

Report No. : EED32J00012504 Page 1 of 25

TEST REPORT

Product : WisePad 2 Plus

Trade mark : BBPOS

Model/Type reference : WisePad 2 Plus

Serial Number : N/A

Report Number : EED32J00012504

FCC ID : 2AB7X-WISEPAD2PLUS

Date of Issue : Mar. 20, 2017

Test Standards : 47 CFR Part 15 Subpart C (2015)

Test result : PASS

Prepared for:

BBPOS International Limited
Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road,
Tsuen Wan, N.T. HK, Hong Kong

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Tom - Chen
Tom chen (Test Project)

Compiled by:

Report Seal

Kevin yang (Project Engineer)

Reviewed by:

Date:

Ware Xm

Ware xin (Reviewer)

Mar. 20, 2017

Sheek Luo (Lab supervisor)

Check No.: 2457559993

2 Version

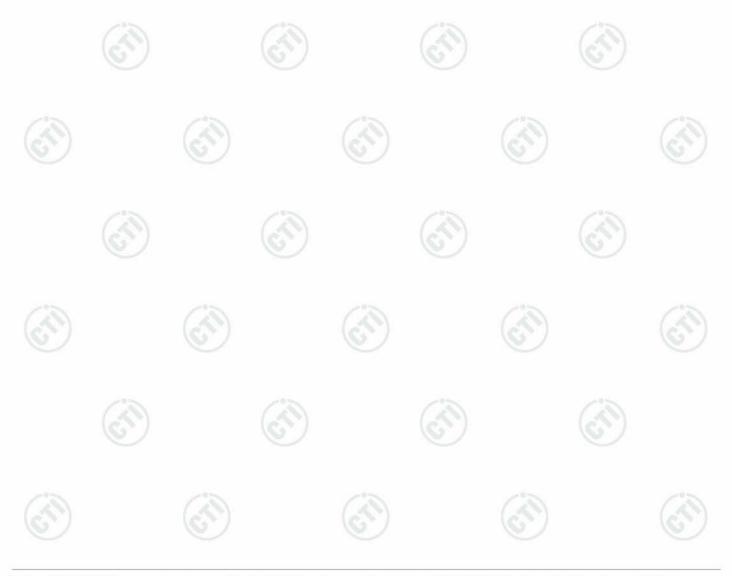
Version No.	rsion No. Date Description			
00	Mar. 20, 2017	Original		

3 Test Summary

Test Item	Test Requirement	Test method	Result PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013		
Conducted Peak Output Power	·		PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.


The tested sample and the sample information are provided by the client.

Model No.: WisePad 2 Plus, WisePad 2

This test report (Ref. No.: EED32J00012504) is only valid with the original test report (Ref. No.: EED32I00208214).

According to the declaration from the applicant, their RF part, main board, electrical circuit design, layout, components used and internal wiring are identical, only the WisePad 2 Plus is consisted by printer function part, but WisePad 2 is not included.

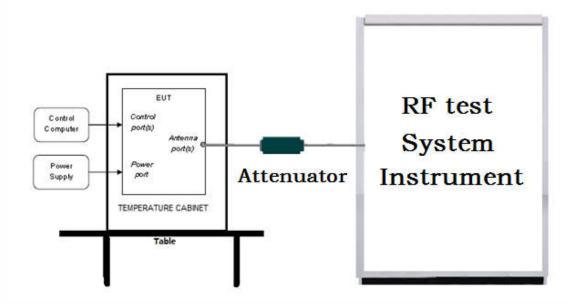
Therefore in this report AC Power Line Conducted Emission, Conducted Peak Output Power and Radiated Spurious emissions were fully retested on model WisePad 2 Plus and shown the data in this report, other tests please refer to original report EED32I00208214.

