

TEST REPORT WisePad 2 Product Trade mark **BBPOS** : WisePad 2 Model/Type reference Serial Number : N/A **Report Number** : EED32I00208205 FCC ID : 2AB7X-WISEPAD2 Date of Issue : Aug. 25, 2016 **Test Standards** : 47 CFR Part 15Subpart C (2015) **Test result** : PASS

Prepared for: **BBPOS International Limited** Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, N.T. HK, Hong Kong

> Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tom-chen

Shlek.

Tom chen (Test Project)

1.40

Compiled by:

Approved by:

Kevin yang (Project Engineer)

Sheek Luo (Lab supervisor)

Check No.: 2384397829

Aug. 25, 2016

Sheek Luo (Reviewer)

Hotline: 400-6788-333

Version No.	Date		Description	6
00	Aug. 25, 2016	(C)	Original	
	· >		~	
(6				(

Result

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

PASS

Page 3 of 61

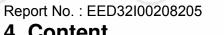
Test Item	Test Requirement	Test method
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v03r0
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v03r0
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v03r0
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r0
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r0
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15,205/15,209	ANSI C63.10-2013

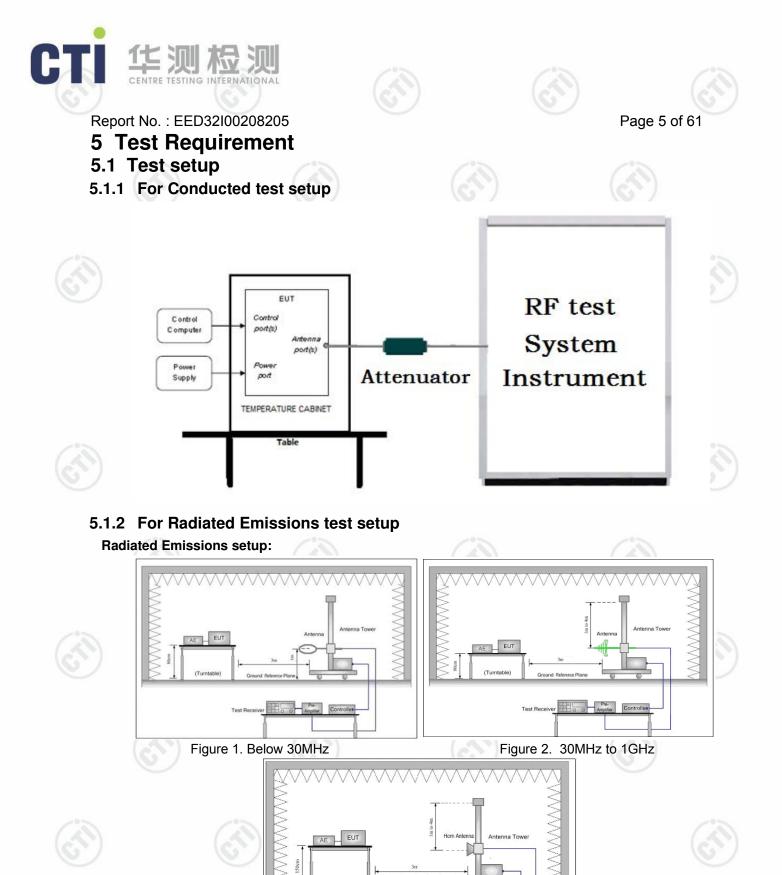
Emissions15.205/15.209Restricted bands around
fundamental frequency
(Radiated Emission)47 CFR Part 15 Subpart C Section
15.205/15.209ANSI C63.10-2013

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

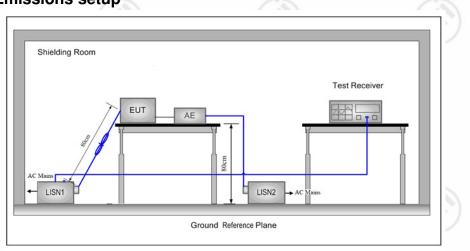
The tested sample and the sample information are provided by the client.





2 VERSION			 2
3 TEST SUMMARY			
4 CONTENT			 4
5 TEST REQUIREMENT		<u>~</u>	
5.1.1 For Conducted 5.1.2 For Radiated E 5.1.3 For Conducted 5.2 TEST ENVIRONMENT. 5.3 TEST CONDITION	test setup missions test setup Emissions test setup		
6 GENERAL INFORMATIO	ON	<u> </u>	 7
 6.2 GENERAL DESCRIPTION 6.3 PRODUCT SPECIFICATION 6.4 DESCRIPTION OF SUFFICIENT OF SUFF	DN OF EUT FION SUBJECTIVE TO THIS PORT UNITS NDARDS M STANDARD CONDITIONS REQUESTED BY THE CUS	STANDARD STOMER NCE LEVELS, K=2)	7 7 7 8 8 8 8 9 9 9 9 9
7 EQUIPMENT LIST			10
8 RADIO TECHNICAL RE	QUIREMENTS SPECIF	ICATION	 12
Appendix B): 6dB Oc Appendix C): Band-e Appendix D): RF Cor Appendix E): Power S Appendix F): Antenna Appendix G): AC Pow Appendix H): Restrict	cupied Bandwidthdge for RF Conducted E ducted Spurious Emissi Spectral Density a Requirement ver Line Conducted Emi ed bands around fundar	missions ons ssion nental frequency (Radiated)	
PHOTOGRAPHS OF TES	T SETUP		 54
		ETAILS	

Test Receiver


Figure 3. Above 1GHz

Controller

(Turntable)

5.2 Test Environment

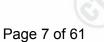
Operating Environment:	(6)	S) (25	S) (5)
Temperature:	21 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010mbar		-01-
Test Condition			

Test channel:

Test Mode	Тх	RF Channel			
Test Mode	IX	Low(L)	Middle(M)	High(H)	
002 11h/c/c/(IT20)	2412MHz ~2462 MHz	Channel 1	Channel 6	Channel11	
802.11D/g/II(H120)		2412MHz	2437MHz	2462MHz	
Transmitting mode:	Keep the EUT in transmi data rate.	tting mode with all	kind of modulation a	and all kind of	

Test mode:

Pre-scan under all rate at highest channel 11


Mode		8	02.11b				U.	
Data Rate	1Mbp	s 2Mbp	s 5.5Mbps	s 11Mbp	S		\langle	
Power(dBm)	20.1	5 20.20) 20.21	20.28				
Mode				802.11g				- (
Data Rate	ate 6Mbp	6Mbps 9Mbps	s 12Mbps	18Mbps	s 24Mbps	36Mbps	48Mbps	54Mbps
Power(dBm) 19.3	8 19.36	6 19.33	19.30	19.27	19.25	19.20	19.10
Mode		·	·	802.11n	(HT20)		•	·
Data Rate	6.5Mbps	13Mbps	19.5Mbps	26Mbps	39Mbps	52Mbps	58.5Mbps	65Mbps
Power(dBm)	17.64	17.63	17.56	17.45	17.41	17.38	17.22	17.20

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20).

