

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

BLUETOOTH LOW ENERGY CERTIFICATION TEST REPORT

FOR

FITNESS TRACKING DEVICE WITH BLE

MODEL NUMBER: BASIS PEAK

FCC ID: 2AB8ZMRA IC: 1000X-MRA

REPORT NUMBER: 14U18649-E1, REVISION B

ISSUE DATE: SEPTEMBER 14, 2014

Prepared for
INTEL CORPORATION
2200 MISSION COLLEGE BOULEVARD
SANTA CLARA, CA 95052, U.S.A

Prepared by
UL VERIFICATION SERVICES INC.
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	09/08/14	Initial Issue	G. Victorine
A	09/09/14	Updated with generic descriptions	G. Victorine
В	09/14/14	Updated with TCB review comments	G. Victorine

TABLE OF CONTENTS

1. AT	TESTATION OF TEST RESULTS	5
2. TE	ST METHODOLOGY	6
3. FA	CILITIES AND ACCREDITATION	6
4. CA	ALIBRATION AND UNCERTAINTY	6
4.1.	MEASURING INSTRUMENT CALIBRATION	6
4.2.	SAMPLE CALCULATION	6
4.3.	MEASUREMENT UNCERTAINTY	7
5. EG	QUIPMENT UNDER TEST	8
5.1.	DESCRIPTION OF EUT	8
5.2.	MAXIMUM OUTPUT POWER	8
5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	8
5.4.	SOFTWARE AND FIRMWARE	8
5.5.	WORST-CASE CONFIGURATION AND MODE	8
5.6.	DESCRIPTION OF TEST SETUP	9
6. TE	ST AND MEASUREMENT EQUIPMENT	11
7. AN	ITENNA PORT TEST RESULTS	12
7.1.	ON TIME, DUTY CYCLE AND MEASUREMENT METHODS	12
7.2.	ON TIME AND DUTY CYCLE RESULTS	12
7.3.	DUTY CYCLE PLOTS	12
7.4.	MEASUREMENT METHODS	13
7.5.	6 dB BANDWIDTH	14
7.6.	99% BANDWIDTH	17
7.7.	OUTPUT POWER	20
7.8.	AVERAGE POWER	21
7.9.	POWER SPECTRAL DENSITY	22
7.10.	CONDUCTED SPURIOUS EMISSIONS	25
8. RA	ADIATED TEST RESULTS	29
8.1.	LIMITS AND PROCEDURE	29
8.2.		
_	2.1. LOW CHANNEL HARMONICS AND SPURIOUS EMISSIONS	
_	2.3. HIGH CHANNEL HARMONICS AND SPURIOUS EMISSIONS	
8.3.	WORST-CASE BELOW 1 GHz	40
	Page 3 of 55	

8	3.4.	WORST-CASE EMISSION 18-26 GHz	42
9.	AC	POWER LINE CONDUCTED EMISSIONS	44
10.	S	SETUP PHOTOS	49

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: INTEL CORPORATION

2200 MISSION COLLEGE BOULEVARD

SANTA CLARA, CA 95052, U.S.A

FITNESS TRACKING DEVICE WITH BLE **EUT DESCRIPTION:**

BASIS PEAK MODEL:

Conducted Unit #: A4000F1BZ131 DVT **SERIAL NUMBER:**

Radiated Unit #: A4000AA1EZ131 DVT

DATE TESTED: August 27, 2014 to September 5, 2014

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C

Pass

INDUSTRY CANADA RSS-210 Issue 8 Annex 8

Pass

INDUSTRY CANADA RSS-GEN Issue 3

Pass

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For

UL Verification Services Inc. By:

Tested By:

GARY VICTORINE PROJECT LEAD

UL Verification Services Inc.

JOE VANG **EMC ENGINEER**

UL Verification Services Inc.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
☐ Chamber A	☐ Chamber D
☐ Chamber B	☐ Chamber E
☐ Chamber C	
	☐ Chamber G
	Chamber H

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers A through H are covered under Industry Canada company address code 2324B with site numbers 2324B-1 through 2324B-8, respectively.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://ts.nist.gov/standards/scopes/2000650.htm.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dB μ V/m) = Measured Voltage (dB μ V) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB)

 $36.5 \text{ dB}\mu\text{V} + 18.7 \text{ dB/m} + 0.6 \text{ dB} - 26.9 \text{ dB} = 28.9 \text{ dB}\mu\text{V/m}$

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	± 3.52 dB
Radiated Disturbance, 30 to 1000 MHz	± 4.94 dB
Radiated Disturbance, 1 to 6 GHz	± 3.86 dB
Radiated Disturbance, 6 to 18 GHz	± 4.23 dB
Radiated Disturbance, 18 to 26 GHz	± 5.30 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is fitness tracking device with a 2.4 GHz BLE transceiver.

The radio module is manufactured by Nordic Semiconductor.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)
2402 - 2480	BLE	3.07	2.03

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a PCB antenna with a maximum gain of 0.0 dBi.

5.4. SOFTWARE AND FIRMWARE

The EUT firmware used during test was 0.6.3.200

The communications software used during test was Python 2.7.8.

The EUT driver software installed during testing was USB driver CDM v2.10.00 WHQL.

5.5. WORST-CASE CONFIGURATION AND MODE

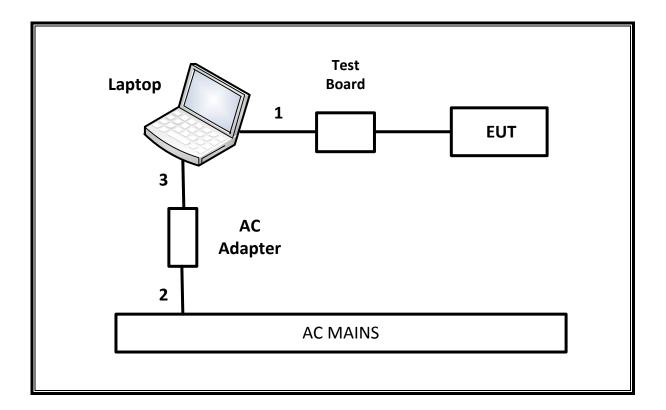
Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case.

The fundamental of the EUT was investigated in three orthogonal orientations X, Y, Z. It was determined that X (flat) orientation was worst-case orientation. Therefore, all final radiated testing was performed with the EUT in X orientation.

