

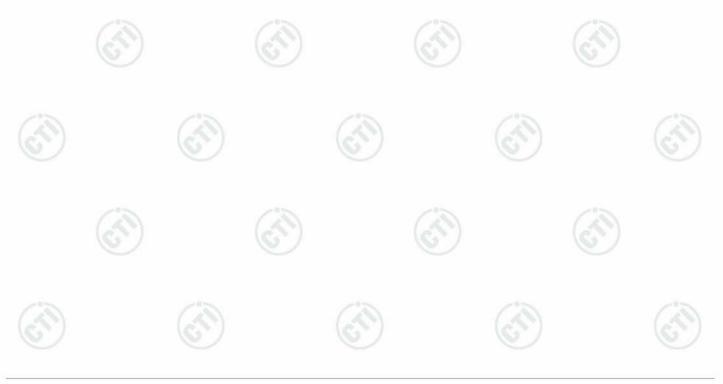
2 Vorsion

Version No.	Date	13	Description	5
00	Mar. 20, 2017	(C	Original	
	0	13	15	

Report No. : EED32J00012506 **3 Test Summary**

	GPRS 850		
Test Item	Test Requirement	Test method	Result
Conducted output power	Part 2.1046(a)/Part 22.913(a)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS
Effective Radiated Power of Transmitter(ERP)	Part 2.1046(a)/Part 22.913(a)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS
Field strength of spurious radiation	Part 2.1053/ Part 2.1057/ Part 22.917(a)(b)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS
	GPRS 1900		
Test Item	Test Requirement	Test method	Result
Conducted output power	Part 2.1046(a) /Part 24.232(c)	TIA-603-D-2010&KDB 971168 D01v02r02	PASS
Effective Radiated Power of Transmitter(EIRP)	Part 2.1046(a) / Part 24.232(c)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS
Field strength of spurious radiation	Part 2.1053 /Part 2.1057 / Part 24.238(a)(b)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS

Remark:

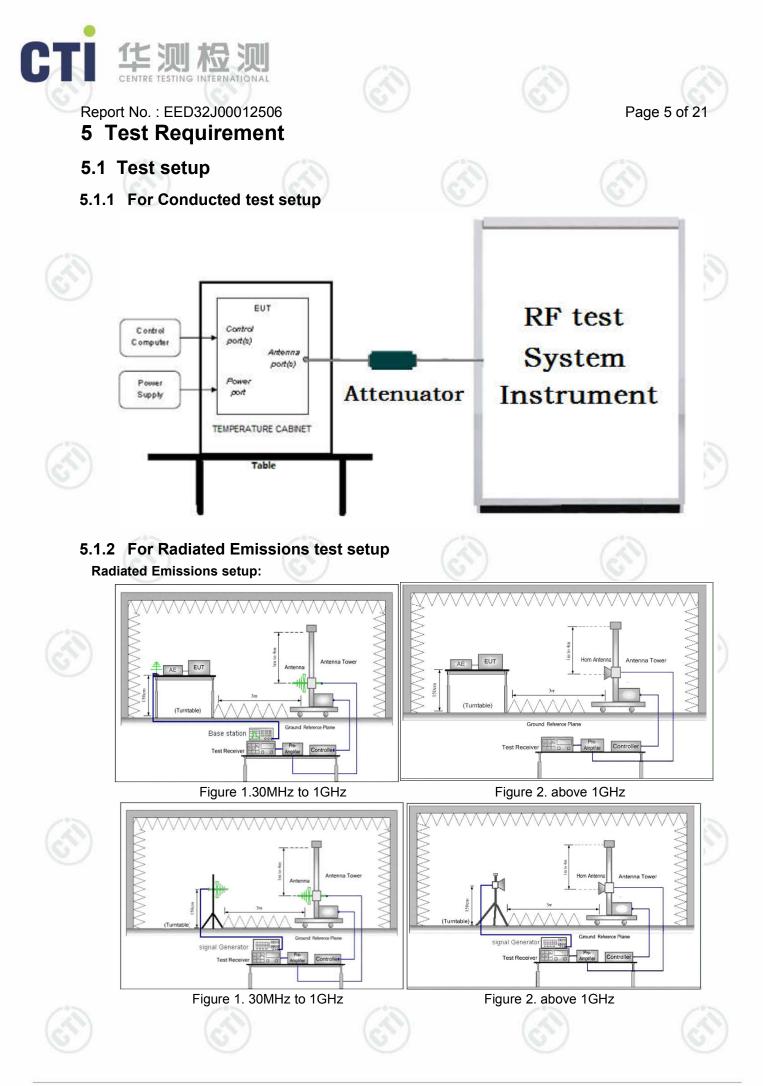

The tested sample and the sample information are provided by the client.

