----------|
|        | (GHZ)     | Reading |      | (ab/m)  | Fitr/Pad | Reading   | Limit    | (ab)   | (abuv/m)   | (ab)      | (Degs)  | (cm)   |          |
|        |           | (dBuV)  |      |         | (dB)     | (dBuV/m)  | (dBuV/m) |        |            |           |         |        |          |
| 2      | 2.312     | 43.03   | РК   | 31.7    | -22.4    | 52.33     | -        | -      | 74         | -21.67    | 189     | 178    | Н        |
| 1      | 2.39      | 40.31   | РК   | 32      | -22.4    | 49.91     | -        | -      | 74         | -24.09    | 189     | 178    | н        |
| 3      | 2.39      | 29.57   | VB1T | 32      | -22.4    | 39.17     | 54       | -14.83 | -          | -         | 189     | 178    | н        |
| 4      | 2.39      | 29.71   | VB1T | 32      | -22.4    | 39.31     | 54       | -14.69 | -          | -         | 189     | 178    | Н        |

PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 53 of 87



#### **Trace Markers**

| Marker | Frequency<br>(GHz) | Meter<br>Reading | Det  | AF T119<br>(dB/m) | Amp/Cbl/<br>Fltr/Pad | Corrected<br>Reading | Average<br>Limit | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|------------------|------|-------------------|----------------------|----------------------|------------------|----------------|------------------------|-------------------|-------------------|----------------|----------|
|        |                    | (dBuV)           |      |                   | (dB)                 | (dBuV/m)             | (dBuV/m)         |                |                        |                   |                   |                |          |
| 2      | 2.329              | 42.74            | РК   | 31.7              | -22.4                | 52.04                | -                | -              | 74                     | -21.96            | 169               | 175            | V        |
| 4      | 2.381              | 29.66            | VB1T | 31.9              | -22.4                | 39.16                | 54               | -14.84         | -                      | -                 | 169               | 175            | V        |
| 1      | 2.39               | 39.63            | РК   | 32                | -22.4                | 49.23                | -                | -              | 74                     | -24.77            | 169               | 175            | V        |
| 3      | 2.39               | 29.48            | VB1T | 32                | -22.4                | 39.08                | 54               | -14.92         | -                      | -                 | 169               | 175            | V        |

PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 54 of 87

#### **AUTHORIZED BANDEDGE (HIGH CHANNEL)**



#### **Trace Markers**

| Marker | Frequency | Meter   | Det  | AF T119 | Amp/Cbl/ | Corrected | Average  | Margin | Peak Limit | PK Margin | Azimuth | Height | Polarity |
|--------|-----------|---------|------|---------|----------|-----------|----------|--------|------------|-----------|---------|--------|----------|
|        | (GHz)     | Reading |      | (dB/m)  | Fltr/Pad | Reading   | Limit    | (dB)   | (dBuV/m)   | (dB)      | (Degs)  | (cm)   |          |
|        |           | (dBuV)  |      |         | (dB)     | (dBuV/m)  | (dBuV/m) |        |            |           |         |        |          |
| 1      | 2.484     | 43.67   | РК   | 32.3    | -22.1    | 53.87     | -        | -      | 74         | -20.13    | 259     | 115    | н        |
| 2      | 2.484     | 45.77   | РК   | 32.3    | -22.1    | 55.97     | -        | -      | 74         | -18.03    | 259     | 115    | Н        |
| 3      | 2.484     | 29.98   | VB1T | 32.3    | -22.1    | 40.18     | 54       | -13.82 | -          | -         | 259     | 115    | Н        |
| 4      | 2.484     | 30.27   | VB1T | 32.3    | -22.1    | 40.47     | 54       | -13.53 | -          | -         | 259     | 115    | н        |

#### PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 55 of 87



#### **Trace Markers**

| Marker | Frequency<br>(GHz) | Meter<br>Reading | Det  | AF T119<br>(dB/m) | Amp/Cbl/<br>Fltr/Pad | Corrected<br>Reading | Average<br>Limit | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|------------------|------|-------------------|----------------------|----------------------|------------------|----------------|------------------------|-------------------|-------------------|----------------|----------|
|        |                    | (asuv)           |      |                   | (ar)                 | (dBuV/m)             | (asuv/m)         |                |                        |                   |                   |                |          |
| 1      | 2.484              | 39.38            | РК   | 32.3              | -22.1                | 49.58                | -                | -              | 74                     | -24.42            | 192               | 178            | V        |
| 3      | 2.484              | 29.56            | VB1T | 32.3              | -22.1                | 39.76                | 54               | -14.24         | -                      | -                 | 192               | 178            | V        |
| 2      | 2.49               | 43.51            | РК   | 32.3              | -22.2                | 53.61                | -                | -              | 74                     | -20.39            | 192               | 178            | V        |
| 4      | 2.529              | 29.69            | VB1T | 32.4              | -22                  | 40.09                | 54               | -13.91         | -                      | -                 | 192               | 178            | V        |

#### PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 56 of 87

# HARMONICS AND SPURIOUS EMISSIONS



Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 57 of 87

#### <u>DATA</u>

| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det  | AF T119<br>(dB/m) | Amp/Cbl/F<br>ltr/Pad<br>(dB) | Corrected<br>Reading<br>(dBuV/m) | Avg Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|------|-------------------|------------------------------|----------------------------------|-----------------------|----------------|------------------------|-------------------|-------------------|----------------|----------|
| 1      | * 1.29             | 42.99                      | PK3  | 29.8              | -23.1                        | 49.69                            | -                     | -              | 74                     | -24.31            | 259               | 197            | Н        |
|        | * 1.29             | 30.02                      | VB1T | 29.8              | -23.1                        | 36.72                            | 54                    | -17.28         | -                      | -                 | 259               | 197            | Н        |
| 3      | * 2.74             | 42.2                       | PK3  | 32.4              | -22.1                        | 52.5                             | -                     | -              | 74                     | -21.5             | 51                | 361            | V        |
|        | * 2.741            | 29.5                       | VB1T | 32.4              | -22.1                        | 39.8                             | 54                    | -14.2          | -                      | -                 | 51                | 361            | V        |
| 4      | * 4.804            | 40.99                      | PK3  | 34                | -29.4                        | 45.59                            | -                     | -              | 74                     | -28.41            | 51                | 271            | н        |
|        | * 4.804            | 30.75                      | VB1T | 34                | -29.4                        | 35.35                            | 54                    | -18.65         | -                      | -                 | 51                | 271            | Н        |
| 5      | * 11.803           | 36.99                      | PK3  | 39                | -22.5                        | 53.49                            | -                     | -              | 74                     | -20.51            | 10                | 199            | V        |
|        | * 11.804           | 24.21                      | VB1T | 39                | -22.5                        | 40.71                            | 54                    | -13.29         | -                      | -                 | 10                | 199            | V        |
| 2      | 2.149              | 29.56                      | VB1T | 31.5              | -22.3                        | 38.76                            | -                     | -              | -                      | -                 | 10                | 100            | н        |
|        | 2.151              | 43.19                      | PK3  | 31.5              | -22.3                        | 52.39                            | -                     | -              | -                      | -                 | 10                | 100            | Н        |
| 6      | 17.663             | 35.49                      | PK3  | 41.4              | -20.7                        | 56.19                            | -                     | -              | -                      | -                 | 10                | 200            | V        |
|        | 17.666             | 22.23                      | VB1T | 41.4              | -20.9                        | 42.73                            | -                     | -              | -                      | -                 | 10                | 200            | V        |

\* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK3 - FHSS Method: Maximum Peak

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 58 of 87

#### MID CHANNEL



Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 59 of 87

#### DATA

| Frequency<br>(GHz) | Meter<br>Reading | Det  | AF T119<br>(dB/m) | Amp/Cbl/<br>Fltr/Pad | Corrected<br>Reading | Avg Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------------------|------------------|------|-------------------|----------------------|----------------------|-----------------------|----------------|------------------------|-------------------|-------------------|----------------|----------|
| . ,                | (dBuV)           |      |                   | (dB)                 | (dBuV/m)             | ,                     |                | ,                      | . ,               | ,                 | . ,            |          |
| * 1.318            | 43.17            | PK3  | 29.7              | -23.1                | 49.77                | -                     | -              | 74                     | -24.23            | 304               | 387            | Н        |
| * 1.301            | 30.1             | VB1T | 29.9              | -23.2                | 36.8                 | 54                    | -17.2          | -                      | -                 | 304               | 387            | Н        |
| * 2.796            | 42.34            | PK3  | 32.6              | -22.1                | 52.84                | -                     | -              | 74                     | -21.16            | 294               | 342            | V        |
| * 2.8              | 29.74            | VB1T | 32.6              | -22                  | 40.34                | 54                    | -13.66         | -                      | -                 | 294               | 342            | V        |
| * 11.514           | 36.43            | PK3  | 38.4              | -22                  | 52.83                | -                     | -              | 74                     | -21.17            | 260               | 122            | V        |
| * 11.514           | 23.52            | VB1T | 38.4              | -22                  | 39.92                | 54                    | -14.08         | -                      | -                 | 260               | 122            | V        |
| 2.079              | 29.51            | VB1T | 31.5              | -22.3                | 38.71                | 54                    | -15.29         | -                      | -                 | 260               | 100            | Н        |
| 2.082              | 41.77            | PK3  | 31.5              | -22.3                | 50.97                | -                     | -              | 74                     | -23.03            | 260               | 100            | н        |
| 7.214              | 39.87            | PK3  | 35.6              | -28.6                | 46.87                | -                     | -              | 74                     | -27.13            | 260               | 100            | Н        |
| 7.214              | 26.78            | VB1T | 35.6              | -28.6                | 33.78                | 54                    | -20.22         | -                      | -                 | 260               | 100            | н        |
| 17.492             | 35.61            | PK3  | 41.4              | -22.4                | 54.61                | -                     | -              | 74                     | -19.39            | 260               | 200            | V        |
| 17.492             | 22.73            | VB1T | 41.4              | -22.3                | 41.83                | 54                    | -12.17         | -                      | -                 | 260               | 200            | V        |

\* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK3 - FHSS Method: Maximum Peak