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Description	Manufacturer	Model	Serial Number	FCC ID
Laptop	Lenovo	20332	YB04282152	PPD-QCWB335
AC adapter (Laptop)	Lenovo	ADLX45NCC3A	11S45N0297ZSH443G0XE	N/A
Debug board	Intel	14090040	175-00007-01	N/A


I/O CABLES

	I/O Cable List							
Cable	Port	# of identical	Connector	Cable Type	Cable Length	Remarks		
No		ports	Туре		(m)			
1	USB	1	USB Micro	Shielded	0.35			
2	AC	1	3-Wire	Unshielded	0.9			
3	DC	1	Barrel	Unshielded	1.8			

TEST SETUP

The EUT is connected to a test board, which is connected to the USB port of a laptop computer during test. Test software exercised the EUT.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

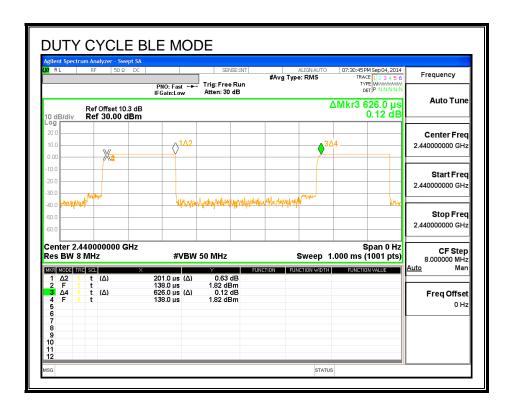
Test Equipment List							
Description	Manufacturer	Model	Asset	Cal Date	Cal Due		
Single Channel PK Power Meter	Agilent	N1911A	F00022	4/9/2014	4/9/2015		
Wideband Power Sensor, 30MHz VBW	Agilent	N1921A	F00360	9/30/2013	9/30/2014		
Spectrum Analyzer	Agilent	N9030A	F00127	3/11/2014	3/11/2015		
Antenna, Horn, 18 GHz	ETS Lindgren	3117	C01005	3/20/2014	3/20/2015		
Antenna, Biconolog, 30MHz-1 GHz	Sunol Sciences	JB1	C01011	4/22/2014	4/22/2015		
High Pass Filter, fc: 3.0GHz, 50 Ohms	Micro-Tronics	HPM17543	F00181	1/20/2014	1/20/2015		
RF PreAmplifier, 1-18GHz	Miteq	AFS42-00101800- 25-S-42	F00354	1/20/2014	1/21/2015		
Preamp, 1000MHz	Sonoma	310N	N02891	12/30/2013	12/30/2014		
Spectrum Analyzer	Agilent	N9030A	F00128	2/12/2014	2/12/2015		
Spectrum Analyzer, 40 GHz	Agilent	8564E	C00951	8/6/2014	8/6/2015		
Amplifier, 1 to 26.5GHz	Agilent	8449B	F00167	3/25/2014	3/25/2015		
Antenna, Horn 18 to 26.5GHz	ARA	MWH-1826/B	C00980	11/26/2013	11/26/2014		
EMI Test Receiver, 9 kHz-7 GHz	R & S	ESCI 7	F00092	9/9/2013	9/9/2014		
LISN, 30 MHz	FCC	50/250-25-2	C00626	1/17/2014	1/17/2015		

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME, DUTY CYCLE AND MEASUREMENT METHODS

LIMITS

None; for reporting purposes only.


PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.

7.2. ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		х	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
BLE	0.201	0.626	0.321	32.11%	4.93	4.975

7.3. DUTY CYCLE PLOTS

7.4. MEASUREMENT METHODS

6 dB BW: KDB 558074 D01 v03r02, Section 8.1.

Output Power: KDB 558074 D01 v03r02, Section 9.1.2.

Power Spectral Density: KDB 558074 D01 v03r02, Section 10.2.

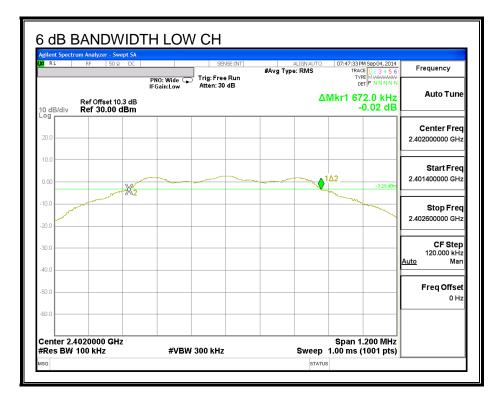
Out-of-band emissions in non-restricted bands: KDB 558074 D01 v03r02, Section 11.0.

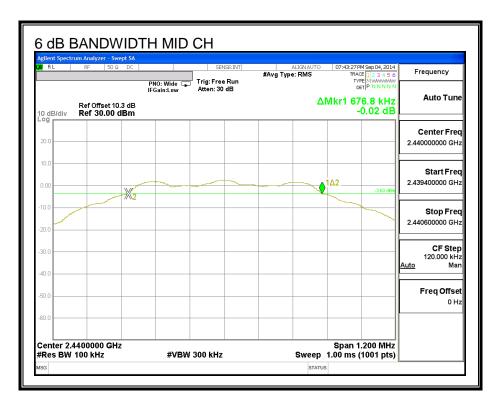
Out-of-band emissions in restricted bands: KDB 558074 D01 v03r02, Section 12.1.

7.5. 6 dB BANDWIDTH

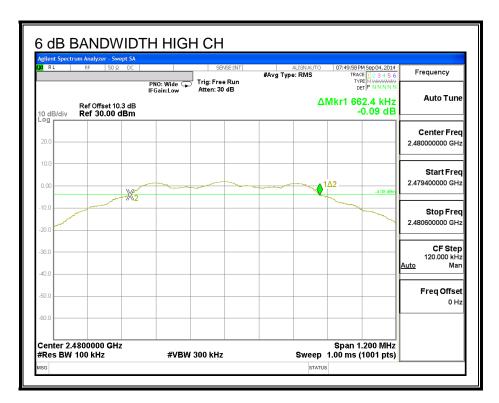
LIMITS

FCC §15.247 (a) (2)


IC RSS-210 A8.2 (a)


The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS


Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.672	0.5
Middle	2440	0.677	0.5
High	2480	0.662	0.5

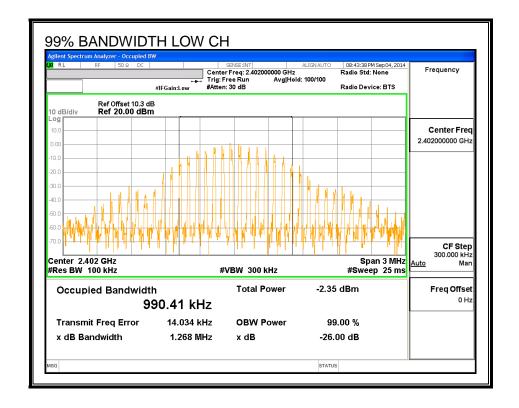
6 dB BANDWIDTH

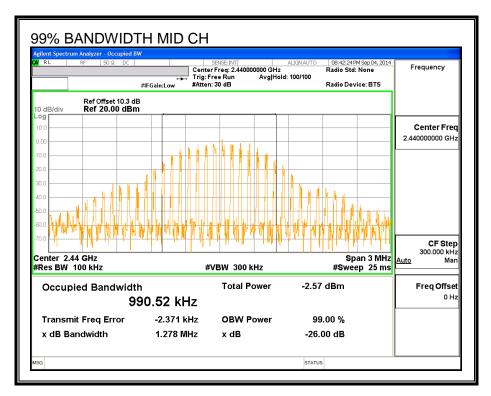
REPORT NO: 14U18649-E1B

7.6. 99% BANDWIDTH

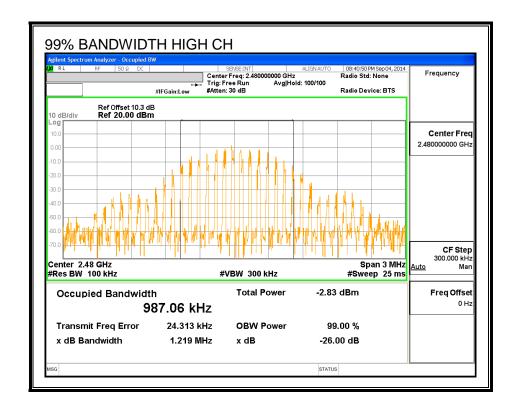
LIMITS

None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS


Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	0.990
Middle	2440	0.991
High	2480	0.987