4 Content

1 COVER PAGE......1 3 TEST SUMMARY......3 4 CONTENT......4 5 TEST REQUIREMENT......5 6 GENERAL INFORMATION.......7 6.4 DESCRIPTION OF SUPPORT UNITS.......8 7 EQUIPMENT LIST.......10 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION......12 PHOTOGRAPHS OF TEST SETUP.......23

PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS......25

Page 4 of 25



5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

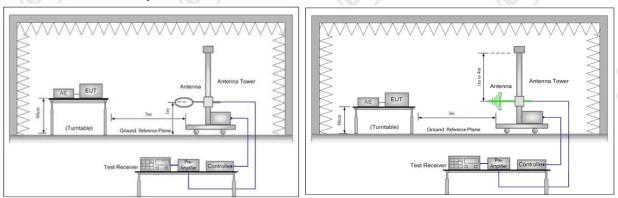


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Page 5 of 25

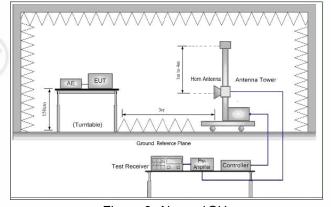
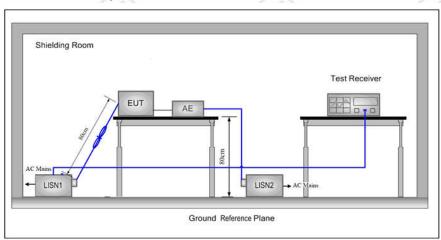
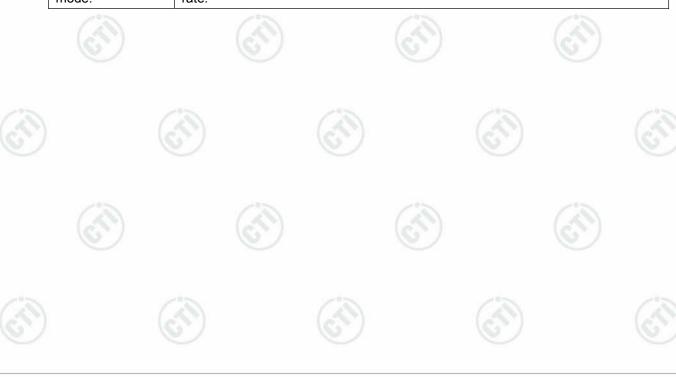



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup

Conducted Emissions setup

Page 6 of 25


5.2 Test Environment

Operating Environment:	(47)	(25)	(20)
Temperature:	22°C		(6)
Humidity:	53% RH		
Atmospheric Pressure:	1010 mbar		

5.3 Test Condition

Test channel:

Test Mode	Tx	RF Channel			
rest Mode	TX.	Low(L)	Middle(M)	High(H)	
GFSK	2402MHz ~2480 MHz	Channel 1	Channel 20	Channel 40	
Gran	2402WHZ ~2460 WHZ	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT in transmitting mod rate.	e with all kind of m	nodulation and a	all kind of data	

Report No. : EED32J00012504 Page 7 of 25

6 General Information

6.1 Client Information

Applicant:	BBPOS International Limited	
Address of Applicant:	Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, N.T. HK, Hong Kong	
Manufacturer:	BBPOS International Limited	-05
Address of Manufacturer:	Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, N.T. HK, Hong Kong	

6.2 General Description of EUT

Product Name:	WisePad 2 Plus
Model No.(EUT):	WisePad 2 Plus
Trade Mark:	BBPOS
EUT Supports Radios application	BT 2.1(2402MHz-2480MHz), BT 4.0(2402MHz-2480MHz), NFC(13.56MHz), WIFIb/g/n(HT20)(2412MHz-2472MHz), 2G(850MHz/1900MHz)GPRS
Power Supply:	DC 3.7V by Battery DC 5V by USB port
Battery:	Li-polymer 3.7V, 1300mAh
Sample Received Date:	Jan. 23, 2017
Sample tested Date:	Jan. 23, 2017 to Mar. 20, 2017