Model No.: WisePad 2 Plus, WisePad 2

This test report (Ref. No.: EED32J00012506) is only valid with the original test report (Ref. No.: EED32I00208216).

According to the declaration from the applicant, their RF part, main board, electrical circuit design, layout, components used and internal wiring are identical, only the WisePad 2 Plus is consisted by printer function part, but WisePad 2 is not included.

Therefore in this report Conducted output power, Effective Radiated Power of Transmitter(ERP) and Field strength of spurious radiation were fully retested on model WisePad 2 Plus and shown the data in this report, other tests please refer to original report EED32I00208216.



4	Content	
---	---------	--

2 VERSION	
3 TEST SUMMARY	
4 CONTENT	
5 TEST REQUIREMENT	
5.1 TEST SETUP 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test setup 5.2 TEST ENVIRONMENT 5.3 TEST CONDITION	
6 GENERAL INFORMATION	
 6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 6.4 DESCRIPTION OF SUPPORT UNITS 6.5 TEST LOCATION 6.6 TEST FACILITY 6.7 DEVIATION FROM STANDARDS 6.8 ABNORMALITIES FROM STANDARD CONDITIONS 6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 	
7 EQUIPMENT LIST	
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	
Appendix A) RF Power Output Appendix B) Effective Radiated Power of Transmitter (ERP/EIRP) Appendix C) Field strength of spurious radiation	
PHOTOGRAPHS OF TEST SETUP	
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	

5.2 Test Environment

Operating Environment:		
Temperature:	22°C	
Humidity:	53% RH	
Atmospheric Pressure:	1010 mbar	

5.3 Test Condition

Test	channel:	

st channel:					
Teet Mede	(A) T. (A)	RF Channel			
Test Mode	Tx Tx	Low(L)	Middle(cm)	High(H)	
		Channel 128	Channel 190	Channel 251	
GPRS850	(824 MHz ~849 MHz)	824.2MHz	836.6 MHz	848.8 MHz	
GPR5850	Rx	Channel 128	Channel 190	Channel 251	
	(869 MHz ~894 MHz)	869.2 MHz	881.6 MHz	893.8 MHz	
	Тх	Channel 512	Channel 661	Channel 810	
GPRS1900	(1850 MHz ~1910 MHz)	1850.2MHz	1880.0 MHz	1909.8 MHz	
GFK51900	Rx	Channel 512	Channel 661	Channel 810	
	(1930 MHz ~1990 MHz)	1930.2 MHz	1960.0 MHz	1989.8 MHz	

Test mode:

Pre-scan under all rate at lowest middle and highest channel ,find the transmitter power as below: Conducted transmitter power measurement result.

band	6	GPRS850	(4	9	GPRS1900	
Channel	128	190	251 🔍	512	661	810
Frequency(MHz)	824.2MHz	836.6MHz	848.8MHz	1850.2MHz	1880MHz	1909.8MHz
GPRS Class 8	32.20dBm	32.71dBm	32.69dBm	29.18dBm	28.99dBm	29.07dBm

Pre-scan all mode and data rates and positions, find worse case mode are chosen to the report , the worse case mode as below:

band	Radiated	Conducted
GPRS 850	1) GPRS 8 Link	1) GPRS 8 Link
GPRS 1900	1) GPRS 8 Link	1) GPRS 8 Link

Page 7 of 21

Report No. : EED32J00012506

6 General Information

6.1 Client Information

Applicant:	BBPOS International Limited
Address of Applicant:	Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, N.T. HK, Hong Kong
Manufacturer:	BBPOS International Limited
Address of Manufacturer:	Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, N.T. HK, Hong Kong

6.2 General Description of EUT

Product Name:	WisePad 2 Plus	
Model No.(EUT):	WisePad 2 Plus	
Trade Mark:	BBPOS	
EUT Supports Radios application	BT 2.1(2402MHz-2480MHz), BT 4.0(2402MHz-2480MHz), NFC(13.56MHz), WIFIb/g/n(HT20)(2412MHz-2472MHz), 2G(850MHz/1900MHz)GPRS	
Power Supply:	DC 3.7V by Battery DC 5V by USB port	(2)
Battery:	Li-polymer 3.7V, 1300mAh	6)
Sample Received Date:	Jan. 23, 2017	
Sample tested Date:	Jan. 23, 2017 to Mar. 20, 2017	