99% BANDWIDTH

REPORT NO: 14U18649-E1B FCC ID: 2AB8ZMRA

7.7. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

RESULTS

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2402	3.07	30	-26.930
Middle	2440	2.76	30	-27.240
High	2480	2.40	30	-27.600

7.8. **AVERAGE POWER**

LIMITS

None; for reporting purposes only.

RESULTS

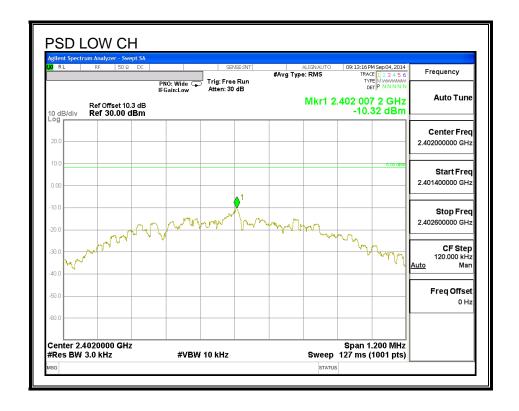
The cable assembly insertion loss of 10.3 dB (including 10 dB pad and 0.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

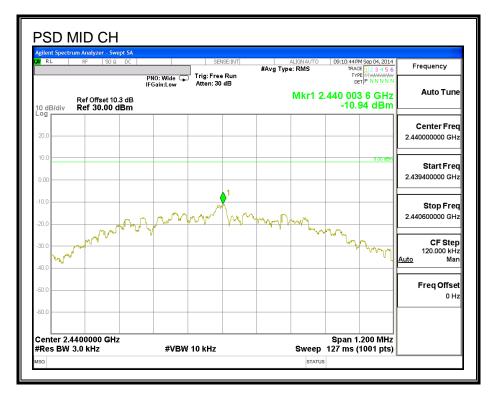
Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	2.66
Middle	2440	2.60
High	2480	2.24

7.9. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)


IC RSS-210 A8.2 (b)


The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

RESULTS


Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	-10.32	8	-18.32
Middle	2440	-10.94	8	-18.94
High	2480	-10.55	8	-18.55

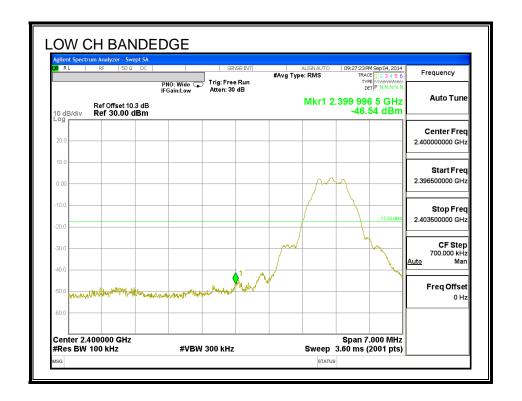
POWER SPECTRAL DENSITY

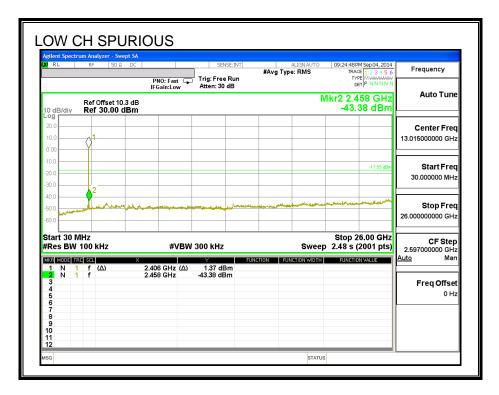
REPORT NO: 14U18649-E1B FCC ID: 2AB8ZMRA

DATE: SEPTEMBER 14, 2014

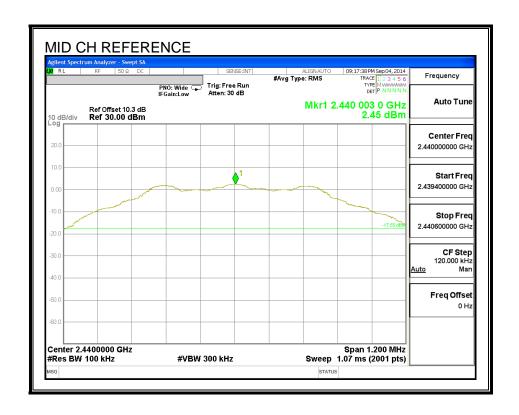
IC: 1000X-MRA

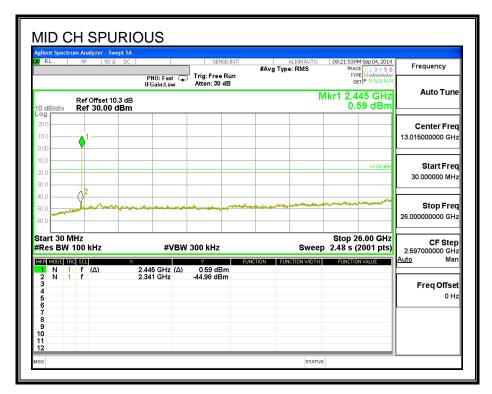
7.10. CONDUCTED SPURIOUS EMISSIONS

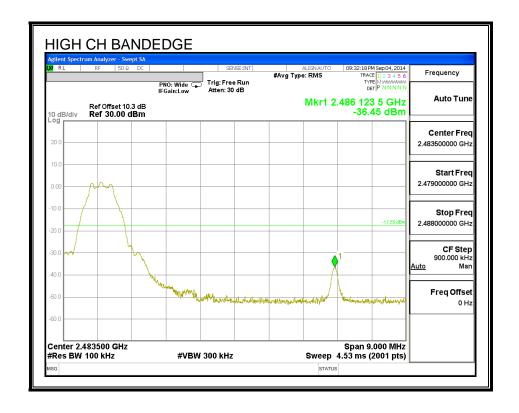

LIMITS

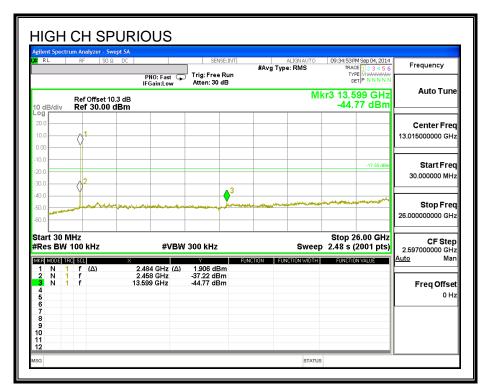

FCC §15.247 (d) IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement. Therefore, the required attenuation is 20 dB.


RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

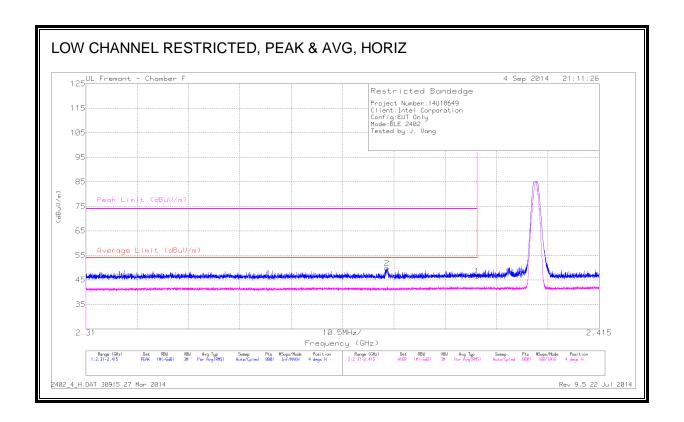
IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (µV/m) at 3 m	Field Strength Limit (dBµV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters.

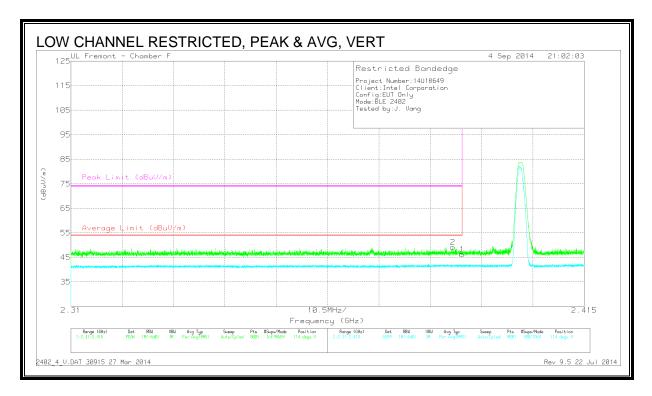
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.


For measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz for peak measurements and as applicable for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

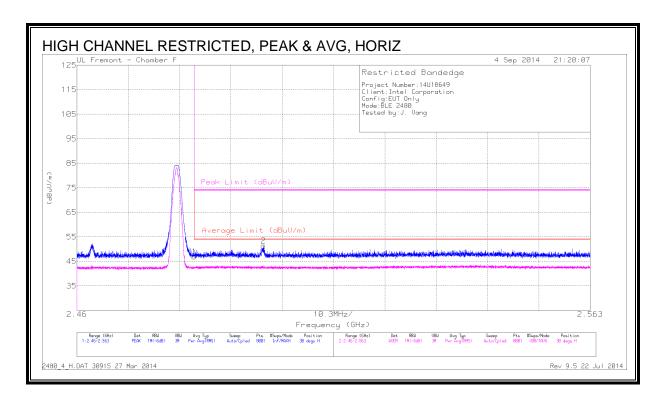
The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

8.2. TX ABOVE 1 GHz FOR BLUETOOTH LOW ENERGY MODE


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

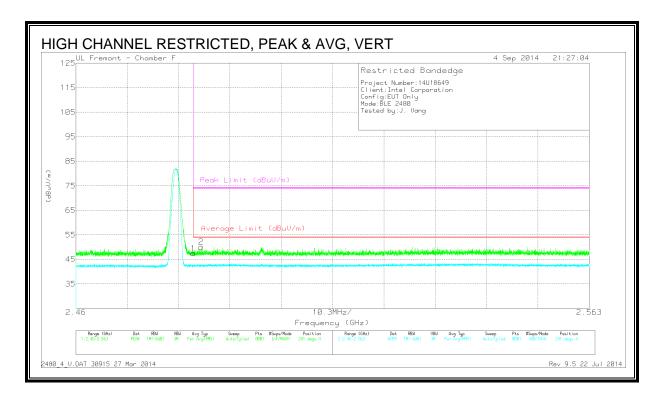
Marker	Frequency	Meter	Det	AF T120	Amp/Cbl	DC Corr	Corrected	Average	Margin	Peak Limit	PK	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	/Fltr/Pad	(dB)	Reading	Limit	(dB)	(dBµV/m)	Margin	(Degs)	(cm)	
		(dBµV)			(dB)		(dBμV/m)	(dBµV/m)			(dB)			
1	* 2.39	38.16	PK	32.2	-23.8	0	46.56	-	-	74	-27.44	4	321	Н
2	* 2.372	41.74	PK	32.1	-24	0	49.84	-	-	74	-24.16	4	321	Н
3	* 2.39	27.89	RMS	32.2	-23.8	4.95	41.24	54	-12.76	-	-	4	321	Н
4	* 2.385	29.05	RMS	32.1	-23.8	4.95	42.3	54	-11.7	-	-	4	321	Н

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

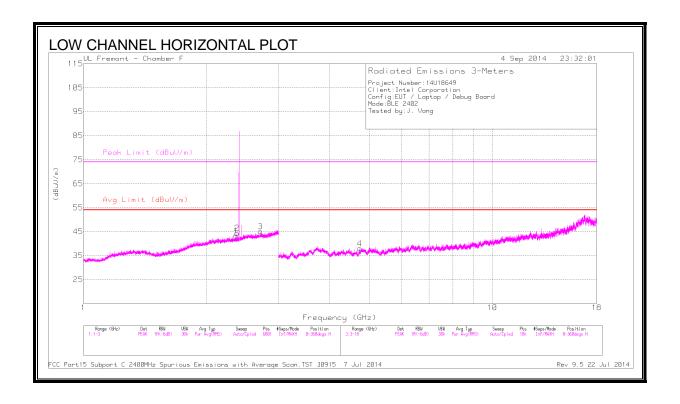
Marker	Frequency (GHz)	Meter Reading	Det	AF T120 (dB/m)	Amp/Cbl /Fltr/Pad	DC Corr (dB)	Corrected Reading	Average Limit	Margin (dB)	Peak Limit	PK Margin	Azimuth (Degs)	Height (cm)	Polarity
		(dBµV)			(dB)		(dBµV/m)	(dBµV/m)		(dBµV/m)	(dB)			
1	* 2.39	37.82	PK	32.2	-23.8	0	46.22	-	-	74	-27.78	114	390	V
2	* 2.388	40.77	PK	32.2	-23.8	0	49.17	-	-	74	-24.83	114	390	V
3	* 2.39	28.28	RMS	32.2	-23.8	4.95	41.63	54	-12.37	-	-	114	390	V
4	* 2.389	29.12	RMS	32.2	-23.8	4.95	42.47	54	-11.53	-	-	114	390	V

