

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-247 ISSUE 1

CERTIFICATION TEST REPORT

FOR

REPEATER

MODEL NUMBER: RE-201

FCC ID: 2AB8I-RE-40-214 IC ID: 20949-RE40214

REPORT NUMBER: 15U22186-E1V3

ISSUE DATE: FEBRUARY 11, 2016

Prepared for NEXT CENTURY SUBMETERING SYSTEMS, LLC P.O. BOX 360 TYBEE ISLAND, GA 31328 U.S.A.

> Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
V1	1/11/16	Initial Issue	H. Mustapha
V2	2/5/16	Updated IC reference to RSS-247 Issue 1 Updated section 5.2 to indicate low frequency at 910.2 MH Updated sections 9.1 and 10 with test procedure Updated average power measurements in section 8.7 Updated Section 5.6	H. Mustapha
V3	2/11/16	Updated calibration date for Micro-Tronics HPM50114 filter Updated section 9 by removing reference to KDB 558074 from results table for average measurements	H. Mustapha

Page 2 of 54

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	5
2.	TES	ST METHODOLOGY	7
3.	FA	CILITIES AND ACCREDITATION	7
4.	CA	LIBRATION AND UNCERTAINTY	7
4	4.1.	MEASURING INSTRUMENT CALIBRATION	. 7
4	1.2.	SAMPLE CALCULATION	7
4	1.3.	MEASUREMENT UNCERTAINTY	. 8
5.	EQ	UIPMENT UNDER TEST	9
£	5.1.	DESCRIPTION OF EUT	9
5	5.2.	MAXIMUM OUTPUT POWER	. 9
5	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	9
5	5.4.	SOFTWARE AND FIRMWARE	9
5	5.5.	WORST-CASE CONFIGURATION AND MODE	10
£	5.6.	DESCRIPTION OF TEST SETUP	10
6.	TES	ST AND MEASUREMENT EQUIPMENT1	12
7.	MF	ASUREMENT METHODS	13
8.		TENNA PORT TEST RESULTS	
8.		TENNA PORT TEST RESULTS1	14
8.	AN 3. <i>1.</i> 8.1.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 ON TIME AND DUTY CYCLE RESULTS 1	14 14 14
8. 8	AN 3. <i>1.</i> 8.1. 8.1.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 1. ON TIME AND DUTY CYCLE RESULTS 1 2. DUTY CYCLE PLOTS 1	14 14 14 14
8. 8	AN 3. <i>1.</i> 8.1. 8.1. 8.2.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 1. ON TIME AND DUTY CYCLE RESULTS 1 2. DUTY CYCLE PLOTS 1 20 dB and 99% BANDWIDTH 1	14 14 14 14 15
8. 8	AN 3. <i>1.</i> 8.1. 8.1.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 1. ON TIME AND DUTY CYCLE RESULTS 1 2. DUTY CYCLE PLOTS 1 20 dB and 99% BANDWIDTH 1 1. 20 dB BANDWIDTH 1	14 14 14 15 15
8. 8	AN 3. 1. 8. 1. 8. 1. 3. 2. 8. 2.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 1. ON TIME AND DUTY CYCLE RESULTS 1 2. DUTY CYCLE PLOTS 1 20 dB and 99% BANDWIDTH 1 1. 20 dB BANDWIDTH 1	14 14 14 15 15
8. 8	AN 3. 1. 8.1. 8.1. 3.2. 8.2. 8.2.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 1. ON TIME AND DUTY CYCLE RESULTS 1 2. DUTY CYCLE PLOTS 1 20 dB and 99% BANDWIDTH 1 20 dB BANDWIDTH 1 20 dB BANDWIDTH 1 20 dB BANDWIDTH 1 20 dB BANDWIDTH 1	14 14 14 15 15 18 21
8. 8 8 8 8	AN 3. <i>1.</i> 8.1. 8.1. 3. <i>2.</i> 8.2. 8.2. 8.2.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 1. ON TIME AND DUTY CYCLE RESULTS 1 2. DUTY CYCLE PLOTS 1 20 dB and 99% BANDWIDTH 1 20 dB BANDWIDTH 1 2. 99% BANDWIDTH 1 2. 99% BANDWIDTH 1 2. 99% BANDWIDTH 1 2. 99% BANDWIDTH 1	14 14 14 15 15 18 21 22
8. ٤ ٤ ٤ ٤ ٤ ٤	AN 3. 1. 8. 1. 8. 2. 3. 2. 8. 2. 8. 2. 3. 3.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 1. ON TIME AND DUTY CYCLE RESULTS 1 2. DUTY CYCLE PLOTS 1 20 dB and 99% BANDWIDTH 1 20 dB BANDWIDTH 1 2. 99% BANDWIDTH 1 2. 2000 BANDWIDTH 1 2. 3000 BANDWIDTH 1 3. 3000 BANDWIDTH 1	14 14 14 15 15 18 21 22 24
8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8	AN 3.1. 8.1. 8.2. 8.3. 8.5.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 1. ON TIME AND DUTY CYCLE RESULTS 1 2. DUTY CYCLE PLOTS 1 20 dB and 99% BANDWIDTH 1 1. 20 dB BANDWIDTH 1 2. 99% BANDWIDTH 1 2. ARRIER FREQUENCY SEPARATION 2 NUMBER OF HOPPING FREQUENCIES 2 AVERAGE TIME OF OCCUPANCY 2	14 14 14 15 15 18 21 22 24 26
8. ٤ ٤ ٤ ٤ ٤ ٤ ٤ ٤ ٤ ٤ ٤ ٤ ٤ ٤ ٤ ٤ ٤ ٤ ٤	AN 3.1. 8.1. 8.2. 8.3. 8.4. 8.5. 8.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 1. ON TIME AND DUTY CYCLE RESULTS 1 2. DUTY CYCLE PLOTS 1 20 dB and 99% BANDWIDTH 1 1. 20 dB BANDWIDTH 1 2. 99% BANDWIDTH 1 2. 99% BANDWIDTH 1 2. NUMBER FREQUENCY SEPARATION 2 NUMBER OF HOPPING FREQUENCIES 2 AVERAGE TIME OF OCCUPANCY 2 PEAK OUTPUT POWER 2	14 14 14 15 15 18 21 22 24 26 29
8. 8. 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	AN 3.1. 8.1. 8.2. 8.3. 8.5. 8.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 1. ON TIME AND DUTY CYCLE RESULTS 1 2. DUTY CYCLE PLOTS 1 20 dB and 99% BANDWIDTH 1 1. 20 dB BANDWIDTH 1 2. 99% BANDWIDTH 1 2. 99% BANDWIDTH 1 2. NUMBER FREQUENCY SEPARATION 2 NUMBER OF HOPPING FREQUENCIES 2 AVERAGE TIME OF OCCUPANCY 2 PEAK OUTPUT POWER 2 AVERAGE POWER 2	14 14 14 15 15 18 21 22 24 26 29 30
8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8	AN 3.1. 8.1. 8.2. 8.3. 8.5. 8.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 1. ON TIME AND DUTY CYCLE RESULTS 1 2. DUTY CYCLE PLOTS 1 20 dB and 99% BANDWIDTH 1 1. 20 dB BANDWIDTH 1 2. 99% BANDWIDTH 1 2. 99% BANDWIDTH 1 2. NUMBER FREQUENCY SEPARATION 2 NUMBER OF HOPPING FREQUENCIES 2 AVERAGE TIME OF OCCUPANCY 2 PEAK OUTPUT POWER 2 AVERAGE POWER 2 CONDUCTED SPURIOUS EMISSIONS 2	14 14 14 15 15 18 21 22 24 26 29 30 35
8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8	AN 3. 1. 8. 1. 8. 2. 8. 3. 8. 4. 8. 5. 8. 6. 8. 7. 8. 8. 8. 7. 8. 7. 8. 7. 8. 7. 8. 7. 8. 7. 8. 7. 8. 7. 8. 8. 8. 7. 8. 7. 8. 8. 8. 7. 8. 8. 8. 7. 8. 8. 8. 7. 8. 8. 8. 7. 8. 8. 8. 7. 8. 8. 8. 8. 8. 7. 8. 8. 8. 8. 8. 7. 8. 8. 8. 8. 8. 8. 8. 7. 8. 8. 8. 8. 8. 8. 8. 8. 8. 7. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 1. ON TIME AND DUTY CYCLE RESULTS 1 2. DUTY CYCLE PLOTS 1 20 dB and 99% BANDWIDTH 1 1. 20 dB BANDWIDTH 1 2. 99% BANDWIDTH 1 2. AVERAGE TIME OF OCCUPANCY 2 PEAK OUTPUT POWER 2 AVERAGE POWER 2 CONDUCTED SPURIOUS EMISSIONS 3 DIATED TEST RESULTS 3	14 14 14 15 15 18 21 22 24 26 29 30 35 35
8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8	AN 3. 1. 8. 1. 8. 2. 8. 3. 8. 4. 8. 5. 8. 7. 8. 8. 8. 8. 8. 7. 8. 8. 9. 7. 9. 7. 9. 7.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 1. ON TIME AND DUTY CYCLE RESULTS 1 2. DUTY CYCLE PLOTS 1 20 dB and 99% BANDWIDTH 1 1. 20 dB BANDWIDTH 1 2. 99% BANDWIDTH 1 2. AVERAGE TIME OF OCCUPANCY 2 PEAK OUTPUT POWER 2 AVERAGE POWER 2 CONDUCTED SPURIOUS EMISSIONS 2 DIATED TEST RESULTS 3 LIMITS AND PROCEDURE 3	14 14 14 15 15 18 21 22 24 26 29 30 35 35 36