6.3 Product Specification subjective to this standard

Operation F	requency:	2402MI	Hz~2480MHz					
Bluetooth \	/ersion:	4.0						
Modulation	Technique:	DSSS	(3)			1	/"	
Modulation	Type:	GFSK	GFSK					
Number of	Channel:	40	40					
Sample Ty	pe:	Portabl	Portable production					
Antenna Ty	/ре:	Integral		28%		20%		
Test Power	r Grade:	N/A						
Test Softwa	are of EUT:	BBPOS	S_FCC_0713 (Version: 201	60713)	(6)	/	
Antenna G	ntenna Gain: 1dBi							
Test Voltag	Voltage: AC 120V/60Hz, DC 3.7V							
Operation F	requency eac	h of channe	el 🔼			_		
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz	
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz	
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz	
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz	
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz	
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz	
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz	
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz	

Report No.: EED32J00012504 Page 8 of 25

9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Certification	Supplied by
laptop	LENOVO	T3900	FCC DOC	CTI
Mouse	L.Selectron	GL-204	FCC DOC	CTI

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Page 9 of 25

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard ConditionsNone.

6.9 Other Information Requested by the Customer None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

Item	Measurement Uncertainty
Radio Frequency	7.9 x 10 ⁻⁸
DE version conducted	0.31dB (30MHz-1GHz)
2 RF power, conducted	0.57dB (1GHz-18GHz)
Dedicted Couries a principal test	4.5dB (30MHz-1GHz)
Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
Conduction emission	3.6dB (9kHz to 150kHz)
Conduction emission	3.2dB (150kHz to 30MHz)
Temperature test	0.64°C
Humidity test	2.8%
DC power voltages	0.025%
	Radio Frequency RF power, conducted Radiated Spurious emission test Conduction emission Temperature test Humidity test

Page 10 of 25

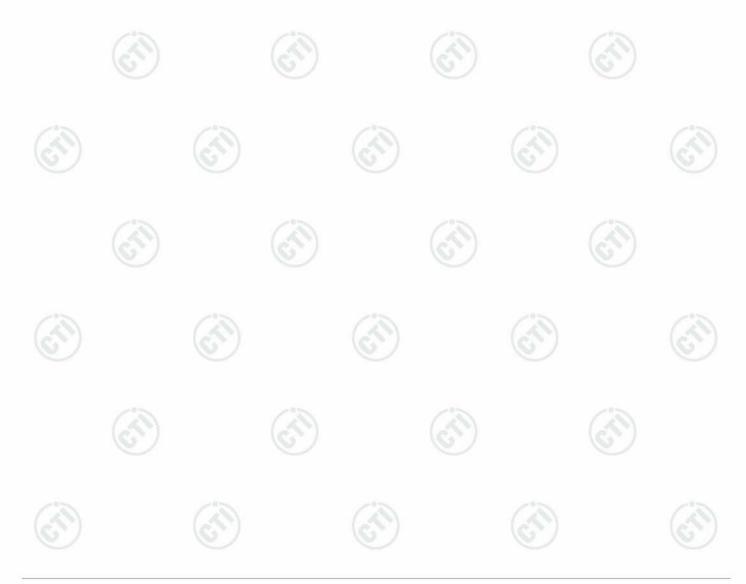
7 Equipment List

	RF test system							
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017			
Communication test set test set	Agilent	N4010A	MY51400230	04-01-2016	03-31-2017			
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017			
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017			
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-11-2017	01-10-2018			
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(21)	01-11-2017	01-10-2018			
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017			
PC-1	Lenovo	R4960d		04-01-2016	03-31-2017			
power meter & power sensor	R&S	OSP120	101374	04-01-2016	03-31-2017			
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017			
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2017			

Conducted disturbance Test							
Equipment	Equipment Manufacturer Model No. Serial Number			Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017		
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017		
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017		
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017		
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017		
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017		
Voltage Probe	R&S	ESH2-Z3	(0)	07-09-2014	07-07-2017		
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017		
ISN	TESEQ GmbH	ISN T800	30297	02-23-2017	02-22-2018		

