

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-247 ISSUE 1

BLUETOOTH LOW ENERGY CERTIFICATION TEST REPORT

FOR

SMART WATCH WITH 802.11B/G/N, BLUETOOTH AND BLE

MODEL NUMBER: DW1

FCC ID: 2AB8ZND10

IC: 1000X-ND10

REPORT NUMBER: 15U21900-E2V1

ISSUE DATE: OCTOBER 19, 2015

Prepared for INTEL CORPORATION 2200 MISSION COLLEGE BOULEVARD, SANTA CLARA, CA 95052, U.S.A

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	10/19/2015	Initial Issue	C. Pang
V2	10/22/2015	Updated antenna gain in section 5.3	C. Susa

Page 2 of 57

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	5
2.	TES	ST METHODOLOGY	6
3.	FAG	CILITIES AND ACCREDITATION	6
4.	CA	LIBRATION AND UNCERTAINTY	6
4.	.1.	MEASURING INSTRUMENT CALIBRATION	6
4.	.2.	SAMPLE CALCULATION	6
4.	.3.	MEASUREMENT UNCERTAINTY	7
5.	EQ	UIPMENT UNDER TEST	8
5.	.1.	DESCRIPTION OF EUT	8
5.	.2.	MAXIMUM OUTPUT POWER	8
5.	3.	DESCRIPTION OF AVAILABLE ANTENNAS	8
5.	.4.	SOFTWARE AND FIRMWARE	8
5.	5.	WORST-CASE CONFIGURATION AND MODE	8
5.	.6.	DESCRIPTION OF TEST SETUP	9
6.	TES	ST AND MEASUREMENT EQUIPMENT1	4
7.	AN [.]	TENNA PORT TEST RESULTS1	5
	AN 1.	TENNA PORT TEST RESULTS 1 MEASUREMENT METHODS 1	-
7.			5
7. 7.	.1.	MEASUREMENT METHODS1	5 6
7. 7. 7.	.1. .2.	MEASUREMENT METHODS	5 6 7
7. 7. 7. 7.	.1. .2. .3.	MEASUREMENT METHODS	5 6 7 0
7. 7. 7. 7. 7.	.1. .2. .3. .4.	MEASUREMENT METHODS 1 ON TIME, DUTY CYCLE 1 6 dB BANDWIDTH 1 99% BANDWIDTH 2	5 6 7 0 3
7. 7. 7. 7. 7. 7.	.1. .2. .3. .4. .5.	MEASUREMENT METHODS	5 6 7 0 3 6
7. 7. 7. 7. 7. 7. 7.	.1. .2. .3. .4. .5.	MEASUREMENT METHODS1ON TIME, DUTY CYCLE16 dB BANDWIDTH199% BANDWIDTH2OUTPUT POWER2AVERAGE POWER2	5 6 7 0 3 6 7
7. 7. 7. 7. 7. 7. 7. 7.	.1. .2. .3. .4. .5. .6. .7. .8.	MEASUREMENT METHODS1ON TIME, DUTY CYCLE16 dB BANDWIDTH199% BANDWIDTH2OUTPUT POWER2AVERAGE POWER2POWER SPECTRAL DENSITY2	5 6 7 0 3 6 7 0
7. 7. 7. 7. 7. 7. 7. 8.	.1. .2. .3. .4. .5. .6. .7. .8.	MEASUREMENT METHODS1ON TIME, DUTY CYCLE16 dB BANDWIDTH.199% BANDWIDTH.2OUTPUT POWER.2AVERAGE POWER.2POWER SPECTRAL DENSITY.2CONDUCTED SPURIOUS EMISSIONS.3	5 6 7 0 3 6 7 0 4
7. 7. 7. 7. 7. 7. 7. 8. 8.	.1. 2. 3. 4. 5. 6. 7. 8. RA	MEASUREMENT METHODS1ON TIME, DUTY CYCLE16 dB BANDWIDTH199% BANDWIDTH2OUTPUT POWER2AVERAGE POWER2POWER SPECTRAL DENSITY2CONDUCTED SPURIOUS EMISSIONS3DIATED TEST RESULTS3	5 6 7 0 3 6 7 0 4 4
7. 7. 7. 7. 7. 7. 7. 8. 8. 8.	.1. 2. 3. 4. 5. 6. 7. 8. RA .1.	MEASUREMENT METHODS1ON TIME, DUTY CYCLE16 dB BANDWIDTH199% BANDWIDTH2OUTPUT POWER2AVERAGE POWER2POWER SPECTRAL DENSITY2CONDUCTED SPURIOUS EMISSIONS3DIATED TEST RESULTS3LIMITS AND PROCEDURE3	5 6 7 0 3 6 7 0 4 4 5
7. 7. 7. 7. 7. 7. 7. 8. 8. 8. 8. 8. 8.	.1. 2. 3. 4. 5. 6. 7. 8. RA 1. 2. .3.	MEASUREMENT METHODS1ON TIME, DUTY CYCLE16 dB BANDWIDTH199% BANDWIDTH2OUTPUT POWER2AVERAGE POWER2POWER SPECTRAL DENSITY2CONDUCTED SPURIOUS EMISSIONS3DIATED TEST RESULTS3LIMITS AND PROCEDURE3TRANSMITTER ABOVE 1 GHz3	5 6 7 0 3 6 7 0 4 4 5 5
7. 7. 7. 7. 7. 7. 7. 8. 8. 8. 8. 8. 8. 8. 8. 9.	.1. 2. 3. 4. 5. 6. 7. 8. RA 1. 2. .3.	MEASUREMENT METHODS1ON TIME, DUTY CYCLE16 dB BANDWIDTH199% BANDWIDTH2OUTPUT POWER2AVERAGE POWER2POWER SPECTRAL DENSITY2CONDUCTED SPURIOUS EMISSIONS3DIATED TEST RESULTS3LIMITS AND PROCEDURE3TRANSMITTER ABOVE 1 GHz3WORST-CASE BELOW 1 GHz4	56703670 4455 7

Page 3 of 57

10.	SETUP PHOTOS	53

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 4 of 57

1. ATTESTATION OF TEST RESULTS

INDUSTRY CANADA RSS-GEN Issue 4

COMPANY NAME:	MPANY NAME: INTEL CORPORATION 2200 MISSION COLLEGE BOULEVARD SANTA CLARA, CA 95052, U.S.A.				
EUT DESCRIPTION: SMART WATCH with 802.11b/g/n, Bluetooth and BLE					
MODEL: DW1					
SERIAL NUMBER: TIDPC3FZ52800CH (Radiated); TIDPC1FZ536009X (Conduction					
DATE TESTED:	TE TESTED: OCTOBER 15 – 19, 2015				
	APPLICABLE STANDARDS				
SI	TANDARD	TEST RESULTS			
CFR 47 F	Part 15 Subpart C	Pass			
INDUSTRY CA	NADA RSS-247 Issue 1	Pass			

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

this Pany

CHIN PANG EMC SUPERVISOR UL Verification Services Inc.

Tested By:

Pass

JUSTIN KO EMC ENGINEER UL Verification Services Inc.

Page 5 of 57

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, RSS-GEN Issue 4 and RSS-247 Issue 1.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
Chamber A(IC: 2324B-1)	Chamber D(IC: 2324B-4)
Chamber B(IC: 2324B-2)	Chamber E(IC: 2324B-5)
Chamber C(IC: 2324B-3)	Chamber F(IC: 2324B-6)
	Chamber G(IC: 2324B-7)
	Chamber H(IC: 2324B-8)

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers A through H are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-8, respectively.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

Page 6 of 57

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	± 3.52 dB
Radiated Disturbance, 30 to 1000 MHz	± 4.94 dB
Radiated Disturbance, 1 to 6 GHz	± 3.86 dB
Radiated Disturbance, 6 to 18 GHz	± 4.23 dB
Radiated Disturbance, 18 to 26 GHz	± 5.30 dB
Radiated Disturbance, 26 to 40 GHz	± 5.23 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 7 of 57

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a smart watch with SMART WATCH with 802.11b/g/n, Bluetooth and BLE

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	BLE	9.96	9.91

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a trace antenna, with a maximum gain of -0.84 dBi.