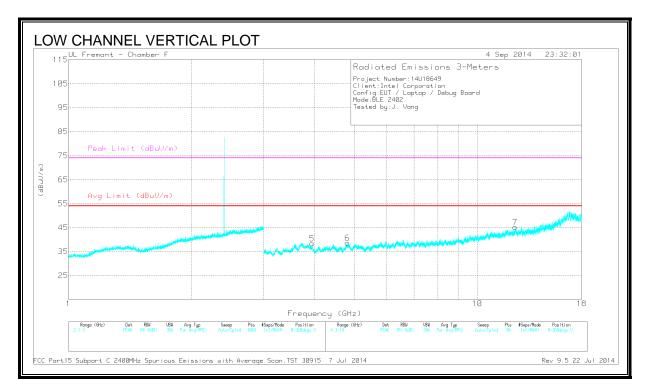
^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band


RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Marker	Frequency	Meter	Det	AF T120	Amp/Cbl	DC Corr	Corrected	Average	Margin	Peak	PK	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	/Fltr/Pad	(dB)	Reading	Limit	(dB)	Limit	Margin	(Degs)	(cm)	
		(dBµV)			(dB)		(dBµV/m)	(dBµV/m)		(dBµV/m)	(dB)			
1	* 2.484	37.36	PK	32.6	-23	0	46.96	-	-	74	-27.04	30	325	Н
2	* 2.497	41.75	PK	32.6	-23	0	51.35	-	-	74	-22.65	30	325	Н
3	* 2.484	27.86	RMS	32.6	-23	4.95	42.41	54	-11.59	-	-	30	325	Н
4	2.541	28.82	RMS	32.7	-22.8	4.95	43.67	54	-10.33	-	-	30	325	Н

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band


RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)



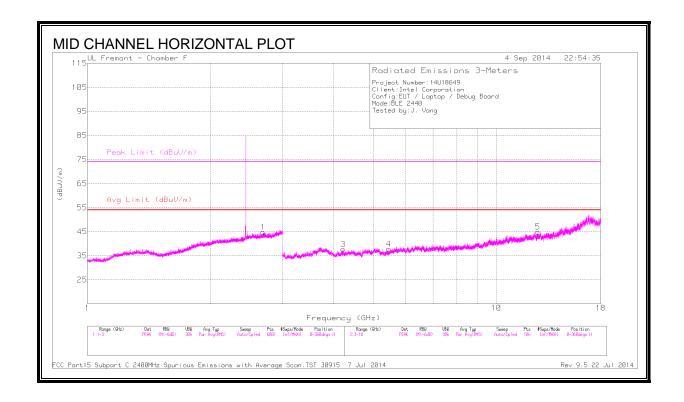
Marker	Frequency (GHz)	Meter Reading (dBμV)	Det	AF T120 (dB/m)	Amp/Cbl /Fltr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBµV/m)	Average Limit (dBμV/m)	Margin (dB)	Peak Limit (dBμV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	37.82	PK	32.6	-23	0	47.42	-	-	74	-26.58	241	312	V
2	* 2.485	40.41	PK	32.6	-22.9	0	50.11	-	-	74	-23.89	241	312	V
3	* 2.484	27.61	RMS	32.6	-23	4.95	42.16	54	-11.84	-	-	241	312	V
4	2.539	28.7	RMS	32.7	-22.8	4.95	43.55	54	-10.45	-	-	241	312	V

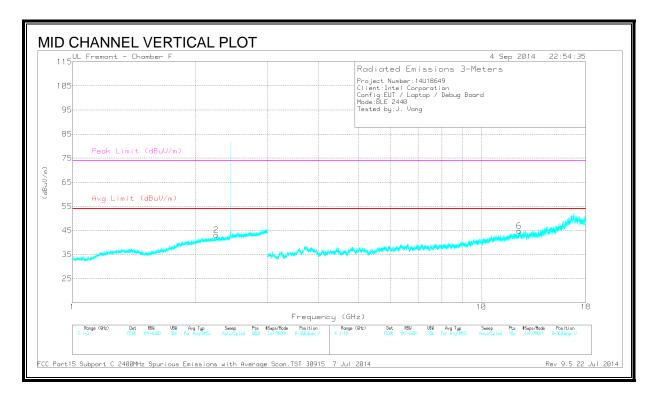
^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

8.2.1. LOW CHANNEL HARMONICS AND SPURIOUS EMISSIONS

DATA

Radiated Emissions


Marker	Frequency (GHz)	Meter Reading (dBμV)	Det	AF T120 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBµV/m)	Avg Limit (dBμV/m)	Margin (dB)	Peak Limit (dBμV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.359	42.17	PK2	32	-23.6	0	50.57	-	-	74	-23.43	256	264	Н
	* 2.361	29.9	MAv1	32	-23.7	4.95	43.15	54	-10.85	-	-	256	264	Н
2	* 2.373	46.87	PK2	32.1	-23.9	0	55.07	-	-	74	-18.93	248	223	Н
	* 2.373	30.49	MAv1	32.1	-23.9	4.95	43.64	54	-10.36	-	-	248	223	Н
3	* 2.71	42.03	PK2	32.7	-22.6	0	52.13	-	-	74	-21.87	5	298	Н
	* 2.71	29.76	MAv1	32.7	-22.6	4.95	44.81	54	-9.19	-	-	5	298	Н
4	* 4.742	38.09	PK2	34.1	-28.3	0	43.89	-	-	74	-30.11	98	270	Н
	* 4.742	26.41	MAv1	34.1	-28.3	4.95	37.16	54	-16.84	-	-	98	270	Н
5	* 3.946	39.77	PK2	33.9	-29	0	44.67	-	-	74	-29.33	163	330	V
	* 3.946	27.43	MAv1	33.9	-29	4.95	37.28	54	-16.72	-	-	163	330	V
6	* 4.816	37.7	PK2	34.1	-27.3	0	44.5	-	-	74	-29.5	79	309	V
	* 4.814	25.91	MAv1	34.1	-27.3	4.95	37.66	54	-16.34	-	-	79	309	V
7	* 12.371	35.82	PK2	38.9	-21.2	0	53.52	-	-	74	-20.48	80	334	V
	* 12.37	23.51	MAv1	38.9	-21.1	4.95	46.26	54	-7.74	-	-	80	334	V


