

CFR 47 FCC PART 15 SUBPART C

TEST REPORT

For

WisePOS 4G

MODEL NUMBER: WisePOS 4G

FCC ID: 2AB7X-WISEPOS4G

REPORT NUMBER: 4788704908.1-3

ISSUE DATE: November 13, 2018

Prepared for

BBPOS International Limited Suite 1903-04, Tower 2, Nina Tower, 8 Yeung Uk Road, Tsuen Wan, NT, Hong Kong

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, People's Republic of China Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	11/13/2018	Initial Issue	

Summary of Test Results					
Clause	Test Items	FCC Rules	Test Results		
1	6dB Bandwidth	FCC Part 15.247 (a) (2)	Pass		
2	Conducted Output Power	FCC Part 15.247 (b) (3)	Pass		
3	Power Spectral Density	FCC Part 15.247 (e)	Pass		
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d)	Pass		
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205	Pass		
6	Conducted Emission Test For AC Power Port	FCC Part 15.207	Pass		
7	Antenna Requirement	FCC Part 15.203	Pass		

TABLE OF CONTENTS

1.	AT	ESTATION OF TEST RESULTS	6
2.	TES	ST METHODOLOGY	7
3.	FAG	CILITIES AND ACCREDITATION	7
4.	CA	LIBRATION AND UNCERTAINTY	8
4	4.1.	MEASURING INSTRUMENT CALIBRATION	8
4	4.2.	MEASUREMENT UNCERTAINTY	8
5.	EQ	UIPMENT UNDER TEST	9
5	5.1.	DESCRIPTION OF EUT	9
5	5.2.	MAXIMUM OUTPUT POWER	9
5	5.3.	CHANNEL LIST	10
5	5.4.	TEST CHANNEL CONFIGURATION	10
5	5.5.	THE WORSE CASE CONFIGURATIONS	10
5	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	11
5	5.7.	DESCRIPTION OF TEST SETUP	12
6.	ME	ASURING INSTRUMENT AND SOFTWARE USED1	3
7.	ME	ASUREMENT METHODS1	4
7. 8.		ASUREMENT METHODS1 FENNA PORT TEST RESULTS1	
8.			5
8.	AN [.]	TENNA PORT TEST RESULTS1	1 5 15
8.	AN [•] 3.1. 3.2. 8.2.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH 1 1. 802.11b MODE 1	15 15 18
8.	AN 3. 1. 3.2. 8.2. 8.2.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH 1 1. 802.11b MODE 1 2. 802.11g MODE 2	15 18 19 21
8.	AN [•] 3.1. 3.2. 8.2.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH 1 1. 802.11b MODE 1 2. 802.11g MODE 2 3. 802.11n HT20 MODE 2	15 15 18 19 21 23
8. 8	AN 3.1. 3.2. 8.2. 8.2. 8.2. 8.2. 8.3.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH 1 1. 802.11b MODE 1 2. 802.11g MODE 2 3. 802.11n HT20 MODE 2 4. 802.11n HT40 MODE 2 PEAK CONDUCTED OUTPUT POWER 2	15 15 18 19 21 23 25 27
8. 8	AN 3.1. 3.2. 8.2. 8.2. 8.2. 8.2. 8.3. 8.3.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH 1 1. 802.11b MODE 1 2. 802.11g MODE 2 3. 802.11n HT20 MODE 2 4. 802.11n HT40 MODE 2 <i>PEAK CONDUCTED OUTPUT POWER</i> 2 1. 802.11b MODE 2	15 15 19 21 23 25 27 28
8. 8	AN 3.1. 3.2. 8.2. 8.2. 8.2. 8.2. 8.3. 8.3. 8.3.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH 1 1. 802.11b MODE 1 2. 802.11g MODE 2 3. 802.11n HT20 MODE 2 4. 802.11n HT40 MODE 2 <i>PEAK CONDUCTED OUTPUT POWER</i> 2 1. 802.11b MODE 2 2. 802.11g MODE 2	15 18 19 21 23 25 27 28 28
8. 8	AN 3.1. 3.2. 8.2. 8.2. 8.2. 8.2. 8.2. 8.3. 8.3.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH 1 1. 802.11b MODE 1 2. 802.11g MODE 2 3. 802.11n HT20 MODE 2 4. 802.11n HT40 MODE 2 <i>PEAK CONDUCTED OUTPUT POWER</i> 2 1. 802.11b MODE 2 3. 802.11n HT40 MODE 2 2. 802.11b MODE 2 3. 802.11n HT40 MODE 2 2. 802.11b MODE 2 3. 802.11n HT40 MODE 2 2. 802.11b MODE 2 3. 802.11b MODE 2 3. 802.11b MODE 2 3. 802.11n HT20 MODE 2	15 18 19 21 23 25 27 28 28 28
8. 8 8	AN 3.1. 3.2. 8.2. 8.2. 8.2. 8.3. 8.3. 8.3. 8.3. 8.3. 8.3. 8.3. 8.3.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH 1 1. 802.11b MODE 1 2. 802.11g MODE 2 3. 802.11n HT20 MODE 2 4. 802.11n HT40 MODE 2 <i>PEAK CONDUCTED OUTPUT POWER</i> 2 1. 802.11b MODE 2 3. 802.11n HT40 MODE 2 <i>PEAK CONDUCTED OUTPUT POWER</i> 2 3. 802.11b MODE 2 3. 802.11b MODE 2 3. 802.11n HT20 MODE 2 4. 802.11n HT20 MODE 2 7 2 90WER SPECTRAL DENSITY 2	15 15 18 19 21 23 25 27 28 28 28 28 28 28 29
8. 8 8	AN 3.1. 3.2. 8.2. 8.2. 8.2. 8.3.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH 1 1. 802.11b MODE 1 2. 802.11g MODE 2 3. 802.11n HT20 MODE 2 4. 802.11n HT40 MODE 2 <i>PEAK CONDUCTED OUTPUT POWER</i> 2 1. 802.11b MODE 2 3. 802.11n HT40 MODE 2 <i>PEAK CONDUCTED OUTPUT POWER</i> 2 3. 802.11b MODE 2 3. 802.11b MODE 2 4. 802.11b MODE 2 7. 802.11b MODE 3	15 18 19 21 23 25 27 28 28 28 28 28 28 29 30
8. 8 8	AN 3.1. 3.2. 8.2. 8.2. 8.2. 8.3. 8.3. 8.3. 8.3. 8.3. 8.3. 8.3. 8.3. 8.4. 8.4. 8.4.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH 1 1. 802.11b MODE 1 2. 802.11g MODE 2 3. 802.11n HT20 MODE 2 4. 802.11n HT40 MODE 2 <i>PEAK CONDUCTED OUTPUT POWER</i> 2 1. 802.11b MODE 2 3. 802.11n HT20 MODE 2 9000000000000000000000000000000000000	15 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17
8. 8 8	AN 3.1. 3.2. 8.2. 8.2. 8.2. 8.3.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH. 1 1. 802.11b MODE 1 2. 802.11g MODE 2 3. 802.11n HT20 MODE 2 4. 802.11n HT40 MODE 2 <i>PEAK CONDUCTED OUTPUT POWER</i> 2 2. 802.11g MODE 2 3. 802.11n HT20 MODE 2 1. 802.11b MODE 2 <i>PEAK CONDUCTED OUTPUT POWER</i> 2 2. 802.11g MODE 2 3. 802.11n HT20 MODE 2 3. 802.11n HT40 MODE 2 2. 802.11g MODE 2 3. 802.11n HT20 MODE 2 3. 802.11n HT20 MODE 2 2. 802.11g MODE 2 2. 802.11g MODE 3 3. 802.11n HT40 MODE 3 3. 802.11n HT40 MODE 3 3. 802.11n HT20 MODE 3 3. 802.11n HT20 MODE 3	15 18 19 21 23 27 28 28 28 29 32 32 32 32 32 32 32 32 32 32
8. ٤ ٤	AN 3.1. 3.2. 8.2. 8.2. 8.2. 8.3. 8.3. 8.3. 8.3. 8.3. 8.3. 8.3. 8.3. 8.4. 8.4. 8.4. 8.4. 8.4. 8.4.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH. 1 1. 802.11b MODE 1 2. 802.11g MODE 2 3. 802.11n HT20 MODE 2 4. 802.11n HT40 MODE 2 <i>PEAK CONDUCTED OUTPUT POWER</i> 2 2. 802.11g MODE 2 3. 802.11n HT20 MODE 2 1. 802.11b MODE 2 <i>PEAK CONDUCTED OUTPUT POWER</i> 2 2. 802.11g MODE 2 3. 802.11n HT20 MODE 2 3. 802.11n HT40 MODE 2 2. 802.11g MODE 2 3. 802.11n HT40 MODE 2 <i>POWER SPECTRAL DENSITY</i> 2 1. 802.11b MODE 3 3. 802.11g MODE 3 3. 802.11g MODE 3 3. 802.11g MODE 3 3. 802.11n HT20 MODE 3	15 18 19 21 225 27 28 28 28 28 28 29 32 32 32 32 32 32 32 32 32 32

8.5.2 8.5.3 8.5.4	802.11g MODE 802.11n HT20 MODE 802.11n HT40 MODE	53
9. RADIA	TED TEST RESULTS	69
9.1.1 9.1.2 9.1.3 9.1.4	ESTRICTED BANDEDGE 802.11b MODE 802.11g MODE 802.11n HT20 MODE 802.11n HT40 MODE PURIOUS EMISSIONS (1~3GHz)	
9.2.1 9.2.2 9.2.3 9.2.4	802.11b MODE	
9.3 SF 9.3.1 9.3.2 9.3.3 9.3.4	PURIOUS EMISSIONS (3~18GHz) 802.11b MODE 802.11g MODE 802.11n HT20 MODE 802.11n HT20 MODE 802.11n HT40 MODE	
9.4 SF 9.4.1	PURIOUS EMISSIONS (18~26GHz) 802.11b MODE	
9.5 SF 9.5.1	PURIOUS EMISSIONS (0.03 ~ 1 GHz) 802.11b MODE	<i>14</i> 9
9.6 SF 9.6.1	PURIOUS EMISSIONS BELOW 30M 802.11b MODE	
10 AC F	POWER LINE CONDUCTED EMISSIONS	155
10.1 80	02.11b MODE	
11 ANT	ENNA REQUIREMENTS	

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Address:	BBPOS International Limited Suite 1903-04, Tower 2, Nina Tower, 8 Yeung Uk Road, Tsuen Wan, NT, Hong Kong			
Manufacturer Information				
Company Name:	BBPOS International Limited			
Address:	Suite 1903-04, Tower 2, Nina Tower, 8 Yeung Uk Road, Tsuen			

Wan, NT, Hong Kong

EUT Description

EUT Name:	WisePOS 4G
Model:	WisePOS 4G
Brand Name:	BBPOS
Sample Status:	Normal
Sample ID:	1865555
Sample Received Date:	October 15, 2018
Date of Tested:	October 29, 2018 ~ November 06, 2018

APPLICABLE STANDARDS				
STANDARD TEST RESULTS				
CFR 47 FCC PART 15 SUBPART C	PASS			

Prepared By:

Jacky J:ang

Jacky Jiang Engineer Project Associate

Approved By:

Aephenbuo

Stephen Guo Laboratory Manager Checked By:

Sherry deen

Shawn Wen Laboratory Leader

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with 558074 D01 DTS Meas Guidance v05, 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15 and ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Accreditation	Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules IC(Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Certificate	has been registered and fully described in a report filed with ISED. The Company Number is 21320. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004 Shielding Room B, the VCCI registration No. is C-20012 and T-20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2 : For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. These measurements below 30MHz had been correlated to measurements performed on an OATS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty		
Conduction emission	3.62dB		
Radiation Emission test(include Fundamental emission) (9KHz-30MHz)	2.2dB		
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.00dB		
Radiation Emission test (1GHz to 26GHz)(include Fundamental emission)	5.78dB (1GHz-18Gz)		
	5.23dB (18GHz-26Gz)		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.			

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	WisePOS 4G			
EUT Description	The EUT is a point of sale terminal.			
Model	WisePOS 4G			
Radio Technology	IEEE802.11b/g/n HT20/n HT40			
Operation frequency	IEEE 802.11b: 2412MHz—2462MHz IEEE 802.11g: 2412MHz—2462MHz IEEE 802.11n HT20: 2412MHz—2462MHz IEEE 802.11n HT40: 2422MHz—2452MHz			
Modulation	IEEE 802.11b: DSSS(CCK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)			
Rated Input	5V/1A			
Battery	2450mAh/ 9.31Wh 3.8V			

5.2. MAXIMUM OUTPUT POWER

Number of Transmit Chains (NTX)	IEE Std. 802.11	Frequency (MHz)	Channel Number	Max PK Conducted Power (dBm)
1	IEEE 802.11b	2412-2462	1-11[11]	16.74
1	IEEE 802.11g	2412-2462	1-11[11]	18.91
1	IEEE 802.11nHT20	2412-2462	1-11[11]	19.70
1	IEEE 802.11nHT40	2422-2452	3-9[7]	19.05

5.3. CHANNEL LIST

Channel List for 802.11b/g/n (20 MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	4	2427	7	2442	10	2457
2	2417	5	2432	8	2447	11	2462
3	2422	6	2437	9	2452	/	/
		Char	nnel List for 8	302.11n (40	MHz)		
Channel	Frequency (MHz)	Channel	Frequenc y(MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	5	2432	7	2442	9	2452
4	2427	6	2437	8	2447	/	/

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
WiFi TX(802.11b)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11g)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11n HT20)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11n HT40)	CH 3, CH 6, CH 9	2422MHz, 2437MHz, 2452MHz

5.5. THE WORSE CASE CONFIGURATIONS

The W	The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band						
Test Softw	/are			Enginee	ering Mode		
	Transmit			Test	Channel		
Modulation Mode	Antenna	NC	B: 20MH	z	NCB: 40MHz		
Wode	Number	CH 1	CH 6	CH 11	CH 3	CH 6	CH 9
802.11b	1	19	19	19			
802.11g	1	17 17 17 /					
802.11n HT20	1	17	17	17			
802.11n HT40	1	/		16.5	16.5	16.5	

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	2412-2462	PIFA	-1.6

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11b	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
IEEE 802.11g	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
IEEE 802.11n HT20	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
IEEE 802.11n HT40	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.

5.7. DESCRIPTION OF TEST SETUP

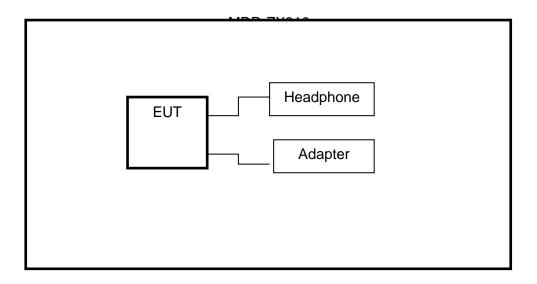
SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	High Pass Filter	Wi	WHKX10-2700-3000- 18000-40SS	23
2	Band Reject Filter	Wainwright	WRCJV8-2350-2400- 2483.5-2533.5-40SS	4

Note:Item1 and Item2 only use for radiated test.

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	N/A	N/A	0.5	N/A


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
1	Headphone	SONY	MDR-ZX310	/
	Adapter	XIAOMI	MDY-08-EF	5V/1A

TEST SETUP

The EUT can work in engineering mode with through command.

SETUP DIAGRAM FOR TESTS

6. MEASURING INSTRUMENT AND SOFTWARE USED

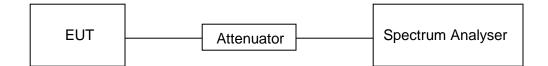
	Conducted Emissions								
			Inst	rume	ent				
Used	Equipment	Manufacturer	Мо	odel	No.	Seri	al No.	Last Cal.	Next Cal.
\checkmark	EMI Test Receiver	R&S		ESR	3	10'	1961	Dec.12,2017	Dec.11,2018
V	Two-Line V- Network	R&S	E	NV2	16	10 ⁻	1983	Dec.12,2017	Dec.11,2018
V	Artificial Mains Networks	Schwarzbeck	NS	LK 8	8126	812	6465	Dec.12,2017	Dec.11,2018
			So	ftwa	re				
Used	Des	cription			Manu	ufactu	urer	Name	Version
\checkmark	Test Software for C	Conducted distu	rbano	ce	F	arad		EZ-EMC	Ver. UL-3A1
		Rad	iateo	d Em	issio	ns			
			Inst	rume	ent				
Used	Equipment	Manufacturer	Мо	odel	No.	Seri	al No.	Last Cal.	Next Cal.
V	MXE EMI Receiver	KESIGHT	N	19038	8A	MY56400 036		Dec.12,2017	Dec.11,2018
V	Hybrid Log Periodic Antenna	TDK	HLI	P-30	03C	130	0960	Jan.09, 2016	Jan.09, 2019
V	Preamplifier	HP	8	3447	D		1A090 99	Dec.12,2017	Dec.11,2018
V	EMI Measurement Receiver	R&S	E	ESR2	26	10 ⁻	1377	Dec.12,2017	Dec.11,2018
V	Horn Antenna	TDK	HF	RN-0	118	130)939	Jan. 09, 2016	Jan. 09, 2019
V	High Gain Horn Antenna	Schwarzbeck	BB	HA-9	9170	6	91	Jan.06, 2016	Jan.06, 2019
V	Preamplifier	TDK	PA	-02-0	0118		-305- 066	Dec.12,2017	Dec.11,2018
V	Preamplifier	TDK	Ρ	A-02	2-2		-307- 003	Dec.12,2017	Dec.11,2018
\checkmark	Loop antenna	Schwarzbeck		1519	В	00	800	Mar. 26, 2016	Mar. 25, 2019
			So	ftwa	re				
Used	Descr	iption		Mar	nufact	urer		Name	Version
\checkmark	Test Software for R	adiated disturba	disturbance Farad			ł		EZ-EMC	Ver. UL-3A1
		Oth	ner ir	nstru	ımen	ts			
Used	Equipment	Manufacturer	Mod	el No	o. S	Serial	No.	Last Cal.	Next Cal.
V	Spectrum Analyzer	Keysight	N90	030A	۸ M۱	(554 ⁻	0512	Dec.12,2017	Dec.11,2018
V	Power Meter	Keysight	N19	911A	۸ M۱	′554′	6024	Dec.12,2017	Dec.11,2018
V	Power Sensor	Keysight	U20	21X	A M	Y510	0022	Dec.12,2017	Dec.11,2018

7. MEASUREMENT METHODS

No.	Test Item	KDB Name	Section
1	6dB Bandwidth	KDB 558074 D01 DTS Meas Guidance v05	8.2
2	Output Power	KDB 558074 D01 DTS Meas Guidance v05	8.3.1.3/8.3.2.3
3	Power Spectral Density	KDB 558074 D01 DTS Meas Guidance v05	8.4
4	Out-of-band emissions in non- restricted bands	KDB 558074 D01 DTS Meas Guidance v05	8.5
5	Out-of-band emissions in restricted bands	KDB 558074 D01 DTS Meas Guidance v05	8.6
6	Band-edge	KDB 558074 D01 DTS Meas Guidance v05	8.7
7	Conducted Emission Test For AC Power Port	ANSI C63.10-2013	6.2

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE


<u>LIMITS</u>

None; for reporting purposes only

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

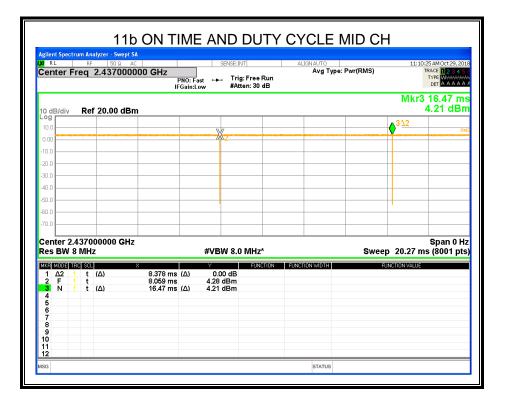
TEST ENVIRONMENT

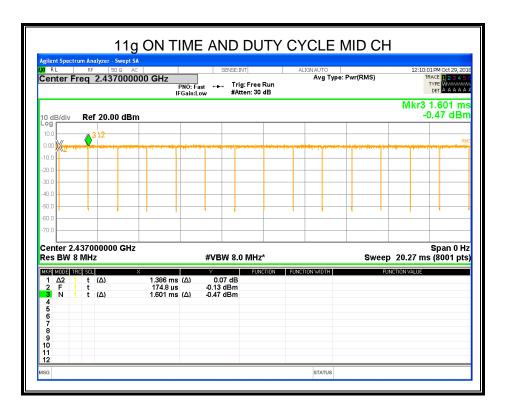
Temperature	24.1°C	Relative Humidity	51%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8V

RESULTS

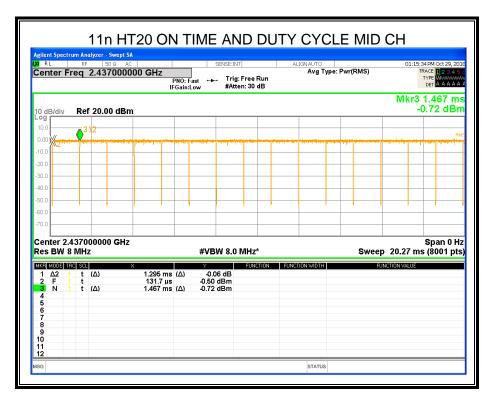
Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (KHz)	Final setting For VBW (KHz)
11b	8.378	8.411	0.9961	99.61	0.02	0.12	0.01
11g	1.386	1.426	0.9719	97.19	0.12	0.72	1
11n20	1.295	1.335	0.9700	97.00	0.13	0.77	1
11n40	0.644	0.684	0.9415	94.15	0.26	1.55	2

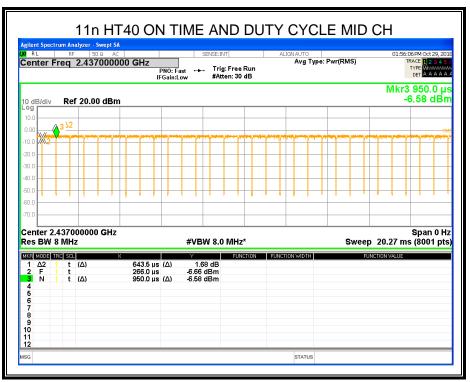
Note:


Duty Cycle Correction Factor= $10\log(1/x)$.