6.3 Product Specification subjective to this standard

Frequency Band:	GPRS 850: Tx:824.20 -848.80MHz; Rx: 869.20 – 893.80MHz GPRS 1900: Tx:1850.20 – 1909.80MHz; Rx:1930.20 – 1989.80MHz
Modulation Type:	GPRS Mode with GMSK Modulation
Sample Type:	Portable production
Antenna gain:	GPRS850: -3dBi; GPRS1900: 0.5dBi
Antenna Type:	Integral
Test voltage:	DC 3.7V

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at: Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101 Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Page 8 of 21

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096. Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

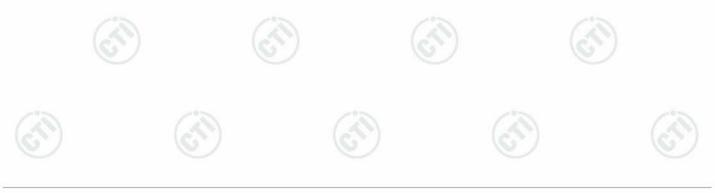
6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item (C)	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2		0.31dB (30MHz-1GHz)
	RF power, conducted	0.57dB (1GHz-18GHz)
3	Dedicted Onunique emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Page 10 of 21

Report No. : EED32J00012506 7 Equipment List

Communication RF test system									
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
Spectrum Analyzer	Agilent	E4440A	MY46185649	12-16-2016	12-15-2017				
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017				
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017				
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017				
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017				
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-11-2017	01-10-2018				
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	I A A A A A A A A A A A A A A A A A A A	01-11-2017	01-10-2018				
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-11-2017	01-10-2018				
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-11-2017	01-10-2018				
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-11-2017	01-10-2018				
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001	~	01-11-2017	01-10-2018				
DC Power	Keysight	E3642A	MY54426112	04-08-2016	04-07-2017				
DC Power	Keysight	E3642A	MY54426115	04-01-2016	03-31-2017				
PC-2	Lenovo	R4960d		04-01-2016	03-31-2017				
PC-3	Lenovo	R4960d		04-01-2016	03-31-2017				
RF control unit	JS Tonscend	JS0806-1	158060004	04-01-2016	03-31-2017				
DC power Box	JS Tonscend	JS0806-4	158060007	04-01-2016	03-31-2017				
LTE Automatic test software	JS Tonscend	JS1120-1		04-01-2016	03-31-2017				
WCDMA Automatic test software	JS Tonscend	JS1120-3		04-01-2016	03-31-2017				
GSM Automatic test software	JS Tonscend	JS1120-3	\odot	04-01-2016	03-31-2017				



Equipment	Manufacturer	Mode No.	Serial	Cal. date	Cal. Due date
Equipment	Manufacturer		Number	(mm-dd-yyyy)	(mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-16-2017	02-15-2018
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
Multi device Controller	maturo	NCD/070/10711 112	<u> </u>	01-11-2017	01-10-2018
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-11-2017	01-10-2018
Cable line	Fulai(6M)	SF106	5220/6A	01-11-2017	01-10-2018
Cable line	Fulai(3M)	SF106	5216/6A	01-11-2017	01-10-2018
Cable line	Fulai(3M)	SF106	5217/6A	01-11-2017	01-10-2018
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-11-2017	01-10-2018
High-pass filter	MICRO-TRONICS	SPA-F-63029-4		01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001	<u>v</u>	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001)	01-11-2017	01-10-2018

Page 12 of 21

8 Radio Technical Requirements Specification

Reference documents for testing:

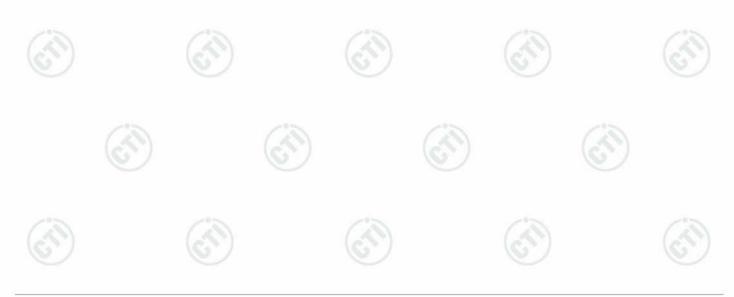
Report No. : EED32J00012506

No.	Identity	Document Title
4	DADT 22 (2015)	PART 22 – PUBLIC MOBILE SERVICES
I	PART 22 (2015)	Subpart H – Cellular Radiotelephone Service
0		PART 24 – PERSONAL COMMUNICATIONS SERVICES
2	PART 24 (2015)	Subpart E – Broadband PCS
3	PART 2 (2015)	Frequency allocations and radio treaty matters; general rules and regulations
	TIA 000 0 0004	Land Mobile FM or PM -Communications Equipment -Measurement and
4 HA-603-C-2004	Performance Standards	
5	KDB971168 D01	KDB971168 D01 Power Meas License Digital Systems v02r02
	1 2 3 4	1 PART 22 (2015) 2 PART 24 (2015) 3 PART 2 (2015) 4 TIA-603-C-2004

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part 2.1046(a)/Part 22.913(a)/ part 24.232(c)	TIA-603-D&KDB 971168 D01v02r02	Conducted output power	PASS	Appendix A)
Part 2.1053/ Part 2.1057/ Part 22.917(a)(b)/ Part 24.238(a)(b)	TIA-603-D &KDB 971168 D01∨02r02	Field strength of spurious radiation	PASS	Appendix C)
Part 2.1046(a)/Part 22.913(a)/ Part 24.232(c)	TIA-603-D &KDB 971168 D01∨02r02	Effective Radiated Power of Transmitter(ERP)	PASS	Appendix B)

Test Mode	Test Modes description
GPRS/TM2	GPRS,GMSK modulation



Appendix A) RF Power Output

Test Requirement:	Part 2.1046(a)	Part 2.1046(a)						
Test Method:	TIA-603-D-2010	TIA-603-D-2010 Clause 2.2.1						
Test Setup:	Refer to section	Refer to section 5 for details						
	Mode GSM 850/WCDMA/HSDPA /HSUPA 850 Band V		GSM 1900/WCDMA/HSDPA /HSUPA 1900 Band II					
Limit:	Frequency	824 – 849MHz	1850 – 1910MHz					
	Limit	38.45dBm (ERP)	33.01dBm (EIRP)					
	The transmitter output was connected to a calibrated coaxial cable, attenuator and power meter, the other end of which was connected to a Base Station Simulator. The Base Station Simulator was set to force the EUT to its maximum power setting. The power output at the transmitter antenna port was determined by adding the value of the cable insertion loss to the power reading. The tests were performed at three frequencies (low channel, middle channel and high channel) and on the highest power levels, which can be setup on the transmitters							
Measurement Procedure	and power meter Simulator. The l power setting. T by adding the va were performed	er, the other end of which was Base Station Simulator was se The power output at the transm alue of the cable insertion loss I at three frequencies (low char	connected to a Base Station t to force the EUT to its maximum itter antenna port was determined to the power reading. The tests nnel, middle channel and high					
Measurement Procedure	and power meter Simulator. The l power setting. T by adding the va were performed channel) and or	er, the other end of which was Base Station Simulator was se The power output at the transm alue of the cable insertion loss I at three frequencies (low char in the highest power levels, which	connected to a Base Station t to force the EUT to its maximum itter antenna port was determined to the power reading. The tests nnel, middle channel and high					

Test Data:

	Test Band	Test Mode	Test Channel	Measured(dbm)	Limit(dbm)	Verdict
	63		LCH	32.20	38.5	PASS
	GSM850	GSM/TM2	МСН	32.71	38.5	PASS
		-0-	нсн	32.69	38.5	PASS
8	Test Band	Test Mode	Test Channel	Measured(dbm)	Limit(dbm)	Verdict
Y			LCH	29.18	33	PASS
	GSM1900	GSM/TM2	МСН	28.99	33	PASS
			нсн	29.07	33	PASS

Appendix B) Effective Radiated Power of Transmitter (ERP/EIRP)