^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

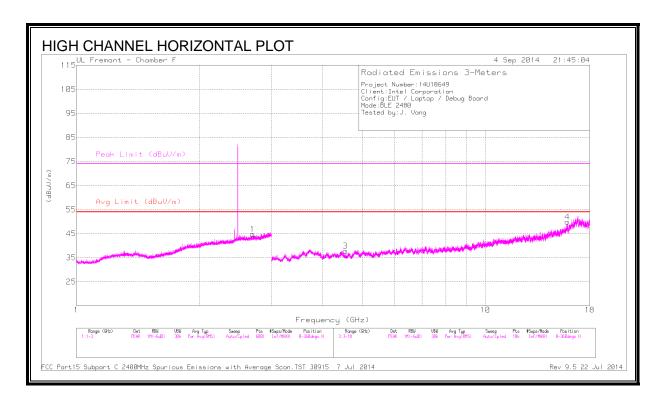
PK2 - KDB558074 Method: Maximum Peak

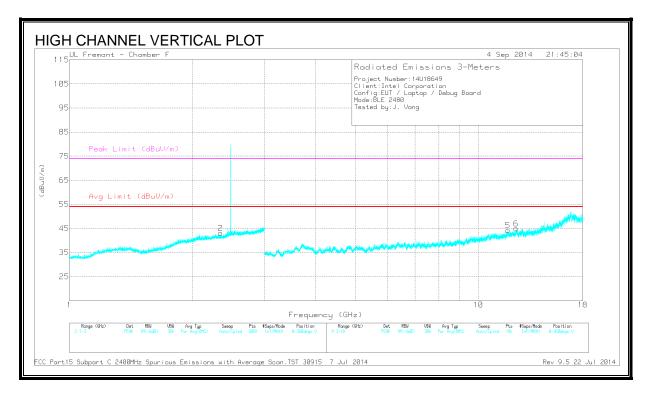
MAv1 - KDB558074 Option 1 Maximum RMS Average

8.2.2. MID CHANNEL HARMONICS AND SPURIOUS EMISSIONS

DATA

Radiated Emissions


Marker	Frequency (GHz)	Meter Reading (dBμV)	Det	AF T120 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBμV/m)	Avg Limit (dBμV/m)	Margin (dB)	Peak Limit (dBμV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.686	41.8	PK2	32.7	-22.8	0	51.7	-	-	74	-22.3	176	287	Н
	* 2.687	29.97	MAv1	32.7	-22.8	4.95	44.82	54	-9.18	-	-	176	287	Н
2	* 2.246	41.46	PK2	31.8	-23.5	0	49.76	-	-	74	-24.24	237	216	V
	* 2.247	29.85	MAv1	31.8	-23.5	4.95	43.1	54	-10.9	-	-	237	216	V
3	* 4.222	39.11	PK2	33.6	-28.4	0	44.31	-	-	74	-29.69	96	248	Н
	* 4.222	26.65	MAv1	33.6	-28.4	4.95	36.8	54	-17.2	-	-	96	248	Н
4	* 5.455	38.5	PK2	34.6	-27.8	0	45.3	-	-	74	-28.7	347	110	Н
	* 5.455	26.18	MAv1	34.6	-27.8	4.95	37.93	54	-16.07	-	-	347	110	Н
5	* 12.619	35.77	PK2	39.1	-23	0	51.87	-	-	74	-22.13	127	255	Н
	* 12.621	23.99	MAv1	39.1	-23	4.95	45.04	54	-8.96	-	-	127	255	Н
6	* 12.364	35.42	PK2	38.9	-21.4	0	52.92	-	-	74	-21.08	256	162	V
	* 12.363	23.35	MAv1	38.9	-21.5	4.95	45.7	54	-8.3	-	-	256	162	V


^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

8.2.3. HIGH CHANNEL HARMONICS AND SPURIOUS EMISSIONS

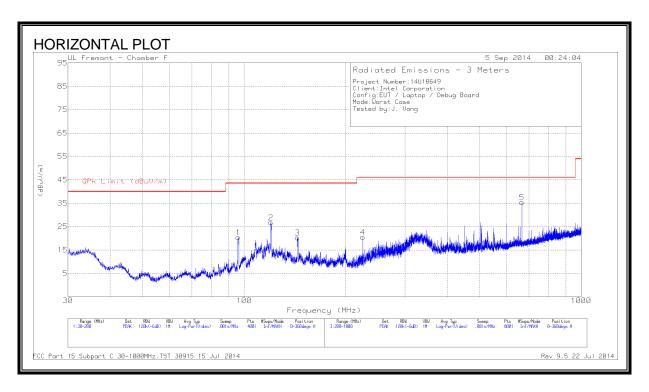
REPORT NO: 14U18649-E1B DATE: SEPTEMBER 14, 2014 IC: 1000X-MRA FCC ID: 2AB8ZMRA

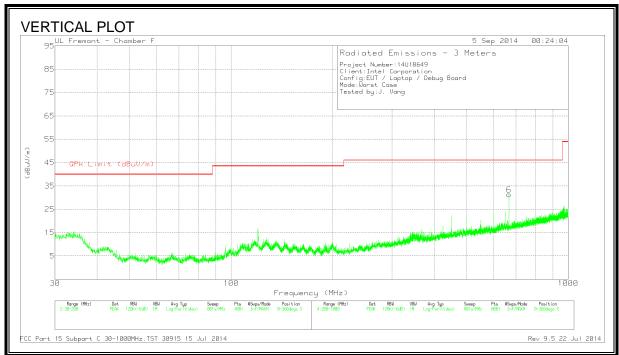
DATA

Radiated Emissions

Marker	Frequency (GHz)	Meter Reading (dBμV)	Det	AF T120 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBµV/m)	Avg Limit (dBμV/m)	Margin (dB)	Peak Limit (dBμV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.696	41.52	PK2	32.7	-22.6	0	51.62	-	-	74	-22.38	103	375	Н
	* 2.696	29.8	MAv1	32.7	-22.6	4.95	44.85	54	-9.15	-	-	103	375	Н
2	* 2.341	41.92	PK2	32	-23.6	0	50.32	-	-	74	-23.68	206	296	V
	* 2.34	29.83	MAv1	32	-23.6	4.95	43.18	54	-10.82	-	-	206	296	V
3	* 4.551	38.22	PK2	34	-28.3	0	43.92	-	-	74	-30.08	160	174	Н
	* 4.55	26.33	MAv1	34	-28.3	4.95	36.98	54	-17.02	-	-	160	174	Н
4	* 15.867	35.95	PK2	40.4	-19.7	0	56.65	-	-	74	-17.35	98	234	Н
	* 15.866	24.21	MAv1	40.4	-19.6	4.95	49.96	54	-4.04	-	-	98	234	Н
5	* 11.809	34.89	PK2	38.7	-21.6	0	51.99	-	-	74	-22.01	256	265	V
	* 11.81	22.7	MAv1	38.7	-21.6	4.95	44.75	54	-9.25	-	-	256	265	V
6	* 12.373	35.32	PK2	38.9	-21.3	0	52.92	-	-	74	-21.08	256	374	V
	* 12.373	23.44	MAv1	38.9	-21.3	4.95	45.99	54	-8.01	-	-	256	374	V

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band


PK2 - KDB558074 Method: Maximum Peak


MAv1 - KDB558074 Option 1 Maximum RMS Average

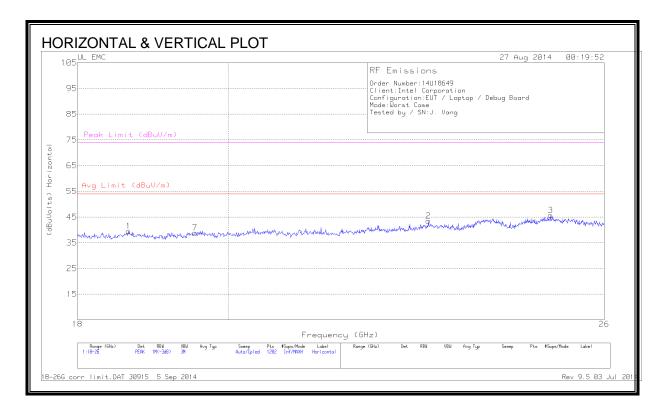
TEL: (510) 771-1000

8.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL & VERTICAL)