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was DVT Eng. Build.

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z, it was determined that Z orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Z orientation.

Based on the baseline scan, the worst-case data rates were:

BLE: 1 Mbps.

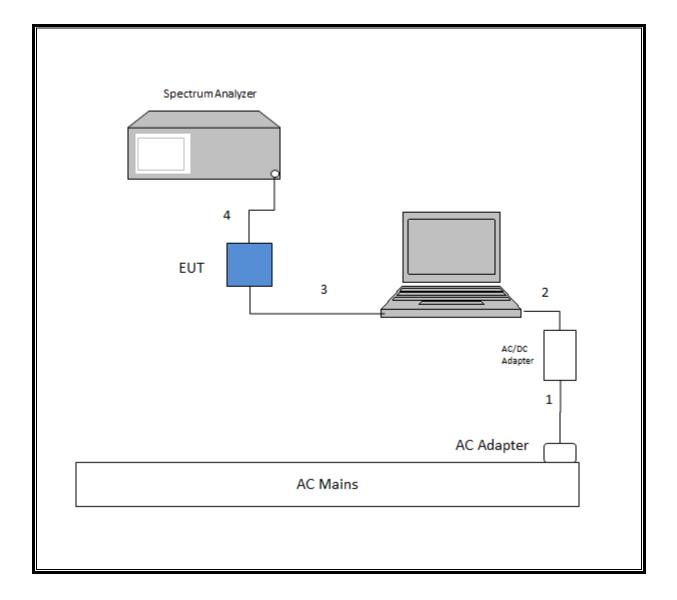
Page 8 of 57

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List							
Description Manufacturer Model Serial Number FCC ID							
Laptop	Lenovo	Yoga 2 11	YB04282152	N/A			
AC adapter	Lenovo	ADLX45NCC3A	11S45N0297Z1ZSH443G0XE	N/A			

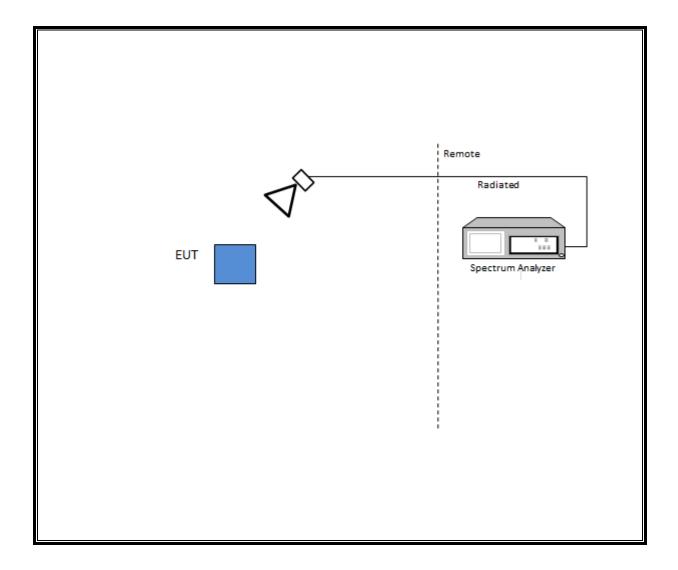
I/O CABLES


	I/O Cable List							
Cable	Port	# of identical	Connector	Cable Type	Cable Length	Remarks		
No		ports	Туре		(m)			
1	AC	1	3-Prong	Un-Shielded	1.8	N/A		
2	DC	1	DC	Un-Shielded	1	N/A		
3	USB	1	USB	Un-Shielded	0.9	Laptop to EUT		
4	Antenna	1	SMA	Shielded	0.3	EUT to spectrum Analyzer		
5	AC/DC	1	USB Micro	Un-Shielded	0.9			

TEST SETUP

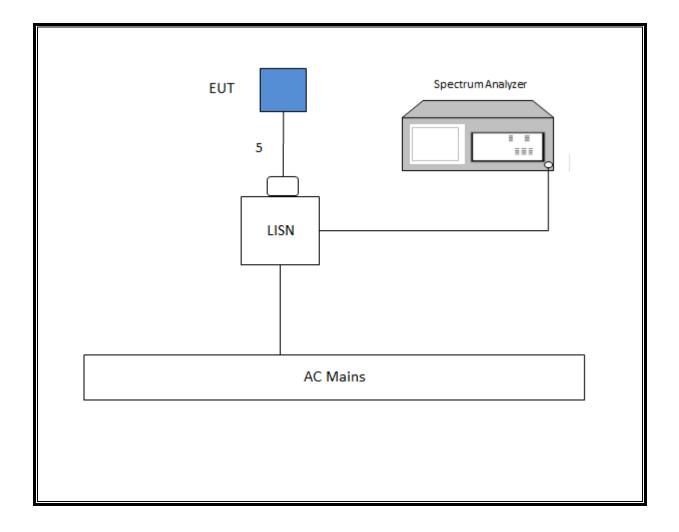
Test software exercised the radio card.

Page 9 of 57

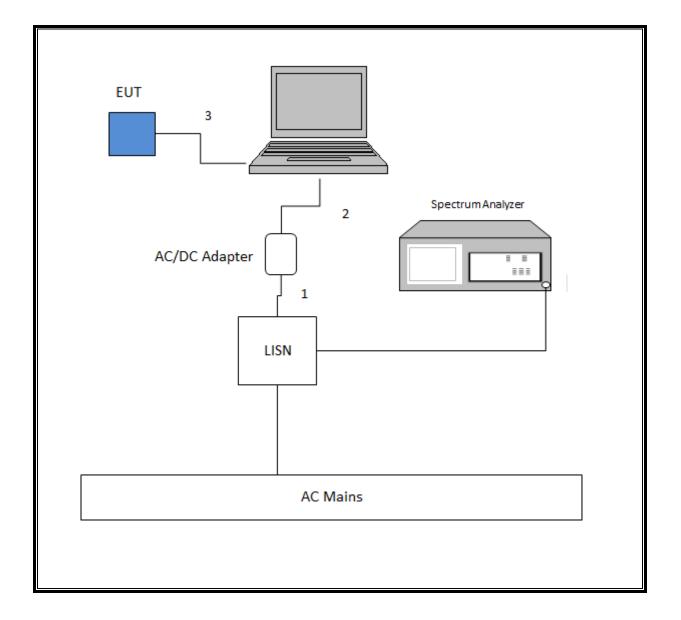

SETUP DIAGRAM FOR CONDUCTED TESTS

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 10 of 57


SETUP DIAGRAM FOR RADIATED TESTS

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.