10.	AC POWER LINE CONDUCTED EMISSIONS	44
11.	SETUP PHOTOS	
	ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP	
11.2	. RADIATED RF WORST CASE PHOTO SETUP	50
11.3	. RADIATED RF MEASUREMENT SETUP (BELOW 1 GHz)	52
11.4	. POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP .	54

Page 4 of 54

1. ATTESTATION OF TEST RESULTS

ST	ANDARD	TEST RESULTS
	APPLICABLE STANDARDS	
DATE TESTED:	NOVEMBER 10 to 12, 2015 FEBRUARY 5, 2016	
SERIAL NUMBER:	CA0000C3 (Radiated sample) CA0000CA (Conducted sample)	
MODEL:	RE-201	
EUT DESCRIPTION:	REPEATER	
COMPANY NAME:	NEXT CENTURY SUBMETERING SYS P.O. BOX 360 TYBEE ISLAND, GA 31328, U.S.A.	STEMS, LLC

CEB 47 Part 15 Subnart C Pass	STANDARD	TEST RESULTS
	CFR 47 Part 15 Subpart C	Pass
INDUSTRY CANADA RSS-247 Issue 1 Pass	INDUSTRY CANADA RSS-247 Issue 1	Pass
INDUSTRY CANADA RSS-GEN Issue 4 Pass	INDUSTRY CANADA RSS-GEN Issue 4	Pass

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Page 5 of 54

Approved & Released For UL Verification Services Inc. By:

Tested By:

JUDE SEMANA Lab EMC ENGINEER UL Verification Services Inc.

Huda Mustapha

HUDA MUSTAPHA PROJECT LEAD UL Verification Services Inc.

FRANK IBRAHIM PROGRAM MANAGER UL Verification Services Inc.

Page 6 of 54

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, DA 00-75, ANSI C63.10-2013, RSS-GEN Issue 4, and RSS-247 Issue 1.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

47173 Benicia Street	47266 Benicia Street		
Chamber A	Chamber D		
Chamber B	Chamber E		
🖂 Chamber C	Chamber F		
	Chamber G		
	Chamber H		

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers A through H are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-8, respectively.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

Page 7 of 54

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	± 3.52 dB
Radiated Disturbance, 30 to 1000 MHz	± 4.94 dB
Radiated Disturbance, 1 to 6 GHz	± 3.86 dB
Radiated Disturbance, 6 to 18 GHz	± 4.23 dB
Radiated Disturbance, 18 to 26 GHz	± 5.30 dB
Radiated Disturbance, 26 to 40 GHz	± 5.23 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 8 of 54

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Repeater, submetering RF device designed to collect data from customer's devices and send them to their cloud servers.

The repeater is a frequency hopping system operating in the 902-928 MHz band and operated by 12v transformer.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
910.2-920	2GFSK	29.10	812.83

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a PCB antenna, with a maximum gain of 1.25 dBi.

5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was PuTTY, rev. 0.63.0.0.

Page 9 of 54

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission below 1 GHz and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations (X, Y and Z). It was determined that X orientation was worst case. All final measurements were taken in X orientation.

5.6. DESCRIPTION OF TEST SETUP

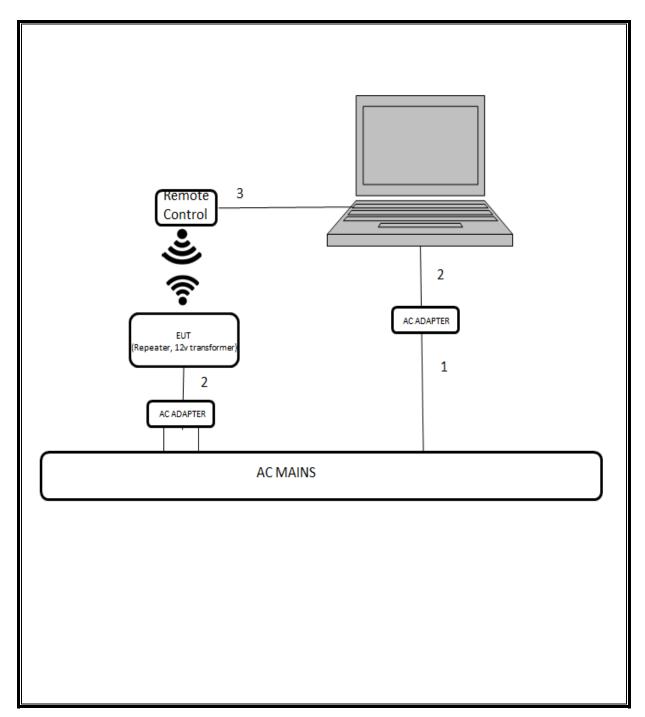
SUPPORT EQUIPMENT

Support Equipment List							
Description	Manufacturer	Model	Serial Number	FCC ID			
Laptop	Lenovo	T420	4236B92	N/A			
AC/DC Adapter	Lenovo	45N0121	11S45N0121Z1ZHXU242DMN	N/A			
Remote Controller	Next Century	TR-201	BA000F35	N/A			
AC/DC Adapter	Next Century	HK-DA-120A100-US	N/A	N/A			

I/O CABLES

	I/O Cable List							
Cable	Port	# of identical	Connector	Cable Type	Cable Length	Remarks		
No		ports	Туре		(m)			
1	AC	1	US115V	Unshielded	1			
2	DC	2	VDC	Unshielded	1.5			
3	USB	1	USB	Unshielded	1			

TEST SETUP


The EUT was connected to a host laptop computer through USB Remote Controller wirelessly during the tests (See setup diagram).