Where: x is Duty Cycle (Linear)

Where: T is On Time

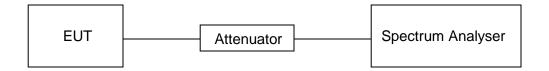

If that calculated VBW is not available on the analyzer then the next higher value should be used.



8.2. 6 dB DTS BANDWIDTH

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C					
Section Test Item Limit Frequency Range (MHz)					
CFR 47 FCC 15.247(a)(2)	6 dB Bandwidth	≥ 500KHz	2400-2483.5		

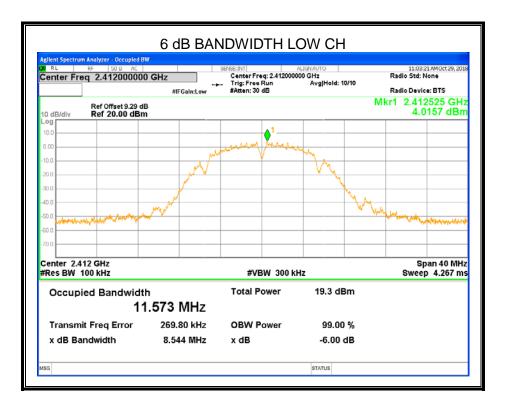

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

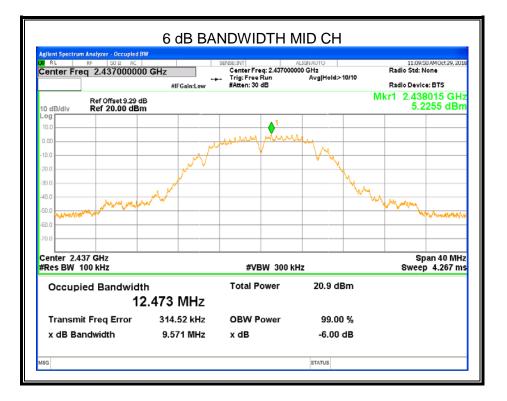
Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100K
VBW	≥3 × RBW
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

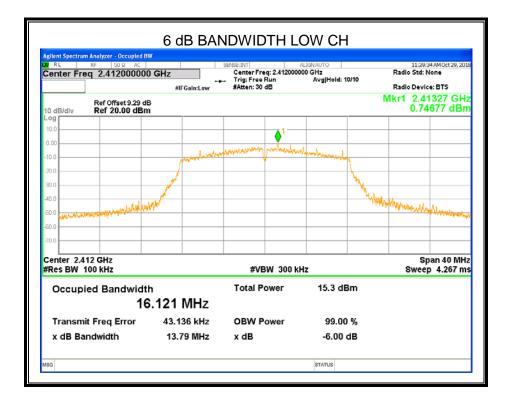

TEST ENVIRONMENT

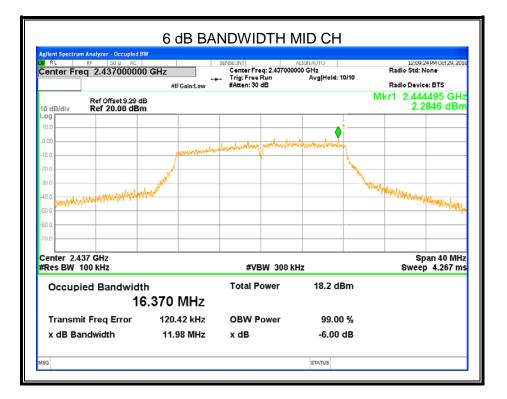
Temperature	24.1°C	Relative Humidity	51%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8V

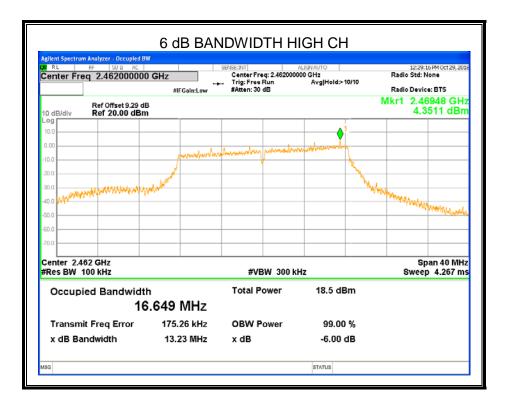

RESULTS

8.2.1. 802.11b MODE

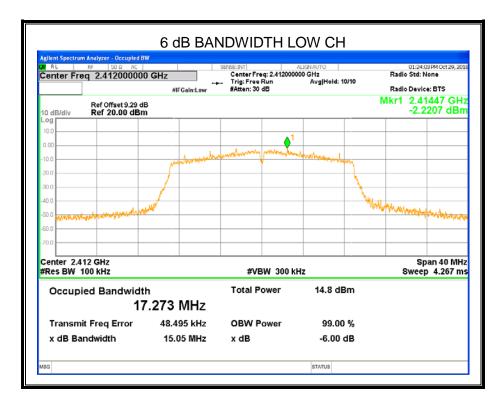
Channel	6dB bandwidth (MHz)	Limit (kHz)	Result
Low	8.544	≥500	Pass
Middle	9.571	≥500	Pass
High	9.586	≥500	Pass

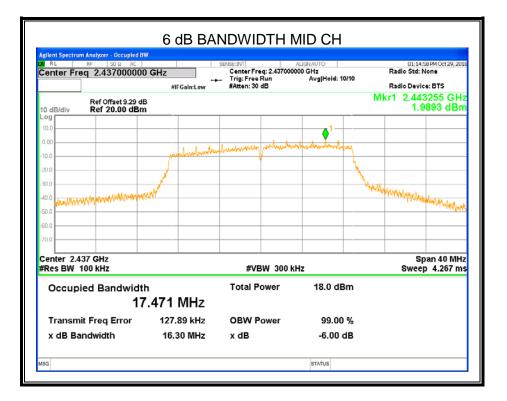


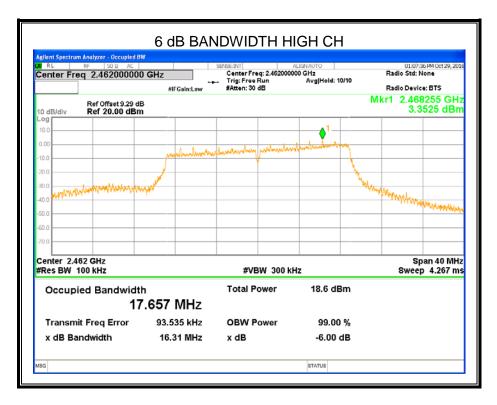



8.2.2. 802.11g MODE

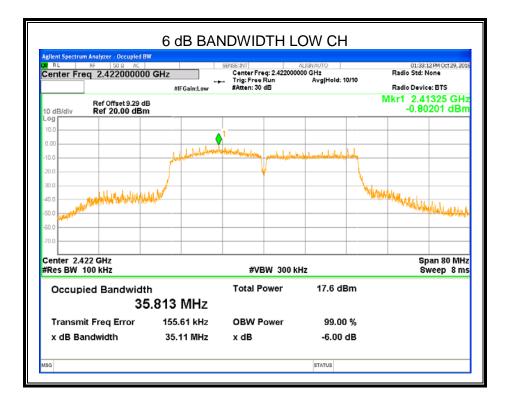
Channel	6dB bandwidth (MHz)	Limit (kHz)	Result
Low	13.79	≥500	Pass
Middle	11.98	≥500	Pass
High	13.23	≥500	Pass

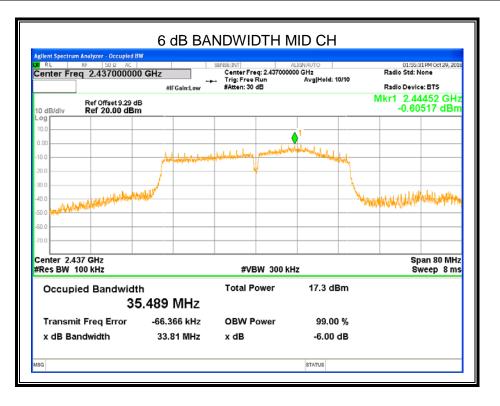


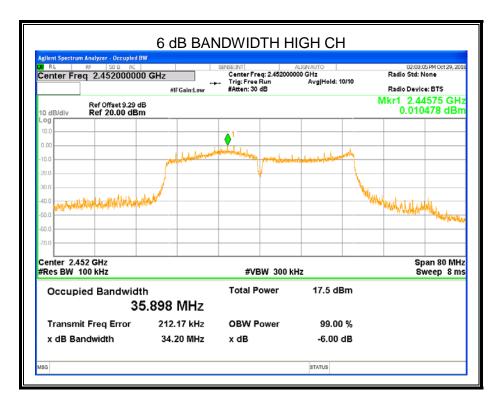



8.2.3. 802.11n HT20 MODE

Channel	6dB bandwidth (MHz)	Limit (kHz)	Result
Low	15.05	≥500	Pass
Middle	16.30	≥500	Pass
High	16.31	≥500	Pass





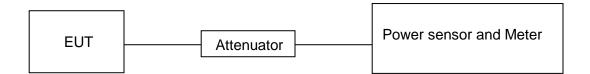

8.2.4. 802.11n HT40 MODE

Channel	6dB bandwidth (MHz)	Limit (kHz)	Result
Low	35.11	≥500	Pass
Middle	33.81	≥500	Pass
High	34.20	≥500	Pass

8.3. PEAK CONDUCTED OUTPUT POWER

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	


TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure peak power each channel. Peak Detector use for Peak result. AVG Detector use for AVG result.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.1°C	Relative Humidity	51%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8V

RESULTS

8.3.1.802.11b MODE

Test Channel	Maximum Conducted Output Power(PK)	Maximum Conducted Output Power(AV)	LIMIT
	(dBm)	(dBm)	dBm
Low	15.02	13.11	30
Middle	16.39	14.27	30
High	16.74	14.76	30

8.3.2. 802.11g MODE

Test Channel	Maximum Conducted Output Power(PK)	Maximum Conducted Output Power(AV)	LIMIT
	(dBm)	(dBm)	dBm
Low	16.75	9.41	30
Middle	18.62	12.19	30
High	18.91	12.56	30

8.3.3. 802.11n HT20 MODE

Test Channel	Maximum Conducted Output Power(PK)	Maximum Conducted Output Power(AV)	LIMIT
	(dBm)	(dBm)	dBm
Low	16.32	8.91	30
Middle	19.37	11.98	30
High	19.70	12.51	30

8.3.4. 802.11 n HT40 MODE

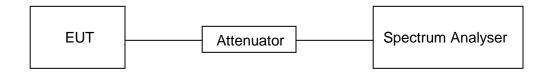
Test Channel	Maximum Conducted Output Power(PK)	Maximum Conducted Output Power(AV)	LIMIT
	(dBm)	(dBm)	dBm
Low	19.05	11.40	30
Middle	18.73	11.10	30
High	18.91	11.40	30

8.4. POWER SPECTRAL DENSITY

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC §15.247 (e)	Power Spectral Density	8 dBm/3 kHz	2400-2483.5

TEST PROCEDURE


Connect the UUT to the spectrum analyser and use the following settings:

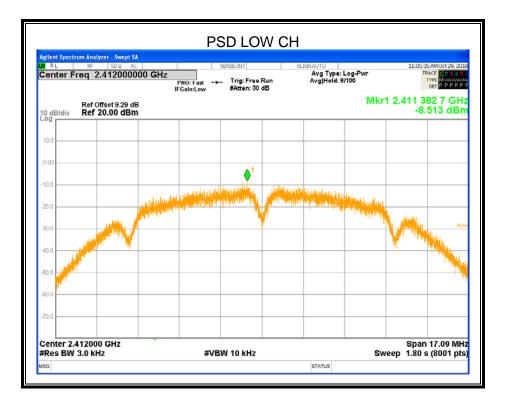
Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW ≤100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

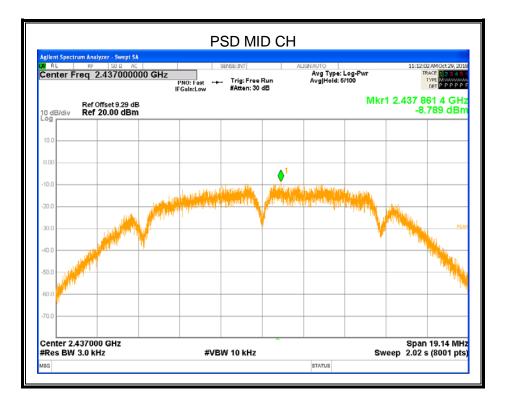
If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

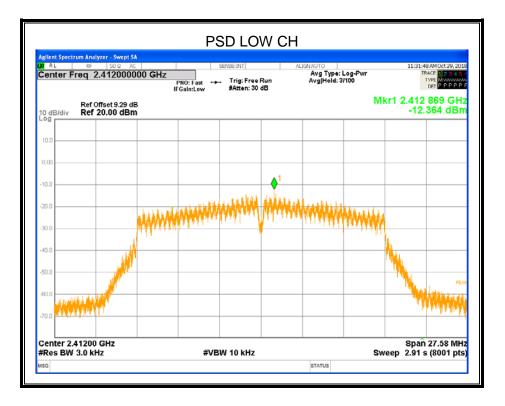

Temperature	24.1°C	Relative Humidity	51%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8V

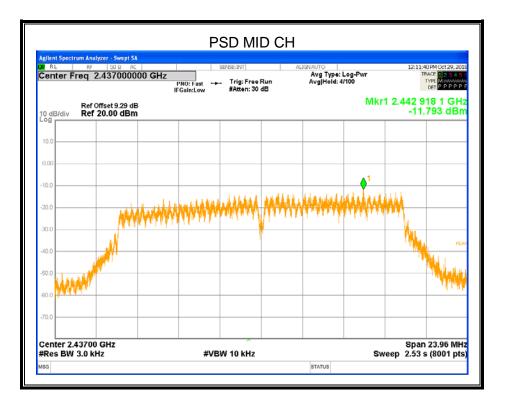
RESULTS

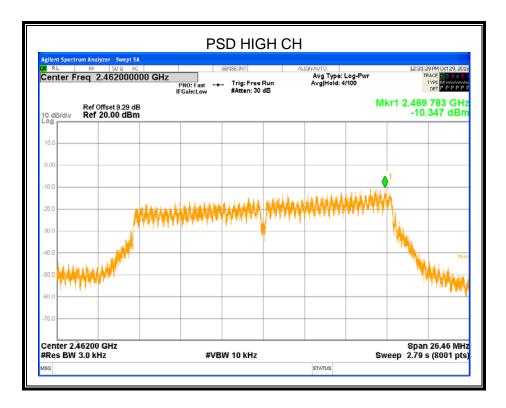

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

8.4.1. 802.11b MODE

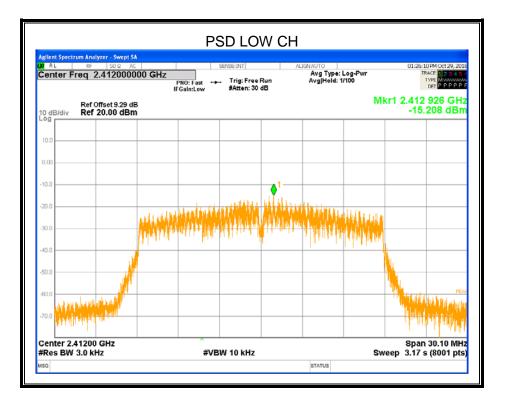
Test Channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Low	-8.513	8	PASS
Middle	-8.789	8	PASS
High	-6.927	8	PASS

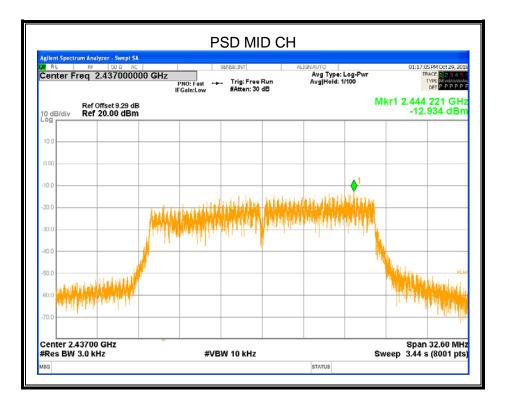


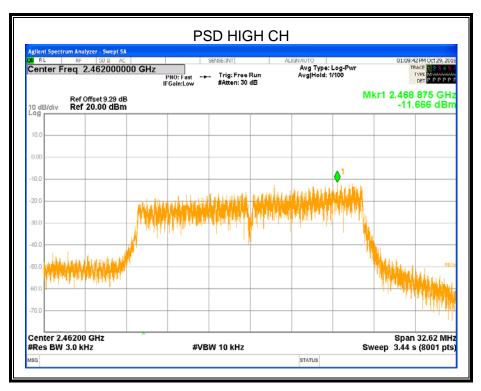



8.4.2. 802.11g MODE

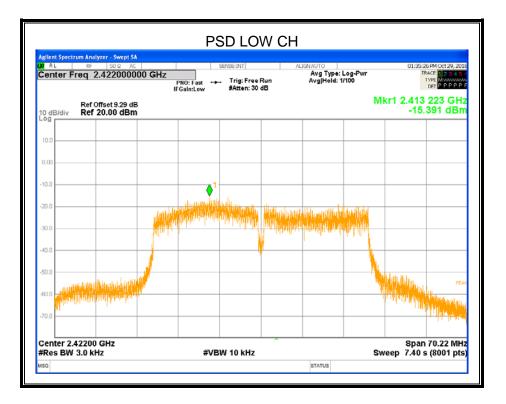
Test Channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Low	-12.364	8	PASS
Middle	-11.793	8	PASS
High	-10.347	8	PASS

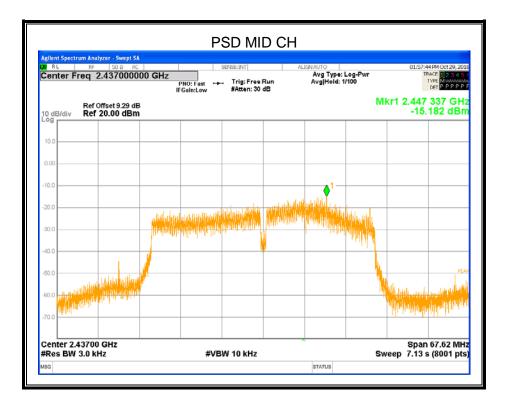


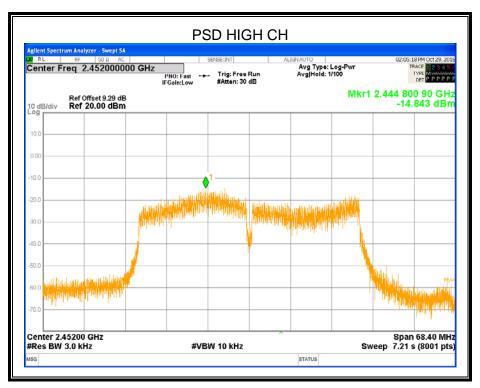



8.4.3. 802.11n HT20 MODE

Test Channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Low	-15.208	8	PASS
Middle	-12.934	8	PASS
High	-11.666	8	PASS






8.4.4. 802.11n HT40 MODE

Test Channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Low	-15.391	8	PASS
Middle	-15.182	8	PASS
High	-14.843	8	PASS

8.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

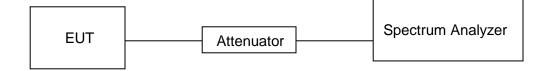
LIMITS

CFR 47 FCC Part15 (15.247) Subpart C		
Section	Test Item	Limit
CFR 47 FCC §15.247 (d)	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

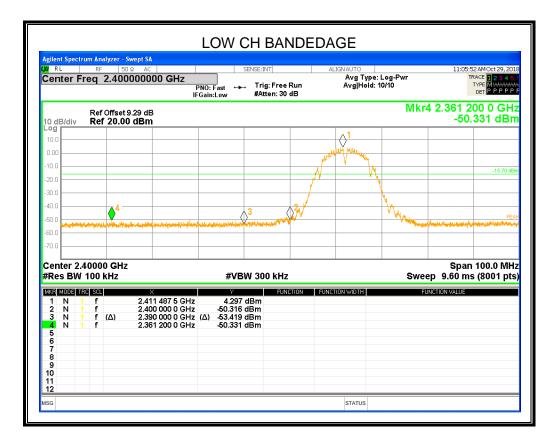
Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100K
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.


Use the peak marker function to determine the maximum PSD level.