Page 11 of 25

	3M	Semi/full-anech	oic Chamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019	
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2016	05-22-2017	
Microwave Preamplifier	Agilent	8449B	3008A02425	02-16-2017	02-15-2018	
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018	
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017	
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017	
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017	
Multi device Controller	maturo	NCD/070/10711 112		01-11-2017	01-10-2018	
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017	
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017	
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017	
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017	
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017	
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017	
Cable line	Fulai(7M)	SF106	5219/6A	01-11-2017	01-10-2018	
Cable line	Fulai(6M)	SF106	5220/6A	01-11-2017	01-10-2018	
Cable line	Fulai(3M)	SF106	5216/6A	01-11-2017	01-10-2018	
Cable line	Fulai(3M)	SF106	5217/6A	01-11-2017	01-10-2018	
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017	
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-11-2017	01-10-2018	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-11-2017	01-10-2018	
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001	(3)	01-11-2017	01-10-2018	
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-11-2017	01-10-2018	
band rejection filter	d rejection filter Sinoscite			01-11-2017	01-10-2018	
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-11-2017	01-10-2018	


8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix B)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix C)

Report No.: EED32J00012504 Page 13 of 25

Appendix A): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	3.147	PASS
BLE	MCH	3.334	PASS
BLE	HCH	3.48	PASS

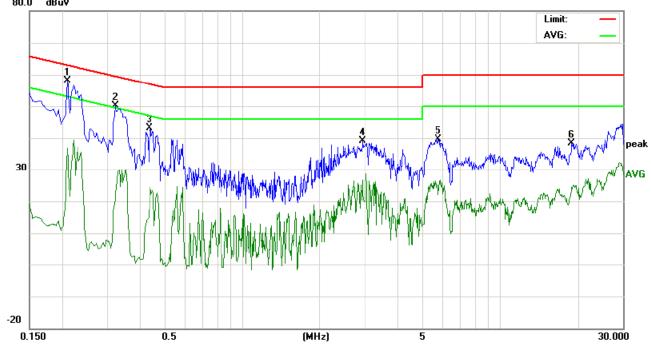
Page 14 of 25

Test Graphs

Report No. : EED32J00012504 Page 15 of 25

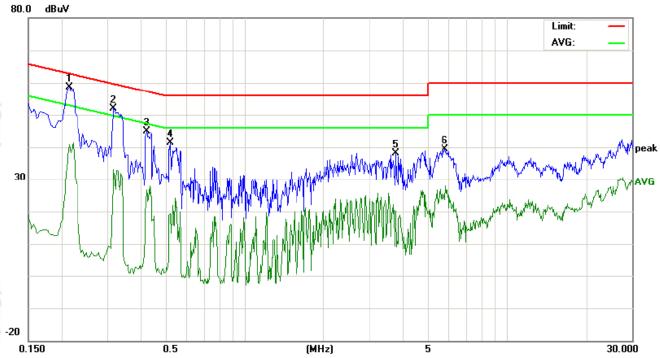
Appendix B): AC Power Line Conducted Emission