Page 11 of 57

SETUP DIAGRAM 1 FOR LINE CONDUCTED TEST

Page 12 of 57

SETUP DIAGRAM 2 FOR LINE CONDUCTED TEST

Page 13 of 57

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List						
Description	Manufacturer	Model	T No.	Cal Date	Cal Due	
Radiated Software	UL	UL EMC		Ver 9.5		
Conducted Software	UL	UL EMC		Ver 3.5		
Spectrum Analyzer,	Keysight	N9030A	907	05/15/15	01/07/16	
PSA, 3Hz to 44GHz						
Antenna,	ETS Lindgren	3117	345	03/03/15	03/03/16	
Horn, 1-18GHz						
Antenna,	Sunol Sciences	JB1	800	4/20/2015	4/20/2016	
Broadband Hybrid, 30 to 2000MHz			899	4/30/2015	4/30/2016	
Amplifier, 1-18GHz	Miteq	AFS42-00101800-	493	01/16/15	01/16/16	
		25-S-42				
Filter, HPF 3.0GHz	Micro-Tronics	HPM17543	485	01/16/15	01/16/16	
Spectrum Analyzer, PSA, 3Hz to 44GHz	Keysight	N9030A	342	06/29/15	06/29/16	
Spectrum Analyzer, PSA, 3Hz to 44GHz	Keysight	N9030A	905	6/16/2015	5/26/2016	
Amplifier, 10kHz to 1GHz	Sonoma	310N	834	6/8/2015	6/8/2016	
Power Meter	Keysight	N1911A	1244	07/02/15	07/02/16	
Power Sensor	Keysight	N1921A	1228	07/06/15	07/06/16	
EMI Test Receiver 9Khz-7GHz	Rohde & Schwarz	ESCI7	100935	08/07/15	08/07/16	
LISN for Conducted Emissions CISPR-16	FCC	50/250-25-2	114	01/16/15	01/16/16	

7. ANTENNA PORT TEST RESULTS

7.1. MEASUREMENT METHODS

<u>6 dB BW</u>: KDB 558074 D01 v03r03, Section 8.1.

Output Power: KDB 558074 D01 v03r03, Section 9.1.2.

Power Spectral Density: KDB 558074 D01 v03r03, Section 10.2.

Out-of-band emissions in non-restricted bands: KDB 558074 D01 v03r03, Section 11.0.

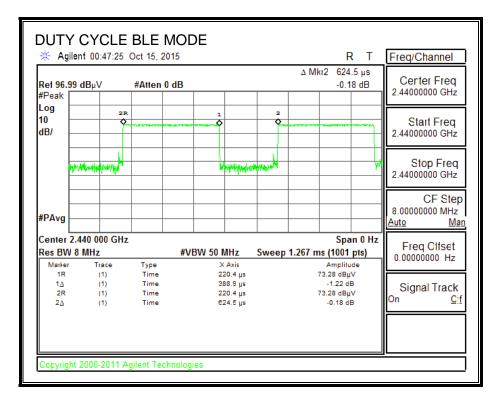
Out-of-band emissions in restricted bands: KDB 558074 D01 v03r03, Section 12.1.

Band-edge: KDB 558074 D01 v03r03, Section 12.1

Page 15 of 57

7.2. ON TIME, DUTY CYCLE

None; for reporting purposes only.


PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
BLE	0.389	0.625	0.623	62.27%	2.06	2.571

DUTY CYCLE PLOTS

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 16 of 57

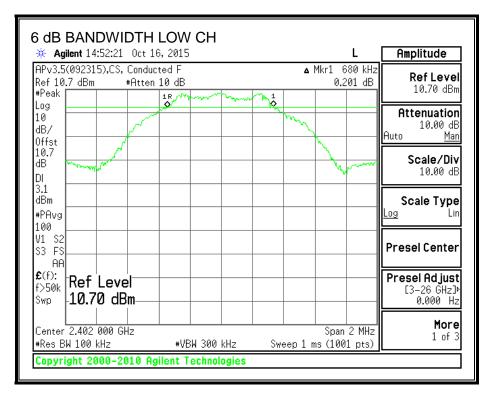
7.3. 6 dB BANDWIDTH

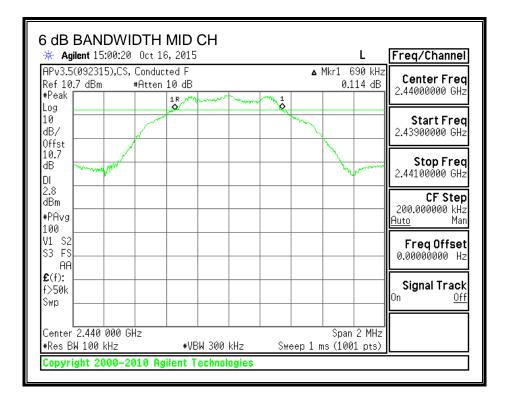
LIMITS

FCC §15.247 (a) (2)

IC RSS-247 (5.2) (1)

The minimum 6 dB bandwidth shall be at least 500 kHz.


<u>RESULTS</u>


Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.680	0.5
Middle	2440	0.690	0.5
High	2480	0.684	0.5

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 17 of 57

6 dB BANDWIDTH

Page 18 of 57

6 dB BANDWIDTH H			
🔆 🔆 Agilent 15:05:19 Oct 16,	, 2015	L	Freq/Channel
APv3.5(092315),CS, Conductor Ref 10.7 dBm #Atten 1 #Peak	l0 dB	▲ Mkr1 684 kHz 0.006 dB	Center Freq 2.48000000 GHz
Log 10 dB/	1R,		Start Freq 2.47900000 GHz
Offst 10.7 dB DI			Stop Freq 2.48100000 GHz
2.4 dBm #PAvg 100			CF Step 200.000000 kHz <u>Auto</u> Man
V1 S2 S3 FS AA			Freq Offset 0.00000000 Hz
£(f): f>50k Swp			Signal Track ^{On <u>Off</u>}
Center 2.480 000 GHz #Res BW 100 kHz		Span 2 MHz weep 1 ms (1001 pts)	
Copyright 2000–2010 Agil	lent Technologies		

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP47011 TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

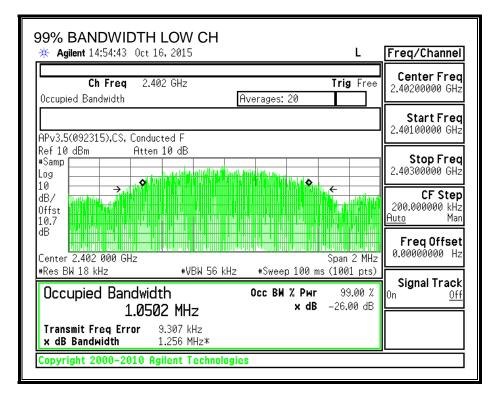
Page 19 of 57

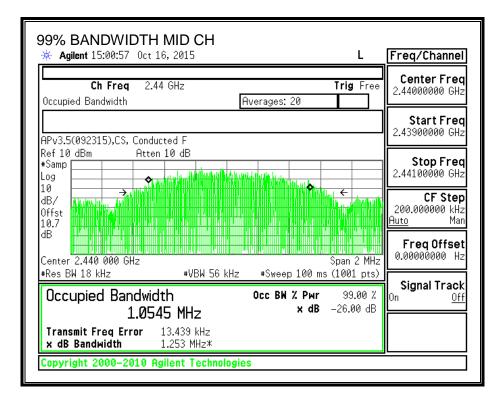
7.4. 99% **BANDWIDTH**

LIMITS

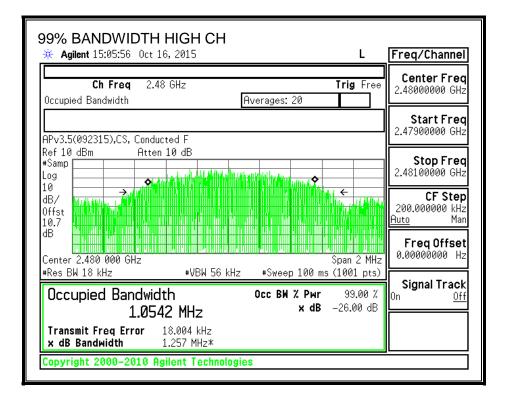
None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.


RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	1.0502
Middle	2440	1.0545
High	2480	1.0542


Page 20 of 57

99% BANDWIDTH

Page 21 of 57

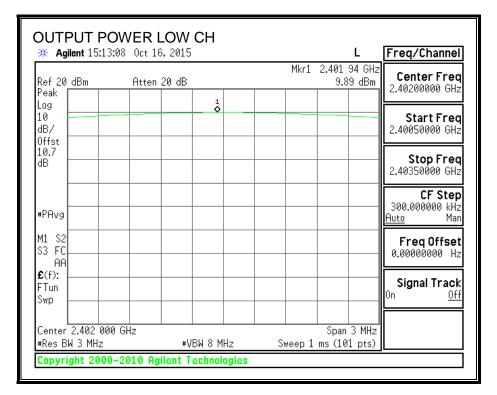
Page 22 of 57

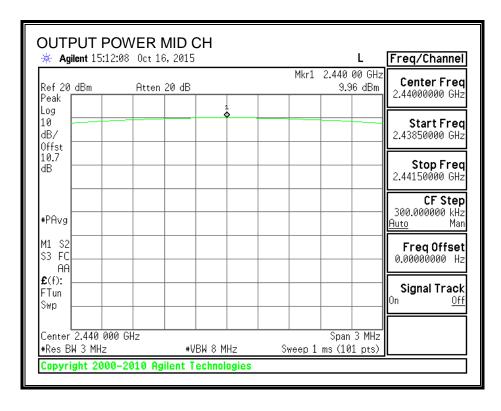
7.5. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-247 (5.4) (4)


The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.


RESULTS

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2402	9.89	30	-20.110
Middle	2440	9.96	30	-20.040
High	2480	9.37	30	-20.630

Page 23 of 57

OUTPUT POWER

Page 24 of 57

	OWER HIGH 7:56 Oct 16, 2015			L	Freq/Channel
Ref 20 dBm Peak	Atten 20 dB		Mkr1	2.479 94 GHz 9.37 dBm	Center Freq 2.48000000 GHz
Log					Start Freq
dB/ Offst					2.47850000 GHz
10.7 dB					Stop Freq 2.48150000 GHz
#PAvg					CF Step 300.000000 kHz <u>Auto</u> Man
M1 S2 S3 FC AA					Freq Offset 0.00000000 Hz
£(f): FTun Swp					Signal Track ^{On <u>Off</u>}
Center 2.480 00 #Res BW 3 MHz		BW 8 MHz	Sweep 1	Span 3 MHz ms (101 pts)	

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 25 of 57

7.6. AVERAGE POWER

LIMITS

None; for reporting purposes only.

RESULTS

The cable assembly insertion loss of 10.3 dB (including 10 dB pad and 0.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

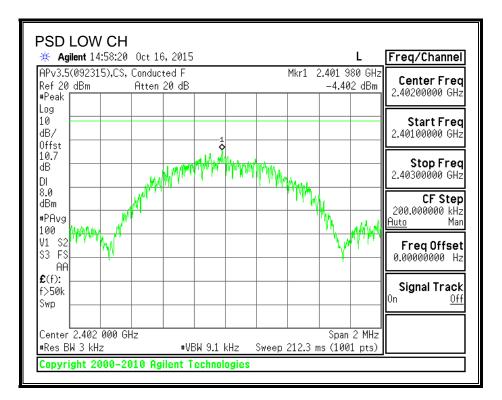
Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	9.30
Middle	2440	9.20
High	2480	9.00

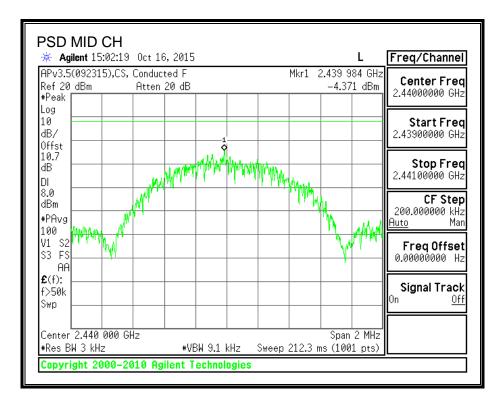
7.7. POWER SPECTRAL DENSITY

LIMITS

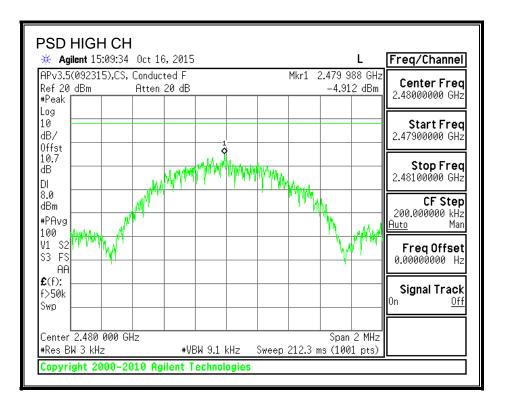
FCC §15.247 (e)

IC RSS-247 (5.2) (2)


The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


RESULTS

Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	-4.40	8	-12.40
Middle	2440	-4.37	8	-12.37
High	2480	-4.91	8	-12.91


Page 27 of 57

POWER SPECTRAL DENSITY

Page 28 of 57

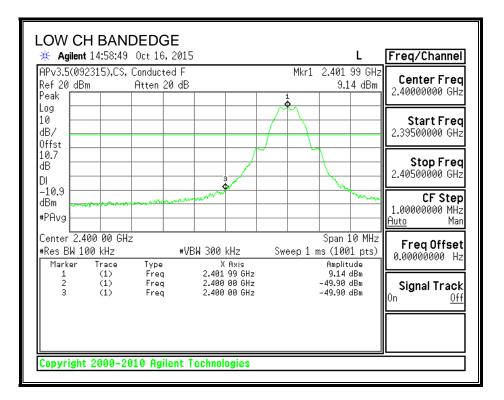
Page 29 of 57

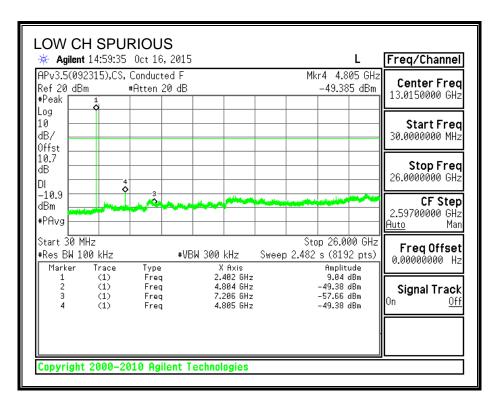
7.8. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

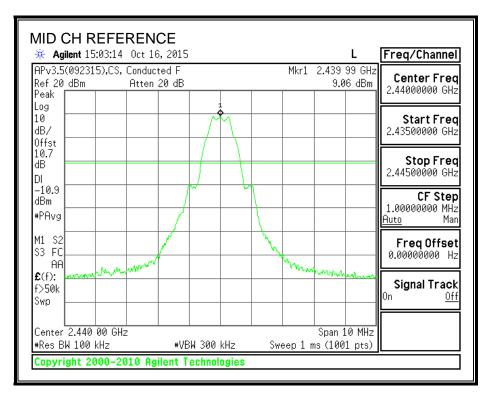
IC RSS-247 (5.5)

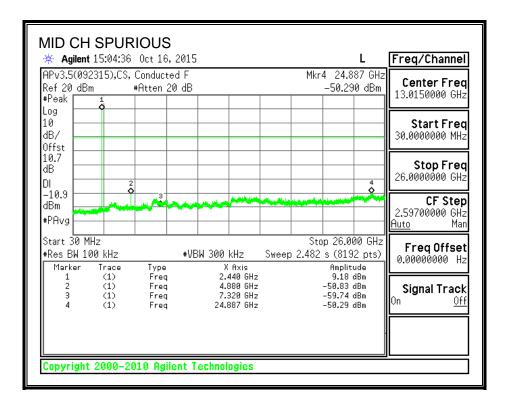

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.