HORIZONTAL & VERTICAL DATA

Radiated Emissions


Marker	Frequency (MHz)	Meter Reading	Det	AF T122 (dB/m)	Amp/Cbl (dB)	DC Corr (dB)	Corrected Reading	QPk Limit (dBμV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
		(dBµV)					(dBµV/m)					
1	91.15	24.19	QP	7.9	-31.6	0	.49	43.52	-43.03	142	157	Н
2	* 119.305	24.18	QP	13.9	-31.3	0	6.78	43.52	-36.74	132	131	Н
3	145.12	24.25	QP	12.8	-31.3	0	5.75	43.52	-37.77	159	301	Н
4	225.79	23.39	QP	10.9	-31	0	3.29	46.02	-42.73	232	350	Н
5	670.56	23.53	QP	19.8	-29.8	0	13.53	46.02	-32.49	167	196	Н
6	662.08	23.39	QP	19.8	-29.8	0	13.39	46.02	-32.63	251	318	V

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

QP - Quasi-Peak detector

8.4. WORST-CASE EMISSION 18-26 GHz

SPURIOUS EMISSIONS 18-26 GHz (WORST-CASE CONFIGURATION, HORIZONTAL & VERTICAL)

DATA

Marker	Frequency (GHz)	Meter Reading (dBµV)	Det	AF T89 (dB/m)	Amp/Cbl (dB)	Dist Corr (dB)	Corrected Reading (dBµVolts)	Avg Limit (dBμV/m)	Margin (dB)	Peak Limit (dBµV/m)	PK Margin (dB)
1	18.653	40.4	PK	32.5	-23.9	-9.5	39.5	54	-14.5	74	-34.5
2	22.996	42.6	PK	33.6	-23.2	-9.5	43.5	54	-10.5	74	-30.5
3	25.047	43.77	PK	34	-22.6	-9.5	45.7	54	-8.3	74	-28.3
7	19.539	40.03	PK	32.5	-24.2	-9.5	38.8	54	-15.2	74	-35.2
4	22.13	42.03	PK	33.3	-23.5	-9.5	42.3	54	-11.7	74	-31.7
5	24.048	44.03	PK	33.6	-22.8	-9.5	45.3	54	-8.7	74	-28.7
6	24.934	43.43	PK	34	-22.6	-9.5	45.33	54	-8.7	74	-28.7

PK - Peak detector

18-26G corr limit.DAT 30915 5 Sep 2014 Rev 9.5 03 Jul 2014

Note: Tests were performed with the antenna at a 1m test distance from the EUT.

9. AC POWER LINE CONDUCTED EMISSIONS

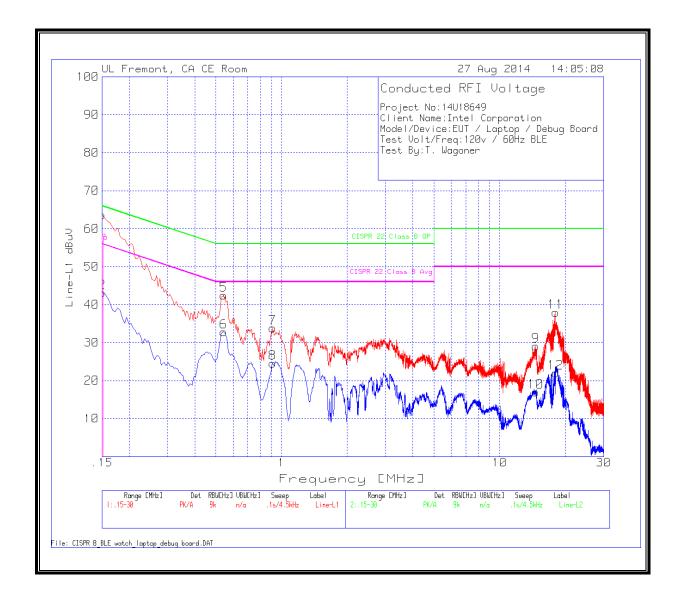
LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted I	imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.


TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

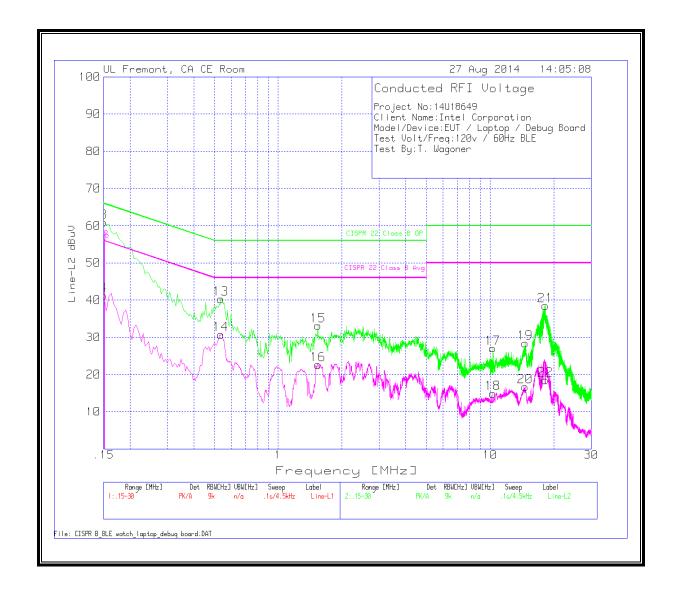
Line conducted data is recorded for both NEUTRAL and HOT lines.

LINE 1 RESULTS

WORST EMISSIONS

LINE 1 DATA

Line-L1 0.15 - 30MHz


Trace	Markers									
Marker	Frequency (MHz)	Meter Reading (dBμV)	Det	T24 IL L1 (dB)	LC Cables 1&3 (dB)	Corrected Reading dBµV	CISPR 22 Class B QP Limit	Margin to Limit (dB)	CISPR 22 Class B Avg Limit	Margin to Limit (dB)
1	.15	55.92	QP	1.4	0	57.32	66	-8.68	-	-
2	.15	41.74	Av	1.4	0	43.14	-	-	56	-12.86
5	.5415	42.16	PK	.3	0	42.46	56	-13.54	-	-
6	.5415	32.47	Av	.3	0	32.77	-	-	46	-13.23
7	.9105	33.51	PK	.3	0	33.81	56	-22.19	-	-
8	.9105	24.3	Av	.3	0	24.6	-	-	46	-21.4
9	14.613	28.75	PK	.2	.2	29.15	60	-30.85	-	-
10	14.613	16.57	Av	.2	.2	16.97	-	-	50	-33.03
11	18.06	37.53	PK	.3	.2	38.03	60	-21.97	-	-
12	18.06	21.54	Av	.3	.2	22.04	-	-	50	-27.96