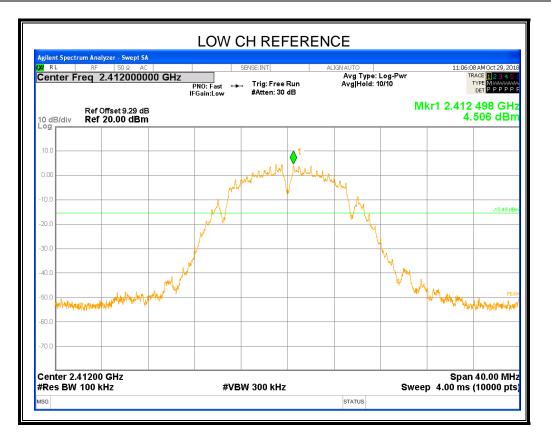
12090	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100K
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

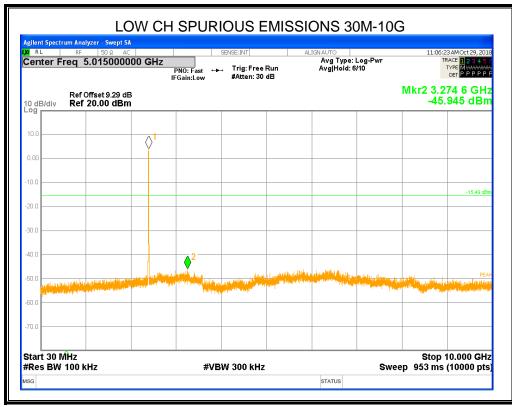
Use the peak marker function to determine the maximum amplitude level.

TEST SETUP

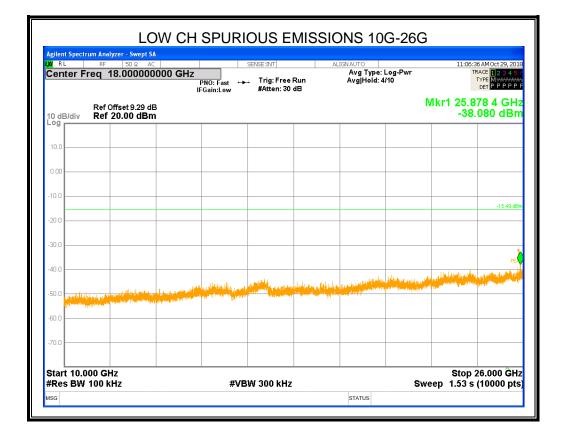


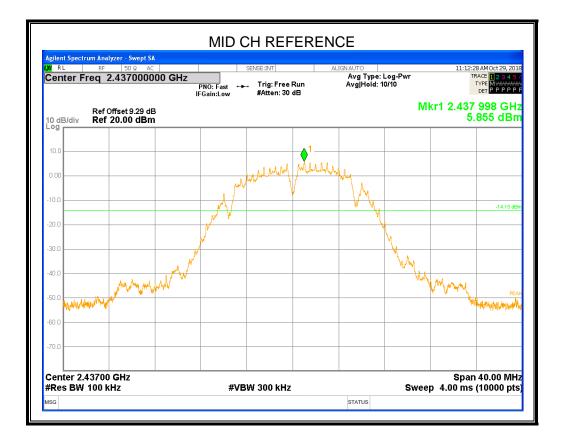
TEST ENVIRONMENT

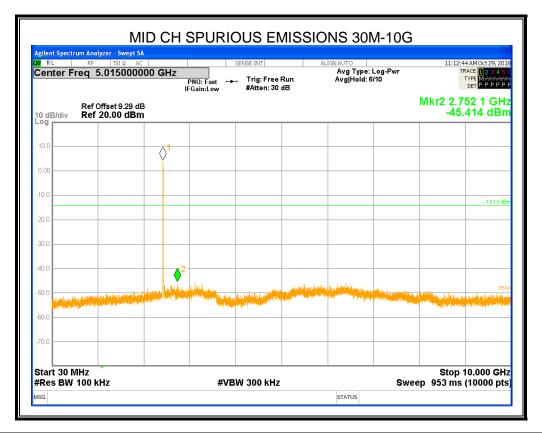

Temperature	24.1°C	Relative Humidity	51%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8V