The USB Remote Controller was used to remotely set testing into different test modes. It was used to change the testing devices: Frequency (Channel), Tx Power Levels, Active antenna, FEMs and Modulation.

The PuTTY Test software exercised the radio card.

Page 10 of 54

SETUP DIAGRAM FOR TESTS

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP47011 TEL: (510) 771-1000 FAX: (510) 661-0888

Page 11 of 54

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List						
Description	Manufacturer	Model	Asset	Cal Due		
Antenna, Biconolog, 30MHz-1 GHz	Sunol Sciences	JB1	C01171	02/13/16		
Antenna, Horn, 18GHz	ETS-Lindgren	3117	C01006	01/15/16		
RF Preamplifier, 100KHz -> 1300MHz	HP	8447D	T10	01/06/16		
RF Preamplifier, 1GHz - 18GHz	Miteq	NSP4000-SP2	924343	03/23/16		
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	12/20/15		
Spectrum Analyzer 3kHz - 44GHz	Agilent	N9030A	907	01/16/16		
EMI Test Receiver	Rohde & Schwarz	ECSI 7	212	08/07/16		
Peak Power Meter	Agilent / HP	E4416A	C00963	12/13/15		
LISN, 30 MHz	FCC	50/250-25-2	C00626	01/14/16		
Power Meter	Agilent	N1911A	1268	06/06/16		
Power Sensor	Agilent	N1921A	1223	06/16/16		
Filter, Highpass 1.5GHz	Micro-Tronics	HPM50114	Т0	11/17/15		
Radiated Software	UL	UL EMC	Ver 9.5, July	/ 24, 2015		
Conducted Software	UL	UL EMC	Ver 9.5, June 26, 2015			
Antenna Port Software	UL	UL RF	Ver 3.6, October 26, 2015			

Page 12 of 54

7. MEASUREMENT METHODS

AC Power-line conducted emissions: ANSI C63.10-2013, Section 6.2.

Radiated emissions: ANSI C63.10-2013, Sections 6.5 and 6.6.

Conducted spurious emissions: ANSI C63.10-2013, Sections 7.8.8.

Occupied bandwidth (20 dB): ANSI C63.10-2013, Sections 6.9.2.

Occupied bandwidth (99% dB): ANSI C63.10-2013, Sections 6.9.3.

Band-edge measurements for RF conducted emissions: ANSI C63.10-2013, Sections 7.8.6.

Carrier frequency separation: ANSI C63.10-2013, Sections 7.8.2.

Number of hopping frequencies: ANSI C63.10-2013, Sections 7.8.3.

Average time of occupancy (dwell time): ANSI C63.10-2013, Sections 7.8.4.

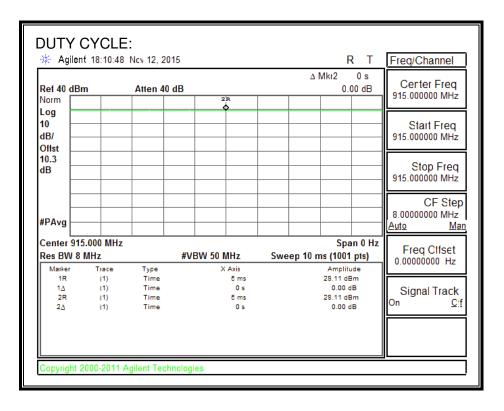
Peak output power: ANSI C63.10-2013, Sections 7.8.5.

On time and duty cycle: ANSI C63.10-2013, Section 11.6.

Page 13 of 54

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only.

8.1.1. ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle
	В		x	Cycle	Correction Factor
	(msec)	(msec)	(linear)	(%)	(dB)
902-928 MHz Band/2GFSK	100.000	100	1.000	100.00%	0.00

8.1.2. DUTY CYCLE PLOTS

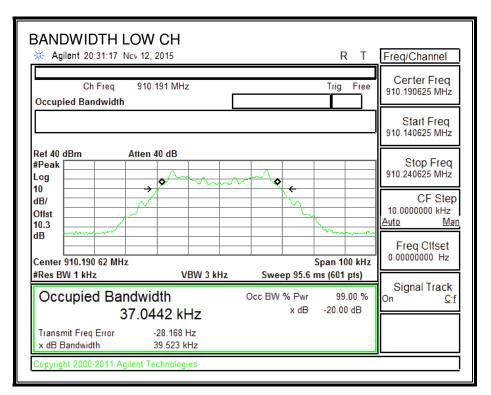
Page 14 of 54

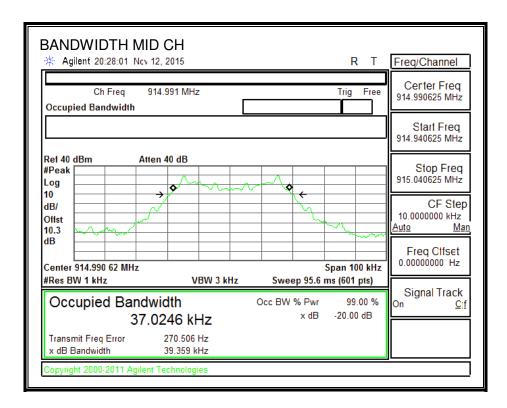
8.2.20 dB and 99% BANDWIDTH

8.2.1. 20 dB BANDWIDTH

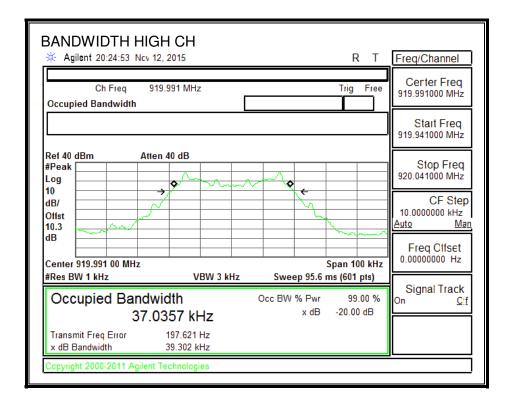
<u>LIMIT</u>

The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.