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 60 of 87

#### **HIGH CHANNEL**



Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 61 of 87

#### DATA

| Frequency<br>(GHz) | Meter<br>Reading | Det  | AF T119<br>(dB/m) | Amp/Cbl/<br>Fltr/Pad | Corrected<br>Reading | Avg Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------------------|------------------|------|-------------------|----------------------|----------------------|-----------------------|----------------|------------------------|-------------------|-------------------|----------------|----------|
|                    | (dBuV)           |      |                   | (dB)                 | (dBuV/m)             |                       |                |                        |                   |                   |                |          |
| * 1.29             | 42.98            | PK3  | 29.8              | -23.1                | 49.68                | -                     | -              | 74                     | -24.32            | 190               | 103            | н        |
| * 1.29             | 30               | VB1T | 29.8              | -23.1                | 36.7                 | 54                    | -17.3          | -                      | -                 | 190               | 103            | Н        |
| * 2.818            | 42.63            | PK3  | 32.6              | -22.1                | 53.13                | -                     | -              | 74                     | -20.87            | 161               | 219            | V        |
| * 2.818            | 29.56            | VB1T | 32.6              | -22.1                | 40.06                | 54                    | -13.94         | -                      | -                 | 161               | 219            | V        |
| * 4.938            | 40.9             | PK3  | 34                | -29.8                | 45.1                 | -                     | -              | 74                     | -28.9             | 313               | 340            | Н        |
| * 4.938            | 28.01            | VB1T | 34                | -29.8                | 32.21                | 54                    | -21.79         | -                      | -                 | 313               | 340            | Н        |
| * 11.906           | 36.23            | PK3  | 39.1              | -22.7                | 52.63                | -                     | -              | 74                     | -21.37            | 58                | 399            | V        |
| * 11.907           | 23.5             | VB1T | 39.1              | -22.8                | 39.8                 | 54                    | -14.2          | -                      | -                 | 58                | 399            | V        |
| 2.046              | 29.58            | VB1T | 31.5              | -22.5                | 38.58                | 54                    | -15.42         | -                      | -                 | 58                | 100            | Н        |
| 2.048              | 42.43            | PK3  | 31.5              | -22.5                | 51.43                | -                     | -              | 74                     | -22.57            | 58                | 100            | Н        |
| 17.432             | 22.74            | VB1T | 41.4              | -21.9                | 42.24                | 54                    | -11.76         | -                      | -                 | 58                | 200            | V        |
| 17.435             | 36.02            | PK3  | 41.4              | -21.9                | 55.52                | -                     | -              | 74                     | -18.48            | 58                | 200            | V        |

\* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK3 - FHSS Method: Maximum Peak

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 62 of 87

# 8.3. TX ABOVE 1 GHz ENHANCED DATA RATE 8PSK MODULATION

#### **RESTRICTED BANDEDGE (LOW CHANNEL)**



#### Trace Markers

| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det  | AF T119<br>(dB/m) | Amp/Cbl/<br>Fltr/Pad<br>(dB) | Corrected<br>Reading<br>(dBuV/m) | Average<br>Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|------|-------------------|------------------------------|----------------------------------|------------------------------|----------------|------------------------|-------------------|-------------------|----------------|----------|
| 2      | 2.386              | 42.33                      | РК   | 32                | -22.4                        | 51.93                            | -                            | -              | 74                     | -22.07            | 272               | 259            | н        |
| 1      | 2.39               | 40.89                      | PK   | 32                | -22.4                        | 50.49                            | -                            | -              | 74                     | -23.51            | 272               | 259            | Н        |
| 3      | 2.39               | 29.38                      | VB1T | 32                | -22.4                        | 38.98                            | 54                           | -15.02         | -                      | -                 | 272               | 259            | Н        |
| 4      | 2.39               | 29.62                      | VB1T | 32                | -22.4                        | 39.22                            | 54                           | -14.78         | -                      | -                 | 272               | 259            | н        |

#### PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 63 of 87



#### **Trace Markers**

| Marker | Frequency | Meter   | Det  | AF T119 | Amp/Cbl/ | Corrected | Average  | Margin | Peak Limit | PK Margin | Azimuth | Height | Polarity |
|--------|-----------|---------|------|---------|----------|-----------|----------|--------|------------|-----------|---------|--------|----------|
|        | (GHz)     | Reading |      | (dB/m)  | Fltr/Pad | Reading   | Limit    | (dB)   | (dBuV/m)   | (dB)      | (Degs)  | (cm)   |          |
|        |           | (dBuV)  |      |         | (dB)     | (dBuV/m)  | (dBuV/m) |        |            |           |         |        |          |
| 2      | 2.329     | 42.58   | РК   | 31.7    | -22.4    | 51.88     | -        | -      | 74         | -22.12    | 171     | 328    | V        |
| 4      | 2.37      | 29.62   | VB1T | 31.9    | -22.4    | 39.12     | 54       | -14.88 | -          | -         | 171     | 328    | V        |
| 1      | 2.39      | 38.99   | РК   | 32      | -22.4    | 48.59     | -        | -      | 74         | -25.41    | 171     | 328    | V        |
| 3      | 2.39      | 29.43   | VB1T | 32      | -22.4    | 39.03     | 54       | -14.97 | -          | -         | 171     | 328    | V        |

PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 64 of 87

#### **AUTHORIZED BANDEDGE (HIGH CHANNEL)**



#### **Trace Markers**

| Marker | Frequency | Meter   | Det  | AF T119 | Amp/Cbl/ | Corrected | Average  | Margin | Peak Limit | PK Margin | Azimuth | Height | Polarity |
|--------|-----------|---------|------|---------|----------|-----------|----------|--------|------------|-----------|---------|--------|----------|
|        | (GHz)     | Reading |      | (dB/m)  | Fltr/Pad | Reading   | Limit    | (dB)   | (dBuV/m)   | (dB)      | (Degs)  | (cm)   |          |
|        |           | (dBuV)  |      |         | (dB)     | (dBuV/m)  | (dBuV/m) |        |            |           |         |        |          |
| 1      | 2.484     | 40.06   | PK   | 32.3    | -22.1    | 50.26     | -        | -      | 74         | -23.74    | 265     | 115    | н        |
| 3      | 2.484     | 29.54   | VB1T | 32.3    | -22.1    | 39.74     | 54       | -14.26 | -          | -         | 265     | 115    | н        |
| 4      | 2.53      | 29.6    | VB1T | 32.4    | -22      | 40        | 54       | -14    | -          | -         | 265     | 115    | н        |
| 2      | 2.557     | 42.8    | PK   | 32.4    | -22      | 53.2      | -        | -      | 74         | -20.8     | 265     | 115    | н        |

PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 65 of 87



#### **Trace Markers**

| Marker | Frequency | Meter   | Det  | AF T119 | Amp/Cbl/ | Corrected | Average  | Margin | Peak Limit | PK Margin | Azimuth | Height | Polarity |
|--------|-----------|---------|------|---------|----------|-----------|----------|--------|------------|-----------|---------|--------|----------|
|        | (GHz)     | Reading |      | (dB/m)  | Fltr/Pad | Reading   | Limit    | (dB)   | (dBuV/m)   | (dB)      | (Degs)  | (cm)   |          |
|        |           | (dBuV)  |      |         | (dB)     | (dBuV/m)  | (dBuV/m) |        |            |           |         |        |          |
| 1      | 2.484     | 39.91   | РК   | 32.3    | -22.1    | 50.11     | -        | -      | 74         | -23.89    | 309     | 177    | V        |
| 3      | 2.484     | 29.39   | VB1T | 32.3    | -22.1    | 39.59     | 54       | -14.41 | -          | -         | 309     | 177    | V        |
| 4      | 2.531     | 29.67   | VB1T | 32.4    | -22      | 40.07     | 54       | -13.93 | -          | -         | 309     | 177    | V        |
| 2      | 2.545     | 42.91   | РК   | 32.4    | -22      | 53.31     | -        | -      | 74         | -20.69    | 309     | 177    | V        |

PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 66 of 87

# HARMONICS AND SPURIOUS EMISSIONS



Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 67 of 87

### <u>DATA</u>

| Frequency | Meter  | Det  | AF T119<br>(dB/m) | Amp/Cbl/ | DC Corr | Corrected | Avg Limit  | Margin | Peak Limit | PK Margin | Azimuth | Height | Polarity |
|-----------|--------|------|-------------------|----------|---------|-----------|------------|--------|------------|-----------|---------|--------|----------|
| (0112)    | (dBuV) |      | (05/11)           | (dB)     | (05)    | (dBuV/m)  | (ubuv/iii) | (05)   | (ubuv/iii) | (05)      | (Degs)  | (ciii) |          |
| * 1.296   | 43.06  | PK3  | 29.9              | -23.2    | 0       | 49.76     | -          | -      | 74         | -24.24    | 3       | 100    | н        |
| * 1.297   | 29.71  | VB1T | 29.9              | -23.2    | 0       | 36.41     | 54         | -17.59 | -          | -         | 3       | 100    | н        |
| * 2.783   | 42.41  | PK3  | 32.5              | -22.2    | 0       | 52.71     | -          | -      | 74         | -21.29    | 3       | 100    | н        |
| * 2.784   | 29.45  | VB1T | 32.5              | -22.2    | 0       | 39.75     | 54         | -14.25 | -          | -         | 3       | 100    | Н        |
| * 1.32    | 42.93  | PK3  | 29.6              | -23.1    | 0       | 49.43     | -          | -      | 74         | -24.57    | 3       | 100    | V        |
| * 1.32    | 29.62  | VB1T | 29.6              | -23.1    | 0       | 36.12     | 54         | -17.88 | -          | -         | 3       | 100    | V        |
| * 2.85    | 42.33  | PK3  | 32.6              | -22      | 0       | 52.93     | -          | -      | 74         | -21.07    | 3       | 100    | V        |
| * 2.85    | 29.24  | VB1T | 32.6              | -22      | 0       | 39.84     | 54         | -14.16 | -          | -         | 3       | 100    | V        |
| * 4.043   | 40.92  | PK3  | 33.3              | -30.7    | 0       | 43.52     | -          | -      | 74         | -30.48    | 3       | 100    | н        |
| * 4.042   | 27.67  | VB1T | 33.3              | -30.7    | 0       | 30.27     | 54         | -23.73 | -          | -         | 3       | 100    | н        |
| * 4.697   | 40.41  | PK3  | 34.1              | -30.1    | 0       | 44.41     | -          | -      | 74         | -29.59    | 3       | 100    | V        |
| * 4.696   | 27.4   | VB1T | 34                | -30.1    | 0       | 31.3      | 54         | -22.7  | -          | -         | 3       | 100    | V        |

\* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK3 - FHSS Method: Maximum Peak