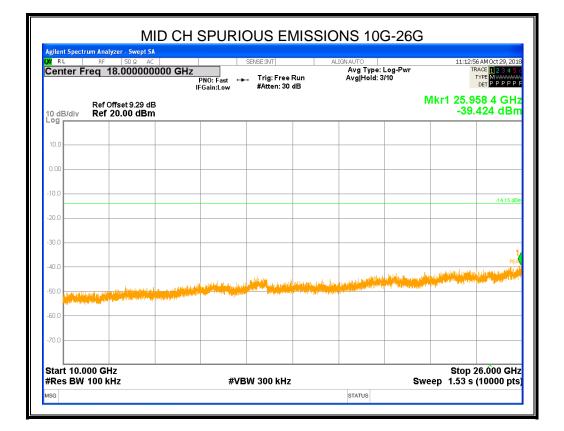

RESULTS

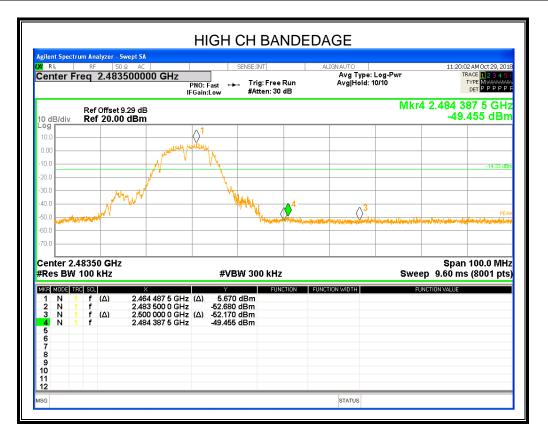
8.5.1 802.11b MODE

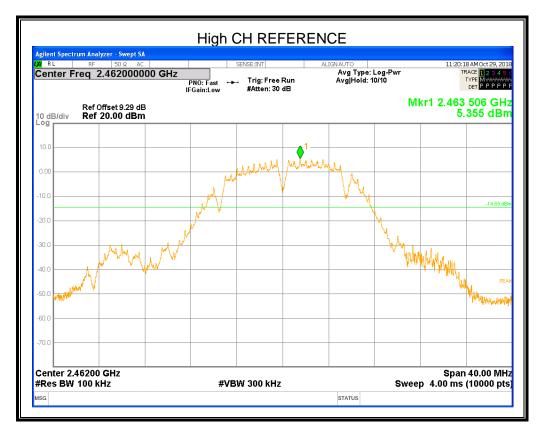


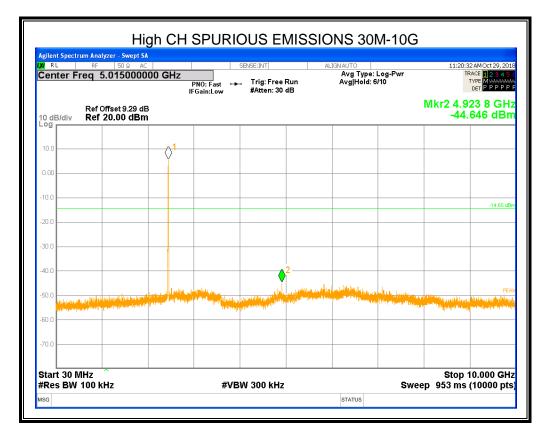


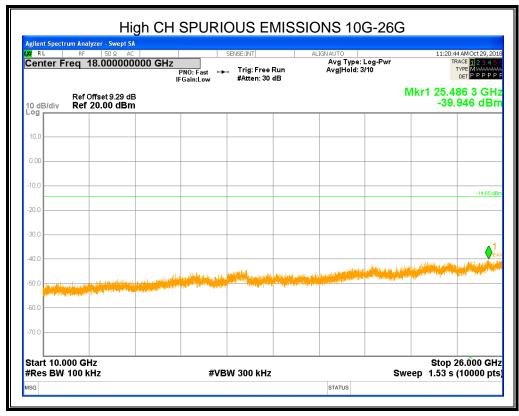


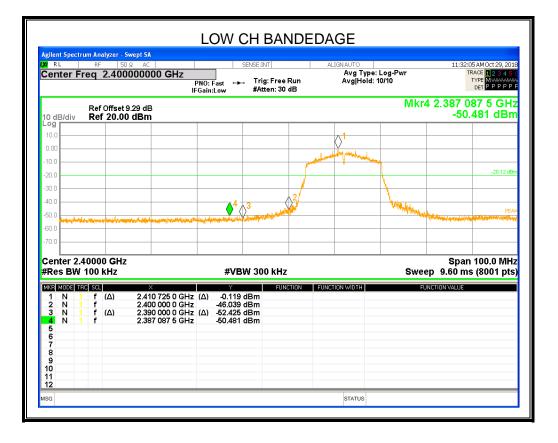


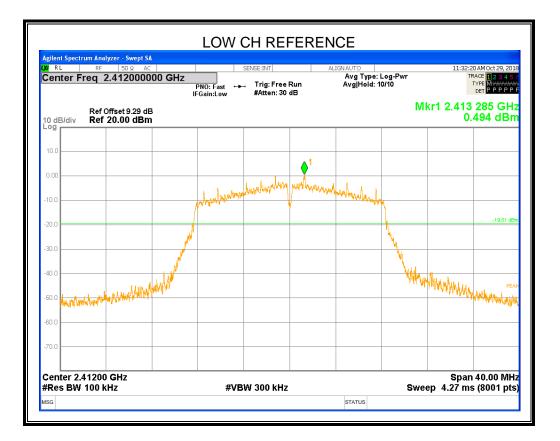


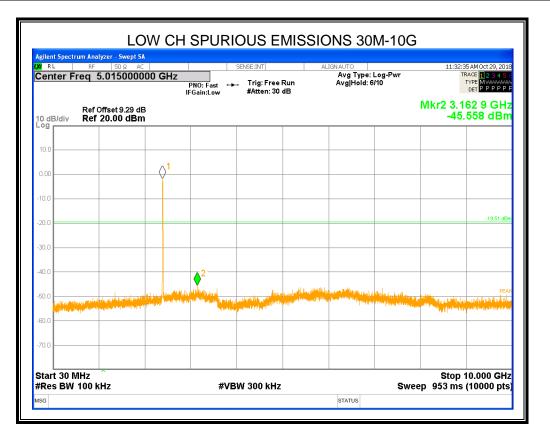


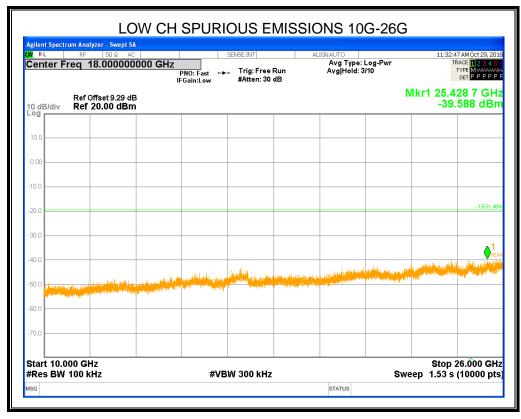


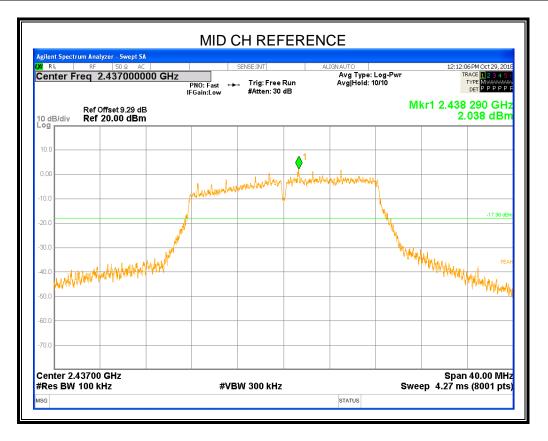


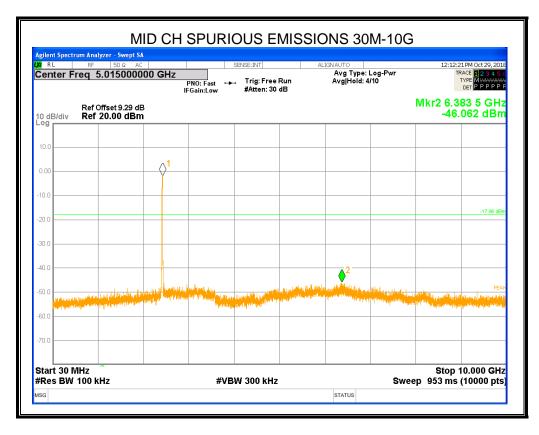


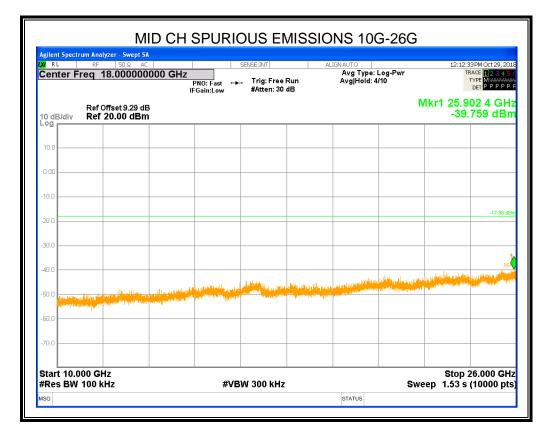


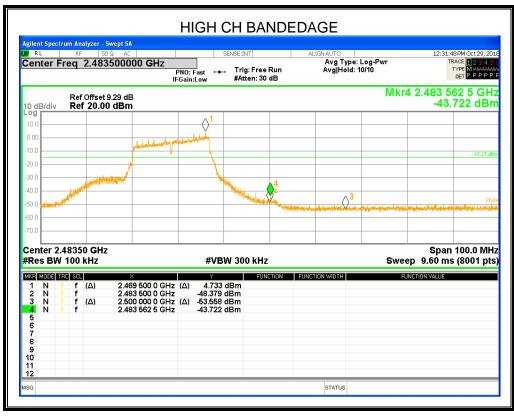

8.5.2 802.11g MODE

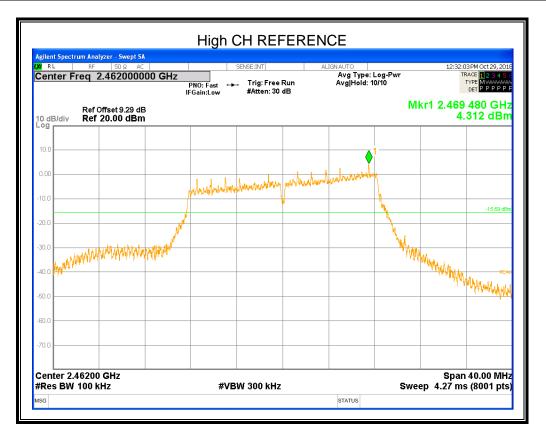


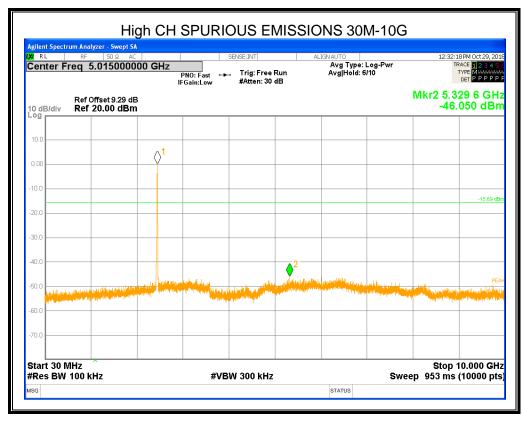


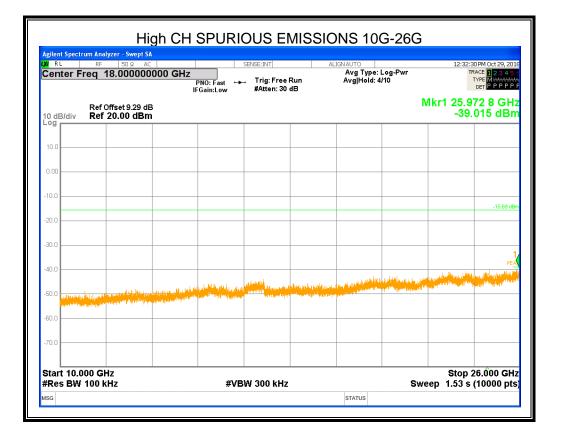


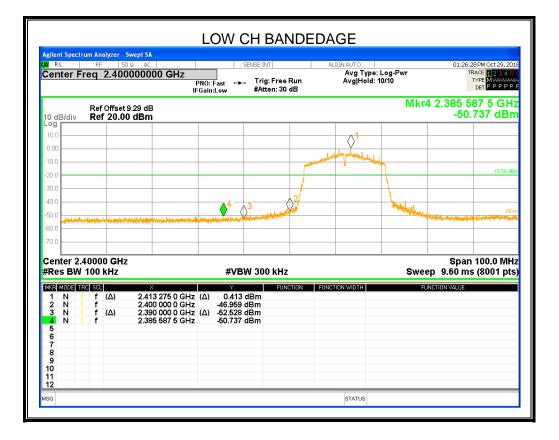


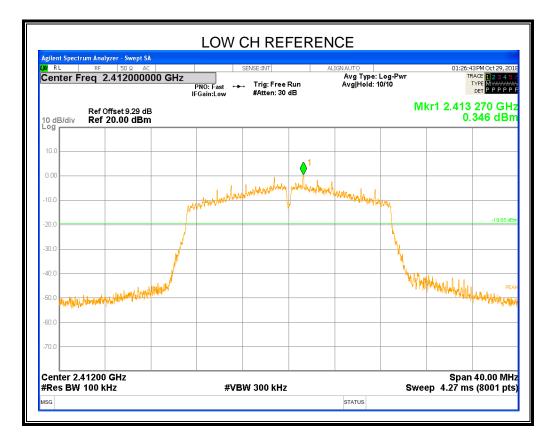


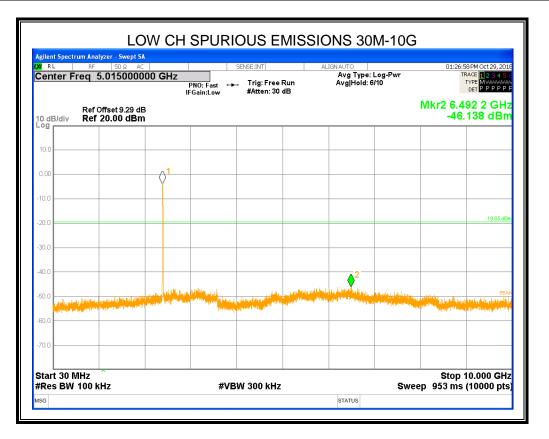


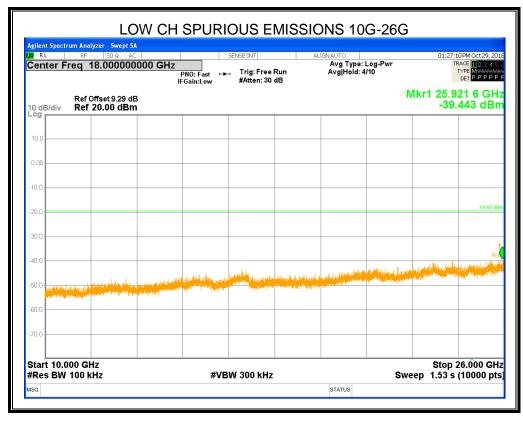


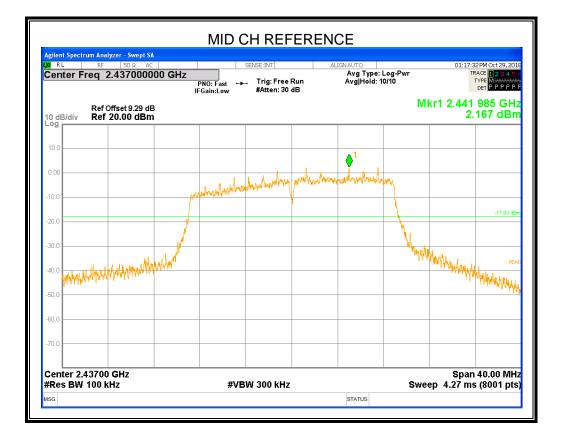


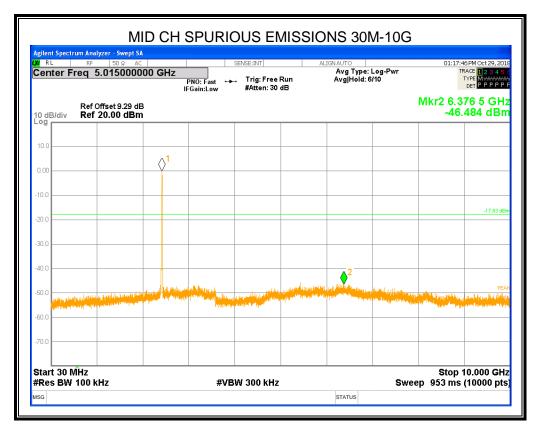


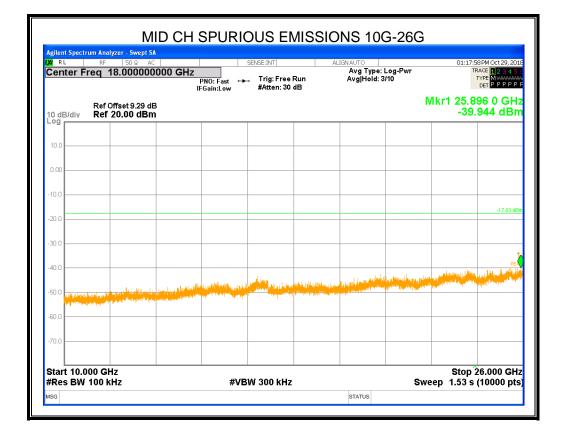


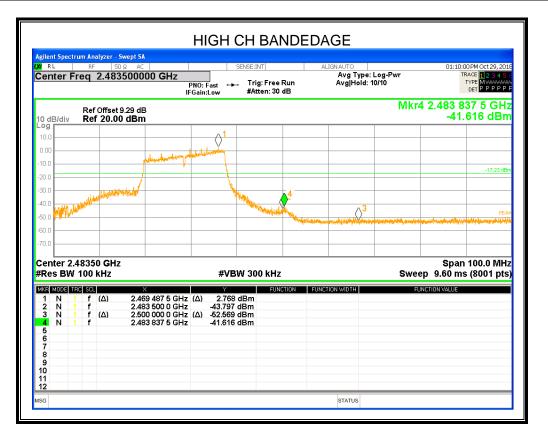

8.5.3 802.11n HT20 MODE

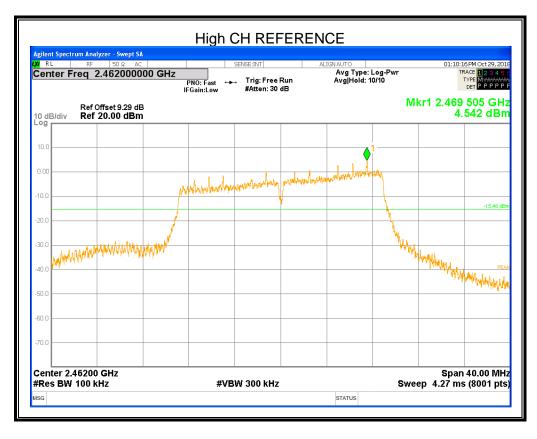


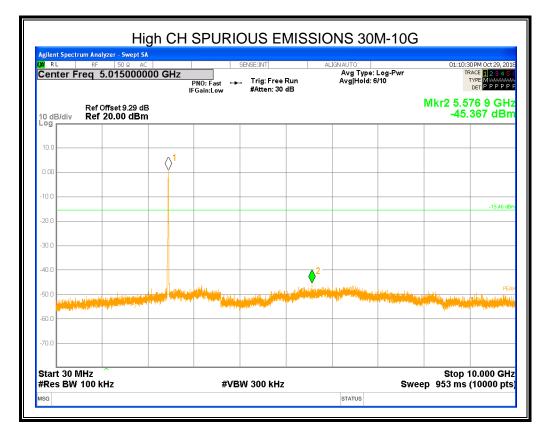


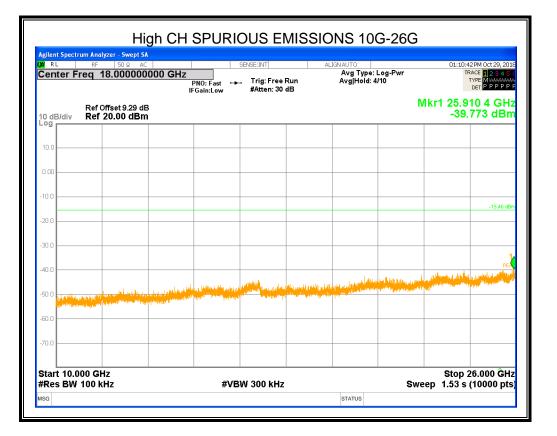


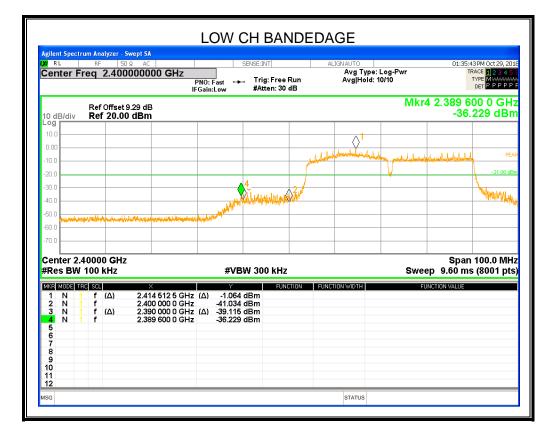


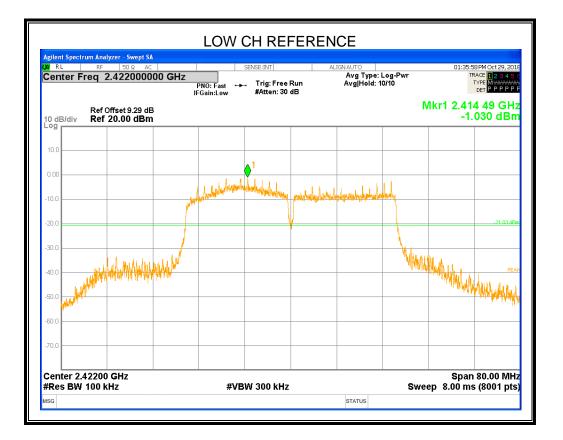


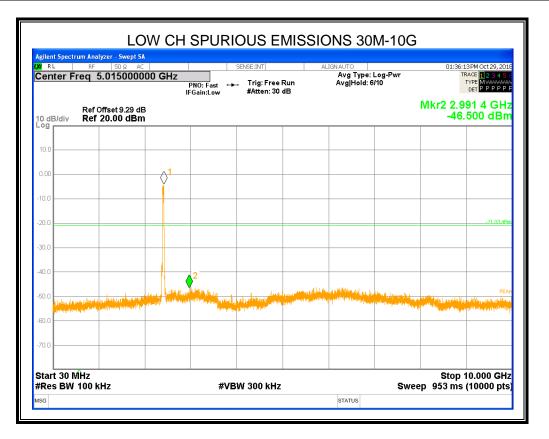


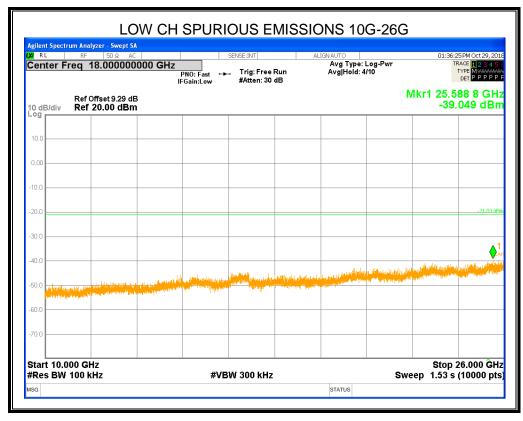


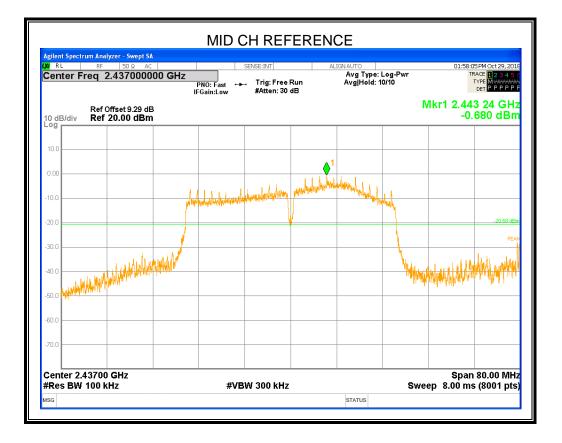


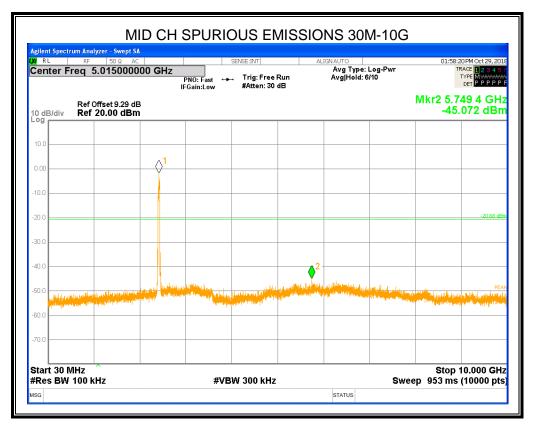


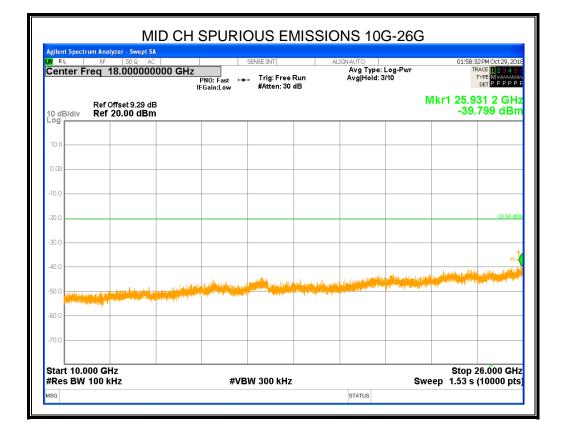


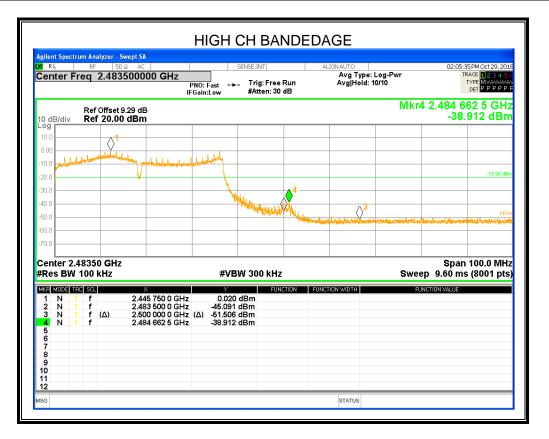

8.5.4 802.11n HT40 MODE

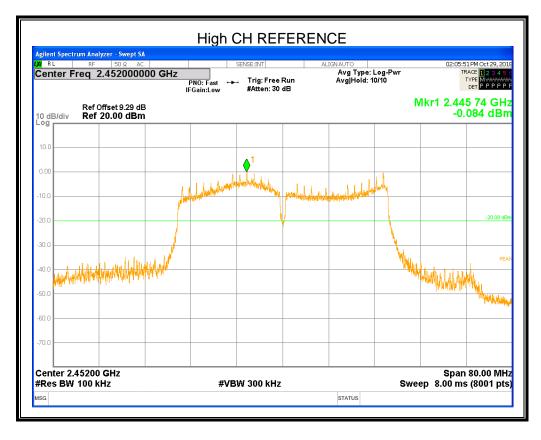


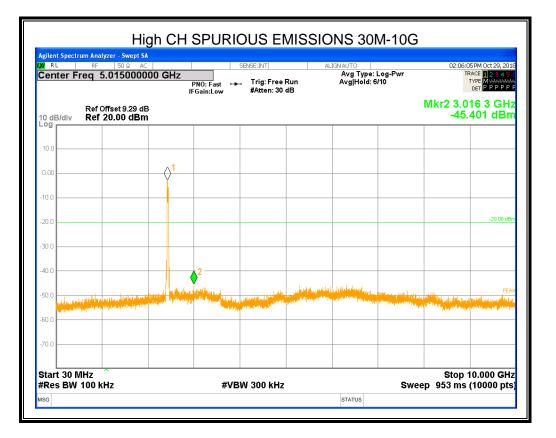


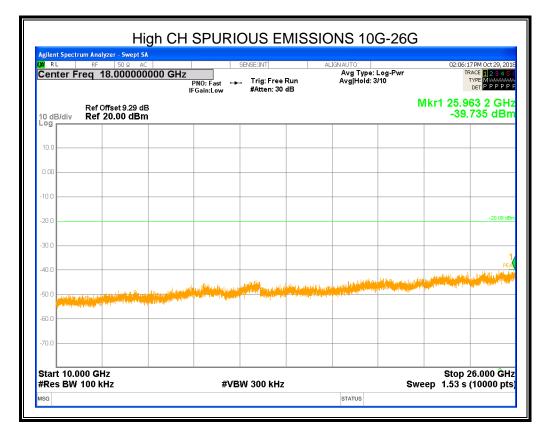












9. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209

Radiation Disturbance Test Limit for FCC (Class B)(9KHz-1GHz)

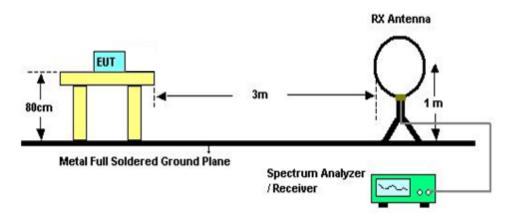
Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

Radiation Disturbance Test Limit for FCC (Above 1G)

Frequency (MHz)	dB(uV/m) (at 3 meters)	
	Peak	Average
Above 1000	74	54


FCC Restricted bands of operation:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST SETUP AND PROCEDURE

Below 30MHz

The setting of the spectrum analyser

RBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
Sweep	Auto
Detector	Peak/QP/ Average
Trace	Max hold

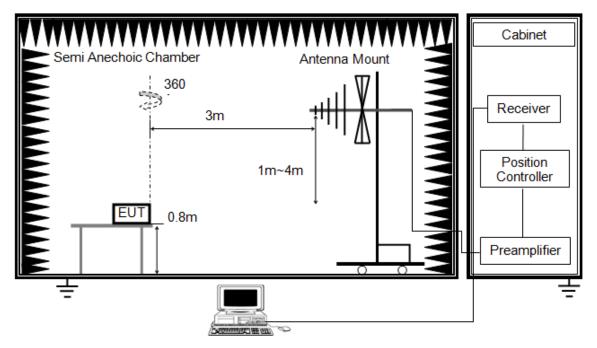
1. The testing follows the guidelines in ANSI C63.10-2013

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 0.8 meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.


6. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

7. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

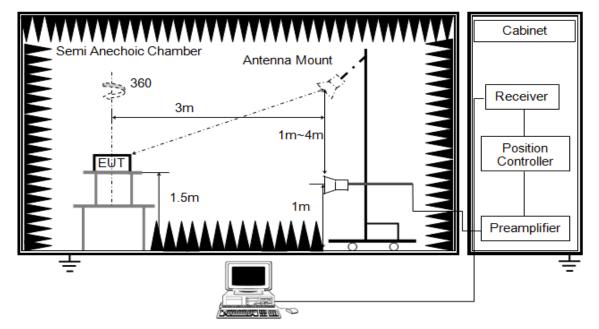
Below 1G

The setting of the spectrum analyser

RBW	120K
VBW	300K
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 0.8 meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

ABOVE 1G

The setting of the spectrum analyser

RBW	1M
VBW	PEAK: 3M AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

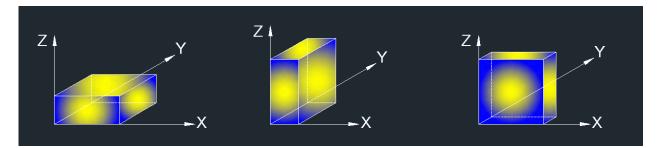
1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.


6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video

bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T

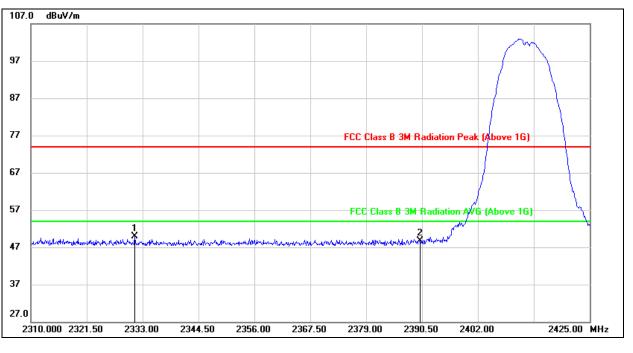
video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 8.1.ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (Z axis) data recorded in the report.

Note 2: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.

TEST ENVIRONMENT


Temperature	24.1°C	Relative Humidity	51%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8V

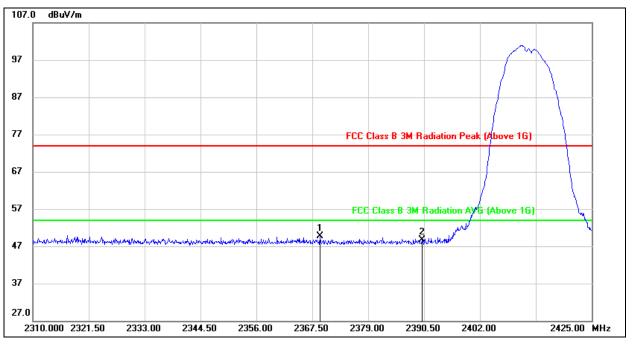
9.1 RESTRICTED BANDEDGE

9.1.1 802.11b MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2331.390	16.38	33.57	49.95	74.00	-24.05	peak
2	2390.000	15.56	33.14	48.70	74.00	-25.30	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

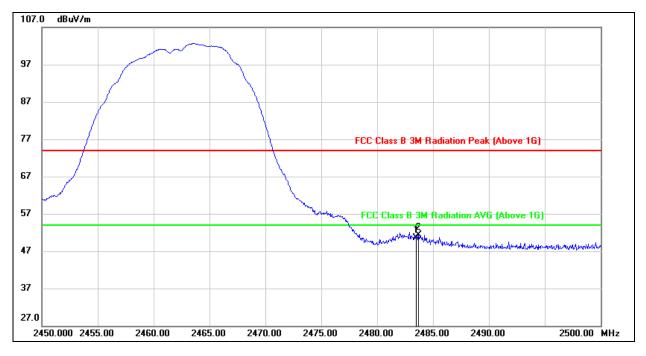
3. Peak: Peak detector.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2369.110	16.23	33.40	49.63	74.00	-24.37	peak
2	2390.000	15.45	33.24	48.69	74.00	-25.31	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	17.77	32.78	50.55	74.00	-23.45	peak
2	2483.700	18.50	32.78	51.28	74.00	-22.72	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

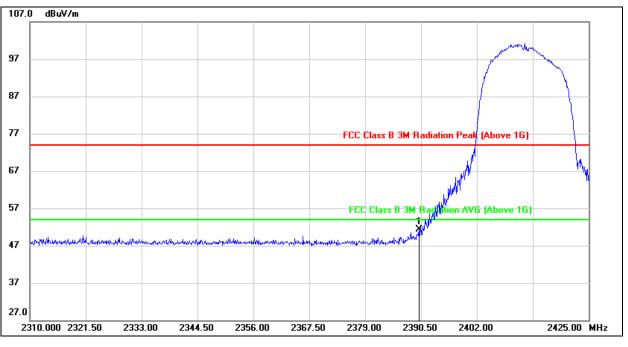
3. Peak: Peak detector.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	16.12	32.88	49.00	74.00	-25.00	peak
2	2484.000	16.83	32.88	49.71	74.00	-24.29	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

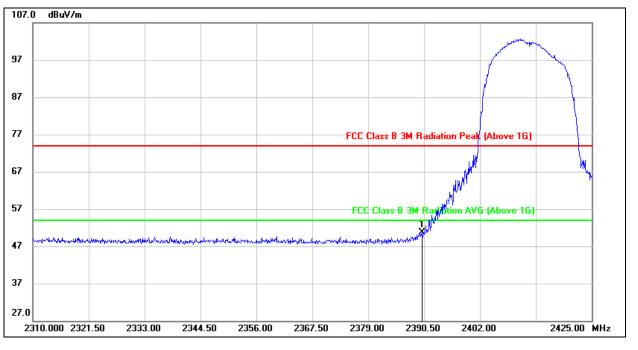
3. Peak: Peak detector.

9.1.2 802.11g MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	18.17	33.14	51.31	74.00	-22.69	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

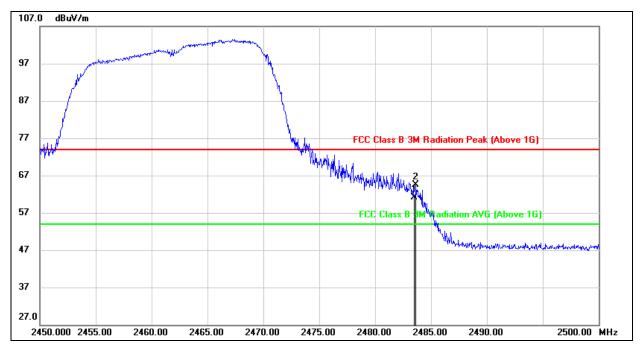
3. Peak: Peak detector.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	17.56	33.24	50.80	74.00	-23.20	peak

Note: 1. Measurement = Reading Level + Correct Factor.