RESULTS


Channel	Frequency 20 dB Bandwidt	
	(MHz)	(kHz)
Low	910.2	39.523
Middle	915.0	39.359
High	920.0	39.302

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP47011 TEL: (510) 771-1000 FAX: (510) 661-0888


Page 15 of 54

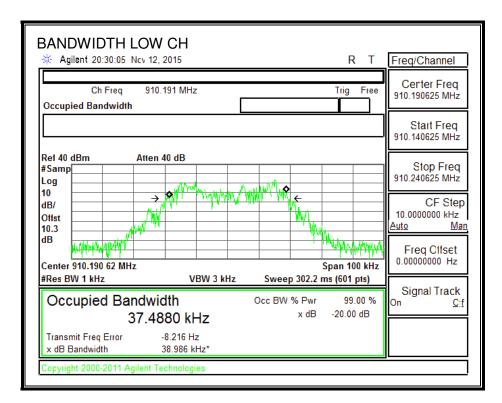
20 dB BANDWIDTH

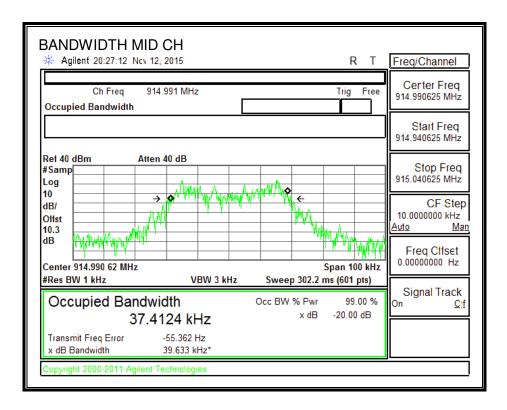
Page 16 of 54

Page 17 of 54

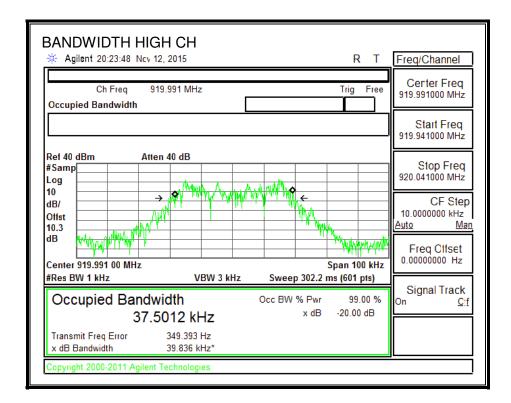
8.2.2. 99% BANDWIDTH

LIMIT


None; for reporting purposes only.


RESULTS

Channel	Frequency 99% Bandwidth	
	(MHz)	(kHz)
Low	910.2	37.4880
Middle	915.0	37.4124
High	920.0	37.5012


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP47011 TEL: (510) 771-1000 FAX: (510) 661-0888

Page 18 of 54

Page 19 of 54

Page 20 of 54

8.3. CARRIER FREQUENCY SEPARATION


<u>LIMIT</u>

FCC §15.247 (a) (1)

IC RSS-247 Clause 5.1 (2)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

RESULTS

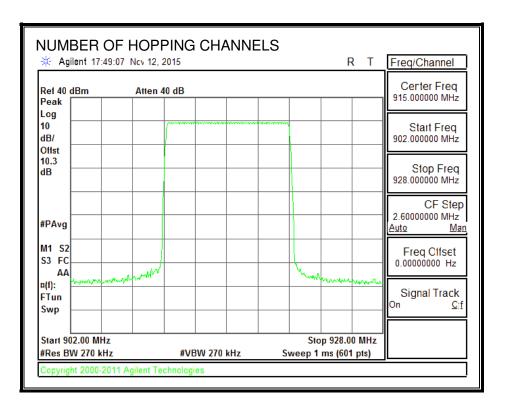
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP47011 TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 21 of 54

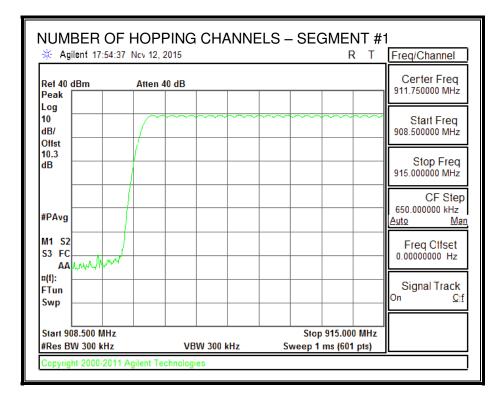
8.4. NUMBER OF HOPPING FREQUENCIES

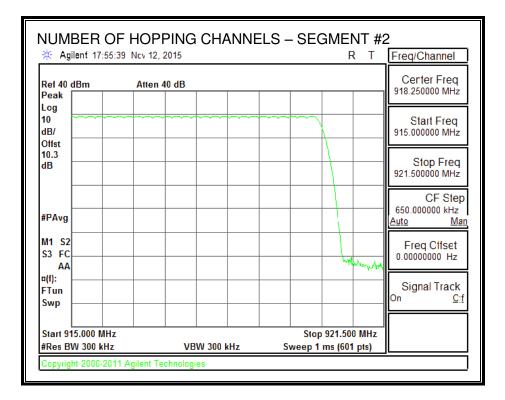
<u>LIMIT</u>

FCC §15.247 (a) (1) (i)


IC RSS-247 Clause 5.1(4)

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies.


If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies


RESULTS

Normal Mode: 50 Channels observed.

Page 22 of 54

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP47011 TEL: (510) 771-1000 FAX: (510) 661-0888 COMPARIANCE INC.

Page 23 of 54

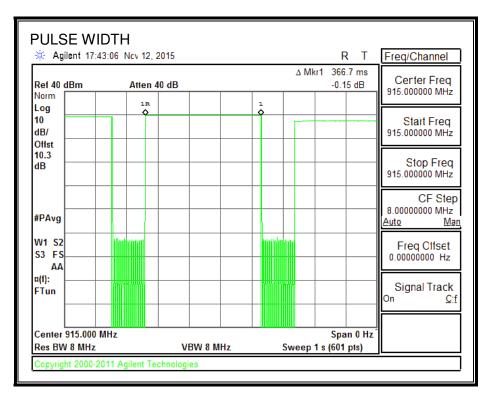
8.5. AVERAGE TIME OF OCCUPANCY

<u>LIMIT</u>

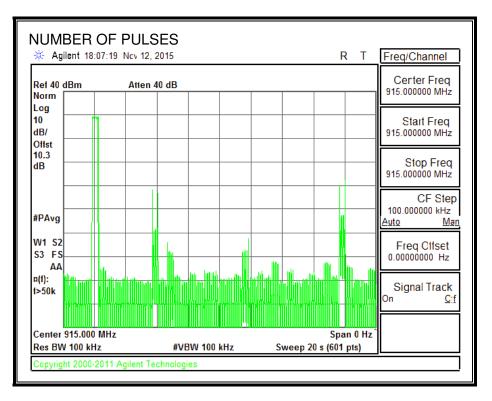
FCC §15.247 (a) (1) (i)

IC RSS-247 Clause 5.1(4)

For frequency hopping systems in the band 902-928 MHz: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20 second period.


If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 10 second period.