Page 6 of 61

6 General Information

6.1 Client Information

Applicant:	BBPOS International Limited	
Address of Applicant:	Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, N.T. HK, Hong Kong	
Manufacturer:	BBPOS International Limited	
Address of Manufacturer:	Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, N.T. HK, Hong Kong	61

6.2 General Description of EUT

Product Name:	WisePad 2
Mode No.(EUT):	WisePad 2
Trade Mark:	BBPOS
EUT Supports Radios application:	BT 2.1(2402MHz-2480MHz), BT 4.0(2402MHz-2480MHz), NFC(13.56MHz), WIFIb/g/n(HT20)(2412MHz-2462MHz), 2G(850MHz/1900MHz)
Power Supply:	DC 3.7V by Battery DC 5V by USB port
Battery:	Li-polymer 3.7V, 750mAh
Sample Received Date:	Jul. 26. 2016
Sample tested Date:	Jul. 26. 2016 to Aug. 25, 2016

6.3 Product Specification subjective to this standard

10.0.7 ·	
Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels
Channel Separation:	5MHz
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g :OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20) : OFDM (64QAM, 16QAM, QPSK,BPSK)
Sample Type:	Portable production
Antenna Type:	Integral
Test Power Grade:	N/A
Test Software of EUT:	BBPOS_Transaction
Antenna Gain:	1dBi

Operation	Frequency ea	ch of channe	el(802.11b/g/n l	HT20)	2°>		~~~
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

6.4 Description of Support Units

1)	support	equipment
----	---------	-----------

Description	Manufacturer	Model No.	Certification	Supplied by
laptop	LENOVO	E46L	FCC DOC	CTI
Mouse	LENOVO	LXH-EMS-10ZA	FCC DOC	CTI

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101 Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385 No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

Page 8 of 61

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Page 9 of 61

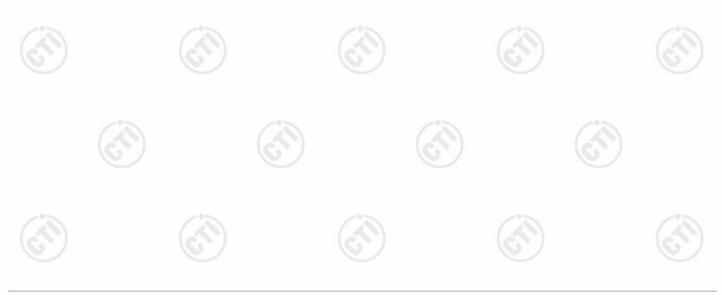
Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions


None.

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

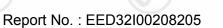
No.	Item	Measurement Uncertainty				
1	Radio Frequency	7.9 x 10 ⁻⁸				
2	DE nower, conducted	0.31dB (30MHz-1GHz)				
2	RF power, conducted	0.57dB (1GHz-18GHz)				
3	Dedicted Sources emission test	4.5dB (30MHz-1GHz)				
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)				
4	Conduction emission	3.6dB (9kHz to 150kHz)				
4		3.2dB (150kHz to 30MHz)				
5	Temperature test	0.64°C				
6	Humidity test	2.8%				
7	DC power voltages	0.025%				

Page 10 of 61

Report No. : EED32I00208205
7 Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Communication test set	Agilent	N4010A	MY51400230	04-01-2016	03-31-2017
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(A)	01-12-2016	01-11-2017
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017
PC-1	Lenovo	R4960d		04-01-2016	03-31-2017
power meter & power sensor	R&S	OSP120	101374	04-01-2016	03-31-2017
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2017

Conducted disturbance Test											
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)						
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017						
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017						
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017						
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017						
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017						
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017						
Voltage Probe	R&S	ESH2-Z3		07-09-2014	07-07-2017						
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017						
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017						



Page 11 of 61

3M Semi/full-anechoic Chamber											
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)						
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019						
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2016	05-22-2017						
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017						
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018						
Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-30-2015	06-28-2018						
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017						
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017						
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017						
Multi device Controller	maturo	NCD/070/1071 1112		01-12-2016	01-11-2017						
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017						
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017						
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017						
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017						
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017						
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017						
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017						
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017						
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017						
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017						
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017						
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-12-2016	01-11-2017						
High-pass filter	MICRO-TRONICS	SPA-F-63029- 4		01-12-2016	01-11-2017						
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395- 001		01-12-2016	01-11-2017						
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393- 001		01-12-2016	01-11-2017						
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396- 002		01-12-2016	01-11-2017						
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394- 001	(\mathbf{A})	01-12-2016	01-11-2017						

Page 12 of 61

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	6)	Document Title	6)	
1	FCC Part15C (2015	5)	Subpart C-	Intentional Radiators			
2	ANSI C63.10-2013	Amorican National Standard for Testing Unlicesed W					
st R	esults List:		(1		I		
	Test Requirement	Tes	st method	Test item	Verdict	Note	
	Part15C Section 15.247 (b)(3)		SI C63.10/ B 558074	Conducted Peak Output Power	PASS	Appendix A	
	Part15C Section 15.247 (a)(2)		SI C63.10/ B 558074	6dB Occupied Bandwidth	PASS	Appendix B	
	15.247(d)KDB 5Part15C SectionANSI 6		NSI C63.10/ CDB 558074 Band-edge for RF Conducted Emissions NSI C63.10/ CDB 558074 RF Conducted Spurious Emissions		PASS	Appendix C	
					PASS	Appendix D	
Part	15C Section 15.247 (e)		SI C63.10/ B 558074	Power Spectral Density	PASS	Appendix E	
(Part15C Section 15.203/15.247 (c)	AN	SI C63.10	Antenna Requirement	PASS	Appendix F	
	Part15C Section 15.207	ANS	SI C63.10	AC Power Line Conducted Emission	PASS	Appendix G	
	Part15C Section 15.205/15.209	AN	SI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H	
	Part15C Section 15.205/15.209	AN	SI C63.10	Radiated Spurious Emissions	PASS	Appendix I)	

Page 13 of 61

Appendix A): Conducted Peak Output Power

Test Procedure 1. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.

- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Measure the conducted output power and record the results in the test report.

Result Table	6		
Mode	Channel	Conducted Peak Output Power [dBm]	Verdict
11B	LCH	20.28	PASS
11B	MCH	20.23	PASS
11B	НСН	19.89	PASS
11G	LCH	19.38	PASS
11G	MCH	19.16	PASS
11G	НСН	18.82	PASS
11N20SISO	LCH	17.64	PASS
11N20SISO	МСН	17.53	PASS
11N20SISO	HCH	17.04	PASS

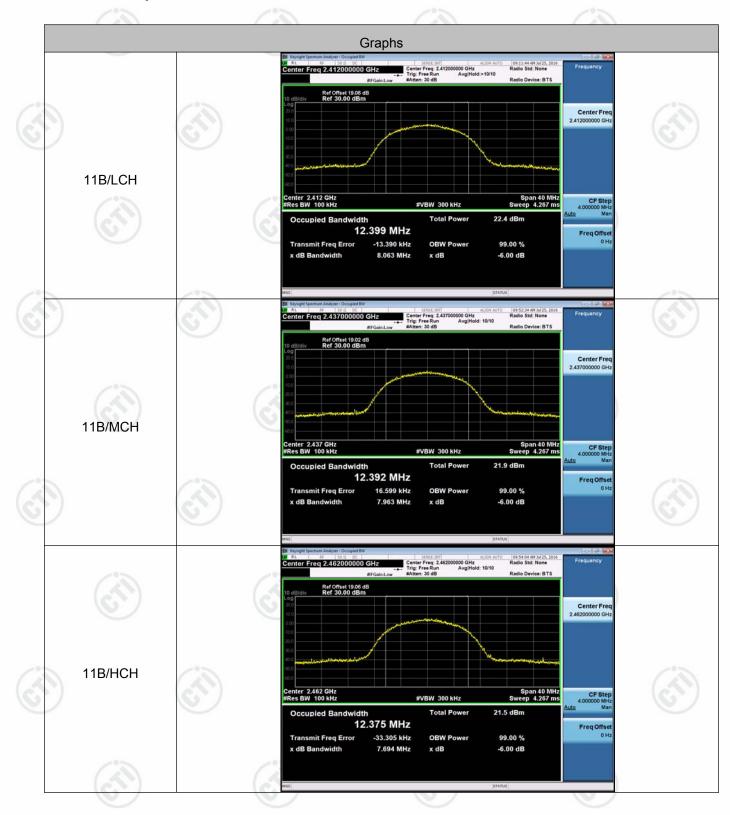
Page 14 of 61

Report No. : EED32I00208205

Appendix B): 6dB Occupied Bandwidth

Result Table

Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
11B	LCH	8.063	12.399	PASS	1
11B	МСН	7.963	12.392	PASS	(\mathbf{c})
11B	НСН	7.694	12.375	PASS	\sim
11G	LCH	15.73	16.321	PASS	Deale
11G	MCH	16.01	16.322	PASS	Peak
11G	НСН	15.35	16.327	PASS	detector
11N20SISO	LCH	16.33	17.512	PASS	-
11N20SISO	MCH	16.32	17.506	PASS	-
11N20SISO	НСН	16.70	17.503	PASS	