Receiver Setup:				1		13
	Frequ	ency	Detector	RBW	VBW	Remark
	30MHz-	1GHz	peak	120kHz	300kHz	Peak
	Above	1GHz	Peak	1MHz	3MHz	Peak
Measurement	Below 1GHz t	est procedu	re as below:		13	12
Procedure:	 the equipm manufactur 2). The disturb raising an 360° the t measuren 3). Steps 1) an and horizon 4). The transm the antenna 5). A signal at radiating ca polarized, t at the test n field streng 6). The output 7). Steps 5) an 8). Calculate p ERP(dBr where: Pg is the Above 1GHz 1 1). Different b fully Anech Above 18G 2). Calculate p EIRP(dBn 2). Calculate p 21. Calculate p 21. Calculate p 3). Test the EU The radiation operation m 	ent with the i er. The anter ance of the t d lowering fro urntable. After hent was man of 2) were per hal polarizati itter was the a was approx the disturbar able. With bo he receive an eceiver. The th level in ster power into the d 6) were re ower in dBm n) = Pg(dBm generator or est procedu etween abovoic Chamber Hz the distan ower in dBm n) = Pg(dBm P+2.15dB generator or T in the lower or measuremo	manufacturer sp ina of the transi- ransmitter was om 1m to 4m the er the fundamer de. erformed with the on. In removed and simately at the sp ice was fed to t the substitution the substitution appeated with bot by the followin) – cable loss (utput power into ire as below: ye is the test sp	pecified anter mitter was ex maximized on receive ant ntal emission re EUT and the replaced with same location he substitutio on and the re- sed and lower nal generator d for this set of antenna was fi h antennas p g formula: dB) + antenna o the substitut site, change fi z a measuren g formula: dB) + antenna	a gain (dBi) tion antenna. from Semi- / a gain (dBi) tion antenna. from stenate a gain (dBi)	ed. Anechoic Chamber e of 3 meters is use est channel ning for EUT e case.
Limit:						
Limit:	Mode	GSM 850		GSN	M 1900	
Limit:	Mode Frequency	GSM 850 824 – 849M	ЛНz		и 1900 0 – 1910MHz	2

Page 15 of 21

Report No. : EED32J00012506 Measurement Data

		G	PRS 850			
Height (cm)	Azimuth (deg)	ERP (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
151	360	19.63	38.45	-18.82	Pass	н
150	121	22.08	38.45	-16.37	Pass	V
151	13	19.76	38.45	-18.69	Pass	H C
150	200	21.23	38.45	-17.22	Pass	v 🕥
153	360	18.59	38.45	-19.86	Pass	Н
151	78	23.01	38.45	-15.44	Pass	V
	(cm) 151 150 151 150 153	(cm) (deg) 151 360 150 121 151 13 150 200 153 360	Height (cm)Azimuth (deg)ERP (dBm)15136019.6315012122.081511319.7615020021.2315336018.59	(cm)(deg)(dBm)(dBm)15136019.6338.4515012122.0838.451511319.7638.4515020021.2338.4515336018.5938.45	Height (cm)Azimuth (deg)ERP (dBm)Limit (dBm)Over Limit (dB)15136019.6338.45-18.8215012122.0838.45-16.371511319.7638.45-18.6915020021.2338.45-17.2215336018.5938.45-19.86	Height (cm)Azimuth (deg)ERP (dBm)Limit (dBm)Over Limit (dB)Result15136019.6338.45-18.82Pass15012122.0838.45-16.37Pass1511319.7638.45-18.69Pass15020021.2338.45-17.22Pass15336018.5938.45-19.86Pass

0	<u></u>		GF	PRS 1900			
Channel/fc (MHz)	Height (cm)	Azimuth (deg)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
2	151	360	17.67	33.01	-15.34	Pass	H
512/1850.2	153	51	21.12	33.01	-11.89	Pass	V (~
6	150	225	19.79	33.01	-13.22	Pass	н
661/1880.0	151	20	21.98	33.01	-11.03	Pass	V
810/1909.8	150	147	18.64	33.01	-14.37	Pass	Н
	153	306	21.54	33.01	-11.47	Pass	V