RESULTS


Mode of Operation	Pulse Width (msec)	Number of Pulses in 20 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)
2GFSK	366.7	1	0.367	0.4	-0.033

Page 24 of 54

PULSE WIDTH

NUMBER OF PULSES IN 10 SECOND OBSERVATION PERIOD

Page 25 of 54

8.6. PEAK OUTPUT POWER

<u>LIMIT</u>

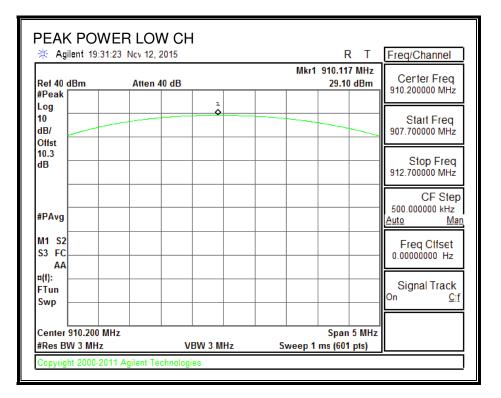
§15.247 (b) (2)

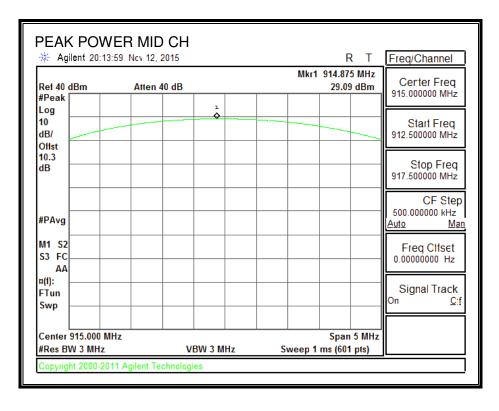
For frequency hopping systems operating in the 902–928 MHz band: 1watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RSS-247 Clause 5.4 (1)

For frequency hopping systems operating in the band 902-928 MHz, the maximum peak conducted output power shall not exceed 1.0 W, and the e.i.r.p. shall not exceed 4 W if the hopset uses 50 or more hopping channels; the maximum peak conducted output power shall not exceed 0.25 W, and the e.i.r.p. shall not exceed 1 W if the hopset uses less than 50 hopping channels.

DIRECTIONAL ANTENNA GAIN


There is only one transmitter output therefore the directional gain is equal to the antenna gain.


Channel	Frequency	Output Power	Directional Gain	Limit	Margin
	(MHz)	(dBm)	(dBi)	(dBm)	(dB)
Low	910.2	29.10	1.25	30	-0.90
Middle	915.0	29.09	1.25	30	-0.91
High	920.0	28.42	1.25	30	-1.58

RESULTS

Page 26 of 54

OUTPUT POWER

Page 27 of 54

🔆 Agilent 20:17	:26 NCV 12, 2015		RT	Freq/Channel
Ref 40 dBm #Peak	Atten 40 dB	Mkr	1 919.850 MHz 28.42 dBm	Certer Freq 920.000000 MHz
Log 10				Start Freq
dB/ Offst 10.3				917.500000 MHz
dB				Stop Freq 922.500000 MHz
#PAvg				CF Step 500.000000 kHz Auto Ma
M1 S2 S3 FC				Freq Olfset
AA ¤(1):				0.00000000 Hz
FTun Swp				Sig <mark>nal</mark> Track ^{On <u>Cit</u>}
Center 920.000 M #Res BW 3 MHz	Hz VBW 3 N		Span 5 MHz 1 ms (601 pts)	

Page 28 of 54

8.7. AVERAGE POWER

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	910.2	29.08
Middle	915.0	29.07
High	920.0	28.30

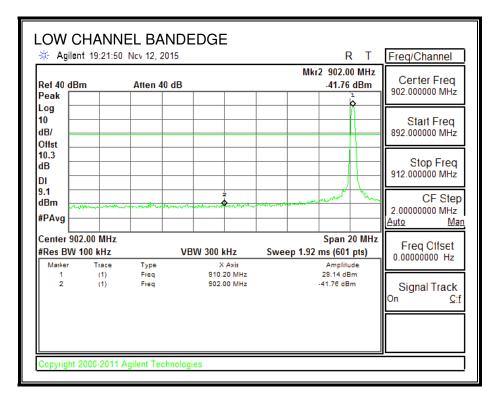
Page 29 of 54

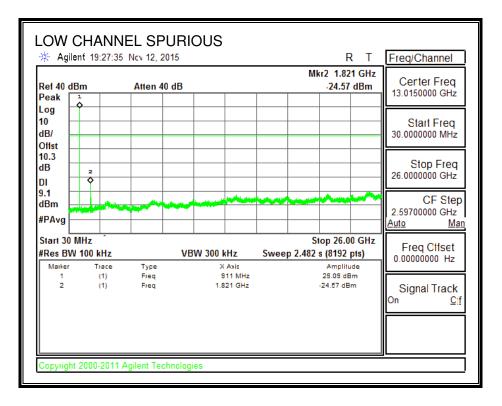
8.8. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

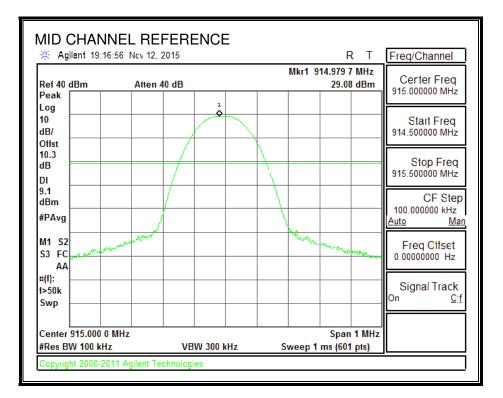
IC RSS-247 Clause 5.5

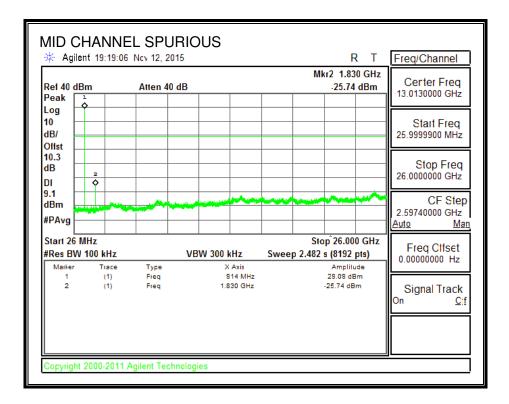

Limit = -20 dBc


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP47011 TEL: (510) 771-1000 FAX: (510) 661-0888