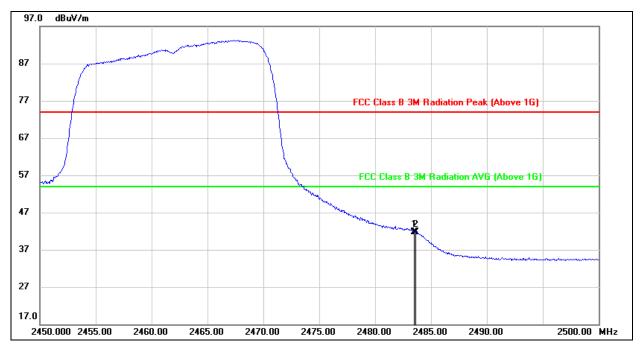

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	28.39	32.78	61.17	74.00	-12.83	peak
2	2483.650	31.74	32.78	64.52	74.00	-9.48	peak

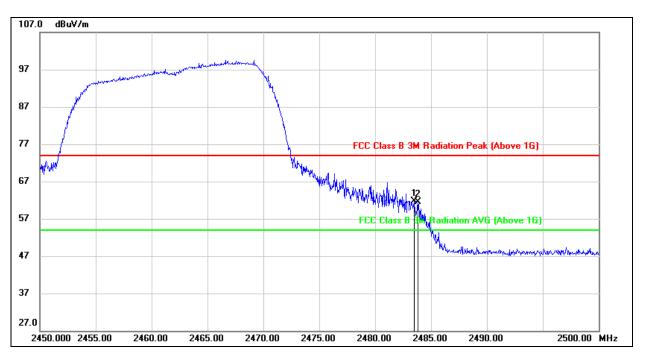

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	9.02	32.78	41.80	54.00	-12.20	AVG
2	2483.650	8.95	32.78	41.73	54.00	-12.27	AVG


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

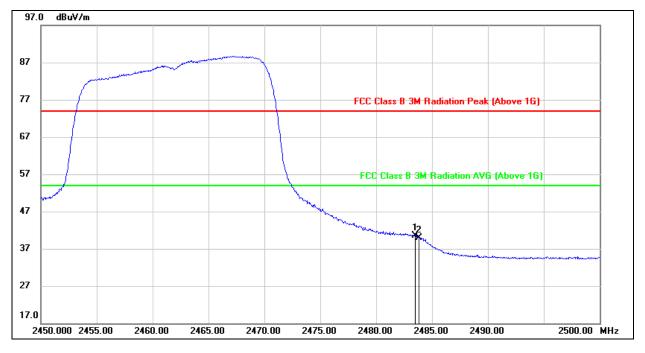
4. For transmit duration, please refer to clause 8.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	28.90	32.88	61.78	74.00	-12.22	peak
2	2483.800	28.65	32.88	61.53	74.00	-12.47	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

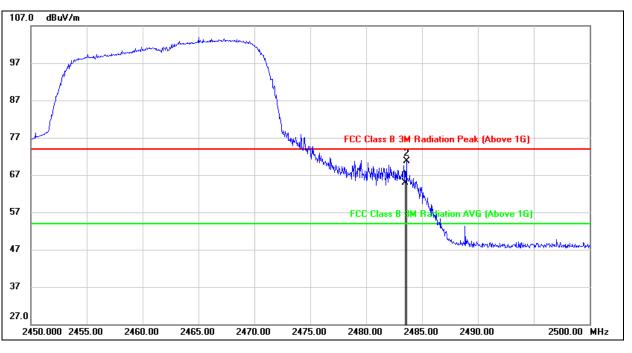
<u>PEAK</u>

(UL)

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	7.66	32.88	40.54	54.00	-13.46	AVG
2	2483.800	7.05	32.88	39.93	54.00	-14.07	AVG

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

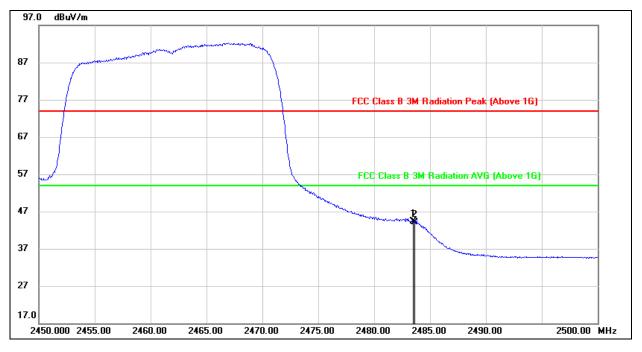
4. For transmit duration, please refer to clause 8.1.

9.1.3 802.11n HT20 MODE

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	32.16	32.78	64.94	74.00	-9.06	peak
2	2483.600	37.83	32.78	70.61	74.00	-3.39	peak


Note: 1. Measurement = Reading Level + Correct Factor.

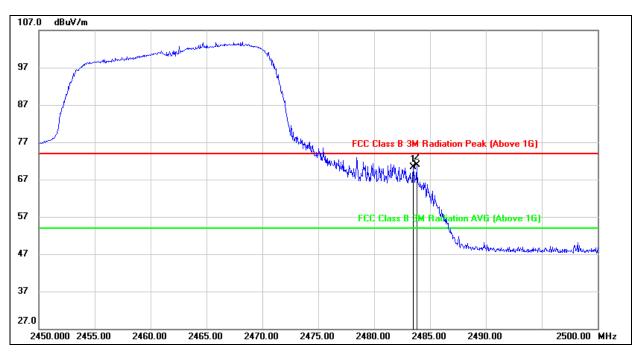
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	11.50	32.78	44.28	54.00	-9.72	AVG
2	2483.600	11.34	32.78	44.12	54.00	-9.88	AVG

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

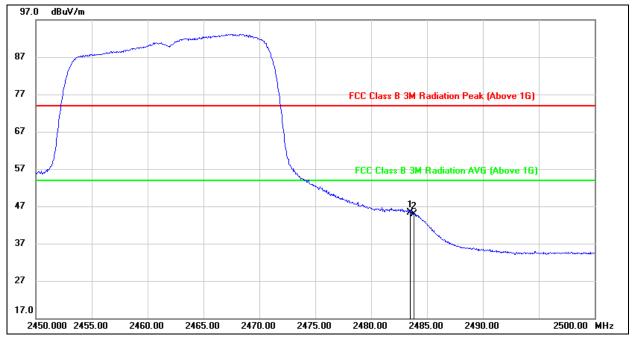
3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 8.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	37.49	32.88	70.37	74.00	-3.63	peak
2	2483.800	38.05	32.88	70.93	74.00	-3.07	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

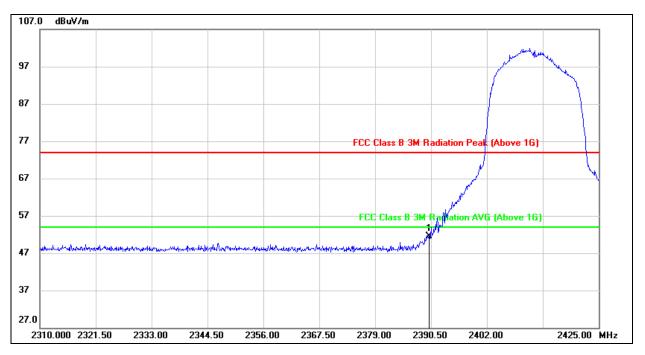
(UL)

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	12.42	32.88	45.30	54.00	-8.70	AVG
2	2483.800	12.04	32.88	44.92	54.00	-9.08	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. AVG: VBW=1/Ton where: ton is transmit duration.

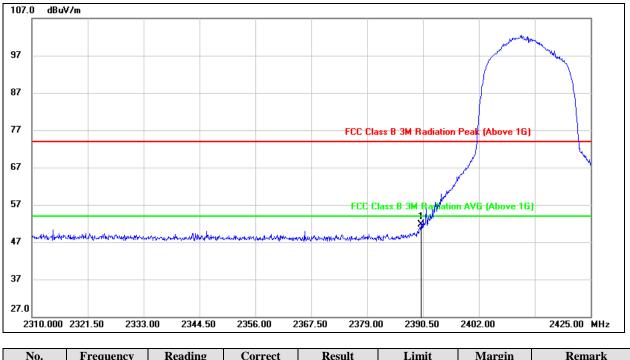
4. For transmit duration, please refer to clause 8.1.

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	18.36	33.14	51.50	74.00	-22.50	peak

Note: 1. Measurement = Reading Level + Correct Factor.

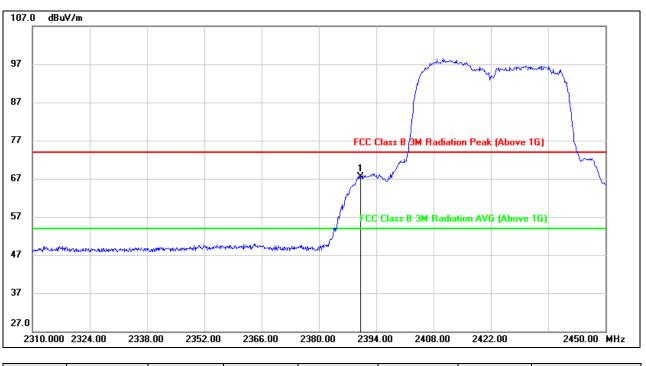

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	18.52	33.24	51.76	74.00	-22.24	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

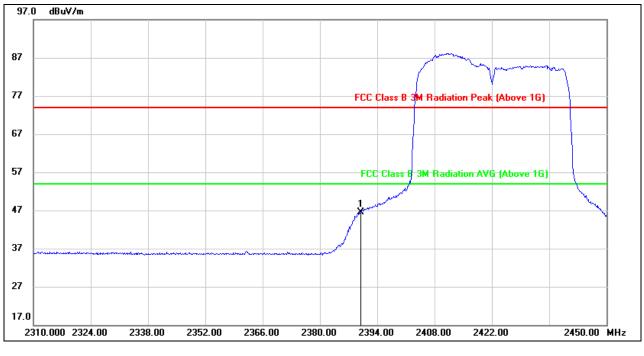
3. Peak: Peak detector.

9.1.4 802.11n HT40 MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	34.23	33.14	67.37	74.00	-6.63	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

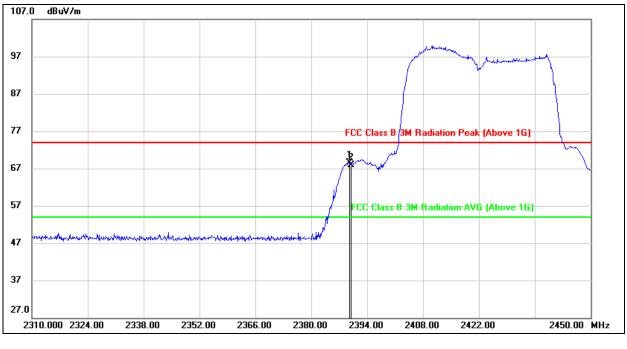
3. Peak: Peak detector.

<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	13.30	33.14	46.44	54.00	-7.56	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

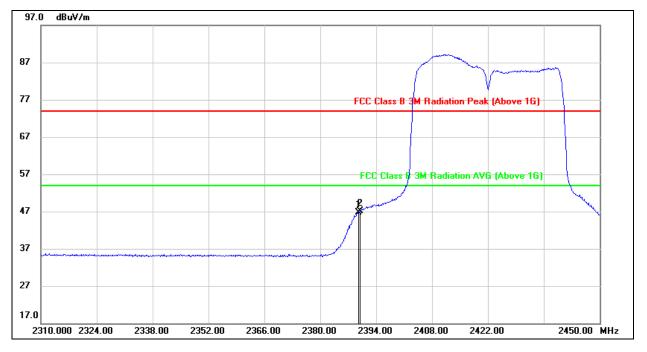
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 8.1.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.520	35.25	33.24	68.49	74.00	-5.51	peak
2	2390.000	34.73	33.24	67.97	74.00	-6.03	peak

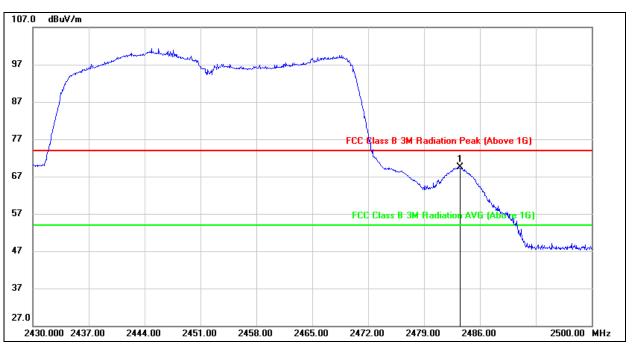

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB /m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.520	13.40	33.24	46.64	54.00	-7.36	AVG
2	2390.000	13.80	33.24	47.04	54.00	-6.96	AVG


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

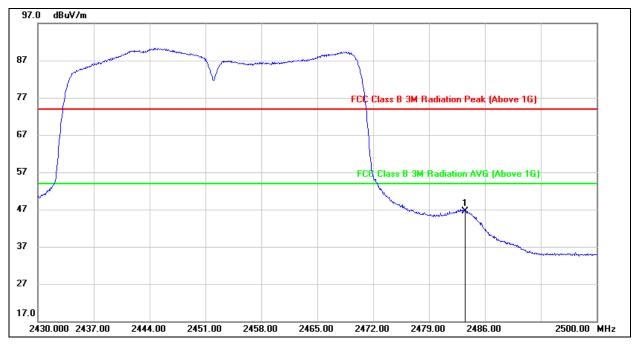
4. For transmit duration, please refer to clause 8.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	36.62	32.78	69.40	74.00	-4.60	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

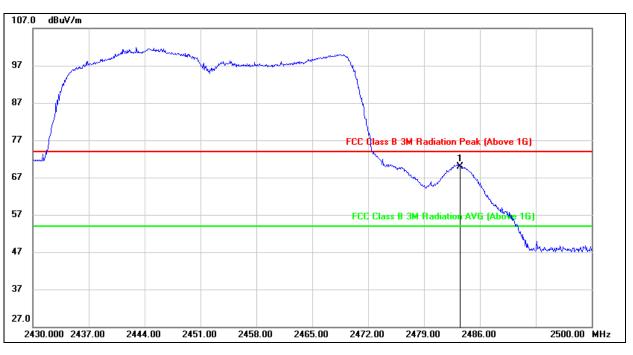

3. Peak: Peak detector.

4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

PEAK

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	13.82	32.78	46.60	54.00	-7.40	AVG


Note: 1. Measurement = Reading Level + Correct Factor.

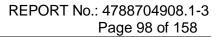
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 8.1.

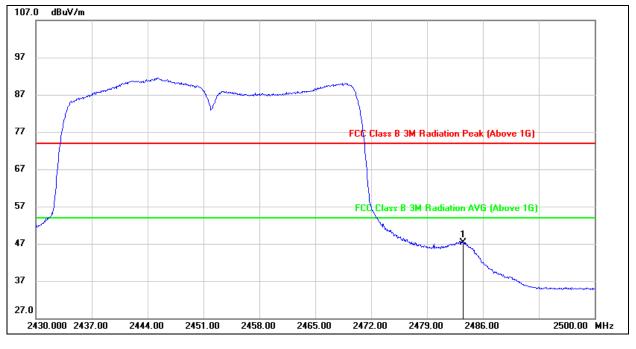
RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	37.08	32.88	69.96	74.00	-4.04	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

<u>PEAK</u>

(UL)

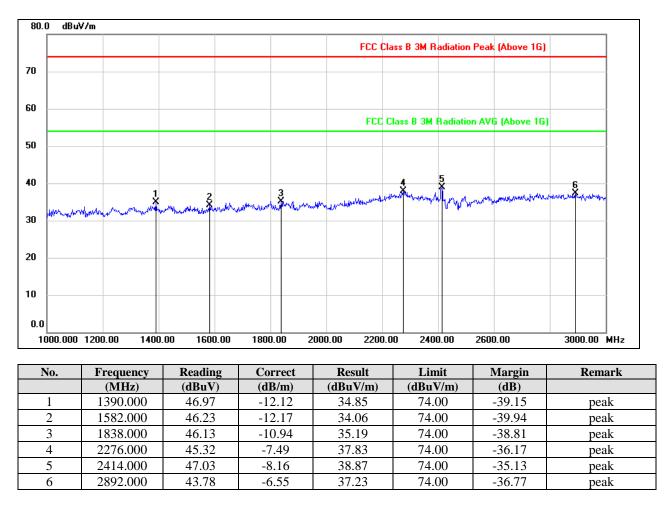
<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	14.32	32.88	47.20	54.00	-6.80	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

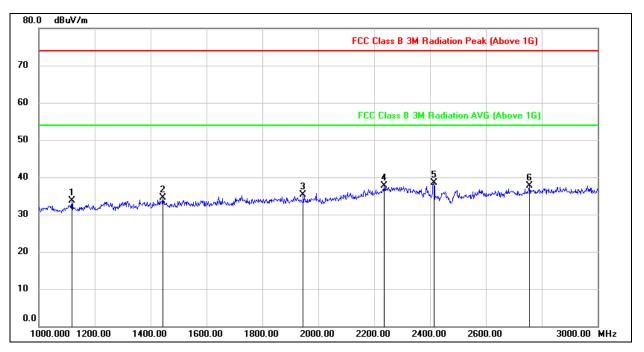
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.


4. For transmit duration, please refer to clause 8.1.

9.2 SPURIOUS EMISSIONS (1~3GHz)

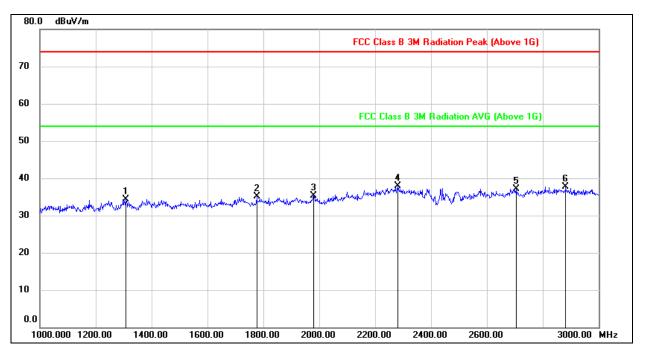
9.2.1 802.11b MODE


HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

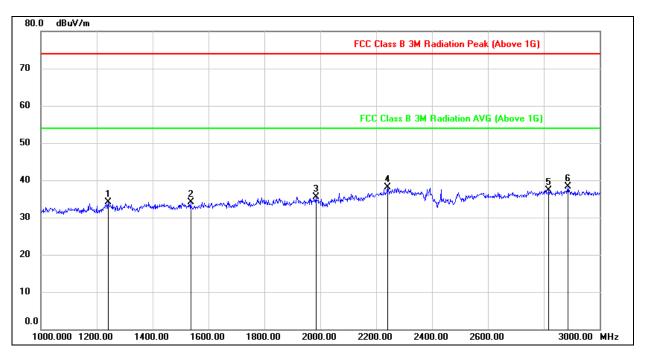

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1118.000	47.44	-13.75	33.69	74.00	-40.31	peak
2	1444.000	46.76	-12.29	34.47	74.00	-39.53	peak
3	1946.000	46.18	-10.79	35.39	74.00	-38.61	peak
4	2236.000	45.41	-7.79	37.62	74.00	-36.38	peak
5	2414.000	46.59	-8.06	38.53	74.00	-35.47	peak
6	2756.000	45.03	-7.28	37.75	74.00	-36.25	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1308.000	46.75	-12.39	34.36	74.00	-39.64	peak
2	1776.000	46.27	-11.20	35.07	74.00	-38.93	peak
3	1980.000	45.86	-10.65	35.21	74.00	-38.79	peak
4	2282.000	45.44	-7.47	37.97	74.00	-36.03	peak
5	2706.000	44.58	-7.55	37.03	74.00	-36.97	peak
6	2882.000	44.33	-6.59	37.74	74.00	-36.26	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

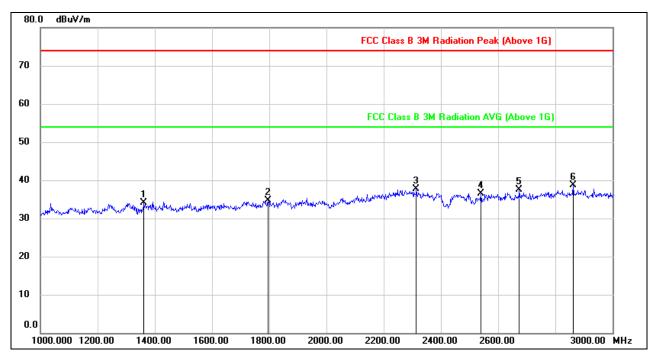
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1240.000	46.95	-12.81	34.14	74.00	-39.86	peak
2	1536.000	46.32	-12.27	34.05	74.00	-39.95	peak
3	1984.000	46.25	-10.68	35.57	74.00	-38.43	peak
4	2240.000	45.74	-7.73	38.01	74.00	-35.99	peak
5	2818.000	44.21	-6.86	37.35	74.00	-36.65	peak
6	2886.000	44.86	-6.58	38.28	74.00	-35.72	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

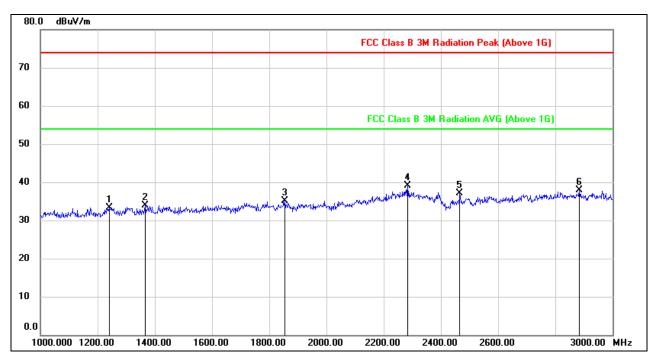
3. Peak: Peak detector.