Hotline: 400-6788-333

Appendix C) Field strength of spurious radiation

G									
	0.009MHz-30MHz	Peak	10kHz	30kHz	Peak				
	30MHz-1GHz	Peak	120kHz	300kHz	Peak				
	Above 1GHz	Peak	1MHz	3MHz	Peak				
Measurement	Below 1GHz test procedu			1		1			
Procedure:	 The EUT was powered the equipment with the manufacturer. The anter The disturbance of the traising and lowering fro antenna was tuned to h 360° the turntable. After measurement was mad positioning be lower 30 	manufacturer s inna of the trans transmitter was m 1m to 4m (fo eights 1 meter) r the fundamen e(the radiation MHz.)	pecified ant mitter was e maximized or the test free the receive tal emission measureme	enna in a ve extended to on the test equency of l antenna an was maxin ents are per	ertical orientation its maximum leng receiver display b below 30MHz, the nd by rotating thro nized, a field stren formed in X, Y, Z	on a gth. by e bugh ngth			
	3). Steps 1) and 2) were per- vertical and horizontal p		ie EUT and	the receive	antenna in both				
	4). The transmitter was then removed and replaced with another antenna. The center of the antenna was approximately at the same location as the center of the transmitter.								
(AND	 5). A signal at the disturbar radiating cable. With bor polarized, the receive at at the test receiver. The measured field strength 6). The output power into th 7). Steps 5) and 6) were re 8) Calculate power in dBm ERP(dBm) = Pg(d 	th the substitut ntenna was rais level of the sig level in step 2) ne substitution peated with bo by the following	ion and the sed and low (nal generat) is obtained antenna wa th antennas g formula:	receive ante ered to obta or was adju for this set s then meas polarized a	ennas horizontally ain a maximum rea sted until the of conditions. sured. and EUT.	y			
9	where: Pg is the generato Above 1GHz test procedu	ire as below:							
(A)	 Different between above Chamber to fully Anecher meters is used, Above 1 Calculate power in dBm EIRP(dBm) = Pg(dI EIRP=ERP+2.15dE 	oic Chamber ; 18GHz the dista by the followin Bm) – cable los	up to 18GH: ance is 1 me g formula:	z a measure eter.	ement distance of	3			
	where: Pg is the generator output power into the substitution antenna. 3.Test the EUT in the lowest channel, the middle channel the Highest channel								
2	The radiation measurem operation mode,And four								
	Repeat above procedures	until all frequen	icies measu	red was cor	nplete.				

Test data:

63	9	GPRS 85	50 128channel/824.	2MHz(lowe	est channel)	6	S?)
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1597.401	153	52	-52.32	-13.00	-39.32	Pass	Н /3
2500.251	150	100	-52.81	-13.00	-39.81	Pass	н (С
3766.785	151	97	-55.27	-13.00	-42.27	Pass	н
5379.504	150	256	-54.25	-13.00	-41.25	Pass	Н
6921.301	155	57	-50.56	-13.00	-37.56	Pass	н
10833.220	150	10	-48.13	-13.00	-35.13	Pass) н
1593.340	145	337	-49.14	-13.00	-36.14	Pass	v
2065.715	150	345	-54.40	-13.00	-41.40	Pass	V
3096.325	150	249	-56.12	-13.00	-43.12	Pass	V
4223.950	153	360	-55.46	-13.00	-42.46	Pass	V
5791.646	154	151	-51.57	-13.00	-38.57	Pass	v
8042.903	151	33	-49.95	-13.00	-36.95	Pass	V

Page 17 of 21

63	6	GPRS 85	50 190channel/836.6	6MHz(mide	dle channel)	0	D.
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1365.835	151	78	-55.48	-13.00	-42.48	Pass	н
1593.380	155	57	-47.08	-13.00	-34.08	Pass	н ("
2498.247	150	10	-51.40	-13.00	-38.40	Pass	н
3524.036	153	215	-54.19	-13.00	-41.19	Pass	Н
4710.867	151	321	-53.50	-13.00	-40.50	Pass	Н
5799.177	150	89	-50.79	-13.00	-37.79	Pass	ЛН
1158.266	150	249	-56.12	-13.00	-43.12	Pass	V
1923.203	153	360	-54.14	-13.00	-41.14	Pass	V
2489.310	154	151	-52.41	-13.00	-39.41	Pass	V
3199.044	159	100	-54.17	-13.00	-41.17	Pass	V
4710.867	155	57	-53.59	-13.00	-40.59	Pass	V
5799.177	150	10	-50.79	-13.00	-37.79	Pass	V