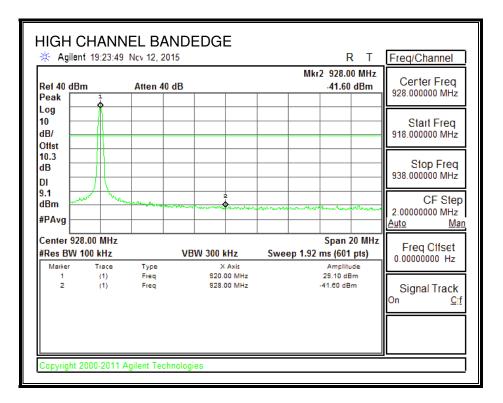
Page 30 of 54

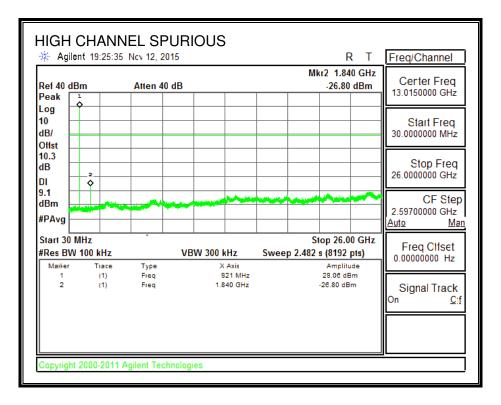
<u>RESULTS</u>


SPURIOUS EMISSIONS, LOW CHANNEL

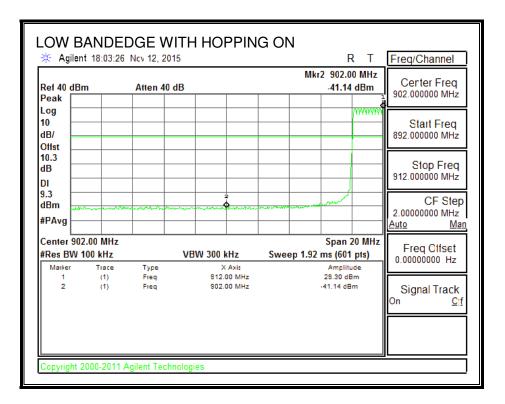


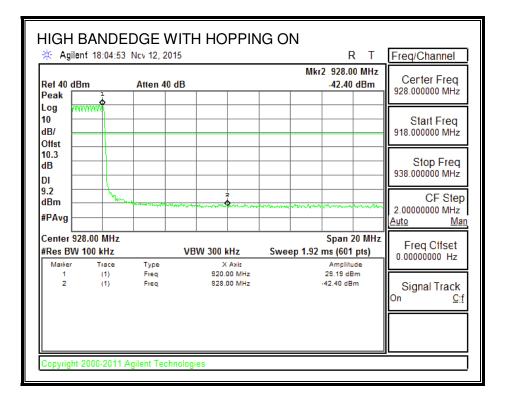
Page 31 of 54


SPURIOUS EMISSIONS, MID CHANNEL



Page 32 of 54


SPURIOUS EMISSIONS, HIGH CHANNEL



Page 33 of 54

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 34 of 54

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

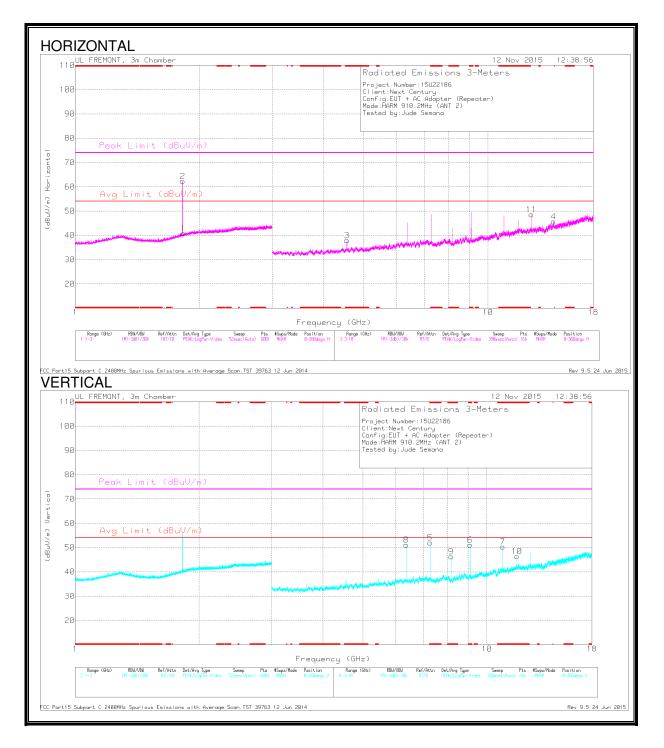
IC RSS-GEN Clause 8.9 (Transmitter)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.


For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 3MHz video bandwidth with average detector for average measurements.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 35 of 54

9.2. TRANSMITTER ABOVE 1 GHz

LOW CHANNEL

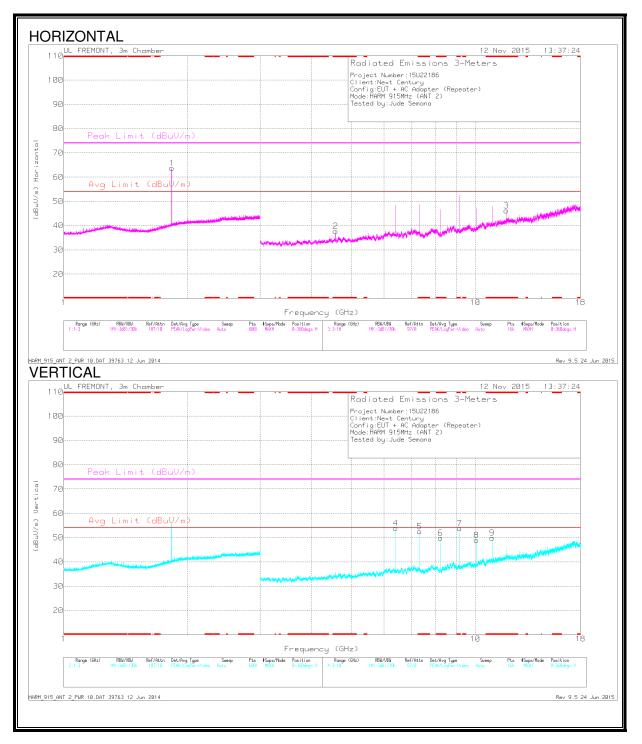
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP47011 TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 36 of 54

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T119 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/ m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
3	* 4.551	40.58	PK2	33.8	-29.8	44.58	-	-	74	-29.42	360	101	Н
	* 4.551	29.43	MAv1	33.8	-29.8	33.43	54	-20.57	-	-	360	101	Н
5	* 7.281	46.33	PK2	35.6	-27.4	54.53	-	-	74	-19.47	226	106	V
	* 7.282	42.13	MAv1	35.6	-27.4	50.33	54	-3.67	-	-	226	106	V
6	* 9.102	43.99	PK2	36.1	-24.4	55.69	-	-	74	-18.31	177	102	V
	* 9.102	39.59	MAv1	36.1	-24.4	51.29	54	-2.71	-	-	177	102	V
7	* 10.922	41.74	PK2	37.8	-23.1	56.44	-	-	74	-17.56	291	113	V
	* 10.922	35.89	MAv1	37.8	-23.1	50.59	54	-3.41	-	-	291	113	V
9	* 8.192	43.02	PK2	35.8	-26.6	52.22	-	-	74	-21.78	265	102	V
	* 8.192	37.37	MAv1	35.8	-26.6	46.57	54	-7.43	-	-	265	102	V
10	* 11.832	39.43	PK2	39	-24	54.43	-	-	74	-19.57	135	284	V
	* 11.833	30.44	MAv1	39	-24	45.44	54	-8.56	-	-	135	284	V
2	1.82	54.47	Avg	30.4	-22.6	62.27	-	-	-	-	0-360	101	Н
1	1.827	32.9	Avg	30.5	-22.6	40.8	-	-	-	-	0-360	101	Н
8	6.371	42.98	Avg	35.5	-27.3	51.18	-	-	-	-	0-360	101	V
11	12.743	33.55	Avg	39.1	-24	48.65	-	-	-	-	0-360	101	Н
4	14.408	29.42	Avg	39.6	-23.3	45.72	-	-	-	-	0-360	200	Н

* - indicates frequency in CFR15.205/IC8.10 Restricted Band

- Compliance for emissions in non-restricted bands is shown under conducted spurious emissions.