3)**	The mains terminal disturbance The EUT was connected to a Stabilization Network) which power cables of all other un which was bonded to the gre for the unit being measured multiple power cables to a si exceeded. The tabletop EUT was placed reference plane. And for floor horizontal ground reference The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT ar LISN 2.	AC power source through the provides a 50Ω/50µ its of the EUT were bound reference plane. A multiple socket of the LISN provided the plane of the plane, as a vertical ground reference to the horizontal ground reference boundary of the uncharacter of the closest potential provided the plane of the plane	bugh a LISN 1 (Line all + 5Ω linear important of the same way as butlet strip was used the rating of the LISN of table 0.8m above ent, the EUT was preference plane. The rence plane. The verbund reference plane init under test and in top of the groun ints of the LISN 1 a	e Impedance edance. The ond LISN 2 is the LISN od to connect N was not ethe ground laced on the rical ground e. The LISN bonded to a d reference nd the EUT
3)	Stabilization Network) which power cables of all other unwhich was bonded to the grofor the unit being measured multiple power cables to a since exceeded. The tabletop EUT was placed reference plane. And for floor horizontal ground reference. The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT and LISN 2.	provides a 50Ω/50μits of the EUT were bund reference plane. A multiple socket ongle LISN provided to the upon a non-metalliprestanding arrangement of the horizontal ground reference boundary of the upon a vertical ground reference boundary of the upon a vertical ground reference boundary of the upon a vertical ground reference boundary of the upon the closest potential ground reference boundary of the upon the closest potential ground reference boundary of the upon the closest potential ground reference boundary of the upon the closest potential ground reference plane.	uH + 5Ω linear imperconnected to a sect in the same way as putlet strip was used he rating of the LISN of table 0.8m above ent, the EUT was planted and reference planted in top of the ground ints of the LISN 1 a	edance. The ond LISN 2 s the LISN d to connect N was not e the ground laced on the rical ground e. The LISN bonded to a d reference nd the EUT
4)	power cables of all other unwhich was bonded to the ground for the unit being measured multiple power cables to a single exceeded. The tabletop EUT was placed reference plane. And for floor horizontal ground reference. The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT and LISN 2.	its of the EUT were bund reference plane. A multiple socket on the LISN provided to the upon a non-metallitr-standing arrangement of the horizontal ground reference to the horizontal ground reference boundary of the upon the closest potential provides the closest potential ground reference to the horizontal ground reference boundary of the upon the closest potential ground reference to the horizontal ground grou	connected to a section the same way as putlet strip was used he rating of the LISN c table 0.8m above ent, the EUT was placeference plane. The rence plane. The verbund reference plan init under test and in top of the groun ints of the LISN 1 a	ond LISN 2 s the LISN d to connect N was not e the ground laced on the e rear of the rtical ground e. The LISN bonded to d reference nd the EUT
4)	which was bonded to the grofor the unit being measured multiple power cables to a si exceeded. The tabletop EUT was placed reference plane. And for floor horizontal ground reference. The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT and LISN 2.	ound reference plane A multiple socket of Ingle LISN provided to It upon a non-metallicer-standing arrangement It a vertical ground reference to the horizontal ground reference boundary of the uncluded of the contract of	in the same way as putlet strip was used the rating of the LISM to table 0.8m above ent, the EUT was placeference plane. The very pund reference plane init under test and in top of the groun ints of the LISM 1 a	s the LISN of to connect was not experienced on the connect the ground experience. The LISN bonded to a did reference and the EUT
4)	for the unit being measured multiple power cables to a si exceeded. The tabletop EUT was placed reference plane. And for floor horizontal ground reference. The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT ar LISN 2.	A multiple socket of ngle LISN provided to display a non-metallity restanding arrangements of a vertical ground refer to the horizontal groundary of the unusual control of the control of	butlet strip was used the rating of the LISN of table 0.8m above ent, the EUT was perference plane. The verbund reference plane init under test and in top of the groun ints of the LISN 1 a	e the ground laced on the e rear of the rtical ground e. The LISN bonded to a d reference and the EUT
4)	multiple power cables to a si exceeded. The tabletop EUT was placed reference plane. And for flood horizontal ground reference. The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT ar LISN 2.	d upon a non-metalli r-standing arrangem plane, a a vertical ground re- vertical ground refer to the horizontal gro e boundary of the u LISNs mounted or tween the closest po	table 0.8m above ent, the EUT was placeference plane. The rence plane. The very pund reference plane init under test and in top of the groun ints of the LISN 1 a	the ground laced on the rear of the rical ground e. The LISN bonded to a d reference and the EUT
4)	The tabletop EUT was placed reference plane. And for floor horizontal ground reference. The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT ar LISN 2.	r-standing arrangemolane, a a vertical ground revertical ground refer to the horizontal groundary of the uncluded or tween the closest po	ent, the EUT was placeference plane. The verbund reference plan init under test and in top of the groun ints of the LISN 1 a	e rear of the rical ground e. The LISN bonded to a direference and the EUT
4)	reference plane. And for floor horizontal ground reference. The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT ar LISN 2.	r-standing arrangemolane, a a vertical ground revertical ground refer to the horizontal groundary of the uncluded or tween the closest po	ent, the EUT was placeference plane. The verbund reference plan init under test and in top of the groun ints of the LISN 1 a	e rear of the rical ground e. The LISN bonded to a dreference and the EUT
	horizontal ground reference The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from th ground reference plane for plane. This distance was be All other units of the EUT ar LISN 2.	plane, a a vertical ground revertical ground refer to the horizontal ground are boundary of the united or tween the closest po	eference plane. The version of reference plane plane plane plane init under test and length top of the groun ints of the LISN 1 a	e rear of the rtical ground e. The LISN bonded to a d reference nd the EUT
	EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT ar LISN 2.	vertical ground refer to the horizontal gro e boundary of the u LISNs mounted or tween the closest po	rence plane. The verbund reference plan init under test and land top of the groun ints of the LISN 1 a	rtical ground e. The LISN bonded to a d reference nd the EUT
5)	reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT ar LISN 2.	to the horizontal groes boundary of the unline LISNs mounted or tween the closest po	ound reference plan init under test and l n top of the groun ints of the LISN 1 a	e. The LISN bonded to a defended to a deference and the EUT
5)	1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT ar LISN 2.	e boundary of the u LISNs mounted or tween the closest po	init under test and l n top of the groun ints of the LISN 1 a	bonded to a d reference nd the EUT
5)	ground reference plane for plane. This distance was be All other units of the EUT ar LISN 2.	LISNs mounted or tween the closest po	n top of the groun ints of the LISN 1 a	d reference nd the EUT
5)	plane. This distance was be All other units of the EUT ar LISN 2.	ween the closest po	ints of the LISN 1 a	nd the EUT
5)	LISN 2.	d associated equipm	nent was at least 0.8	3 m from the
5)				
5)	In order to find the maximum			
		emission, the relative		
	of the interface cables measurement.	ust be changed a	ccording to ANSI	C63.10 or
:(3)	conducted measurement.		(6)	
		Limit (d	IBµV)	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	-0-
(25)	0.5-5	56	46	(3)
	5-30	60	50	
	The limit decreases linearly w MHz to 0.50 MHz.	-		range 0.15
NO	OTE : The lower limit is applic	able at the transition	frequency	