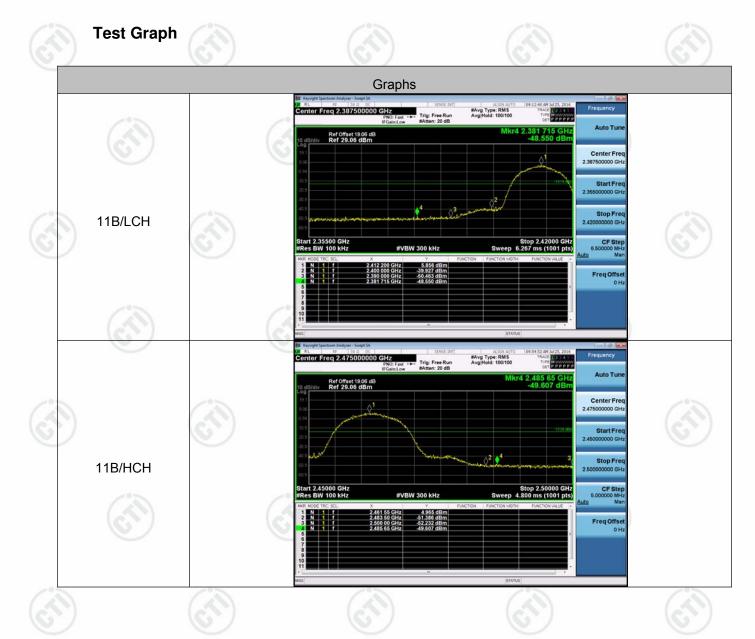


Test Graph

Page 16 of 61

Page 17 of 61

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com


Page 18 of 61

Report No. : EED32I00208205

Appendix C): Band-edge for RF Conducted Emissions

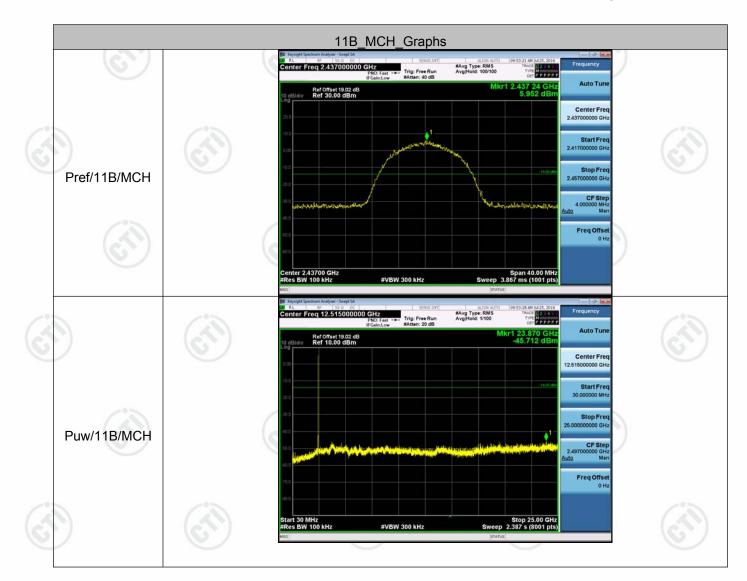
Result Table

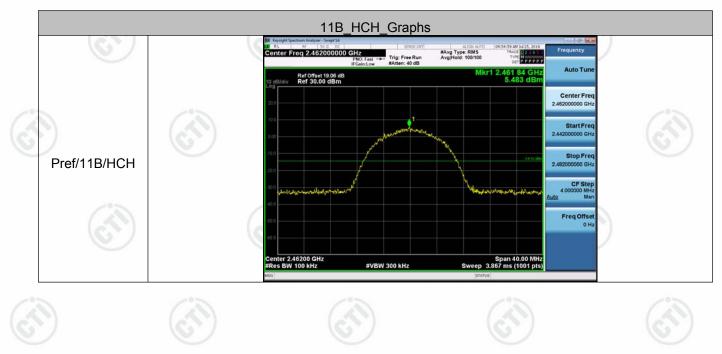
~	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
Ś	11B	LCH	5.856	-48.550	-14.14	PASS
~	11B	НСН	4.965	-49.607	-15.04	PASS
	11G	LCH	0.815	-45.436	-19.19	PASS
	11G	НСН	0.401	-45.577	-19.6	PASS
	11N20SISO	LCH	-1.003	-47.429	-21	PASS
	11N20SISO	НСН	-1.703	-48.863	-21.7	PASS

Appendix D): RF Conducted Spurious Emissions

Result Tab	le 🔗		(A))
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	6.436	<limit< td=""><td>PASS</td></limit<>	PASS
11B	МСН	5.952	<limit< td=""><td>PASS</td></limit<>	PASS
11B	нсн	5.483	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	0.73	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	0.704	<limit< td=""><td>PASS</td></limit<>	PASS
11G	нсн	0.501	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	-1.203	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	-1.084	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	НСН	-1.647	<limit< td=""><td>PASS</td></limit<>	PASS

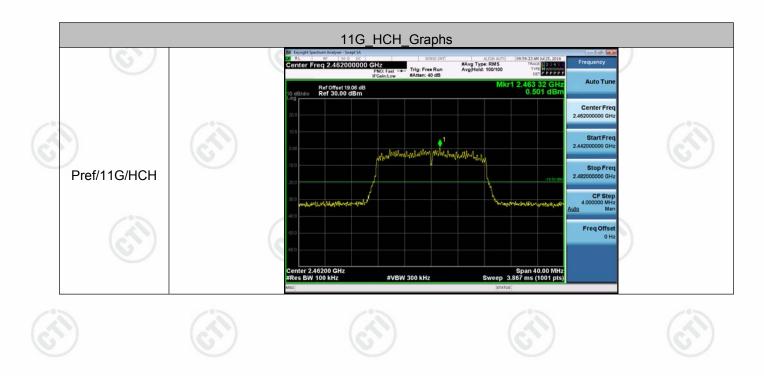
Test Graph







Page 23 of 61

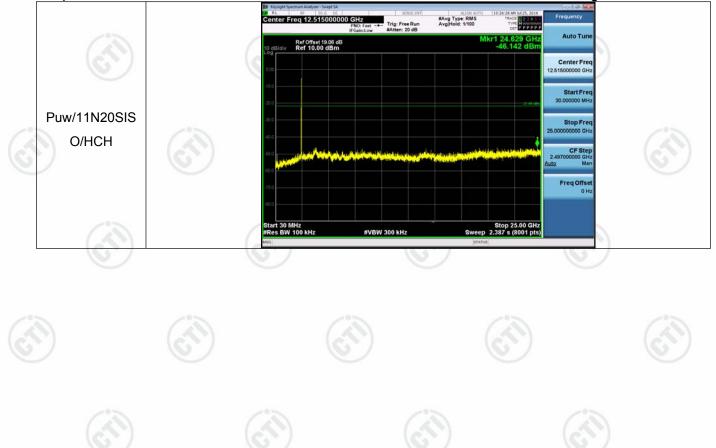





11G_MCH_Graphs #Avg Type: RMS Avg|Hold: 100/100 Freq 2.437000000 GHz Trig: Free Run Auto Tu Ref Offset 19.02 dB Ref 30.00 dBm 438 32 Center Fre •¹ أدلعه الملا Pref/11G/MCH Freq Offs 2.43700 GH Span 40.00 MH 2p 3.867 ms (1001 pt / 300 kHz r Freq 12.515000000 GHz #Avg Type: RMS Avg[Hold: 1/100 Trig: Free Run 12345 Multimeter PPPPP Auto Ti 1 23.801 -46.013 d Ref Offset 19.02 dB Ref 10.00 dBm Center Fre Puw/11G/MCH CF SI Freq Offe Stop 25.00 GH #VBW 300 kHz

Page 25 of 61





11N20SISO_MCH_Graphs Freq 2.437000000 GH #Avg Type: RMS Avg|Hold: 100/100 Trig: Free Run Auto Tu Ref Offset 19.02 dB Ref 30.00 dBm Center Fr ¢۱ Pref/11N20SIS O/MCH Freq Offs Span 40.00 M 3.867 ms (1001 e Freq 12.515000000 GHz #Avg Type: RMS Avg|Hold: 1/100 Trig: Free Run 1234 Mullion PPPP Auto Tu Ref Offset 19.02 dB Ref 10.00 dBm -45.833 Center Fre Puw/11N20SIS O/MCH CFS Freq Offs VBW 300 kHz

Page 27 of 61

Appendix E): Power Spectral Density

Result Table

Mode	Channel	Power Spectral Density [dBm/3kHz]	Limit[dBm/3kHz]	Verdict
11B	LCH	-8.864	8	PASS
11B	мсн	-7.639	8	PASS
11B	НСН	-8.531	8	PASS
11G	LCH	-13.902	8	PASS
11G	МСН	-14.834	8	PASS
11G	НСН	-14.498	8	PASS
11N20SISO	LCH	-16.245	8	PASS
11N20SISO	МСН	-16.440	8	PASS
11N20SISO	НСН	-17.531	8	PASS