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 68 of 87

#### MID CHANNEL



Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 69 of 87

#### DATA

| Frequency | Meter  | Det  | AF T119<br>(dB/m) | Amp/Cbl/ | DC Corr | Corrected | Avg Limit  | Margin | Peak Limit | PK Margin | Azimuth | Height | Polarity |
|-----------|--------|------|-------------------|----------|---------|-----------|------------|--------|------------|-----------|---------|--------|----------|
| (0112)    | (dBuV) |      | (05/11)           | (dB)     | (05)    | (dBuV/m)  | (ubuv/iii) | (05)   | (ubuv/iii) | (05)      | (Degs)  | (ciii) |          |
| * 2.288   | 42.6   | PK3  | 31.6              | -22.3    | 0       | 51.9      | -          | -      | 74         | -22.1     | 1       | 100    | н        |
| * 2.288   | 29.34  | VB1T | 31.6              | -22.3    | 0       | 38.64     | 54         | -15.36 | -          | -         | 1       | 100    | н        |
| * 2.811   | 42.01  | PK3  | 32.6              | -22.1    | 0       | 52.51     | -          | -      | 74         | -21.49    | 1       | 100    | н        |
| * 2.811   | 29.18  | VB1T | 32.6              | -22.1    | 0       | 39.68     | 54         | -14.32 | -          | -         | 1       | 100    | н        |
| * 2.283   | 42.32  | PK3  | 31.6              | -22.3    | 0       | 51.62     | -          | -      | 74         | -22.38    | 1       | 100    | V        |
| * 2.285   | 29.37  | VB1T | 31.6              | -22.3    | 0       | 38.67     | 54         | -15.33 | -          | -         | 1       | 100    | V        |
| * 2.71    | 42.66  | PK3  | 32.3              | -22.1    | 0       | 52.86     | -          | -      | 74         | -21.14    | 1       | 100    | V        |
| * 2.71    | 29.32  | VB1T | 32.3              | -22.1    | 0       | 39.52     | 54         | -14.48 | -          | -         | 1       | 100    | V        |
| * 4.35    | 39.82  | PK3  | 33.6              | -29.5    | 0       | 43.92     | -          | -      | 74         | -30.08    | 1       | 100    | н        |
| * 4.35    | 26.62  | VB1T | 33.6              | -29.5    | 0       | 30.72     | 54         | -23.28 | -          | -         | 1       | 100    | н        |
| * 4.516   | 40.48  | PK3  | 33.8              | -30.8    | 0       | 43.48     | -          | -      | 74         | -30.52    | 1       | 100    | V        |
| * 4.518   | 27.68  | VB1T | 33.8              | -30.8    | 0       | 30.68     | 54         | -23.32 | -          | -         | 1       | 100    | V        |

\* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK3 - FHSS Method: Maximum Peak

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 70 of 87

#### **HIGH CHANNEL**



Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 71 of 87

### <u>DATA</u>

| Frequency<br>(GHz) | Meter<br>Reading | Det  | AF T119<br>(dB/m) | Amp/Cbl/<br>Fltr/Pad | DC Corr<br>(dB) | Corrected<br>Reading | Avg Limit<br>(dBuV/m) | Margin<br>(dB) | Peak Limit<br>(dBuV/m) | PK Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------------------|------------------|------|-------------------|----------------------|-----------------|----------------------|-----------------------|----------------|------------------------|-------------------|-------------------|----------------|----------|
|                    | (dBuV)           |      |                   | (dB)                 |                 | (dBuV/m)             |                       |                |                        |                   |                   |                |          |
| * 1.276            | 42.74            | PK3  | 29.7              | -23.1                | 0               | 49.34                | -                     | -              | 74                     | -24.66            | 1                 | 100            | н        |
| * 1.276            | 29.7             | VB1T | 29.7              | -23.1                | 0               | 36.3                 | 54                    | -17.7          | -                      | -                 | 1                 | 100            | н        |
| * 2.322            | 43.51            | PK3  | 31.7              | -22.5                | 0               | 52.71                | -                     | -              | 74                     | -21.29            | 1                 | 100            | н        |
| * 2.322            | 29.33            | VB1T | 31.7              | -22.5                | 0               | 38.53                | 54                    | -15.47         | -                      | -                 | 1                 | 100            | н        |
| * 1.335            | 43.37            | PK3  | 29.4              | -23.1                | 0               | 49.67                | -                     | -              | 74                     | -24.33            | 1                 | 100            | V        |
| * 1.337            | 29.64            | VB1T | 29.4              | -23.1                | 0               | 35.94                | 54                    | -18.06         | -                      | -                 | 1                 | 100            | V        |
| * 2.775            | 42.79            | PK3  | 32.5              | -22.1                | 0               | 53.19                | -                     | -              | 74                     | -20.81            | 1                 | 100            | V        |
| * 2.774            | 29.37            | VB1T | 32.5              | -22.1                | 0               | 39.77                | 54                    | -14.23         | -                      | -                 | 1                 | 100            | V        |
| * 3.958            | 40.14            | PK3  | 33.2              | -30.4                | 0               | 42.94                | -                     | -              | 74                     | -31.06            | 1                 | 100            | н        |
| * 3.958            | 27.51            | VB1T | 33.2              | -30.4                | 0               | 30.31                | 54                    | -23.69         | -                      | -                 | 1                 | 100            | н        |
| * 4.37             | 39.78            | PK3  | 33.6              | -29.3                | 0               | 44.08                | -                     | -              | 74                     | -29.92            | 1                 | 100            | V        |
| * 4.37             | 27.01            | VB1T | 33.6              | -29.3                | 0               | 31.31                | 54                    | -22.69         | -                      | -                 | 1                 | 100            | V        |

\* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK3 - FHSS Method: Maximum Peak

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

Page 72 of 87
# 8.4. WORST-CASE BELOW 1 GHz

### SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)



Page 73 of 87

## DATA

| Marker | Frequency<br>(MHz) | Meter<br>Reading<br>(dBuV) | Det | AF T407<br>(dB/m) | Amp/Cbl (dB) | Corrected<br>Reading<br>(dBuV/m) | QPk Limit<br>(dBuV/m) | Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|-----|-------------------|--------------|----------------------------------|-----------------------|----------------|-------------------|----------------|----------|
| 1      | 32.295             | 49.29                      | Pk  | 20.1              | -31.9        | 37.49                            | 40                    | -2.51          | 0-360             | 100            | V        |
| 3      | 66.38              | 51.06                      | Pk  | 8                 | -31.5        | 27.56                            | 40                    | -12.44         | 0-360             | 401            | Н        |
| 2      | 66.465             | 55.65                      | Pk  | 8                 | -31.5        | 32.15                            | 40                    | -7.85          | 0-360             | 100            | V        |
| 4      | 101.5275           | 46.84                      | Pk  | 10.5              | -31.4        | 25.94                            | 43.52                 | -17.58         | 0-360             | 301            | Н        |
| 5      | 159.4125           | 46.98                      | Pk  | 12.1              | -31          | 28.08                            | 43.52                 | -15.44         | 0-360             | 401            | Н        |
| 6      | 228.3              | 42.93                      | Pk  | 10.9              | -30.7        | 23.13                            | 46.02                 | -22.89         | 0-360             | 100            | Н        |

Pk - Peak detector

**Radiated Emissions** 

| Frequency<br>(MHz) | Meter<br>Reading<br>(dBuV) | Det | AF T407<br>(dB/m) | Amp/Cbl<br>(dB) | Corrected<br>Reading<br>(dBuV/m) | QPk Limit<br>(dBuV/m) | Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------------------|----------------------------|-----|-------------------|-----------------|----------------------------------|-----------------------|----------------|-------------------|----------------|----------|
| 32.4781            | 37.34                      | Qp  | 19.9              | -31.8           | 25.44                            | 40                    | -14.56         | 276               | 105            | V        |

**Qp** - Quasi-Peak detector

Page 74 of 87

# 9. AC POWER LINE CONDUCTED EMISSIONS

# <u>LIMITS</u>

FCC §15.207 (a)

RSS-Gen 8.8

| Frequency of Emission (MHz) | Conducted Limit (dBµV) |            |  |  |  |  |
|-----------------------------|------------------------|------------|--|--|--|--|
| Frequency of Emission (MHZ) | Quasi-peak             | Average    |  |  |  |  |
| 0.15-0.5                    | 66 to 56 *             | 56 to 46 * |  |  |  |  |
| 0.5-5                       | 56                     | 46         |  |  |  |  |
| 5-30                        | 60                     | 50         |  |  |  |  |

## TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

## **RESULTS**

Page 75 of 87

# 9.1. EUT WITH AC ADAPTER

#### LINE 1 RESULTS



Page 76 of 87

## DATA

Range 1: Line-L1 .15 - 30MHz

| Meter   | Det                                                                                              | T24 IL L1                       | LC Cables                                                                                                                                                                              | Corrected                                                                                                                                                                                                                           | CISPR 22                                                                                                                                                                                                                                                                                                    | Margin                                                                                                                                                                                                                                                                                                                                                    | CISPR 22                                                                                                                                                                                                                                                                                                                                                                                                                           | Margin                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------|--------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reading |                                                                                                  |                                 | 1&3                                                                                                                                                                                    | Reading                                                                                                                                                                                                                             | Class B QP                                                                                                                                                                                                                                                                                                  | (dB)                                                                                                                                                                                                                                                                                                                                                      | Class B Avg                                                                                                                                                                                                                                                                                                                                                                                                                        | (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (dBuV)  |                                                                                                  |                                 |                                                                                                                                                                                        | dBuV                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 31.81   | Ca                                                                                               | 1.3                             | 0                                                                                                                                                                                      | 33.11                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                         | 55.53                                                                                                                                                                                                                                                                                                                                                                                                                              | -22.42                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 28.22   | Ca                                                                                               | 1.2                             | 0                                                                                                                                                                                      | 29.42                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                         | 55.11                                                                                                                                                                                                                                                                                                                                                                                                                              | -25.69                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 25.2    | Ca                                                                                               | .7                              | 0                                                                                                                                                                                      | 25.9                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                         | 51.68                                                                                                                                                                                                                                                                                                                                                                                                                              | -25.78                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 25.09   | Ca                                                                                               | .7                              | 0                                                                                                                                                                                      | 25.79                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                         | 51.47                                                                                                                                                                                                                                                                                                                                                                                                                              | -25.68                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 28.9    | Ca                                                                                               | .3                              | 0                                                                                                                                                                                      | 29.2                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                         | 46                                                                                                                                                                                                                                                                                                                                                                                                                                 | -16.8                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 29.29   | Ca                                                                                               | .3                              | 0                                                                                                                                                                                      | 29.59                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                         | 46                                                                                                                                                                                                                                                                                                                                                                                                                                 | -16.41                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 29.03   | Ca                                                                                               | 1                               | 0                                                                                                                                                                                      | 30.03                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                         | 54.26                                                                                                                                                                                                                                                                                                                                                                                                                              | -24.23                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 27.53   | Ca                                                                                               | .9                              | 0                                                                                                                                                                                      | 28.43                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                         | 53.64                                                                                                                                                                                                                                                                                                                                                                                                                              | -25.21                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | Meter<br>Reading<br>(dBuV)<br>31.81<br>28.22<br>25.2<br>25.09<br>28.9<br>29.29<br>29.03<br>27.53 | Meter  Det    Reading<br>(dBuV) | Meter  Det  T24 IL L1    Reading<br>(dBuV)  1.3    31.81  Ca  1.3    28.22  Ca  1.2    25.2  Ca  .7    25.09  Ca  .7    28.9  Ca  .3    29.29  Ca  .3    29.03  Ca  1    27.53  Ca  .9 | Meter  Det  T24 IL L1  LC Cables    Reading<br>(dBuV)  1&3  1&3  1&3    31.81  Ca  1.3  0    28.22  Ca  1.2  0    25.2  Ca  .7  0    25.09  Ca  .7  0    28.9  Ca  .3  0    29.29  Ca  .3  0    29.03  Ca  1  0    27.53  Ca  .9  0 | Meter  Det  T24 IL L1  LC Cables  Corrected    Reading<br>(dBuV)  1&3  Reading<br>dBuV    31.81  Ca  1.3  0  33.11    28.22  Ca  1.2  0  29.42    25.2  Ca  .7  0  25.9    25.09  Ca  .7  0  25.79    28.9  Ca  .3  0  29.2    29.29  Ca  .3  0  29.59    29.03  Ca  1  0  30.03    27.53  Ca  .9  0  28.43 | Meter  Det  T24 IL L1  LC Cables  Corrected  CISPR 22    Reading<br>(dBuV)  1&3  Reading<br>dBuV  Class B QP    31.81  Ca  1.3  0  33.11  -    28.22  Ca  1.2  0  29.42  -    25.2  Ca  .7  0  25.9  -    25.09  Ca  .7  0  25.79  -    28.9  Ca  .3  0  29.2  -    29.29  Ca  .3  0  29.59  -    29.03  Ca  1  0  30.03  -    27.53  Ca  .9  0  28.43  - | Meter  Det  T24 IL L1  LC Cables  Corrected  CISPR 22  Margin    Reading<br>(dBuV)  1&3  Reading<br>dBuV  Class B QP  (dB)    31.81  Ca  1.3  0  33.11  -  -    28.22  Ca  1.2  0  29.42  -  -    25.2  Ca  .7  0  25.9  -  -    25.09  Ca  .7  0  25.79  -  -    28.9  Ca  .3  0  29.29  -  -    29.29  Ca  .3  0  29.59  -  -    29.03  Ca  .3  0  29.59  -  -    29.03  Ca  .1  0  30.03  -  -    27.53  Ca  .9  0  28.43  -  - | Meter  Det  T24 IL L1  LC Cables  Corrected  CISPR 22  Margin  CISPR 22    Reading<br>(dBuV)  1&3  Reading<br>dBuV  Class B QP  (dB)  Class B Avg    31.81  Ca  1.3  0  33.11  -  -  55.53    28.22  Ca  1.2  0  29.42  -  -  55.11    25.2  Ca  .7  0  25.9  -  -  51.68    25.09  Ca  .7  0  25.79  -  -  51.47    28.9  Ca  .3  0  29.22  -  46    29.29  Ca  .3  0  29.59  -  46    29.03  Ca  1  0  30.03  -  -  54.26    27.53  Ca  .9  0  28.43  -  -  53.64 |

Ca - CISPR average detection

**Quasi-Peak Emissions** 

Range 1: Line-L1 .15 - 30MHz

| Frequency | Meter   | Det | T24 IL L1 | LC Cables | Corrected | CISPR 22   | Margin | CISPR 22    | Margin |
|-----------|---------|-----|-----------|-----------|-----------|------------|--------|-------------|--------|
| (MHz)     | Reading |     |           | 1&3       | Reading   | Class B QP | (dB)   | Class B Avg | (dB)   |
|           | (dBuV)  |     |           |           | dBuV      |            |        |             |        |
| .15878    | 48.23   | Qp  | 1.3       | 0         | 49.53     | 65.53      | -16    | -           | -      |
| .16688    | 46.37   | Qp  | 1.2       | 0         | 47.57     | 65.11      | -17.54 | -           | -      |
| .25238    | 40.38   | Qp  | .7        | 0         | 41.08     | 61.68      | -20.6  | -           | -      |
| .25868    | 40.9    | Qp  | .7        | 0         | 41.6      | 61.47      | -19.87 | -           | -      |
| .54938    | 37.32   | Qp  | .3        | 0         | 37.62     | 56         | -18.38 | -           | -      |
| .55388    | 37.76   | Qp  | .3        | 0         | 38.06     | 56         | -17.94 | -           | -      |
| .18488    | 45.62   | Qp  | 1         | 0         | 46.62     | 64.26      | -17.64 | -           | -      |
| .19928    | 44.46   | Qp  | .9        | 0         | 45.36     | 63.64      | -18.28 | -           | -      |
|           |         |     |           |           |           |            |        |             |        |