4. AVG: VBW=1/Ton where: ton is transmit duration.

5. For transmit duration, please refer to clause 8.1.

Note: All the antennas had been tested, but only the worst data record in the report.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1362.000	46.39	-12.30	34.09	74.00	-39.91	peak
2	1796.000	45.84	-11.14	34.70	74.00	-39.30	peak
3	2314.000	45.13	-7.49	37.64	74.00	-36.36	peak
4	2540.000	44.93	-8.36	36.57	74.00	-37.43	peak
5	2674.000	45.14	-7.73	37.41	74.00	-36.59	peak
6	2862.000	45.41	-6.66	38.75	74.00	-35.25	peak

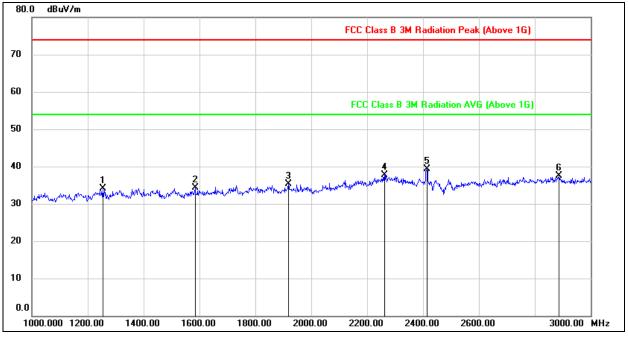
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1240.000	46.17	-12.81	33.36	74.00	-40.64	peak
2	1366.000	46.32	-12.40	33.92	74.00	-40.08	peak
3	1854.000	45.94	-10.89	35.05	74.00	-38.95	peak
4	2284.000	46.45	-7.33	39.12	74.00	-34.88	peak
5	2466.000	45.40	-8.27	37.13	74.00	-36.87	peak
6	2884.000	44.41	-6.58	37.83	74.00	-36.17	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

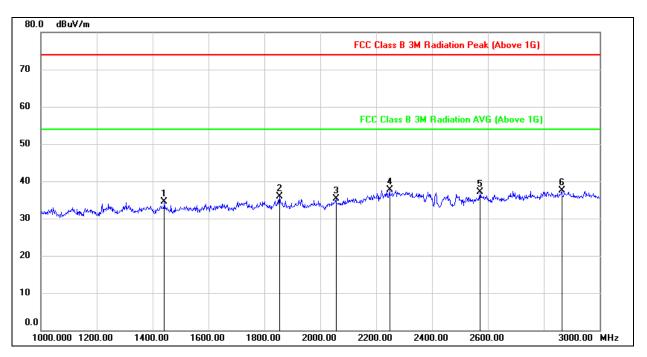
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

9.2.2 802.11g MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1254.000	46.94	-12.80	34.14	74.00	-39.86	peak
2	1584.000	46.50	-12.16	34.34	74.00	-39.66	peak
3	1918.000	46.09	-10.71	35.38	74.00	-38.62	peak
4	2262.000	45.35	-7.55	37.80	74.00	-36.20	peak
5	2414.000	47.42	-8.16	39.26	74.00	-34.74	peak
6	2886.000	44.13	-6.58	37.55	74.00	-36.45	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton where: ton is transmit duration.

5. For transmit duration, please refer to clause 8.1.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1442.000	46.78	-12.30	34.48	74.00	-39.52	peak
2	1854.000	46.86	-10.89	35.97	74.00	-38.03	peak
3	2056.000	45.51	-10.22	35.29	74.00	-38.71	peak
4	2248.000	45.31	-7.63	37.68	74.00	-36.32	peak
5	2572.000	45.20	-8.19	37.01	74.00	-36.99	peak
6	2864.000	44.24	-6.65	37.59	74.00	-36.41	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

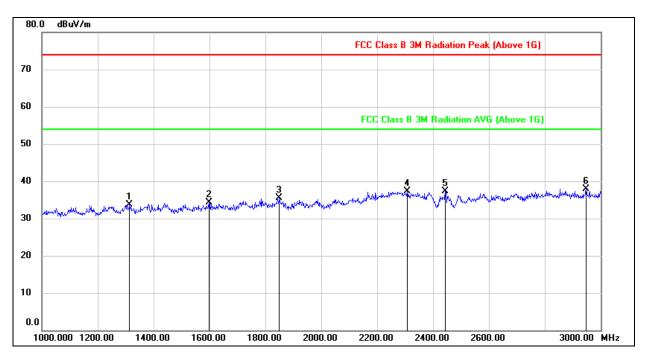
3. Peak: Peak detector.

4. AVG: VBW=1/Ton where: ton is transmit duration.

5. For transmit duration, please refer to clause 8.1.

80.0 dBuV/m FCC Class B 3M Radiation Peak (Above 1G) 70 60 FCC Class B 3M Radiation AVG (Above 1G) 50 40 â 2 X 30 20 10 0.0 1000.000 1200.00 1400.00 1600.00 1800.00 2000.00 2200.00 2400.00 2600.00 3000.00 MHz

HARMONICS	AND SPURIOUS	EMISSIONS (MID	CHANNEL.	HORIZONTAL)
			••••••==	


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1430.000	46.35	-12.18	34.17	74.00	-39.83	peak
2	1852.000	46.55	-10.88	35.67	74.00	-38.33	peak
3	2094.000	45.79	-9.64	36.15	74.00	-37.85	peak
4	2388.000	46.24	-8.02	38.22	74.00	-35.78	peak
5	2750.000	44.19	-7.23	36.96	74.00	-37.04	peak
6	2916.000	43.56	-6.54	37.02	74.00	-36.98	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1314.000	46.23	-12.60	33.63	74.00	-40.37	peak
2	1598.000	46.34	-12.06	34.28	74.00	-39.72	peak
3	1850.000	46.47	-10.88	35.59	74.00	-38.41	peak
4	2308.000	44.49	-7.28	37.21	74.00	-36.79	peak
5	2444.000	45.55	-8.22	37.33	74.00	-36.67	peak
6	2948.000	44.51	-6.57	37.94	74.00	-36.06	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

80.0 dBuV/m FCC Class B 3M Radiation Peak (Above 1G) 70 60 FCC Class B 3M Radiation AVG (Above 1G) 50 40 ŝ 2 ¥ 30 20 10 0.0 1000.000 1200.00 1400.00 1600.00 1800.00 2000.00 2200.00 2400.00 2600.00 3000.00 MHz

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1294.000	46.73	-12.45	34.28	74.00	-39.72	peak
2	1434.000	46.38	-12.20	34.18	74.00	-39.82	peak
3	1720.000	46.98	-11.42	35.56	74.00	-38.44	peak
4	2250.000	45.17	-7.59	37.58	74.00	-36.42	peak
5	2468.000	48.33	-8.38	39.95	74.00	-34.05	peak
6	2816.000	45.19	-6.88	38.31	74.00	-35.69	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

0.0

1000.000 1200.00

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1230.000	46.80	-12.90	33.90	74.00	-40.10	peak
2	1574.000	48.27	-12.17	36.10	74.00	-37.90	peak
3	2056.000	45.72	-10.22	35.50	74.00	-38.50	peak
4	2276.000	45.42	-7.39	38.03	74.00	-35.97	peak
5	2470.000	47.39	-8.27	39.12	74.00	-34.88	peak
6	2870.000	45.13	-6.62	38.51	74.00	-35.49	peak

2000.00

2200.00

2400.00

2600.00

3000.00 MHz

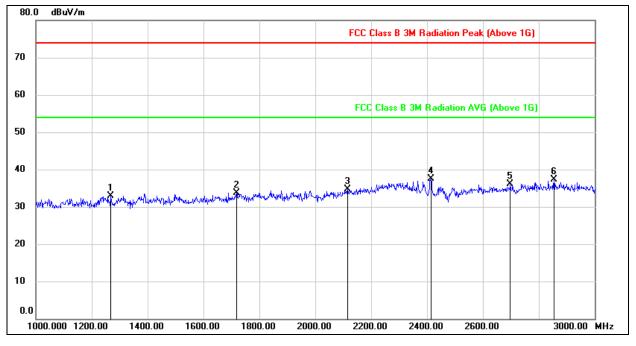
Note: 1. Measurement = Reading Level + Correct Factor.

1600.00

1800.00

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


1400.00

4. AVG: VBW=1/Ton where: ton is transmit duration.

5. For transmit duration, please refer to clause 8.1.

9.2.3 802.11n HT20 MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1268.000	45.61	-12.68	32.93	74.00	-41.07	peak
2	1718.000	45.11	-11.43	33.68	74.00	-40.32	peak
3	2116.000	44.07	-9.37	34.70	74.00	-39.30	peak
4	2414.000	45.64	-8.16	37.48	74.00	-36.52	peak
5	2698.000	43.79	-7.61	36.18	74.00	-37.82	peak
6	2854.000	43.95	-6.68	37.27	74.00	-36.73	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton where: ton is transmit duration.

5. For transmit duration, please refer to clause 8.1.

1000.000 1200.00

80.0 dBuV/m FCC Class B 3M Radiation Peak (Above 1G) 70 <t

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1246.000	46.51	-12.76	33.75	74.00	-40.25	peak
2	1556.000	47.63	-12.25	35.38	74.00	-38.62	peak
3	1916.000	50.49	-10.82	39.67	74.00	-34.33	peak
4	2274.000	45.11	-7.40	37.71	74.00	-36.29	peak
5	2618.000	45.13	-8.05	37.08	74.00	-36.92	peak
6	2964.000	43.71	-6.58	37.13	74.00	-36.87	peak

2000.00

2200.00

2400.00

2600.00

3000.00 MHz

Note: 1. Measurement = Reading Level + Correct Factor.

1600.00

1800.00

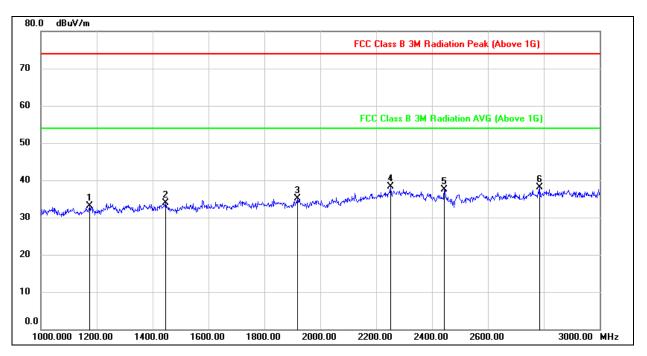
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

1400.00

- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

80.0 dBuV/m FCC Class B 3M Radiation Peak (Above 1G) 70 60 FCC Class B 3M Radiation AVG (Above 1G) 50 40 3 30 20 10 0.0 1000.000 1200.00 1400.00 1600.00 1800.00 2200.00 2400.00 2600.00 3000.00 MHz 2000.00

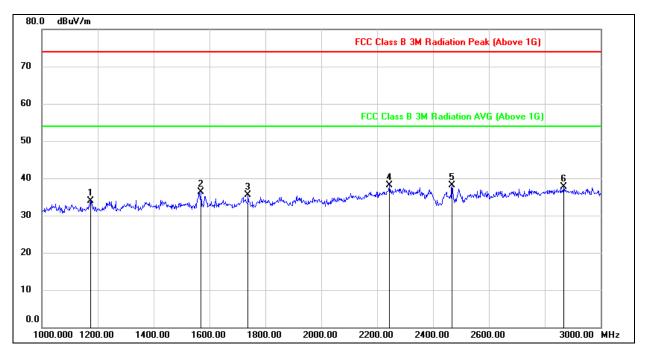

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1306.000	46.83	-12.39	34.44	74.00	-39.56	peak
2	1586.000	47.16	-12.15	35.01	74.00	-38.99	peak
3	1990.000	46.56	-10.64	35.92	74.00	-38.08	peak
4	2280.000	44.80	-7.48	37.32	74.00	-36.68	peak
5	2446.000	46.09	-8.34	37.75	74.00	-36.25	peak
6	2856.000	44.12	-6.67	37.45	74.00	-36.55	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

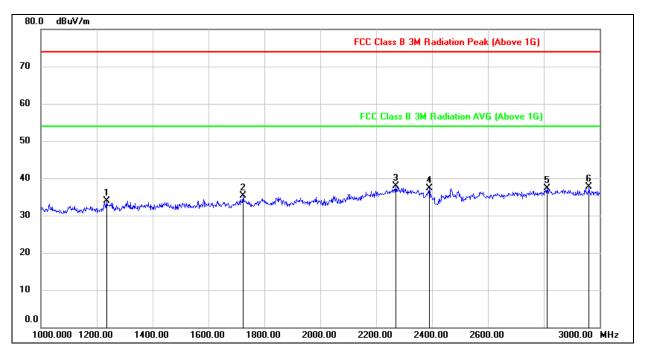
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1174.000	46.42	-13.38	33.04	74.00	-40.96	peak
2	1446.000	46.14	-12.28	33.86	74.00	-40.14	peak
3	1918.000	45.82	-10.81	35.01	74.00	-38.99	peak
4	2252.000	45.82	-7.58	38.24	74.00	-35.76	peak
5	2444.000	45.67	-8.22	37.45	74.00	-36.55	peak
6	2786.000	45.11	-7.06	38.05	74.00	-35.95	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

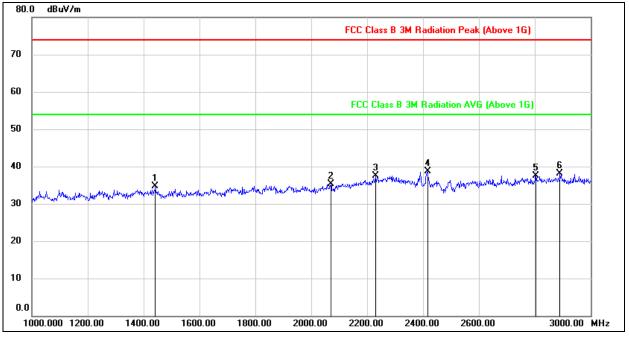
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1174.000	47.21	-13.22	33.99	74.00	-40.01	peak
2	1570.000	48.51	-12.25	36.26	74.00	-37.74	peak
3	1738.000	46.90	-11.33	35.57	74.00	-38.43	peak
4	2244.000	45.76	-7.68	38.08	74.00	-35.92	peak
5	2468.000	46.40	-8.38	38.02	74.00	-35.98	peak
6	2868.000	44.33	-6.64	37.69	74.00	-36.31	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1236.000	46.82	-12.85	33.97	74.00	-40.03	peak
2	1724.000	46.72	-11.40	35.32	74.00	-38.68	peak
3	2270.000	45.31	-7.43	37.88	74.00	-36.12	peak
4	2390.000	45.27	-7.93	37.34	74.00	-36.66	peak
5	2812.000	44.26	-6.90	37.36	74.00	-36.64	peak
6	2962.000	44.29	-6.57	37.72	74.00	-36.28	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

9.2.4 802.11n HT40 MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1442.000	46.86	-12.23	34.63	74.00	-39.37	peak
2	2070.000	45.25	-9.94	35.31	74.00	-38.69	peak
3	2230.000	45.31	-7.87	37.44	74.00	-36.56	peak
4	2416.000	46.82	-8.18	38.64	74.00	-35.36	peak
5	2804.000	44.54	-6.94	37.60	74.00	-36.40	peak
6	2890.000	44.73	-6.56	38.17	74.00	-35.83	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton where: ton is transmit duration.

5. For transmit duration, please refer to clause 8.1.

10

0.0

1000.000 1200.00

80.0 dBuV/m 70 FCC Class B 3M Radiation Peak (Above 1G) 60 FCC Class B 3M Radiation AVG (Above 1G) 50 FCC Class B 3M Radiation AVG (Above 1G) 30 1 2 20 1 3

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB /m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1176.000	47.13	-13.36	33.77	74.00	-40.23	peak
2	1520.000	45.97	-12.27	33.70	74.00	-40.30	peak
3	1848.000	45.91	-10.89	35.02	74.00	-38.98	peak
4	2250.000	45.52	-7.59	37.93	74.00	-36.07	peak
5	2388.000	45.75	-7.92	37.83	74.00	-36.17	peak
6	2872.000	43.96	-6.62	37.34	74.00	-36.66	peak

2000.00

2200.00

2400.00

2600.00

3000.00 MHz

Note: 1. Measurement = Reading Level + Correct Factor.

1600.00

1800.00

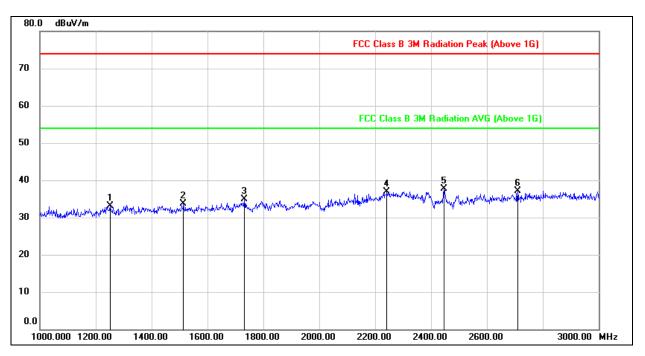
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

1400.00

- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

80.0 dBuV/m FCC Class B 3M Radiation Peak (Above 1G) 70 60 FCC Class B 3M Radiation AVG (Above 1G) 50 40 3 30 20 10 0.0 1000.000 1200.00 1400.00 1600.00 1800.00 2000.00 2200.00 2400.00 2600.00 3000.00 MHz

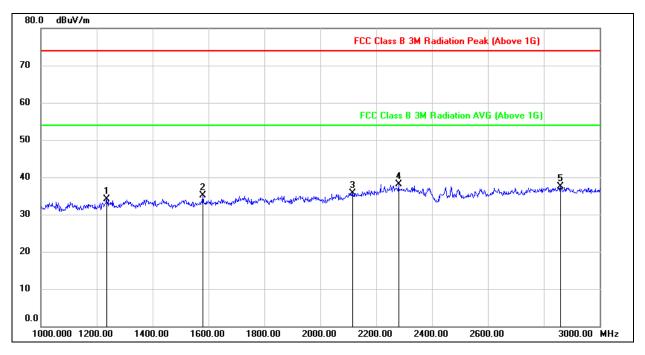

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB /m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1294.000	45.76	-12.45	33.31	74.00	-40.69	peak
2	1388.000	46.81	-12.14	34.67	74.00	-39.33	peak
3	1778.000	46.56	-11.19	35.37	74.00	-38.63	peak
4	2162.000	45.27	-8.78	36.49	74.00	-37.51	peak
5	2340.000	46.08	-7.68	38.40	74.00	-35.60	peak
6	2890.000	44.46	-6.56	37.90	74.00	-36.10	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1252.000	45.84	-12.73	33.11	74.00	-40.89	peak
2	1514.000	45.91	-12.28	33.63	74.00	-40.37	peak
3	1732.000	46.33	-11.36	34.97	74.00	-39.03	peak
4	2242.000	44.60	-7.70	36.90	74.00	-37.10	peak
5	2446.000	45.96	-8.24	37.72	74.00	-36.28	peak
6	2710.000	44.69	-7.54	37.15	74.00	-36.85	peak

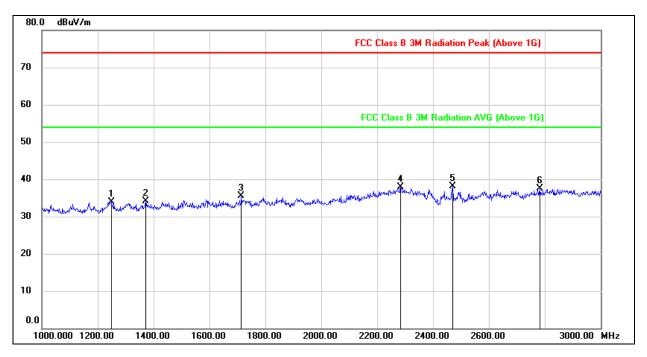
Note: 1. Measurement = Reading Level + Correct Factor.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB /m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1236.000	46.96	-12.90	34.06	74.00	-39.94	peak
2	1580.000	47.22	-12.19	35.03	74.00	-38.97	peak
3	2116.000	45.14	-9.37	35.77	74.00	-38.23	peak
4	2280.000	45.56	-7.48	38.08	74.00	-35.92	peak
5	2860.000	44.14	-6.66	37.48	74.00	-36.52	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

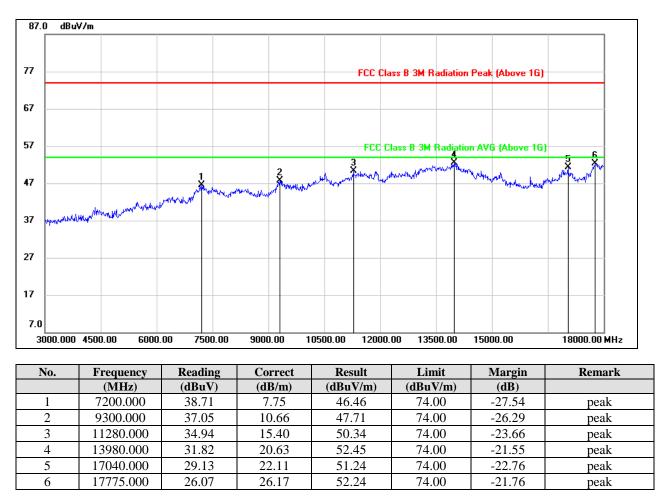
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.

5. For transmit duration, please refer to clause 8.1.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1248.000	46.62	-12.75	33.87	74.00	-40.13	peak
2	1372.000	46.62	-12.42	34.20	74.00	-39.80	peak
3	1714.000	46.95	-11.45	35.50	74.00	-38.50	peak
4	2284.000	45.22	-7.33	37.89	74.00	-36.11	peak
5	2470.000	46.29	-8.27	38.02	74.00	-35.98	peak
6	2782.000	44.52	-7.10	37.42	74.00	-36.58	peak

Note: 1. Measurement = Reading Level + Correct Factor.


- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

9.3 SPURIOUS EMISSIONS (3~18GHz)

9.3.1 802.11b MODE

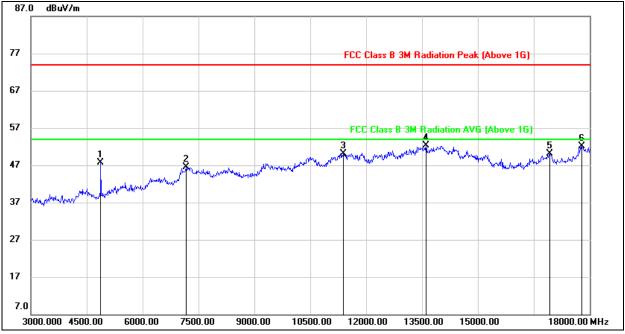
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

87.0 dBuV/m 77 FCC Class B 3M Radiation Peak (Above 1G) 67 57 FCC Class B 3M Radiation AVG (Above 1G) 47 37 27 17 7.0 3000.000 4500.00 6000.00 7500.00 9000.00 10500.00 12000.00 15000.00 18000.00 MHz 13500.00

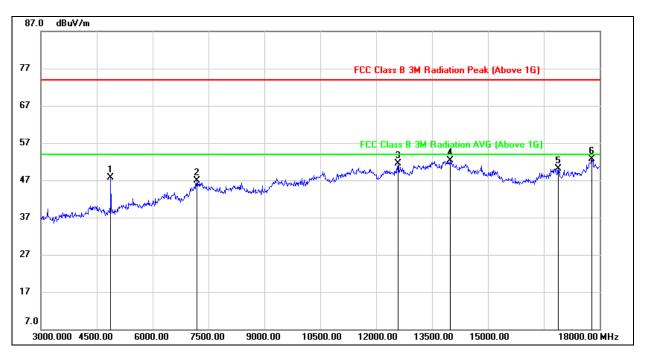
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7320.000	38.67	7.67	46.34	74.00	-27.66	peak
2	9270.000	36.40	10.63	47.03	74.00	-26.97	peak
3	11505.000	34.42	16.26	50.68	74.00	-23.32	peak
4	13470.000	32.02	20.23	52.25	74.00	-21.75	peak
5	17115.000	28.69	22.85	51.54	74.00	-22.46	peak
6	17790.000	25.68	26.76	52.44	74.00	-21.56	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB /m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	47.23	0.38	47.61	74.00	-26.39	peak
2	7170.000	38.78	7.72	46.50	74.00	-27.50	peak
3	11385.000	34.58	15.46	50.04	74.00	-23.96	peak
4	13605.000	31.73	20.54	52.27	74.00	-21.73	peak
5	16920.000	28.90	21.20	50.10	74.00	-23.90	peak
6	17790.000	25.69	26.36	52.05	74.00	-21.95	peak

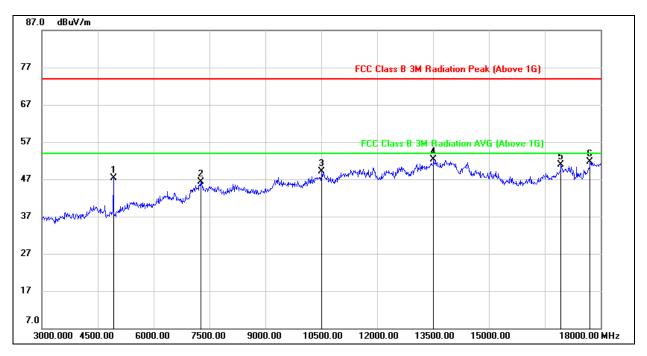
Note: 1. Measurement = Reading Level + Correct Factor.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	47.41	0.33	47.74	74.00	-26.26	peak
2	7185.000	38.98	7.83	46.81	74.00	-27.19	peak
3	12585.000	34.22	17.25	51.47	74.00	-22.53	peak
4	13980.000	31.54	20.73	52.27	74.00	-21.73	peak
5	16890.000	28.88	21.15	50.03	74.00	-23.97	peak
6	17790.000	25.86	26.76	52.62	74.00	-21.38	peak

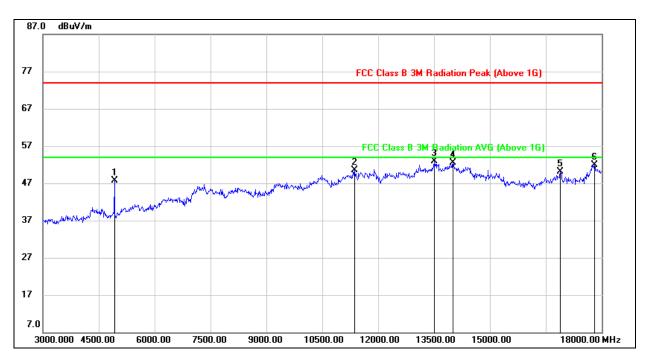
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

Note: All the antennas had been tested, but only the worst data record in the report.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

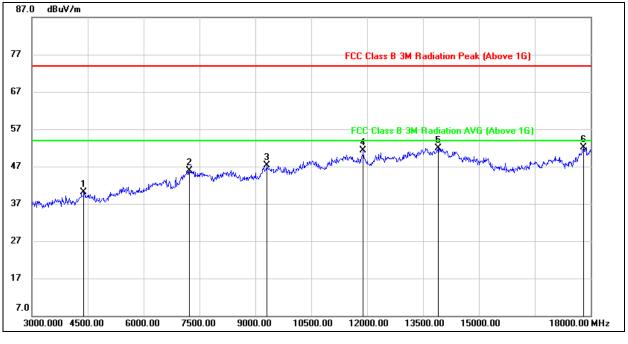


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	46.71	0.65	47.36	74.00	-26.64	peak
2	7275.000	38.35	7.86	46.21	74.00	-27.79	peak
3	10515.000	35.42	13.74	49.16	74.00	-24.84	peak
4	13515.000	32.07	20.14	52.21	74.00	-21.79	peak
5	16935.000	29.64	21.34	50.98	74.00	-23.02	peak
6	17715.000	26.00	25.79	51.79	74.00	-22.21	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	47.10	0.59	47.69	74.00	-26.31	peak
2	11370.000	35.04	15.55	50.59	74.00	-23.41	peak
3	13500.000	32.32	20.57	52.89	74.00	-21.11	peak
4	14010.000	31.77	20.67	52.44	74.00	-21.56	peak
5	16890.000	28.89	21.15	50.04	74.00	-23.96	peak
6	17805.000	25.17	26.80	51.97	74.00	-22.03	peak

Note: 1. Measurement = Reading Level + Correct Factor.

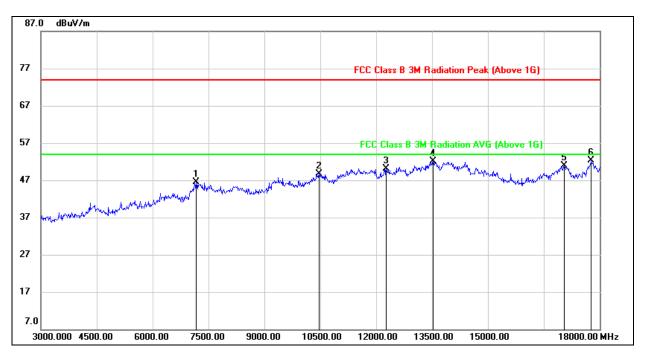
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

9.3.2 802.11g MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB /m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4395.000	40.96	-0.94	40.02	74.00	-33.98	peak
2	7230.000	38.17	7.81	45.98	74.00	-28.02	peak
3	9315.000	36.53	10.71	47.24	74.00	-26.76	peak
4	11895.000	34.31	17.04	51.35	74.00	-22.65	peak
5	13905.000	31.22	20.65	51.87	74.00	-22.13	peak
6	17805.000	25.71	26.48	52.19	74.00	-21.81	peak

Note: 1. Measurement = Reading Level + Correct Factor.

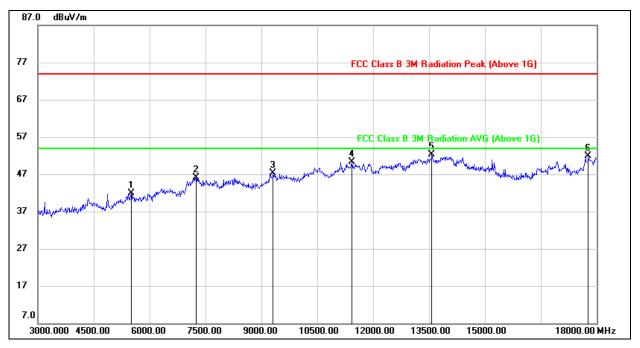

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton where: ton is transmit duration.

5. For transmit duration, please refer to clause 8.1.

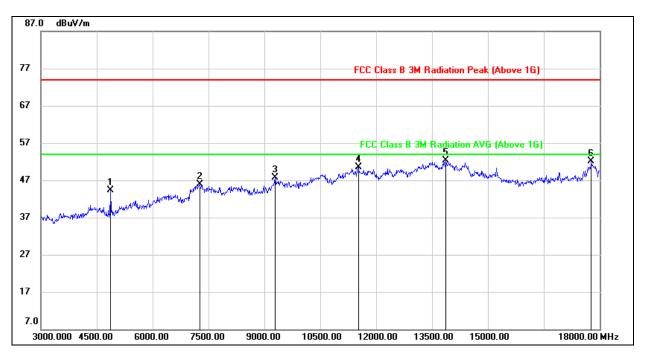
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7170.000	38.59	7.82	46.41	74.00	-27.59	peak
2	10470.000	35.11	13.63	48.74	74.00	-25.26	peak
3	12270.000	33.70	16.37	50.07	74.00	-23.93	peak
4	13530.000	31.37	20.78	52.15	74.00	-21.85	peak
5	17040.000	28.39	22.59	50.98	74.00	-23.02	peak
6	17775.000	25.74	26.57	52.31	74.00	-21.69	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

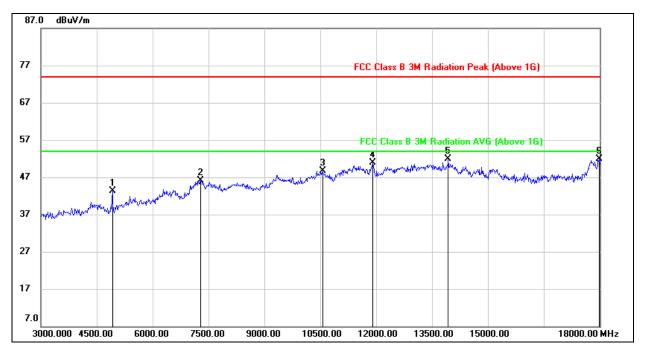


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB /m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5505.000	39.64	2.34	41.98	74.00	-32.02	peak
2	7245.000	38.29	7.84	46.13	74.00	-27.87	peak
3	9315.000	36.63	10.71	47.34	74.00	-26.66	peak
4	11430.000	34.40	15.83	50.23	74.00	-23.77	peak
5	13575.000	31.92	20.43	52.35	74.00	-21.65	peak
6	17775.000	25.77	26.17	51.94	74.00	-22.06	peak

Note: 1. Measurement = Reading Level + Correct Factor.

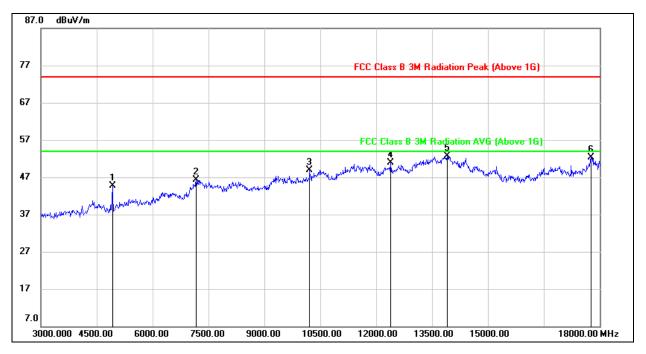
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	43.90	0.33	44.23	74.00	-29.77	peak
2	7260.000	38.06	7.78	45.84	74.00	-28.16	peak
3	9285.000	36.86	10.75	47.61	74.00	-26.39	peak
4	11520.000	34.29	16.25	50.54	74.00	-23.46	peak
5	13875.000	31.37	20.89	52.26	74.00	-21.74	peak
6	17775.000	25.60	26.57	52.17	74.00	-21.83	peak

Note: 1. Measurement = Reading Level + Correct Factor.

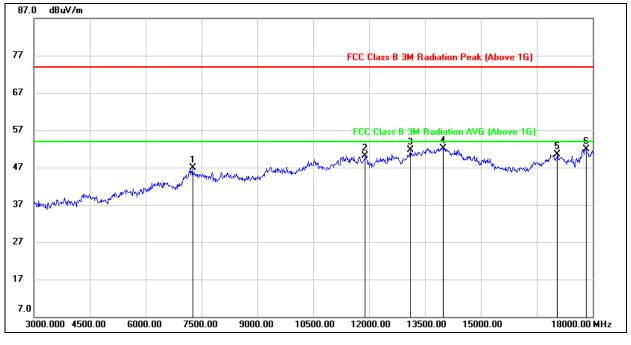
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	42.62	0.65	43.27	74.00	-30.73	peak
2	7290.000	38.18	7.86	46.04	74.00	-27.96	peak
3	10560.000	35.00	13.76	48.76	74.00	-25.24	peak
4	11910.000	33.85	16.98	50.83	74.00	-23.17	peak
5	13935.000	31.30	20.67	51.97	74.00	-22.03	peak
6	17985.000	24.80	27.05	51.85	74.00	-22.15	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	44.02	0.59	44.61	74.00	-29.39	peak
2	7170.000	38.54	7.82	46.36	74.00	-27.64	peak
3	10215.000	36.16	12.72	48.88	74.00	-25.12	peak
4	12390.000	34.43	16.55	50.98	74.00	-23.02	peak
5	13905.000	31.77	20.84	52.61	74.00	-21.39	peak
6	17760.000	25.92	26.39	52.31	74.00	-21.69	peak

Note: 1. Measurement = Reading Level + Correct Factor.

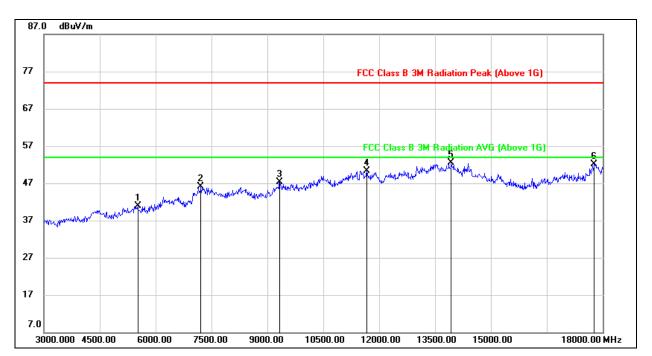
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

9.3.3 802.11n HT20 MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7260.000	39.01	7.86	46.87	74.00	-27.13	peak
2	11895.000	33.07	17.04	50.11	74.00	-23.89	peak
3	13110.000	33.43	18.36	51.79	74.00	-22.21	peak
4	13980.000	31.56	20.63	52.19	74.00	-21.81	peak
5	17055.000	28.27	22.17	50.44	74.00	-23.56	peak
6	17820.000	25.43	26.48	51.91	74.00	-22.09	peak

Note: 1. Measurement = Reading Level + Correct Factor.

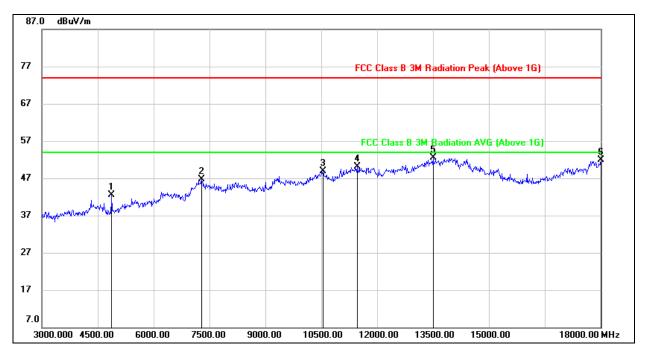

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton where: ton is transmit duration.

5. For transmit duration, please refer to clause 8.1.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5520.000	38.49	2.32	40.81	74.00	-33.19	peak
2	7215.000	38.34	7.82	46.16	74.00	-27.84	peak
3	9330.000	36.43	10.91	47.34	74.00	-26.66	peak
4	11670.000	33.90	16.43	50.33	74.00	-23.67	peak
5	13935.000	31.64	20.80	52.44	74.00	-21.56	peak
6	17775.000	25.49	26.57	52.06	74.00	-21.94	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

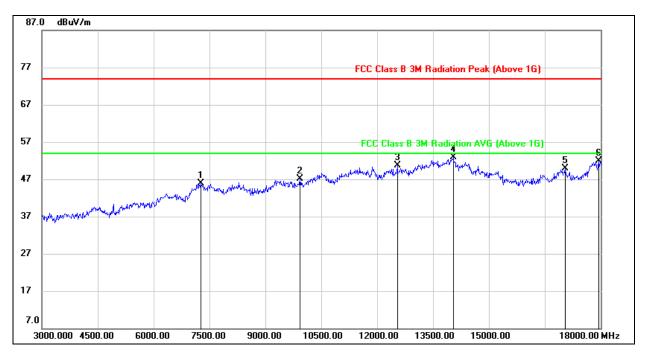
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	42.03	0.38	42.41	74.00	-31.59	peak
2	7290.000	38.83	7.86	46.69	74.00	-27.31	peak
3	10545.000	35.08	13.79	48.87	74.00	-25.13	peak
4	11460.000	34.27	15.88	50.15	74.00	-23.85	peak
5	13500.000	32.40	20.07	52.47	74.00	-21.53	peak
6	18000.000	24.77	27.06	51.83	74.00	-22.17	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

87.0 dBu∀/m 77 FCC Class B 3M Radiation Peak (Above 1G) 67 57 FCC Class B 3M Radiation AVG (Above 1G) 47 37 27 17 7.0 3000.000 4500.00 6000.00 7500.00 9000.00 10500.00 12000.00 13500.00 15000.00 18000.00 MHz

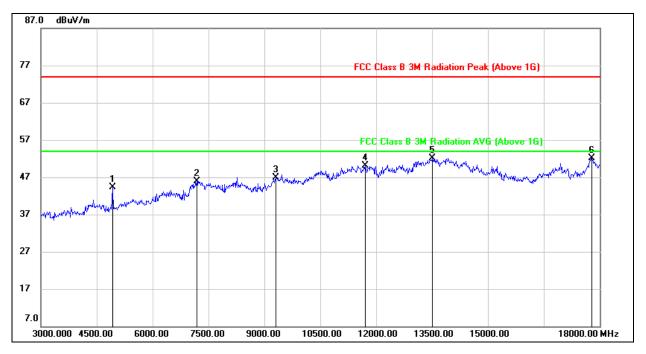
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL.	VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	44.28	0.33	44.61	74.00	-29.39	peak
2	8355.000	37.43	8.42	45.85	74.00	-28.15	peak
3	10410.000	35.36	13.26	48.62	74.00	-25.38	peak
4	11400.000	34.61	15.59	50.20	74.00	-23.80	peak
5	13800.000	30.98	21.21	52.19	74.00	-21.81	peak
6	17790.000	25.48	26.76	52.24	74.00	-21.76	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

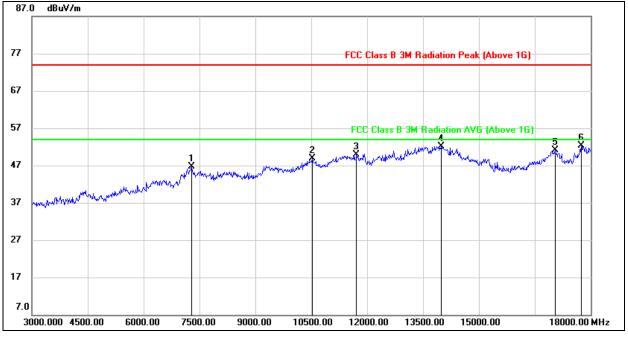
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7275.000	38.07	7.86	45.93	74.00	-28.07	peak
2	9930.000	35.12	11.89	47.01	74.00	-26.99	peak
3	12540.000	33.90	16.72	50.62	74.00	-23.38	peak
4	14040.000	32.24	20.64	52.88	74.00	-21.12	peak
5	17040.000	27.75	22.11	49.86	74.00	-24.14	peak
6	17940.000	25.01	26.86	51.87	74.00	-22.13	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	43.64	0.59	44.23	74.00	-29.77	peak
2	7185.000	38.02	7.83	45.85	74.00	-28.15	peak
3	9300.000	36.09	10.86	46.95	74.00	-27.05	peak
4	11700.000	33.37	16.67	50.04	74.00	-23.96	peak
5	13500.000	31.56	20.57	52.13	74.00	-21.87	peak
6	17790.000	25.40	26.76	52.16	74.00	-21.84	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

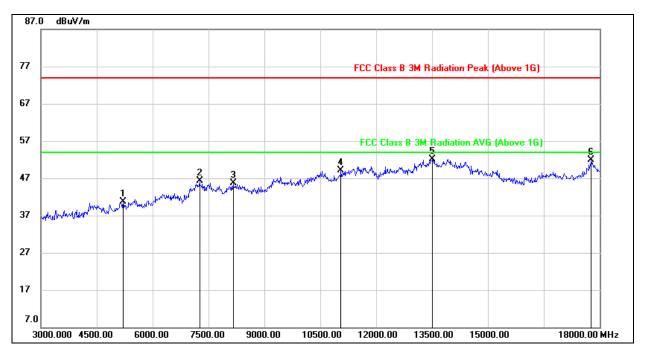
9.3.4 802.11n HT40 MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7290.000	38.76	7.86	46.62	74.00	-27.38	peak
2	10530.000	35.10	13.76	48.86	74.00	-25.14	peak
3	11715.000	33.87	16.08	49.95	74.00	-24.05	peak
4	13995.000	31.54	20.62	52.16	74.00	-21.84	peak
5	17040.000	29.02	22.11	51.13	74.00	-22.87	peak
6	17745.000	26.48	25.86	52.34	74.00	-21.66	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. AVG: VBW=1/Ton where: ton is transmit duration.