RESULTS

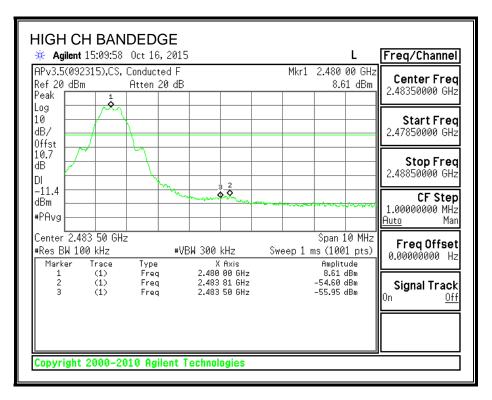
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

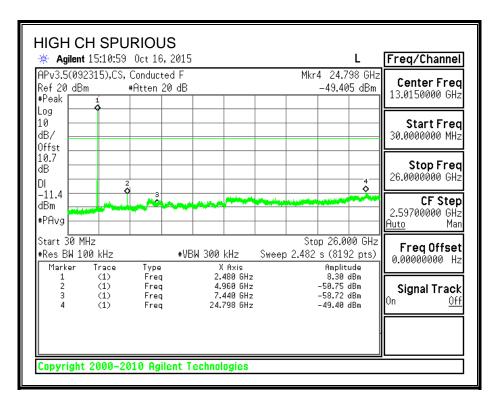
Page 30 of 57


SPURIOUS EMISSIONS, LOW CHANNEL



Page 31 of 57


SPURIOUS EMISSIONS, MID CHANNEL



Page 32 of 57

SPURIOUS EMISSIONS, HIGH CHANNEL

Page 33 of 57

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-GEN, Section 8.9 and 8.10

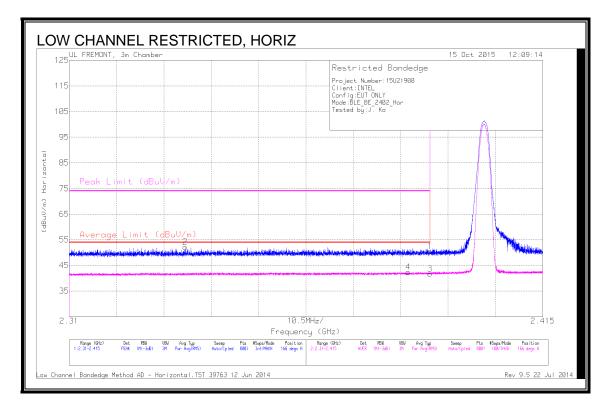
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode..

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 3MHz video bandwidth with average detector for average measurements.

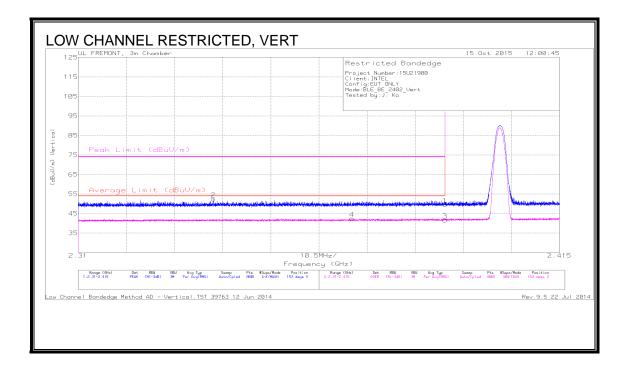

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions

Page 34 of 57

8.2. TRANSMITTER ABOVE 1 GHz

RESTRICTED BANDEDGE (LOW CHANNEL)



Trace Markers

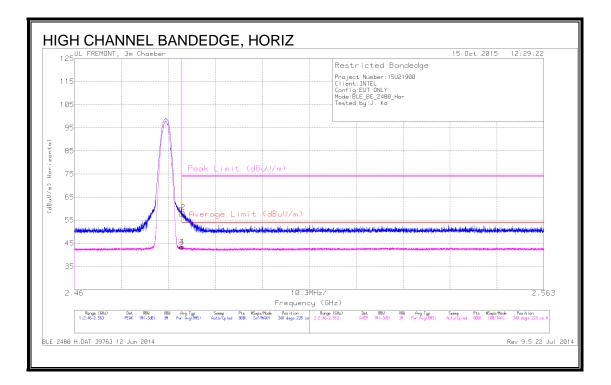
Marker	Frequency	Meter	Det	AF T119	Amp/Cbl/Flt	DC Corr (dB)	Corrected	Average	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	r/Pad (dB)		Reading	Limit	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)					(dBuV/m)	(dBuV/m)						
2	2.336	42.83	РК	31.8	-22.5	0	52.13	-	-	74	-21.87	166	191	н
4	2.385	30.79	RMS	32	-22.4	2.06	42.45	54	-11.55	-	-	166	191	Н
1	2.39	40.88	PK	32	-22.4	0	50.48	-	-	74	-23.52	166	191	Н
3	2.39	30.09	RMS	32	-22.4	2.06	41.75	54	-12.25	-	-	166	191	Н

PK - Peak detector

RMS - RMS detection

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T119 (dB/m)	Amp/Cbl/Flt r/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	2.339	43.02	PK	31.8	-22.4	0	52.42	-	-	74	-21.58	152	250	V
4	2.37	30.96	RMS	31.9	-22.4	2.06	42.52	54	-11.48	-	-	152	250	V
1	2.39	40.12	PK	32	-22.4	0	49.72	-	-	74	-24.28	152	250	V
3	2.39	29.91	RMS	32	-22.4	2.06	41.57	54	-12.43	-	-	152	250	V

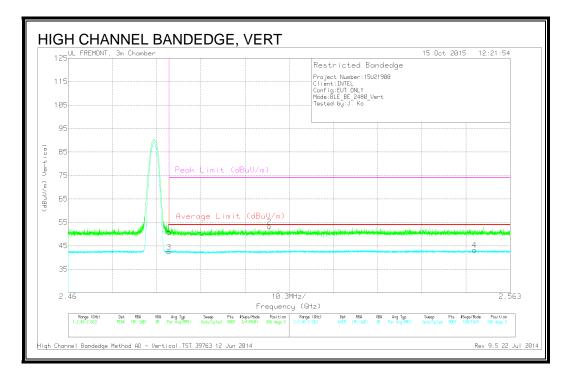

PK - Peak detector

RMS - RMS detection

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701I FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 36 of 57

AUTHORIZED BANDEDGE (HIGH CHANNEL)


Trace Markers

Marker	Frequency	Meter	Det	AF T119	Amp/Cbl/Flt	DC Corr (dB)	Corrected	Average	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	r/Pad (dB)		Reading	Limit	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)					(dBuV/m)	(dBuV/m)						
1	2.484	47.25	PK	32.3	-22.1	0	57.45	-	-	74	-16.55	348	228	н
2	2.484	48.32	PK	32.3	-22.1	0	58.52	-	-	74	-15.48	348	228	Н
3	2.484	31.1	RMS	32.3	-22.1	2.06	43.36	54	-10.64	-	-	348	228	Н
4	2.484	31.26	RMS	32.3	-22.1	2.06	43.52	54	-10.48	-	-	348	228	Н