**Qp** - Quasi-Peak detector

Page 77 of 87

### LINE 2 RESULTS



Page 78 of 87

# <u>DATA</u>

Range 2: Line-L2 .15 - 30MHz

| Marker | Frequency | Meter   | Det | T24 IL L2 | LC Cables | Corrected | CISPR 22   | Margin | CISPR 22 | Margin |
|--------|-----------|---------|-----|-----------|-----------|-----------|------------|--------|----------|--------|
|        | (MHz)     | Reading |     |           | 2&3       | Reading   | Class B QP | (dB)   | Class B  | (dB)   |
|        |           | (dBuV)  |     |           |           | dBuV      |            |        | Avg      |        |
| 9      | .1545     | 52.98   | Pk  | 1.4       | 0         | 54.38     | 65.75      | -11.37 |          |        |
| 10     | .1635     | 32.44   | Av  | 1.3       | 0         | 33.74     | -          | -      | 55.28    | -21.54 |
| 11     | .5595     | 43.78   | Pk  | .3        | 0         | 44.08     | 56         | -11.92 |          |        |
| 12     | .5595     | 35.11   | Av  | .3        | 0         | 35.41     | -          | -      | 46       | -10.59 |
| 13     | 1.1085    | 41.85   | Pk  | .3        | 0         | 42.15     | 56         | -13.85 |          |        |
| 14     | 1.1175    | 25.73   | Av  | .3        | 0         | 26.03     | -          | -      | 46       | -19.97 |
| 15     | 2.562     | 41.88   | Pk  | .2        | .1        | 42.18     | 56         | -13.82 |          |        |
| 16     | 2.562     | 26      | Av  | .2        | .1        | 26.3      | -          | -      | 46       | -19.7  |

Pk - Peak detector

Av - Average detection

Page 79 of 87

# 9.2. EUT WITH USB LAPTOP

#### LINE 1 RESULTS



### DATA

#### Range 1: Line-L1 .15 - 30MHz

| Marker | Frequency | Meter   | Det | T24 IL L1 | LC Cables | Corrected | CISPR 22   | Margin | CISPR 22 | Margin |
|--------|-----------|---------|-----|-----------|-----------|-----------|------------|--------|----------|--------|
|        | (MHz)     | Reading |     |           | 1&3       | Reading   | Class B QP | (dB)   | Class B  | (dB)   |
|        |           | (dBuV)  |     |           |           | dBuV      |            |        | Avg      |        |
| 1      | .1545     | 53.11   | Pk  | 1.3       | 0         | 54.41     | 65.75      | -11.34 |          |        |
| 2      | .1545     | 15.67   | Av  | 1.3       | 0         | 16.97     | -          | -      | 55.75    | -38.78 |
| 3      | .258      | 44.92   | Pk  | .7        | 0         | 45.62     | 61.5       | -15.88 |          |        |
| 4      | .276      | 27.92   | Av  | .6        | 0         | 28.52     | -          | -      | 50.94    | -22.42 |
| 5      | .492      | 37.83   | Pk  | .3        | 0         | 38.13     | 56.13      | -18    |          |        |
| 6      | .492      | 20.94   | Av  | .3        | 0         | 21.24     | -          | -      | 46.13    | -24.89 |
| 7      | 16.926    | 49.21   | Pk  | .3        | .2        | 49.71     | 60         | -10.29 |          |        |
| 8      | 16.9485   | 30.67   | Av  | .3        | .2        | 31.17     | -          | -      | 50       | -18.83 |

Pk - Peak detector

Av - Average detection

Page 80 of 87

#### LINE 2 RESULTS



### <u>DATA</u>

| Marker | Frequency | Meter   | Det | T24 IL L2 | LC Cables | Corrected | CISPR 22   | Margin | CISPR 22 | Margin |
|--------|-----------|---------|-----|-----------|-----------|-----------|------------|--------|----------|--------|
|        | (MHz)     | Reading |     |           | 2&3       | Reading   | Class B QP | (dB)   | Class B  | (dB)   |
|        |           | (dBuV)  |     |           |           | dBuV      |            |        | Avg      |        |
| 9      | .1545     | 53.81   | Pk  | 1.4       | 0         | 55.21     | 65.75      | -10.54 |          |        |
| 10     | .195      | 30.99   | Av  | 1         | 0         | 31.99     | -          | -      | 53.82    | -21.83 |
| 11     | .204      | 49.83   | Pk  | 1         | 0         | 50.83     | 63.45      | -12.62 |          |        |
| 12     | .1995     | 30.27   | Av  | 1         | 0         | 31.27     | -          | -      | 53.63    | -22.36 |
| 13     | .5415     | 39.26   | Pk  | .3        | 0         | 39.56     | 56         | -16.44 |          |        |
| 14     | .5595     | 22.27   | Av  | .3        | 0         | 22.57     | -          | -      | 46       | -23.43 |
| 15     | 15.513    | 45.5    | Pk  | .3        | .2        | 46        | 60         | -14    |          |        |
| 16     | 15.5355   | 31.47   | Av  | .3        | .2        | 31.97     | -          | -      | 50       | -18.03 |
|        |           |         |     |           |           |           |            |        |          |        |

Range 2: Line-L2 .15 - 30MHz

Pk - Peak detector

Av - Average detection

Page 81 of 87