Avg - Video bandwidth < Resolution bandwidth

PK2 - Method: Maximum Peak

MAv1 - Maximum RMS Average

Page 37 of 54

MID CHANNEL

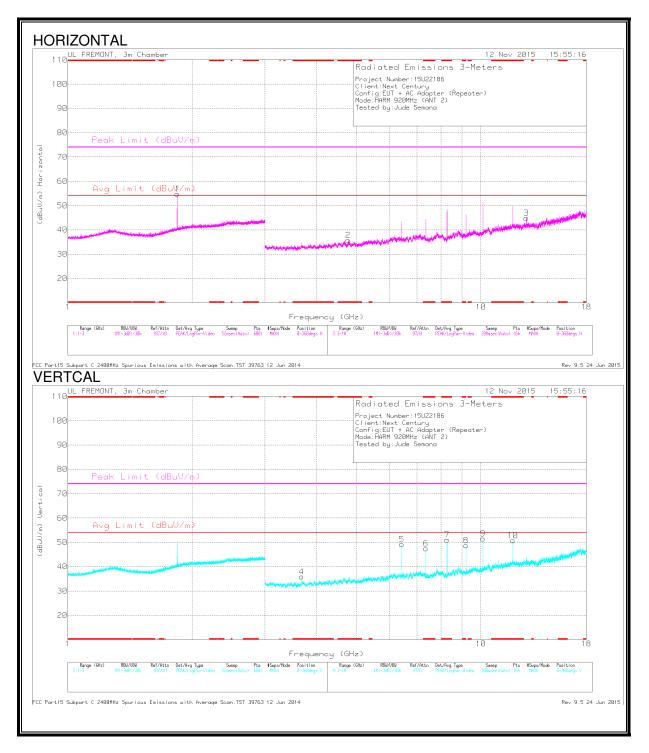
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP47011 FAX: (510) 661-0888

Page 38 of 54

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T119 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
-							m)						
2	* 4.575	42.72	PK2	33.8	-29.6	46.92	-	-	74	-27.08	343	105	Н
	* 4.575	33.63	MAv1	33.8	-29.6	37.83	54	-16.17	-	-	343	105	н
3	* 11.895	39.56	PK2	39.1	-23.9	54.76	-	-	74	-19.24	214	101	Н
	* 11.895	30.94	MAv1	39.1	-23.9	46.14	54	-7.86	-	-	214	101	Н
5	* 7.32	46.35	PK2	35.6	-26.6	55.35	-	-	74	-18.65	240	102	V
	* 7.32	42.77	MAv1	35.6	-26.6	51.77	54	-2.23	-	-	240	102	V
6	* 8.235	44.72	PK2	35.8	-26.8	53.72	-	-	74	-20.28	275	103	V
	* 8.235	39.91	MAv1	35.8	-26.8	48.91	54	-5.09	-	-	275	103	V
7	* 9.15	45.41	PK2	36.2	-24.5	57.11	-	-	74	-16.89	173	105	V
	* 9.15	41.76	MAv1	36.2	-24.5	53.46	54	54	-	-	173	105	V
9	* 10.98	40.48	PK2	37.9	-22.9	55.48	-	-	74	-18.52	300	103	V
	* 10.98	34.23	MAv1	37.9	-22.9	49.23	54	-4.77	-	-	300	103	V
1	1.83	55.78	Avg	30.5	-22.6	63.68	-	-	-	-	0-360	200	Н
4	6.405	46.09	Avg	35.5	-27.7	53.89	-	-	-	-	0-360	100	V
8	10.065	35.86	Avg	36.9	-23.8	48.96	-	-	-	-	0-360	100	V

* - indicates frequency in CFR15.205/IC8.10 Restricted Band

- Compliance for emissions in non-restricted bands is shown under conducted spurious emissions


Avg - Video bandwidth < Resolution bandwidth

PK2 - Method: Maximum Peak

MAv1 - Maximum RMS Average

Page 39 of 54

HIGH CHANNEL

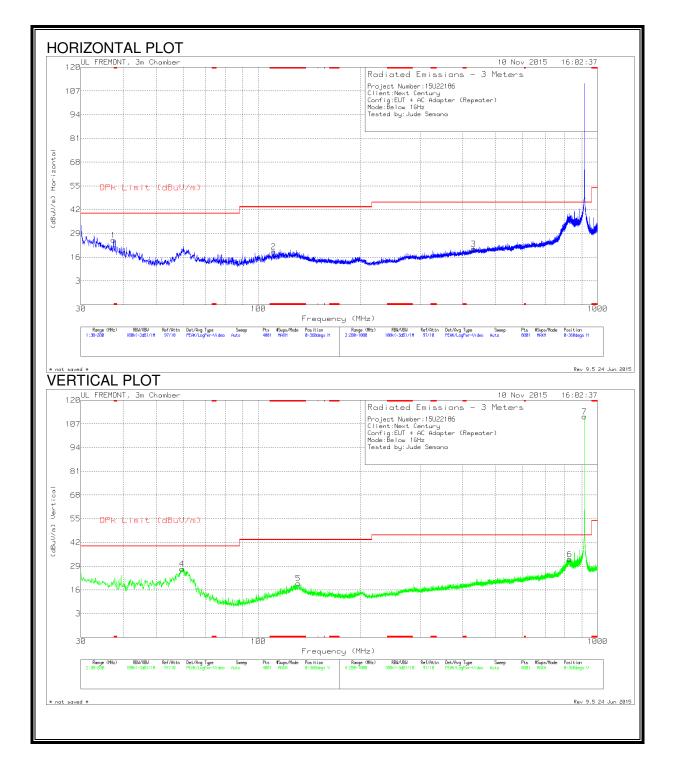
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 40 of 54