PK - Peak detector

Av – Average detector

QP - Quasi-Peak detector

LINE 2 RESULTS

WORST EMISSIONS

Line-L2 0.15 - 30MHz

Markers									
Frequency (MHz)	Meter Reading (dBμV)	Det	T24 IL L2 (dB)	LC Cables 2&3 (dB)	Corrected Reading dBµV	CISPR 22 Class B QP Limit	Margin to Limit (dB)	CISPR 22 Class B Avg Limit	Margin to Limit (dB)
.15	55.91	QP	1.5	0	57.41	66	-8.59	-	-
.15	39.71	Av	1.5	0	41.21	-	-	56	-14.79
.537	40.04	PK	.3	0	40.34	56	-15.66	-	-
.537	30.42	Av	.3	0	30.72	-	-	46	-15.28
1.5405	32.85	PK	.2	.1	33.15	56	-22.85	-	-
1.5405	22.32	Av	.2	.1	22.62	-	-	46	-23.38
10.3155	26.69	PK	.2	.2	27.09	60	-32.91	-	-
10.3155	14.53	Av	.2	.2	14.93	-	-	50	-35.07
14.658	28	PK	.3	.2	28.5	60	-31.5	-	-
14.658	16.24	Av	.3	.2	16.74	-	-	50	-33.26
18.1995	37.99	PK	.3	.2	38.49	60	-21.51	-	-
18.1995	18.02	Av	.3	.2	18.52	-	-	50	-31.48
	Frequency (MHz) .15 .15 .537 .537 1.5405 10.3155 10.3155 14.658 14.658 18.1995	Frequency (MHz) Reading (dBμV) .15 55.91 .15 39.71 .537 40.04 .537 30.42 1.5405 32.85 1.5405 22.32 10.3155 26.69 10.3155 14.53 14.658 28 14.658 16.24 18.1995 37.99	Frequency (MHz) Reading (dBμV) .15 55.91 QP .15 39.71 Av .537 40.04 PK .537 30.42 Av 1.5405 32.85 PK 1.5405 22.32 Av 10.3155 26.69 PK 10.3155 14.53 Av 14.658 28 PK 14.658 16.24 Av 18.1995 37.99 PK	Frequency (MHz) Meter Reading (dBμV) Det (dB) T24 IL L2 (dB) .15 55.91 QP 1.5 .15 39.71 Av 1.5 .537 40.04 PK .3 .537 30.42 Av .3 1.5405 32.85 PK .2 1.5405 22.32 Av .2 10.3155 26.69 PK .2 10.3155 14.53 Av .2 14.658 28 PK .3 14.658 16.24 Av .3 18.1995 37.99 PK .3	Frequency (MHz) Meter Reading (dBμV) Det (dB) T24 IL L2 (dB) LC Cables 2&3 (dB) .15 55.91 QP 1.5 0 .15 39.71 Av 1.5 0 .537 40.04 PK .3 0 .537 30.42 Av .3 0 1.5405 32.85 PK .2 .1 1.5405 22.32 Av .2 .1 10.3155 26.69 PK .2 .2 10.3155 14.53 Av .2 .2 14.658 28 PK .3 .2 14.658 16.24 Av .3 .2 18.1995 37.99 PK .3 .2	Frequency (MHz) Meter Reading (dBμV) Det (dB) T24 IL L2 (dB) LC Cables 2&3 (dB) Corrected Reading dBμV .15 55.91 QP 1.5 0 57.41 .15 39.71 Av 1.5 0 41.21 .537 40.04 PK .3 0 40.34 .537 30.42 Av .3 0 30.72 1.5405 32.85 PK .2 .1 33.15 1.5405 22.32 Av .2 .1 22.62 10.3155 26.69 PK .2 .2 27.09 10.3155 14.53 Av .2 .2 14.93 14.658 28 PK .3 .2 28.5 14.658 16.24 Av .3 .2 16.74 18.1995 37.99 PK .3 .2 38.49	Frequency (MHz) Meter Reading (dBμV) Det (dB) T24 IL L2 (dB) LC Cables 2&3 (dB) Corrected Reading Reading dBμV ClSPR 22 Class B QP Limit .15 55.91 QP 1.5 0 57.41 66 .15 39.71 Av 1.5 0 41.21 - .537 40.04 PK .3 0 40.34 56 .537 30.42 Av .3 0 30.72 - 1.5405 32.85 PK .2 .1 33.15 56 1.5405 22.32 Av .2 .1 22.62 - 10.3155 26.69 PK .2 .2 27.09 60 10.3155 14.53 Av .2 .2 14.93 - 14.658 28 PK .3 .2 28.5 60 14.658 16.24 Av .3 .2 38.49 60	Frequency (MHz) Meter Reading (dBμV) Det Limit (dB) T24 IL L2 (dB) LC Cables 28.3 (dB) Corrected Reading dBμV CISPR 22 Class B QP Limit (dB) Margin to Limit (dB) .15 55.91 QP 1.5 0 57.41 66 -8.59 .15 39.71 Av 1.5 0 41.21 - - .537 40.04 PK .3 0 40.34 56 -15.66 .537 30.42 Av .3 0 30.72 - - 1.5405 32.85 PK .2 .1 33.15 56 -22.85 1.5405 22.32 Av .2 .1 22.62 - - 10.3155 26.69 PK .2 .2 27.09 60 -32.91 10.3155 14.53 Av .2 .2 14.93 - - 14.658 28 PK .3 .2 28.5 60 -31.5 14.658 </td <td>Frequency (MHz) Meter Reading (dBμV) Det IdB T24 IL L2 (dB) LC Cables 28.3 (dB) Corrected Reading dBμV CISPR 22 Class B QP Limit Margin to CISPR 22 Class B AVR Limit (dB) .15 55.91 QP 1.5 0 57.41 66 -8.59 - .15 39.71 AV 1.5 0 41.21 - - 56 .537 40.04 PK .3 0 40.34 56 -15.66 - .537 30.42 AV .3 0 30.72 - - 46 1.5405 32.85 PK .2 .1 33.15 56 -22.85 - 1.5405 22.32 AV .2 .1 22.62 - - 46 10.3155 26.69 PK .2 .2 27.09 60 -32.91 - 14.658 28 PK .3 .2 28.5 60 -31.5 - 14.658 16.24</td>	Frequency (MHz) Meter Reading (dBμV) Det IdB T24 IL L2 (dB) LC Cables 28.3 (dB) Corrected Reading dBμV CISPR 22 Class B QP Limit Margin to CISPR 22 Class B AVR Limit (dB) .15 55.91 QP 1.5 0 57.41 66 -8.59 - .15 39.71 AV 1.5 0 41.21 - - 56 .537 40.04 PK .3 0 40.34 56 -15.66 - .537 30.42 AV .3 0 30.72 - - 46 1.5405 32.85 PK .2 .1 33.15 56 -22.85 - 1.5405 22.32 AV .2 .1 22.62 - - 46 10.3155 26.69 PK .2 .2 27.09 60 -32.91 - 14.658 28 PK .3 .2 28.5 60 -31.5 - 14.658 16.24

PK – Peak detector Av – Average detector

QP - Quasi-Peak detector