Test Graph

Page 29 of 61

er 2.41200 GHz BW 3.0 kHz Span 23.60 MH 2.488 s (1001 pts #VBW 10 kHz AL BF 500 0C The Trig: Free Run PN0: Fast +++ Trig: Free Run Atten: 10 dB #Avg Type: RMS Avg[Hold: 12/100 PPPP Auto Tu .438 225 GI -14.834 dB Ref Offset 19.02 dB Ref 10.00 dBm Center Fre 2.437000000 GH wandersteiningen with a strangen and Start Fre Stop Fr 11G/MCH 2.44 FreqO enter 2.43700 GHz Res BW 3.0 kHz Span 24.02 MH 2.532 s (1001 pts nter Freq 2.462000000 GHz #Avg Type: RMS Avg[Hold: 12/100 Frequency Trig: Free Run Auto Tu 2.461 701 Ref Offset 19.06 dB Ref 10.00 dBm Center Fre 2 46 www.watereaster Start Fre Mahan Muhana M Stop Fr 2.473512500 G 11G/HCH CFS FreqO er 2.46200 GHz BW 3.0 kHz Span 23.03 MH 2.428 s (1001 pts #VBW 10 kH

er Freq 2.41200

Ref Offset 19.06 dB Ref 10.00 dBm

00 GHz

Trig: Free Run

wanter and the state of the sta

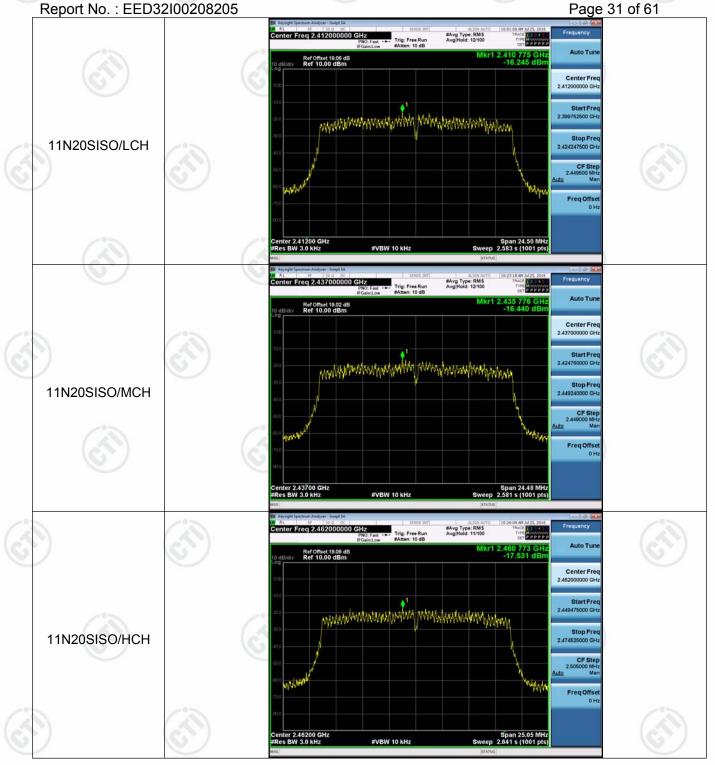
#Avg Type: RMS Avg|Hold: 12/100

2.410 726 C

Report No. : EED32I00208205

11G/LCH

Page 30 of 61


Center Fr

Start Fr

Stop Fr

CF S

Page 31 of 61

Page 32 of 61

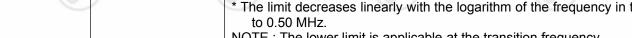
Report No. : EED32I00208205

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

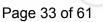

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1dBi.

Measurement Data

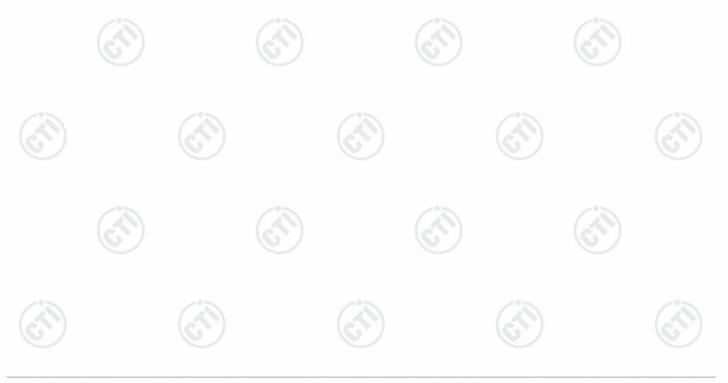
An initial pre-scan was performed on the live and neutral lines with peak detector.

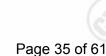

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Report No. : EED32I00208205 Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz	-30MHz		
(T)	 The mains terminal disturbar The EUT was connected to Stabilization Network) whi power cables of all other which was bonded to the g the unit being measured. A power cables to a single LIS exceeded. 	o AC power source ch provides a 50Ω/ units of the EUT w round reference plan multiple socket outl SN provided the ratio	through a LISN 1 (Li 50 μ H + 5 Ω linear im- ere connected to a so- ne in the same way as et strip was used to co- ng of the LISN was not	ne Impedance pedance. The econd LISN 2, the LISN 1 for onnect multiple
	3)The tabletop EUT was place reference plane. And for find horizontal ground reference	loor-standing arrang		•
(T)	 4) The test was performed with shall be 0.4 m from the reference plane was bonded was placed 0.8 m from the reference plane for LISNs distance was between the of the EUT and associated 5) In order to find the maximum the interface cables must measurement. 	vertical ground ref ed to the horizontal boundary of the units mounted on top of closest points of the equipment was at le n emission, the relat	erence plane. The v ground reference plan t under test and bond of the ground reference LISN 1 and the EUT. ast 0.8 m from the LIS ive positions of equip	ertical ground e. The LISN 1 ed to a ground ce plane. This All other units N 2. ment and all of
Limit:				
		Limit	(dBµV)	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
(3)	0.5-5	56	46	
	5-30	60	50	$(c^{(n)})$
	 The limit decreases linearly v to 0.50 MHz. NOTE : The lower limit is appli 	Ū		ange 0.15 MHz