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T119 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
							m)						
2	* 4.77	40.38	PK2	34	-29.7	44.68	-	-	74	-29.32	1	101	Н
	* 4.772	28.76	MAv1	34	-29.6	33.16	54	-20.84	-	-	1	101	Н
4	* 3.679	40.18	PK2	33	-29.7	43.48	-	-	74	-30.52	1	200	V
	* 3.68	29.1	MAv1	33	-29.7	32.4	54	-21.6	-	-	1	200	V
6	* 7.36	43.19	PK2	35.6	-26.5	52.29	-	-	74	-21.71	253	102	V
	* 7.36	38.43	MAv1	35.6	-26.5	47.53	54	-6.47	-	-	253	102	V
7	* 8.28	43.81	PK2	35.8	-26.5	53.11	-	-	74	-20.89	287	396	V
	* 8.28	38.47	MAv1	35.8	-26.5	47.77	54	-6.23	-	-	287	396	V
8	* 9.2	41.82	PK2	36.2	-24.4	53.62	-	-	74	-20.38	180	101	V
	* 9.2	36.42	MAv1	36.2	-24.4	48.22	54	-5.78	-	-	180	101	V
10	* 11.96	41.87	PK2	39.1	-23.5	57.47	-	-	74	-16.53	146	317	V
	* 11.96	36.04	MAv1	39.1	-23.5	51.64	54	-2.36	-	-	146	317	V
1	1.84	46.83	Avg	30.6	-22.6	54.83	54	.83	-	-	0-360	101	Н
5	6.439	42.33	Avg	35.5	-28.6	49.23	54	-4.77	-	-	0-360	101	V
9	10.12	37.47	Avg	37	-23	51.47	54	-2.53	-	-	0-360	101	V
3	12.88	30.02	Avg	39.1	-24.2	44.92	54	-9.08	-	-	0-360	101	Н

* - indicates frequency in CFR15.205/IC8.10 Restricted Band
 - Compliance for emissions in non-restricted bands is shown under conducted spurious emissions

Avg - Video bandwidth < Resolution bandwidth


PK2 - Method: Maximum Peak

MAv1 - Maximum RMS Average

Page 41 of 54

9.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION

Page 42 of 54

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF T185 (dB/m)	Amp/Cbl (dB)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 110.9625	32.72	Pk	12.5	-26.2	19.02	43.52	-24.5	0-360	100	Н
5	* 131.2563	31.74	Pk	13.9	-26	19.64	43.52	-23.88	0-360	100	V
1	37.4375	36.28	Pk	16.2	-27.1	25.38	40	-14.62	0-360	100	Н
4	59.6225	47.08	Pk	7.3	-26.8	27.58	40	-12.42	0-360	100	V
3	430.8	29.05	Pk	16.4	-24.9	20.55	46.02	-25.47	0-360	300	Н
6	827	34.9	Pk	21.2	-23.2	32.9	46.02	-13.12	0-360	100	V
7	**915	111.46	Pk	22.2	-22.6	111.06	-	-	0-360	100	V

* Indicates frequency in CFR15.205/8.10 Restricted Band

** Indicates fundamental frequency

Pk - Peak detector

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP47011 TEL: (510) 771-1000 FAX: (510) 661-0888

Page 43 of 54

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

IC RSS-Gen 8.8

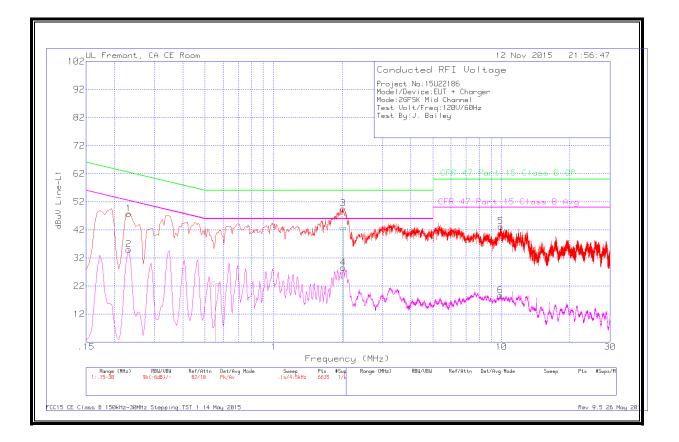
Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 "	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

* Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10-2013.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.


Line conducted data is recorded for both NEUTRAL and HOT lines

RESULTS

Page 44 of 54

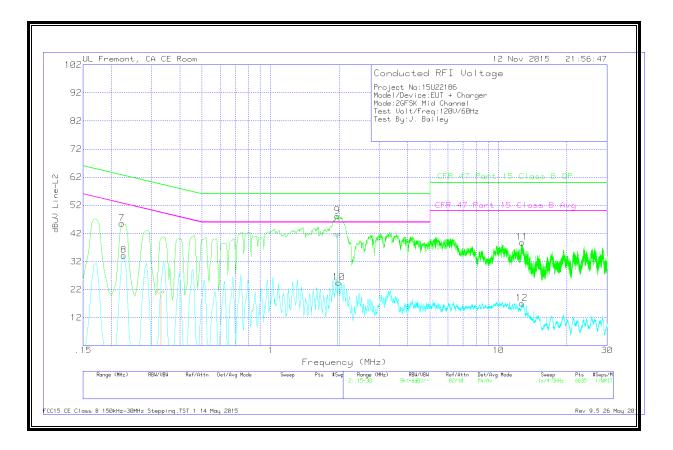
6 WORST EMISSIONS

LINE 1 RESULTS

Page 45 of 54

Range 1	L: Line-L1 .15	- 30MHz								
Marker	Frequency	Meter	Det	T24 IL L1	LC Cables	Corrected	CFR 47	Margin	CFR 47	Margin
	(MHz)	Reading			1&3	Reading	Part 15	(dB)	Part 15	(dB)
		(dBuV)				dBuV	Class B QP		Class B	
									Avg	
1	.231	46.88	Pk	.8	0	47.68	62.41	-14.73	-	-
2	.231	34.25	Av	.8	0	35.05	-	-	52.41	-17.36
3	2.0175	41.20	Qp	.2	.1	41.5	56	-14.5	-	-
4	2.0175	21.35	Ca	.2	.1	21.65	-	-	46	-24.35
5	9.9285	42.79	Pk	.2	.2	43.19	60	-16.81	-	-
6	9.888	18.21	Av	.2	.2	18.61	-	-	50	-31.39

Pk - Peak detector


Av - Average detection

Ca - CISPR average detection

Qp - Quasi-Peak detector

Page 46 of 54

LINE 2 RESULTS

Page 47 of 54

Marker	Frequency	Meter	Det	T24 IL L2	LC Cables	Corrected	CFR 47	Margin	CFR 47	Margin
	(MHz)	Reading			2&3	Reading	Part 15	(dB)	Part 15	(dB)
		(dBuV)				dBuV	Class B QP		Class B	
									Avg	
7	.222	44.64	Pk	.9	0	45.54	62.74	-17.2	-	-
8	.2265	33.26	Av	.9	0	34.16	-	-	52.58	-18.42
9	1.9635	40.16	Qp	.2	.1	40.46	56	-15.54	-	-
10	1.9905	19.81	Ca	.2	.1	20.11	-	-	46	-25.89
11	12.7005	38.36	Pk	.2	.2	38.76	60	-21.24	-	-
12	12.6735	16.65	Av	.2	.2	17.05	-	-	50	-32.95

Range 2: Line-L2 .15 - 30MHz

Pk - Peak detector

Av - Average detection

Ca - CISPR average detection

Qp - Quasi-Peak detector

Page 48 of 54