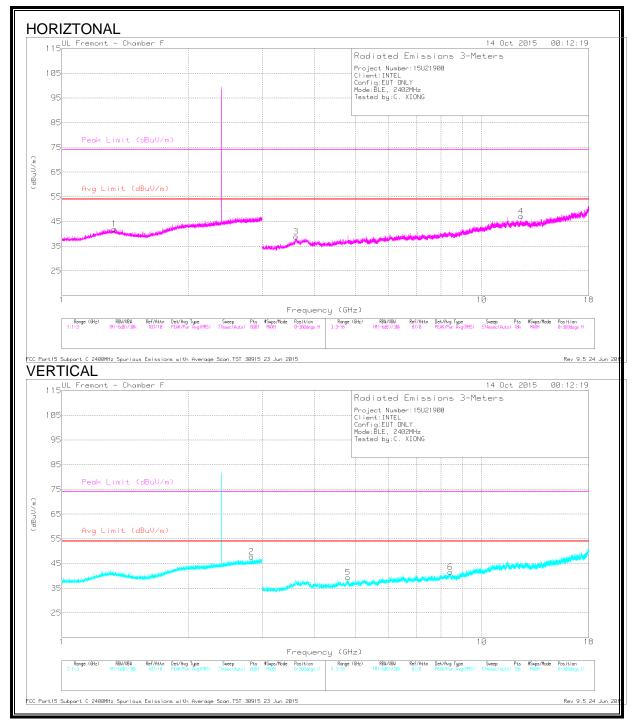
PK - Peak detector

RMS - RMS detection

Page 37 of 57

Trace Markers

Marker	Frequency	Meter	Det	AF T119	Amp/Cbl/Flt	DC Corr (dB)	Corrected	Average	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading (dBuV)		(dB/m)	r/Pad (dB)		Reading (dBuV/m)	Limit (dBuV/m)	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
1	2.484	40.7	PK	32.3	-22.1	0	50.9	-	-	74	-23.1	346	151	V
3	2.484	30.23	RMS	32.3	-22.1	2.06	42.49	54	-11.51	-	-	346	151	V
2	2.507	43.06	PK	32.3	-22.1	0	53.26	-	-	74	-20.74	346	151	V
4	2.555	30.83	RMS	32.4	-22	2.06	43.29	54	-10.71	-	-	346	151	V


PK - Peak detector

RMS - RMS detection

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 38 of 57

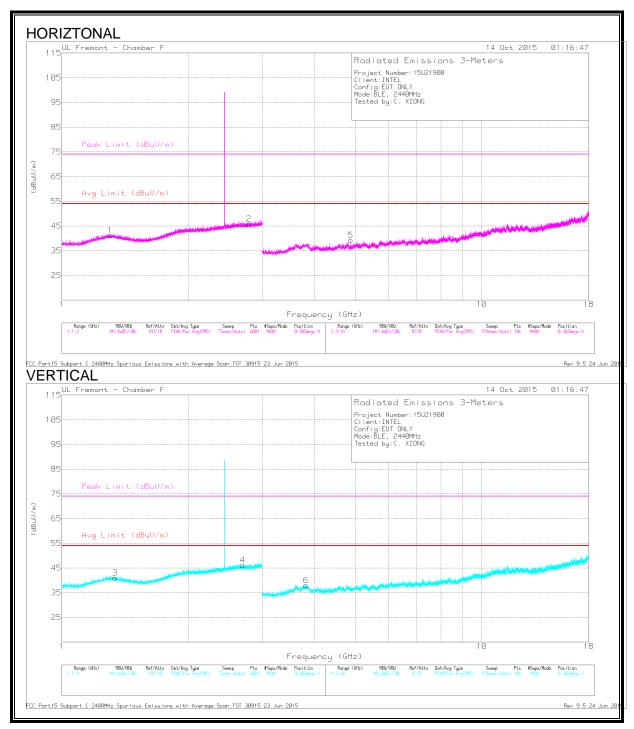
HARMONICS AND SPURIOUS EMISSIONS

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 39 of 57

DATA

Marker	Frequenc y (GHz)	Meter Reading (dBuV)	Det	AF T120 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.332	34.48	PK2	29.7	-22.2	0	41.98			74	-32.02	154	163	н
	* 1.332	24.91	MAv1	29.7	-22.2	2.06	34.47	54	-19.53	-	-	154	163	н
2	* 2.829	42.1	PK2	32.7	-20.4	0	54.4	-	-	74	-19.6	172	156	V
	* 2.832	30.3	MAv1	32.7	-20.5	2.06	44.56	54	-9.44	-	-	172	156	V
3	* 3.616	41.98	PK2	35	-29.2	0	47.78	-	-	74	-26.22	142	188	н
	* 3.616	29.87	MAv1	35	-29.2	2.06	37.73	54	-16.27	-	-	142	188	н
4	* 12.425	36.08	PK2	39.1	-22.5	0	52.68	-	-	74	-21.32	173	212	н
	* 12.424	25.33	MAv1	39.1	-22.5	2.06	43.99	54	-10.01	-	-	173	212	н
5	* 4.805	42	PK2	34.1	-27.7	0	48.4	-	-	74	-25.6	165	203	V
	* 4.804	30.03	MAv1	34.1	-27.7	2.06	38.49	54	-15.51	-	-	165	203	V
6	* 8.422	37.79	PK2	35.8	-24.2	0	49.39	-	-	74	-24.61	155	185	V
	* 8.421	26.32	MAv1	35.8	-24.2	2.06	39.98	54	-14.02	-	-	155	185	V


* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 40 of 57

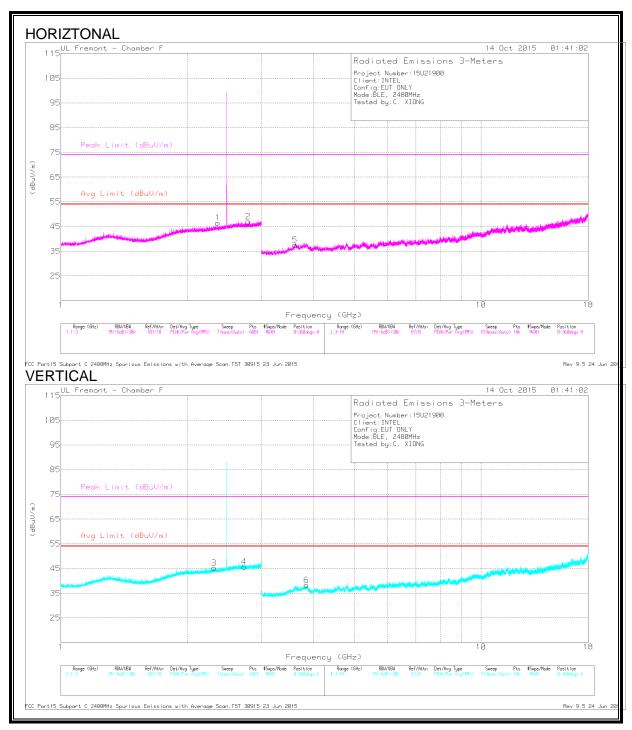
MID CHANNEL

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 41 of 57

DATA

Marker	Frequenc y (GHz)	Meter Reading (dBuV)	Det	AF T120 (dB/m)	Amp/Cbl /Fltr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.304	41.79	PK2	30	-22.2	0	49.59	-	-	74	-24.41	0	101	н
	* 1.302	30.42	MAv1	30	-22.2	2.06	40.28	54	-13.72	-	-	0	101	Н
2	* 2.794	42.01	PK2	32.7	-20.6	0	54.11	-	-	74	-19.89	0	101	н
	* 2.794	30.25	MAv1	32.7	-20.6	2.06	44.41	54	-9.59	-	-	0	101	н
3	* 1.339	42.44	PK2	29.7	-22.2	0	49.94	-	-	74	-24.06	0	101	V
	* 1.339	30.5	MAv1	29.7	-22.2	2.06	40.06	54	-13.94	-	-	0	101	V
4	* 2.699	42.64	РК2	32.7	-20.8	0	54.54	-	-	74	-19.46	0	101	V
	* 2.699	30.44	MAv1	32.7	-20.8	2.06	44.40	54	-9.60	-	-	0	101	V
5	* 4.88	38.9	РК2	34.1	-27.9	0	45.1	-	-	74	-28.9	0	101	н
	* 4.88	27.28	MAv1	34.1	-27.9	2.06	35.54	54	-18.46	-	-	0	101	Н
6	* 3.813	41.32	PK2	34.1	-28.7	0	46.72	-	-	74	-27.28	0	101	V
	* 3.815	29.86	MAv1	34.1	-28.6	2.06	37.42	54	-16.58	-	-	0	101	V


* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 42 of 57

HIGH CHANNEL

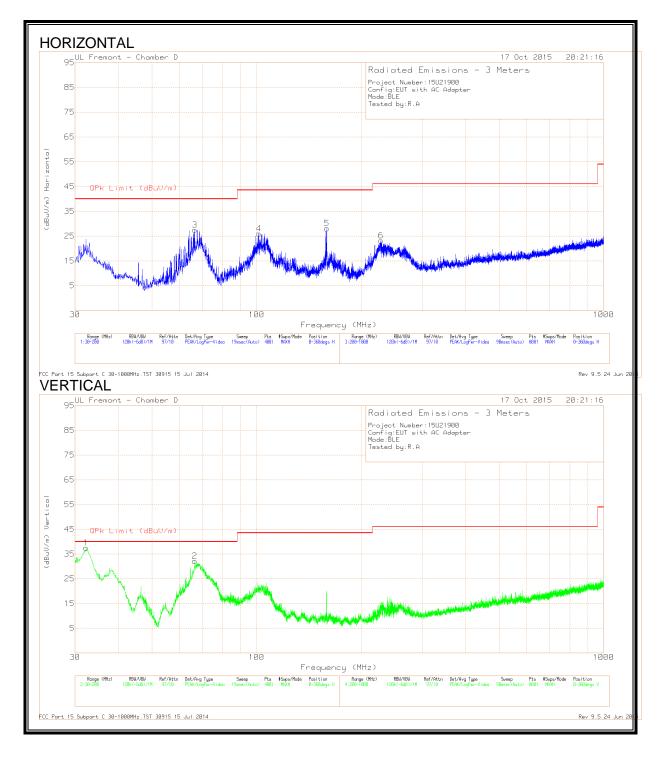
Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 43 of 57

<u>DATA</u>

Marker	Frequenc y (GHz)	Meter Reading (dBuV)	Det	AF T120 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.362	42.01	PK2	31.9	-21.1	0	52.81	-	-	74	-21.19	0	100	н
	* 2.363	30.45	MAv1	31.9	-21	2.06	43.41	54	-10.59	-	-	0	100	н
2	* 2.792	41.7	PK2	32.7	-20.6	0	53.8	-	-	74	-20.2	0	202	н
	* 2.793	30.32	MAv1	32.7	-20.6	2.06	44.48	54	-9.52	-	-	0	202	н
3	* 2.317	42.39	PK2	31.8	-21.1	0	53.09	-	-	74	-20.91	0	101	V
	* 2.315	30.35	MAv1	31.8	-21.1	2.06	43.11	54	-10.89	-	-	0	101	V
4	* 2.73	41.66	PK2	32.7	-20.8	0	53.56	-	-	74	-20.44	0	124	V
	* 2.73	30.25	MAv1	32.7	-20.8	2.06	44.21	54	-9.79	-	-	0	124	V
5	* 3.605	41.2	PK2	35	-29.2	0	47	-	-	74	-27	0	203	н
	* 3.607	30.14	MAv1	35	-29.2	2.06	38.00	54	-16.00	-	-	0	203	н
6	* 3.843	41.43	PK2	34	-28.3	0	47.13	-	-	74	-26.87	0	101	V
	* 3.843	29.64	MAv1	34	-28.3	2.06	37.40	54	-16.60	-	-	0	101	V

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band


PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 44 of 57

8.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

Page 45 of 57

<u>DATA</u>

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF T407 (dB/m)	Amp/Cbl (dB)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	32.295	49.29	Pk	20.1	-31.9	37.49	40	-2.51	0-360	100	V
3	66.38	51.06	Pk	8	-31.5	27.56	40	-12.44	0-360	401	Н
2	66.465	55.65	Pk	8	-31.5	32.15	40	-7.85	0-360	100	V
4	101.5275	46.84	Pk	10.5	-31.4	25.94	43.52	-17.58	0-360	301	Н
5	159.4125	46.98	Pk	12.1	-31	28.08	43.52	-15.44	0-360	401	Н
6	228.3	42.93	Pk	10.9	-30.7	23.13	46.02	-22.89	0-360	100	Н

Pk - Peak detector

Radiated Emissions

Frequency (MHz)	Meter Reading (dBuV)	Det	AF T407 (dB/m)	Amp/Cbl (dB)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
32.4781	37.34	Qp	19.9	-31.8	25.44	40	-14.56	276	105	V

Qp - Quasi-Peak detector

Page 46 of 57

9. AC POWER LINE CONDUCTED EMISSIONS

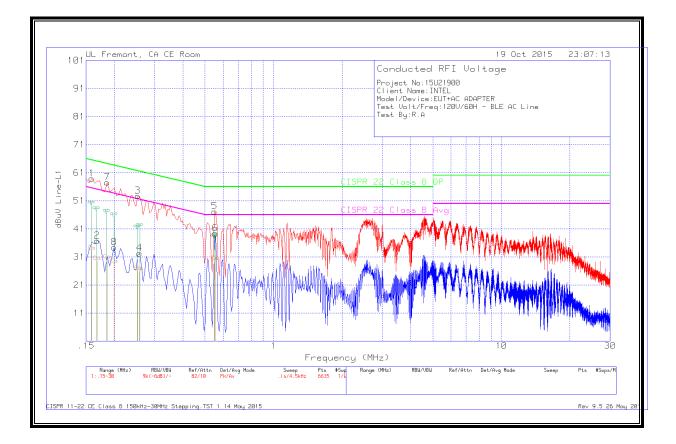
LIMITS

FCC §15.207 (a)

RSS-Gen 8.8

Frequency of Emission (MHz)	Conducted I	Limit (dBµV)
Frequency of Emission (WHZ)	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