C <u>1</u>t





0.11	50		U	1.5			(MHz)		5					30.000
No.	Freq.		ding_Le dBuV)	vel	Correct Factor	Μ	leasuren (dBuV)		Lin (dBi			rgin IB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1779	37.99	34.00	28.17	9.80	47.79	43.80	37.97	64.58	54.58	-20.78	-16.61	Ρ	
2	0.4138	33.82	30.60	22.55	9.90	43.72	40.50	32.45	57.57	47.57	-17.07	-15.12	Ρ	
3	0.5420	31.99	28.45	19.44	9.90	41.89	38.35	29.34	56.00	46.00	-17.65	-16.66	Ρ	
4	0.9100	30.48	25.30	13.70	10.00	40.48	35.30	23.70	56.00	46.00	-20.70	-22.30	Ρ	
5	3.5899	30.48	25.40	17.02	10.00	40.48	35.40	27.02	56.00	46.00	-20.60	-18.98	Ρ	
6	4.4259	29.89	24.30	17.53	10.00	39.89	34.30	27.53	56.00	46.00	-21.70	-18.47	Ρ	

Neutral line: 80.0 dBuV Limit AVG: 30 beak AVG -20 0.5 30.000 0.150 (MHz) 5 Reading_Level Correct Measurement Limit Margin No. Freq. (dBuV) Factor (dBuV) (dBuV) (dB) Peak QP dB QP QP QP MHz AVG AVG AVG AVG P/F Comment peak 0.1819 35.47 32.40 26.50 9.80 45.27 42.20 36.30 64.39 54.39 -22.19 -18.09 Ρ 1

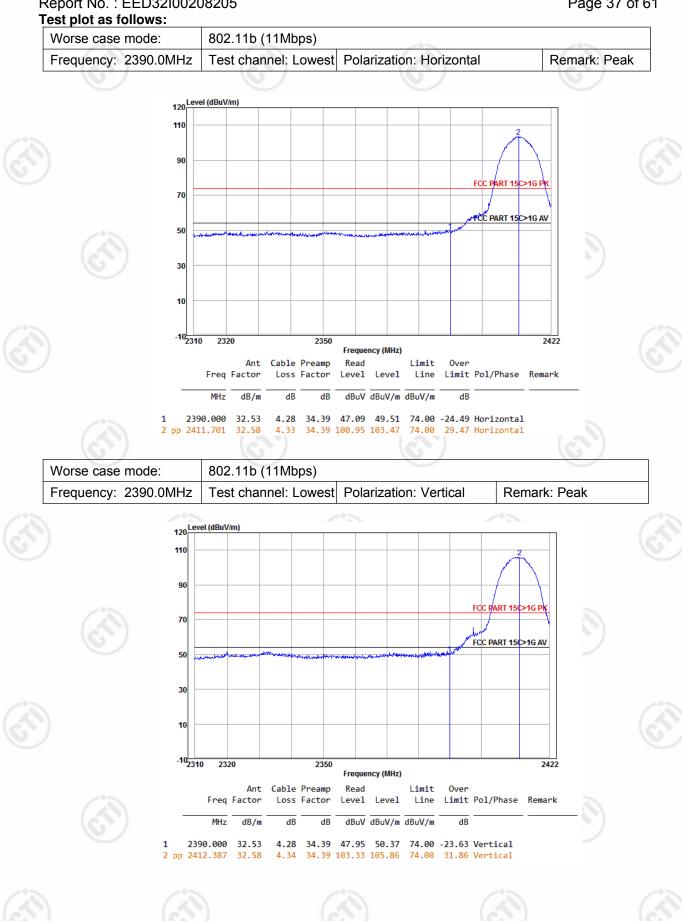
2 Ρ 34.36 30.10 25.24 9.90 44.26 40.00 35.14 57.33 47.33 -17.33 -12.19 0.4259 3 0.4899 30.21 26.17 16.81 9.90 40.11 36.07 26.71 56.17 46.17 -20.10 -19.46 Ρ 4 0.6740 27.96 23.00 14.95 9.90 37.86 32.90 24.85 56.00 46.00 -23.10 -21.15 Ρ 5 3.3580 30.88 26.20 16.81 10.00 40.88 36.20 26.81 56.00 46.00 -19.80 -19.19 Ρ -20.70 6 4.0339 30.41 25.30 16.16 10.00 40.41 35.30 26.16 56.00 46.00 -19.84 Ρ

Notes:

The following Quasi-Peak and Average measurements were performed on the EUT:
 Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32I00208205 Appendix H): Restricted bands around fundamental frequency (Radiated)

(Radialed)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	
		Peak	1MHz	10Hz	Average	10
Test Procedure:	 Below 1GHz test procedure as below: a. The EUT was placed on the top of a rotating table 0.8 meters above the grou at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, wi was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the groun determine the maximum value of the field strength. Both horizontal and verti polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and t the antenna was tuned to heights from 1 meter to 4 meters and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modula for lowest and highest channel 					
	 g. Different between about to fully Anechoic Char 18GHz the distance is h. Test the EUT in the logical is i. The radiation measured 	ove is the test site mber change forr 1 meter and tab owest channel, t	n table 0.8 le is 1.5 m he Highest	meter to 1 eter). channel	.5 meter(Abo	
	j. Repeat above proced	nd found the X as	kis position			e.
Limit:	Transmitting mode, ar	nd found the X as	kis position uencies me	easured wa		e.
Limit:	Transmitting mode, ar j. Repeat above proced	nd found the X av ures until all freq	kis position uencies me /m @3m)	easured wa	as complete.	e.
Limit:	Transmitting mode, ar j. Repeat above proced Frequency	nd found the X ax ures until all freq Limit (dBµV	kis position uencies me /m @3m) 0	easured wa Rei Quasi-po	as complete. mark	e.
Limit:	Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz	nd found the X ax ures until all freq Limit (dBµV 40.0	kis position uencies me /m @3m) D	easured wa Rei Quasi-po Quasi-po	as complete. mark eak Value	e.
Limit:	Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz	nd found the X ax ures until all freq Limit (dBµV 40.0 43.0	kis position uencies me /m @3m) 0 5 0	easured wa Rei Quasi-po Quasi-po Quasi-po	as complete. mark eak Value eak Value	e.
Limit:	Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	nd found the X ax ures until all freq Limit (dBµV 40. 43. 46.	kis position uencies me /m @3m) 0 5 0 0	easured wa Rei Quasi-po Quasi-po Quasi-po Quasi-po	as complete. mark eak Value eak Value eak Value	e.