No.	Freq.		ling_LedBuV)	vel	Correct Factor	M	leasurem (dBuV)	ent	Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.2100	48.41		27.03	9.80	58.21		36.83	63.20	53.20	-4.99	-16.37	Р	
2	0.3220	40.21		10.67	9.82	50.03		20.49	59.65	49.65	-9.62	-29.16	Р	
3	0.4380	33.30		8.59	9.90	43.20		18.49	57.10	47.10	-13.90	-28.61	Р	
4	2.9380	29.07		12.71	10.00	39.07		22.71	56.00	46.00	-16.93	-23.29	Р	
5	5.7660	29.62		13.99	10.00	39.62		23.99	60.00	50.00	-20.38	-26.01	Ρ	
6	18.9340	28.44		14.59	9.86	38.30		24.45	60.00	50.00	-21.70	-25.55	Р	





Neutral line:

No.	Freq.		ling_Le dBu∀)	vel	Correct Factor	M	leasurem (dBuV)		Lir (dB	nit u∀)		rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.2140	48.94		31.00	9.80	58.74		40.80	63.04	53.04	-4.30	-12.24	Р	
2	0.3180	42.11		23.27	9.82	51.93		33.09	59.76	49.76	-7.83	-16.67	Р	
3	0.4220	34.98		16.80	9.90	44.88		26.70	57.41	47.41	-12.53	-20.71	Р	
4	0.5220	31.39		9.55	9.90	41.29		19.45	56.00	46.00	-14.71	-26.55	Р	
5	3.7900	28.20		8.49	10.00	38.20		18.49	56.00	46.00	-17.80	-27.51	Р	
6	5.8060	29.47		13.52	10.00	39.47		23.52	60.00	50.00	-20.53	-26.48	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: EED32J00012504 Page 18 of 25

Appendix C): Radiated Spurious Emissions

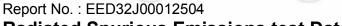
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
(25%)	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	-0-
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	(1)
/	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	100
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 4CU-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