TEST PROCEDURE


C63.10

RESULTS

Page 47 of 57

9.1. EUT WITH AC ADAPTER

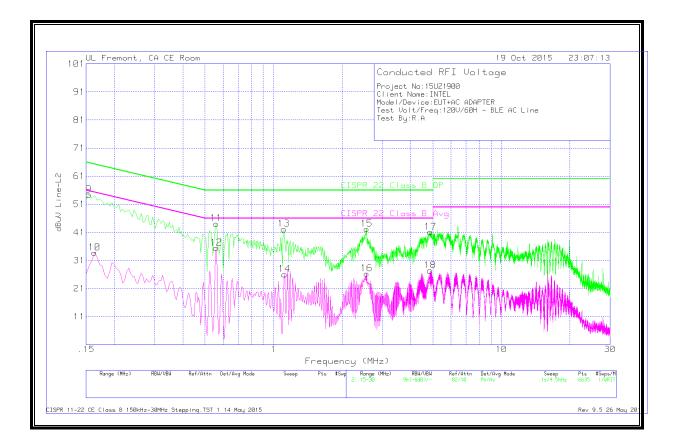
LINE 1 RESULTS

Page 48 of 57

DATA

Frequency	Meter	Det	T24 IL L1	LC Cables	Corrected	CISPR 22	Margin	CISPR 22	Margin
(MHz)	Reading			1&3	Reading	Class B QP	(dB)	Class B Avg	(dB)
	(dBuV)				dBuV				
.15878	48.23	Qp	1.3	0	49.53	65.53	-16	-	-
.16688	46.37	Qp	1.2	0	47.57	65.11	-17.54	-	-
.25238	40.38	Qp	.7	0	41.08	61.68	-20.6	-	-
.25868	40.9	Qp	.7	0	41.6	61.47	-19.87	-	-
.54938	37.32	Qp	.3	0	37.62	56	-18.38	-	-
.55388	37.76	Qp	.3	0	38.06	56	-17.94	-	-
.18488	45.62	Qp	1	0	46.62	64.26	-17.64	-	-
.19928	44.46	Qp	.9	0	45.36	63.64	-18.28	-	-

Qp - Quasi-Peak detector


Range 1: Line-L1 .15 - 30MHz

Frequency	Meter	Det	T24 IL L1	LC Cables	Corrected	CISPR 22	Margin	CISPR 22	Margin
(MHz)	Reading			1&3	Reading	Class B QP	(dB)	Class B Avg	(dB)
	(dBuV)				dBuV				
.15878	31.81	Ca	1.3	0	33.11	-	-	55.53	-22.42
.16688	28.22	Ca	1.2	0	29.42	-	-	55.11	-25.69
.25238	25.2	Ca	.7	0	25.9	-	-	51.68	-25.78
.25868	25.09	Ca	.7	0	25.79	-	-	51.47	-25.68
.54938	28.9	Ca	.3	0	29.2	-	-	46	-16.8
.55388	29.29	Ca	.3	0	29.59	-	-	46	-16.41
.18488	29.03	Ca	1	0	30.03	-	-	54.26	-24.23
.19928	27.53	Ca	.9	0	28.43	-	-	53.64	-25.21

Ca - CISPR average detection

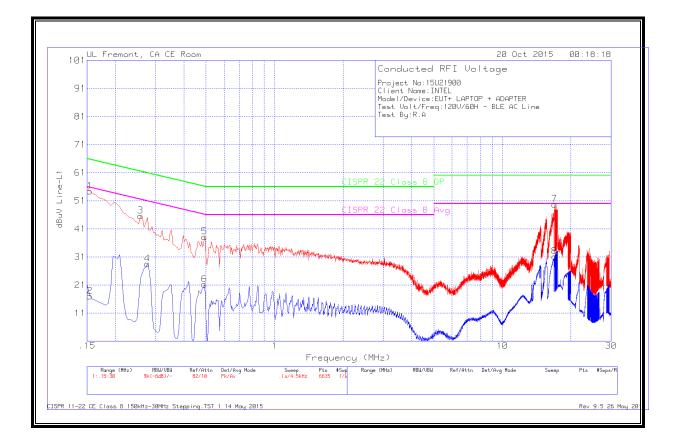
Page 49 of 57

LINE 2 RESULTS

DATA

Range 2: Line-L2 .15 - 30MHz

Marker	Frequency	Meter	Det	T24 IL L2	LC Cables	Corrected	CISPR 22	Margin	CISPR 22	Margir
	(MHz)	Reading			2&3	Reading	Class B QP	(dB)	Class B	(dB)
		(dBuV)				dBuV			Avg	
9	.1545	52.98	Pk	1.4	0	54.38	65.75	-11.37		
10	.1635	32.44	Av	1.3	0	33.74	-	-	55.28	-21.54
11	.5595	43.78	Pk	.3	0	44.08	56	-11.92		
12	.5595	35.11	Av	.3	0	35.41	-	-	46	-10.59
13	1.1085	41.85	Pk	.3	0	42.15	56	-13.85		
14	1.1175	25.73	Av	.3	0	26.03	-	-	46	-19.97
15	2.562	41.88	Pk	.2	.1	42.18	56	-13.82		
16	2.562	26	Av	.2	.1	26.3	-	-	46	-19.7
17	4.884	40.74	Pk	.2	.1	41.04	56	-14.96		
18	4.8615	27.08	Av	.2	.1	27.38	-	-	46	-18.62


Pk - Peak detector

Av - Average detection

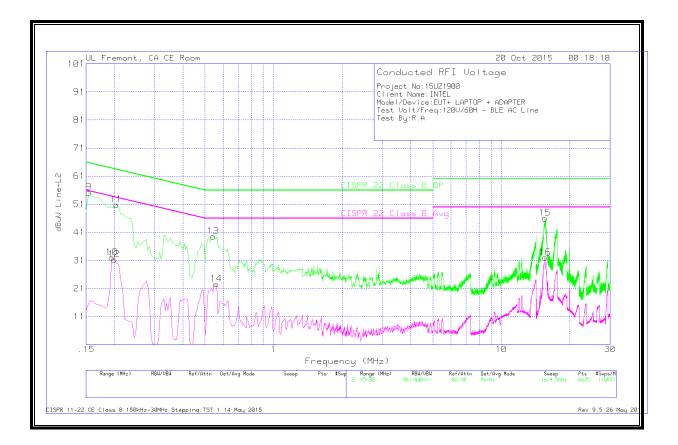
Page 50 of 57

9.2. EUT WITH USB LAPTOP

LINE 1 RESULTS

<u>DATA</u>

Range 1: Line-L1 .15 - 30MHz


Marker	Frequency	Meter	Det	T24 IL L1	LC Cables	Corrected	CISPR 22	Margin	CISPR 22	Margin
	(MHz)	Reading			1&3	Reading	Class B QP	(dB)	Class B	(dB)
		(dBuV)				dBuV			Avg	
1	.1545	53.11	Pk	1.3	0	54.41	65.75	-11.34		
2	.1545	15.67	Av	1.3	0	16.97	-	-	55.75	-38.78
3	.258	44.92	Pk	.7	0	45.62	61.5	-15.88		
4	.276	27.92	Av	.6	0	28.52	-	-	50.94	-22.42
5	.492	37.83	Pk	.3	0	38.13	56.13	-18		
6	.492	20.94	Av	.3	0	21.24	-	-	46.13	-24.89
7	16.926	49.21	Pk	.3	.2	49.71	60	-10.29		
8	16.9485	30.67	Av	.3	.2	31.17	-	-	50	-18.83

Pk - Peak detector

Av - Average detection

Page 51 of 57

LINE 2 RESULTS

<u>DATA</u>

Range 2: Line-L2 .15 - 30MHz										
Marker	Frequency	Meter	Det	T24 IL L2	LC Cables	Corrected	CISPR 22	Margin	CISPR 22	Margin
	(MHz)	Reading			2&3	Reading	Class B QP	(dB)	Class B	(dB)
		(dBuV)				dBuV			Avg	
9	.1545	53.81	Pk	1.4	0	55.21	65.75	-10.54		
10	.195	30.99	Av	1	0	31.99	-	-	53.82	-21.83
11	.204	49.83	Pk	1	0	50.83	63.45	-12.62		
12	.1995	30.27	Av	1	0	31.27	-	-	53.63	-22.36
13	.5415	39.26	Pk	.3	0	39.56	56	-16.44		
14	.5595	22.27	Av	.3	0	22.57	-	-	46	-23.43
15	15.513	45.5	Pk	.3	.2	46	60	-14		
16	15.5355	31.47	Av	.3	.2	31.97	-	-	50	-18.03

Pk - Peak detector

Av - Average detection