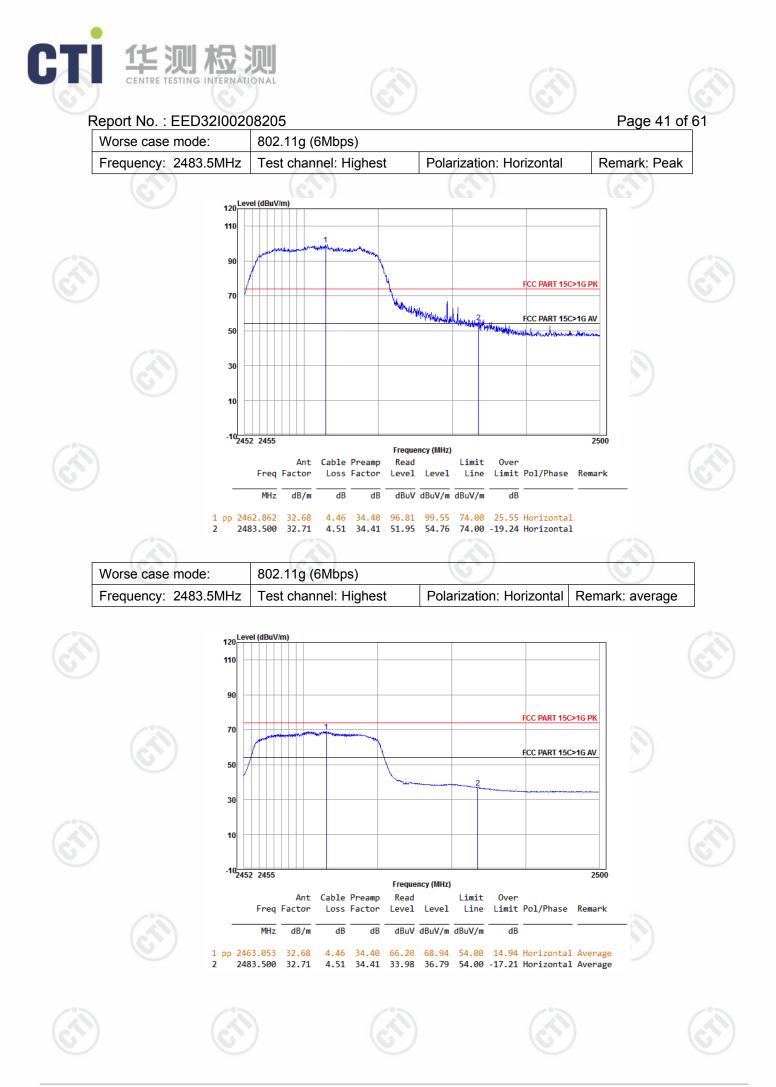
Page 37 of 61



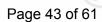
Page 38 of 61

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

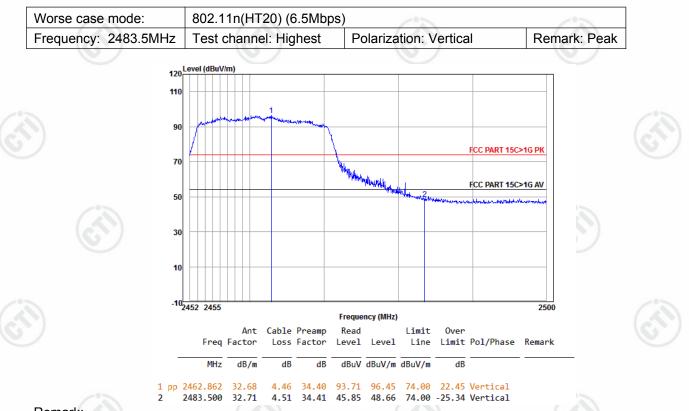
Page 39 of 61



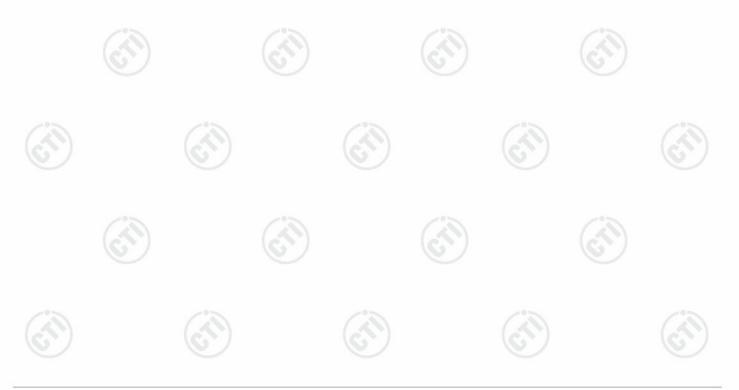
Page 40 of 61


Page 42 of 61

Page 44 of 61



Page 45 of 61


Remark:

1) Through Pre-scan transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20), and then Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:		6				1
	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	1
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	(c
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
~	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(c^{\star})		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