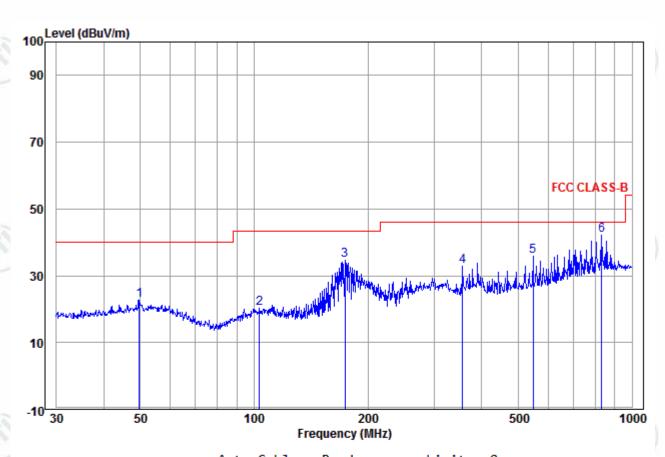
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:


- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

ı	i	m	ii	١.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	<u> </u>	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	100	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

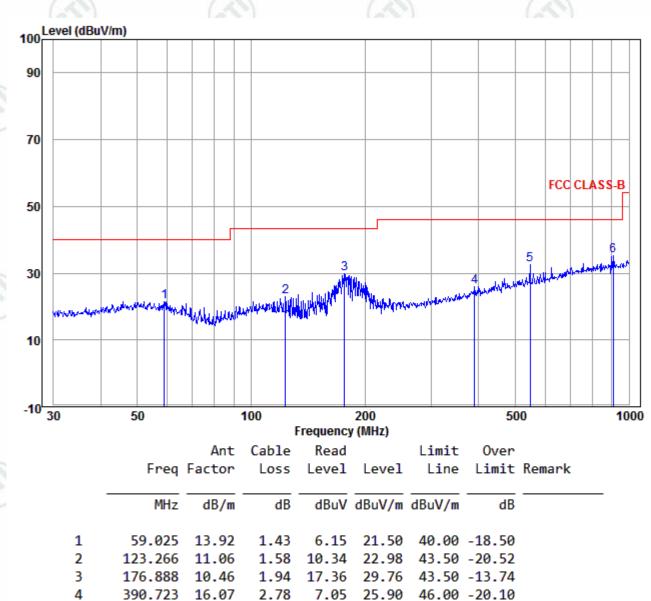

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)	(2)	
Test mode:	Transmitting	Horizontal

		Ant	Cable	Read		Limit	0ver	
	Freq	Factor	Loss	Level	Level	Line	Limit	Remark
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
		,				,		
1	49.707	15.08	1.38	6.15	22.61	40.00	-17.39	
2	103.442							
3	173.814	10.21	1.90	22.47	34.58	43.50	-8.92	
4	356.676	15.18	2.72	15.00	32.90	46.00	-13.10	
5	547.098	18.60	3.21	14.19	36.00	46.00	-10.00	
6 рр	830.400	21.85	4.05	16.29	42.19	46.00	-3.81	

Page 19 of 25



Report No. : EED32J00012504 Page 20 of 25

Test mode:	Transmitting	Vertical	
------------	--------------	----------	--

5

6 pp

547.098

909.667

18.60

22.40

3.21

4.34

10.84

32.65

35.19

46.00 -13.35

46.00 -10.81

Transmitter Emission above 1GHz

Worse case mode:		GFSK		Test channel:		Lowest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1593.340	31.04	2.91	43.89	51.27	41.33	74.00	-32.67	Pass	Н
1978.230	31.67	3.21	43.52	50.21	41.57	74.00	-32.43	Pass	ЭН
3003.173	33.60	5.62	44.70	49.97	44.49	74.00	-29.51	Pass	C) H
4804.000	34.69	5.11	44.60	49.44	44.64	74.00	-29.36	Pass	Н
7206.000	36.42	6.66	44.77	46.21	44.52	74.00	-29.48	Pass	Н
9608.000	37.88	7.73	45.58	46.03	46.06	74.00	-27.94	Pass	Н
1491.300	30.85	2.82	44.01	54.80	44.46	74.00	-29.54	Pass	V
1983.272	31.68	3.22	43.51	52.82	44.21	74.00	-29.79	Pass	V
3844.279	32.91	5.46	44.61	52.41	46.17	74.00	-27.83	Pass	V
4804.000	34.69	5.11	44.60	50.48	45.68	74.00	-28.32	Pass	V
7206.000	36.42	6.66	44.77	50.75	49.06	74.00	-24.94	Pass	V
9608.000	37.88	7.73	45.58	47.03	47.06	74.00	-26.94	Pass	V