Page 18 of 21

		GPRS 85	0 251channel/848.8	BMHz(high	est channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1597.401	152	168	-53.37	-13.00	-40.37	Pass	Н
2493.895	153	94	-52.13	-13.00	-39.13	Pass	H
3662.775	150	30	-55.62	-13.00	-42.62	Pass	н (🔊
5393.215	150	179	-53.25	-13.00	-40.25	Pass	н 🔍
7547.013	151	100	-50.87	-13.00	-37.87	Pass	Н
10348.050	150	25	-49.14	-13.00	-36.14	Pass	Н
1597.401	153	172	-55.41	-13.00	-42.41	Pass	V
1998.475	151	200	-53.28	-13.00	-40.28	Pass	V
2493.895	152	252	-53.24	-13.00	-40.24	Pass	V
3757.208	150	360	-54.95	-13.00	-41.95	Pass	V
5151.676	147	30	-52.82	-13.00	-39.82	Pass	V
6363.645	144	265	-50.76	-13.00	-37.76	Pass	V G

Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1593.340	152	36	-54.52	-13.00	-41.52	Pass	Н
2493.895	148	358	-53.20	-13.00	-40.20	Pass	Н
3766.785	150	179	-54.56	-13.00	-41.56	Pass	н
5204.399	151	100	-53.28	-13.00	-40.28	Pass	н (
6816.394	150	25	-51.36	-13.00	-38.36	Pass	н
7900.858	152	360	-50.59	-13.00	-37.59	Pass	Н
1593.340	150	18	-48.74	-13.00	-35.74	Pass	V
2135.217	149	180	-54.78	-13.00	-41.78	Pass	V
3241.498	151	297	-57.32	-13.00	-44.32	Pass	V
5217.664	152	168	-52.27	-13.00	-39.27	Pass	V
6938.942	153	94	-50.83	-13.00	-37.83	Pass	V
8187.502	150	30	-51.48	-13.00	-38.48	Pass	V

G

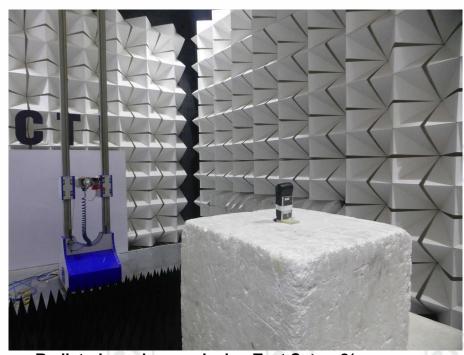
Page 19 of 21

		GPRS 19	00 661channel/188	0MHz(mid	dle channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1597.401	150	36	-53.24	-13.00	-40.24	Pass	Н
2157.069	149	180	-54.90	-13.00	-41.90	Pass	Н
2493.895	151	360	-52.62	-13.00	-39.62	Pass	н (🔨
3776.385	152	168	-55.61	-13.00	-42.61	Pass	н 🔍
5462.297	153	94	-53.67	-13.00	-40.67	Pass	Н
6799.064	150	79	-50.59	-13.00	-37.59	Pass	Н
1593.340	153	172	-51.82	-13.00	-38.82	Pass	V
2076.259	151	200	-54.77	-13.00	-41.77	Pass	V
2630.837	152	252	-55.72	-13.00	-42.72	Pass	V
3738.129	150	360	-53.94	-13.00	-40.94	Pass	V
5311.469	147	30	-52.82	-13.00	-39.82	Pass	V
6903.705	144	265	-50.36	-13.00	-37.36	Pass	V

	1	GPRS 190	0 810channel/1909	.8MHz(hig	hest channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1597.401	153	172	-53.86	-13.00	-40.86	Pass	Н
2076.259	151	200	-52.67	-13.00	-39.67	Pass	Н
2487.555	152	252	-52.72	-13.00	-39.72	Pass	н
3757.208	150	360	-55.09	-13.00	-42.09	Pass	н (с
5204.399	152	168	-52.54	-13.00	-39.54	Pass	Н
6938.942	153	94	-50.65	-13.00	-37.65	Pass	Н
1597.401	150	79	-54.57	-13.00	-41.57	Pass	V
2118.973	151	126	-54.06	-13.00	-41.06	Pass	V
2493.895	150	25	-53.61	-13.00	-40.61	Pass	v
3805.334	152	360	-55.07	-13.00	-42.07	Pass	V
5297.966	148	236	-53.62	-13.00	-40.62	Pass	V
6868.647	151	68	-50.82	-13.00	-37.82	Pass	V

Note:

1) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 1GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.



Report No. : EED32J00012506 PHOTOGRAPHS OF TEST SETUP

Test model No.: WisePad 2 Plus

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Page 21 of 21

Report No. : EED32J00012506 Page PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32J00012502 for EUT external and internal photos.

*** End of Report *** The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com