5. For transmit duration, please refer to clause 8.1.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5205.000	39.50	1.23	40.73	74.00	-33.27	peak
2	7260.000	38.52	7.78	46.30	74.00	-27.70	peak
3	8160.000	37.06	8.70	45.76	74.00	-28.24	peak
4	11055.000	34.28	14.87	49.15	74.00	-24.85	peak
5	13515.000	31.39	20.67	52.06	74.00	-21.94	peak
6	17775.000	25.40	26.57	51.97	74.00	-22.03	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

7.0

3000.000 4500.00

87.0 dBuV/m 77 FEE Class B 3M Radiation Peak (Above 16) 67 FEE Class B 3M Radiation AVG (Above 16) 57 FEE Class B 3M Radiation AVG (Above 16) 47 37 1 33 1 34 1 34 1 37 1 37 1

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB /m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7260.000	38.19	7.86	46.05	74.00	-27.95	peak
2	10230.000	34.58	12.56	47.14	74.00	-26.86	peak
3	11445.000	34.10	15.91	50.01	74.00	-23.99	peak
4	14040.000	31.34	20.64	51.98	74.00	-22.02	peak
5	17175.000	26.68	22.73	49.41	74.00	-24.59	peak
6	17985.000	25.20	27.05	52.25	74.00	-21.75	peak

10500.00

12000.00

13500.00

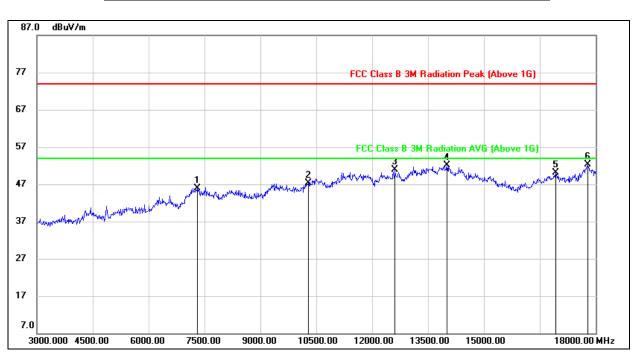
15000.00

18000.00 MHz

Note: 1. Measurement = Reading Level + Correct Factor.

7500.00

9000.00

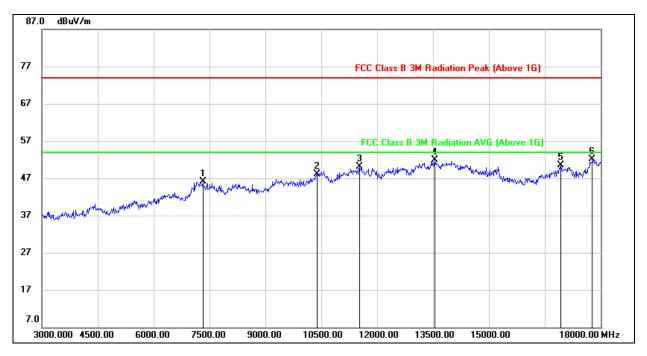

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

6000.00

- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

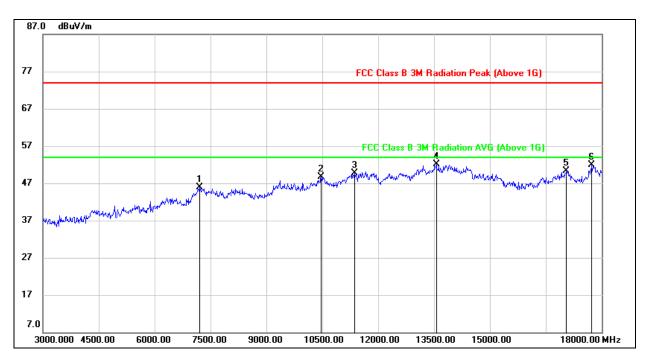
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7305.000	38.19	7.81	46.00	74.00	-28.00	peak
2	10290.000	34.60	12.68	47.28	74.00	-26.72	peak
3	12615.000	33.57	17.39	50.96	74.00	-23.04	peak
4	14010.000	31.49	20.67	52.16	74.00	-21.84	peak
5	16920.000	28.70	21.36	50.06	74.00	-23.94	peak
6	17790.000	25.54	26.76	52.30	74.00	-21.70	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7320.000	38.53	7.63	46.16	74.00	-27.84	peak
2	10380.000	35.17	12.95	48.12	74.00	-25.88	peak
3	11520.000	34.30	15.73	50.03	74.00	-23.97	peak
4	13545.000	31.60	20.29	51.89	74.00	-22.11	peak
5	16935.000	29.19	21.34	50.53	74.00	-23.47	peak
6	17775.000	25.93	26.17	52.10	74.00	-21.90	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

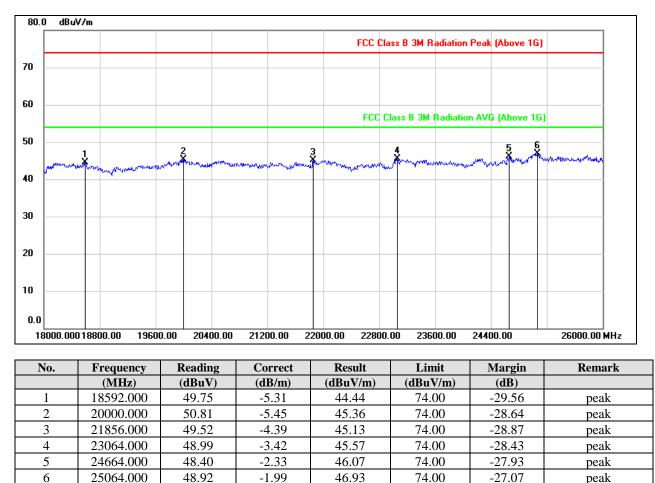
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7200.000	38.04	7.85	45.89	74.00	-28.11	peak
2	10470.000	35.05	13.63	48.68	74.00	-25.32	peak
3	11370.000	34.13	15.55	49.68	74.00	-24.32	peak
4	13560.000	31.26	20.81	52.07	74.00	-21.93	peak
5	17055.000	27.56	22.68	50.24	74.00	-23.76	peak
6	17730.000	25.81	26.03	51.84	74.00	-22.16	peak

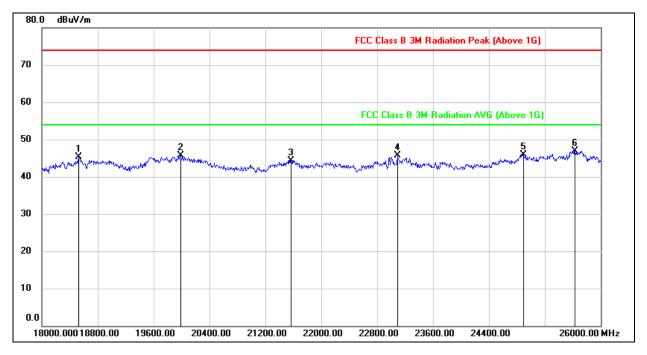
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton where: ton is transmit duration.
- 5. For transmit duration, please refer to clause 8.1.

9.4 SPURIOUS EMISSIONS (18~26GHz)

9.4.1 802.11b MODE


SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

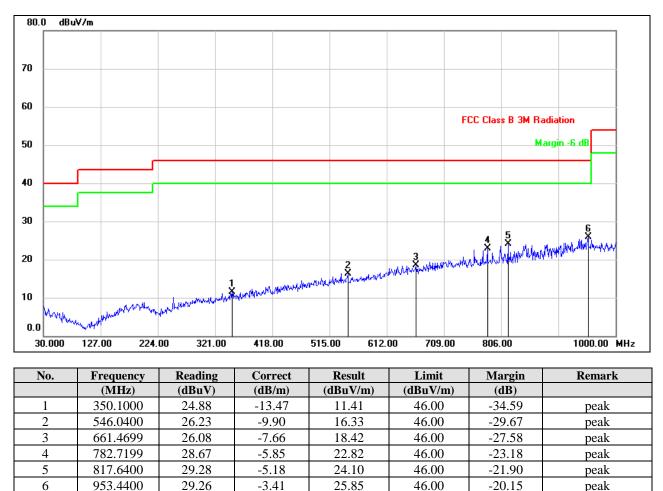
Note: 1. Measurement = Reading Level + Correct Factor.

If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
 Peak: Peak detector.

SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18528.000	50.61	-5.26	45.35	74.00	-28.65	peak
2	19984.000	51.21	-5.44	45.77	74.00	-28.23	peak
3	21568.000	48.94	-4.59	44.35	74.00	-29.65	peak
4	23088.000	49.02	-3.41	45.61	74.00	-28.39	peak
5	24896.000	48.05	-2.19	45.86	74.00	-28.14	peak
6	25632.000	48.06	-1.16	46.90	74.00	-27.10	peak

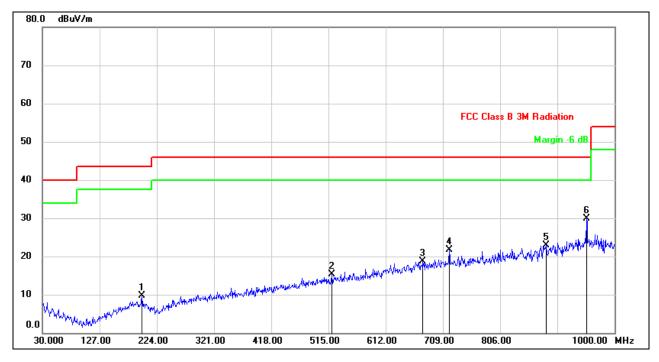
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. 3. Peak: Peak detector.

9.5 SPURIOUS EMISSIONS (0.03 ~ 1 GHz)

9.5.1 802.11b MODE

SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)



Note: 1. Result Level = Read Level + Correct Factor.

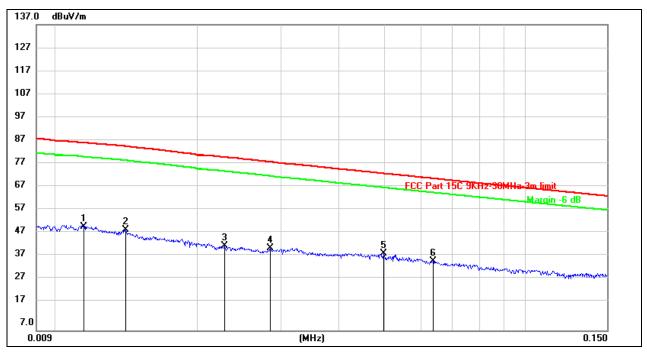
- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	198.7800	25.82	-16.15	9.67	43.50	-33.83	peak
2	520.8200	25.59	-10.35	15.24	46.00	-30.76	peak
3	675.0500	26.04	-7.43	18.61	46.00	-27.39	peak
4	719.6700	28.04	-6.41	21.63	46.00	-24.37	peak
5	884.5700	27.30	-4.34	22.96	46.00	-23.04	peak
6	952.4700	33.25	-3.40	29.85	46.00	-16.15	peak

Note: 1. Result Level = Read Level + Correct Factor.

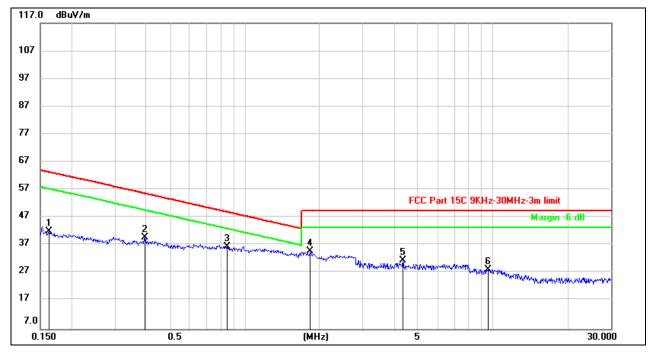
2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.


3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

9.6 SPURIOUS EMISSIONS BELOW 30M

9.6.1 802.11b MODE

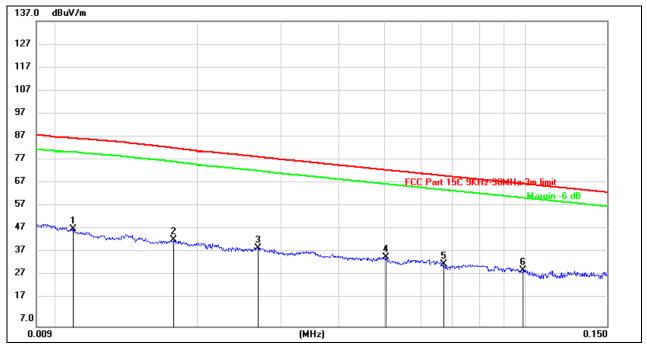
SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)



<u>0.09kHz~ 150kHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(KHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0114	30.93	20.22	51.15	86.76	-35.61	peak
2	0.0140	29.47	20.25	49.72	85.19	-35.47	peak
3	0.0228	22.47	20.31	42.78	80.59	-37.81	peak
4	0.0285	21.56	20.31	41.87	78.59	-36.72	peak
5	0.0497	19.51	20.31	39.82	73.68	-33.86	peak
6	0.0636	16.14	20.31	36.45	71.56	-35.11	peak

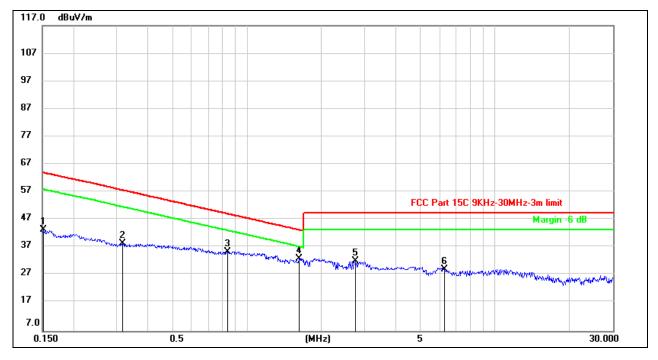
Note: 1. Measurement = Reading Level + Correct Factor.


<u>150kHz ~ 30MHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1621	21.56	20.41	41.97	63.41	-21.44	peak
2	0.3955	19.49	20.27	39.76	55.67	-15.91	peak
3	0.8483	16.30	20.36	36.66	49.05	-12.39	peak
4	1.8386	14.16	20.67	34.83	49.54	-14.71	peak
5	4.3376	10.61	20.98	31.59	49.54	-17.95	peak
6	9.5518	7.31	21.04	28.35	49.54	-21.19	peak

Note: 1. Measurement = Reading Level + Correct Factor.

SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)



<u>0.09~ 150kHz</u>

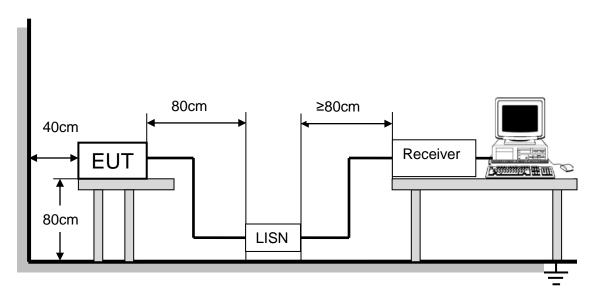
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(KHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0108	28.16	20.22	48.38	87.12	-38.74	peak
2	0.0177	23.46	20.29	43.75	82.96	-39.21	peak
3	0.0269	20.10	20.31	40.41	79.15	-38.74	peak
4	0.0504	16.21	20.31	36.52	73.56	-37.04	peak
5	0.0670	13.31	20.31	33.62	71.10	-37.48	peak
6	0.0990	10.80	20.22	31.02	67.69	-36.67	peak

Note: 1. Measurement = Reading Level + Correct Factor.

<u>150kHz ~ 30M</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1516	22.92	20.42	43.34	63.99	-20.65	peak
2	0.3165	18.07	20.30	38.37	57.65	-19.28	peak
3	0.8346	15.14	20.36	35.50	49.19	-13.69	peak
4	1.6270	12.51	20.60	33.11	43.38	-10.27	peak
5	2.7355	11.19	20.85	32.04	49.54	-17.50	peak
6	6.2519	8.34	20.89	29.23	49.54	-20.31	peak

Note: 1. Measurement = Reading Level + Correct Factor.


10 AC POWER LINE CONDUCTED EMISSIONS

LIMITS

Please refer to CFR 47 FCC §15.207 (a).

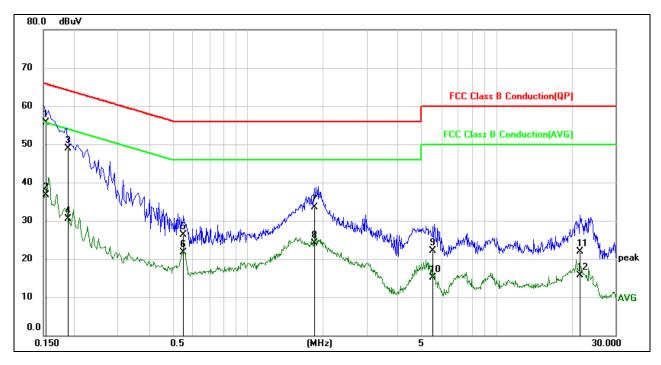
FREQUENCY (MHz)	Class A	(dBuV)	Class B (dBuV)		
	Quasi-peak	Average	Quasi-peak	Average	
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	
0.50 -5.0	73.00 60.00		56.00	46.00	
5.0 -30.0	73.00 60.00		60.00 50.00		

TEST SETUP AND PROCEDURE

The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 7 and 13 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST ENVIRONMENT


Temperature	24.1°C	Relative Humidity	51%
Atmosphere Pressure 101kPa		Test Voltage	DC 3.8V

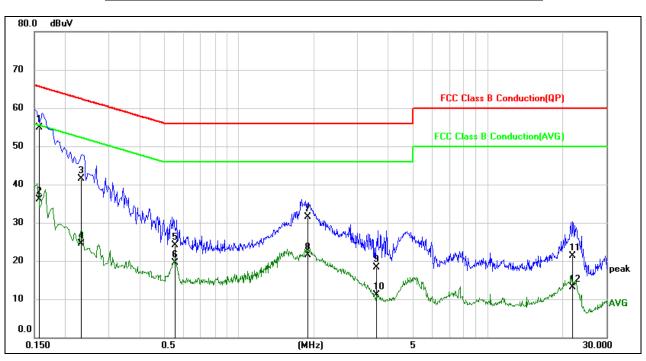
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST RESULTS

10.1 802.11b MODE

LINE N RESULTS (HIGH CHANNEL, WORST-CASE CONFIGURATION)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1536	46.11	9.62	55.73	65.80	-10.07	QP
2	0.1536	27.04	9.62	36.66	55.80	-19.14	AVG
3	0.1888	39.34	9.62	48.96	64.09	-15.13	QP
4	0.1888	20.83	9.62	30.45	54.09	-23.64	AVG
5	0.5475	16.74	9.63	26.37	56.00	-29.63	QP
6	0.5475	12.03	9.63	21.66	46.00	-24.34	AVG
7	1.8657	23.86	9.65	33.51	56.00	-22.49	QP
8	1.8657	14.49	9.65	24.14	46.00	-21.86	AVG
9	5.5224	12.40	9.72	22.12	60.00	-37.88	QP
10	5.5224	5.43	9.72	15.15	50.00	-34.85	AVG
11	21.7160	12.06	9.91	21.97	60.00	-38.03	QP
12	21.7160	5.74	9.91	15.65	50.00	-34.35	AVG


Note: 1. Result = Reading +Correct Factor.

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 200 Hz (9 kHz-150 kHz), 9 kHz (150 kHz-30 MHz).

4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

LINE L RESULTS (HIGH CHANNEL, WORST-CASE CONFIGURATION)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1579	45.35	9.62	54.97	65.57	-10.60	QP
2	0.1579	26.51	9.62	36.13	55.57	-19.44	AVG
3	0.2309	31.97	9.63	41.60	62.42	-20.82	QP
4	0.2309	14.90	9.63	24.53	52.42	-27.89	AVG
5	0.5557	14.53	9.63	24.16	56.00	-31.84	QP
6	0.5557	9.92	9.63	19.55	46.00	-26.45	AVG
7	1.8841	21.90	9.65	31.55	56.00	-24.45	QP
8	1.8841	11.82	9.65	21.47	46.00	-24.53	AVG
9	3.5879	8.71	9.69	18.40	56.00	-37.60	QP
10	3.5879	1.47	9.69	11.16	46.00	-34.84	AVG
11	21.9616	11.45	9.92	21.37	60.00	-38.63	QP
12	21.9616	3.11	9.92	13.03	50.00	-36.97	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

11 ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

Complies

END OF REPORT