Worse case mode: GFS		GFSK		Test channel:		Middle	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1479.955	30.83	2.81	44.02	51.25	40.87	74.00	-33.13	Pass	Н
1923.606	31.59	3.18	43.57	54.21	45.41	74.00	-28.59	Pass	
3249.760	33.38	5.57	44.67	52.12	46.40	74.00	-27.60	Pass	H
4880.000	34.85	5.08	44.60	49.97	45.30	74.00	-28.70	Pass	H
7320.000	36.43	6.77	44.87	47.55	45.88	74.00	-28.12	Pass	Н
9760.000	38.05	7.60	45.55	45.99	46.09	74.00	-27.91	Pass	Н
1165.013	30.14	2.47	44.44	51.24	39.41	74.00	-34.59	Pass	V
1663.803	31.17	2.97	43.82	52.74	43.06	74.00	-30.94	Pass	V
3249.760	33.38	5.57	44.67	50.91	45.19	74.00	-28.81	Pass	V
4880.000	34.85	5.08	44.60	52.21	47.54	74.00	-26.46	Pass	V
7320.000	36.43	6.77	44.87	47.88	46.21	74.00	-27.79	Pass	V
9760.000	38.05	7.60	45.55	45.60	45.70	74.00	-28.30	Pass	V

Page 21 of 25

Page 22 of 25

Worse case mode: G		GFSK	Test channel:		Highest	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1402.920	30.68	2.73	44.11	52.12	41.42	74.00	-32.58	Pass	Н
1983.272	31.68	3.22	43.51	52.00	43.39	74.00	-30.61	Pass	- Н
3308.185	33.33	5.56	44.67	52.76	46.98	74.00	-27.02	Pass	H
4960.000	35.02	5.05	44.60	50.56	46.03	74.00	-27.97	Pass	H
7440.000	36.45	6.88	44.97	49.41	47.77	74.00	-26.23	Pass	Н
9920.000	38.22	7.47	45.52	48.75	48.92	74.00	-25.08	Pass	Н
1663.803	31.17	2.97	43.82	53.04	43.36	74.00	-30.64	Pass	V
2065.715	31.85	3.42	43.60	50.72	42.39	74.00	-31.61	Pass	V
3570.714	33.12	5.51	44.64	50.88	44.87	74.00	-29.13	Pass	V
4960.000	35.02	5.05	44.60	50.28	45.75	74.00	-28.25	Pass	V
7440.000	36.45	6.88	44.97	47.15	45.51	74.00	-28.49	Pass	V
9920.000	38.22	7.47	45.52	44.94	45.11	74.00	-28.89	Pass	V

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

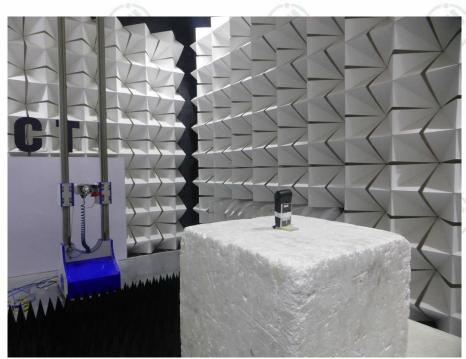
Report No.: EED32J00012504 Page 23 of 25

PHOTOGRAPHS OF TEST SETUP

Test model No.: WisePad 2 Plus

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)



Report No. : EED32J00012504 Page 24 of 25

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

Report No.: EED32J00012504 Page 25 of 25

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32J00012502 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced