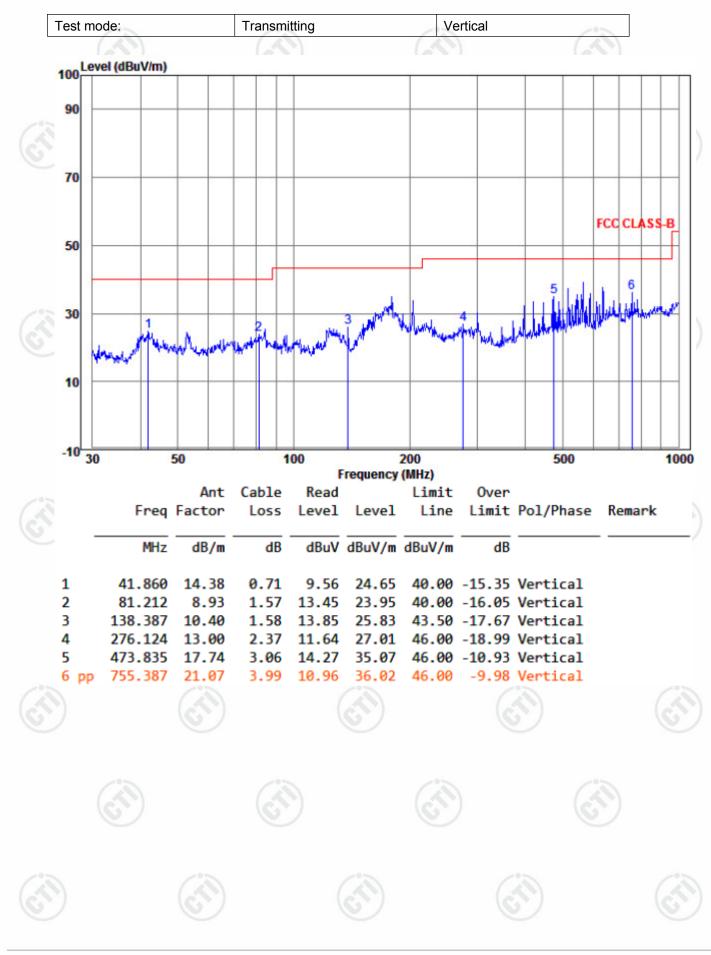
- The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic а. camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a b variable-height antenna tower.
- C. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to d. heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. e.
- If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be f. stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter). Test the EUT in the lowest channel the middle channel the Highest channel h
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X i. axis positioning which it is worse case.
 - Repeat above procedures until all frequencies measured was complete. Limit: Measurement Field strength Limit Frequency Remark $(dB\mu V/m)$ distance (m) (microvolt/meter) 0.009MHz-0.490MHz 300 2400/F(kHz) _ _ 0.490MHz-1.705MHz 24000/F(kHz) 30 1.705MHz-30MHz 30 30 _ 30MHz-88MHz 100 40.0 Quasi-peak 3 88MHz-216MHz 150 43.5 Quasi-peak 3 216MHz-960MHz 200 3 46.0 Quasi-peak 500 54.0 3 960MHz-1GHz Quasi-peak Above 1GHz 500 54.0 3 Average Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is

20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Page 47 of 61


Radiated Spurious Emissions test Data: Radiated Emission below 1GHz 30MHz~1GHz (QP) Test mode: Transmitting Horizontal 100 Level (dBuV/m) 90 70 FCC CLASS-B 50 30 10 -10 30 50 100 200 500 1000 Frequency (MHz) Ant Cable Read **Over** Limit Freq Factor Loss Level Level Line Limit Pol/Phase Remark MHz dBuV dBuV/m dBuV/m dB/m dB dB 1 43.812 14.57 0.88 4.99 20.44 40.00 -19.56 Horizontal 2 114.515 9.81 12.03 1.57 23.41 43.50 -20.09 Horizontal 3 204.238 11.68 2.22 22.48 36.38 43.50 -7.12 Horizontal 4 300.367 13.51 2.38 19.34 35.23 46.00 -10.77 Horizontal 5 501.179 18.40 3.13 10.26 31.79 46.00 -14.21 Horizontal 3.97 39.55 731.920 20.89 14.69 46.00 -6.45 Horizontal pp

Page 48 of 61

61

Page 49 of 61

Report No. : EED32I00208205

Transmitter Emission above 1GHz

Test	t mode:	802.11b(11	Mbps)	Test F	requency	2412MHz	Remark: Peak			
	uency IHz)	Hz) (dB/m) (dB)		Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1188	8.980	30.20	2.50	34.98	46.02	43.74	74	-30.26	Pass	Horizontal
1889	9.633	31.54	3.15	34.37	43.80	44.12	74	-29.88	Pass	Horizontal
3225	5.037	33.40	5.57	34.53	45.01	49.45	74	-24.55	Pass	Horizontal
4824	4.000	34.73	5.10	34.35	43.26	48.74	74	-25.26	Pass	Horizontal
7236	6.000	36.42	6.69	34.90	38.54	46.75	74	-27.25	Pass	Horizontal
9648	8.000	37.93	7.70	35.07	37.21	47.77	74	-26.23	Pass	Horizontal
1303	3.086	30.46	2.63	34.86	45.13	43.36	74	-30.64	Pass	Vertical
1870	0.490	31.51	3.14	34.39	45.10	45.36	74	-28.64	Pass	Vertical
3653	3.463	33.05	5.50	34.57	43.37	47.35	74	-26.65	Pass	Vertical
482	1.757	34.73	5.11	34.35	43.07	48.56	74	-25.44	Pass	Vertical
7236	6.000	36.42	6.69	34.90	39.99	48.20	74	-25.80	Pass	Vertical
9648	8.000	37.93	7.70	35.07	37.92	48.48	74	-25.52	Pass	Vertical

Test mode:	802.11b(11	Mbps)	Test Freq	uency: 24	37MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1428.142	30.73	2.76	34.74	43.79	42.54	74	-31.46	Pass	Horizontal
1851.542	31.48	3.12	34.40	44.23	44.43	74	-29.57	Pass	Horizontal
3893.520	32.88	5.46	34.59	43.17	46.92	74	-27.08	Pass	Horizontal
4874.000	34.84	5.09	34.33	41.98	47.58	74	-26.42	Pass	Horizontal
7311.000	36.43	6.76	34.90	38.61	46.90	74	-27.10	Pass	Horizontal
9748.000	38.03	7.61	35.05	36.33	46.92	74	-27.08	Pass	Horizontal
1207.279	30.24	2.52	34.96	45.07	42.87	74	-31.13	Pass	Vertical
1755.164	31.32	3.05	34.47	44.31	44.21	74	-29.79	Pass	Vertical
3598.087	33.09	5.51	34.56	44.30	48.34	74	-25.66	Pass	Vertical
4874.000	34.84	5.09	34.33	42.04	47.64	74	-26.36	Pass	Vertical
7311.000	36.43	6.76	34.90	41.37	49.66	74	-24.34	Pass	Vertical
9748.000	38.03	7.61	35.05	37.76	48.35	74	-25.65	Pass	Vertical

Test mode:	802.11b(11	Mbps)	Test Freq	uency: 24	62MHz	Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1235.257	30.31	2.56	34.93	45.08	43.02	74	-30.98	Pass	Horizontal	
1786.719	31.37	3.07	34.45	42.96	42.95	74	-31.05	Pass	Horizontal	
3480.968	33.19	5.53	34.55	42.41	46.58	74	-27.42	Pass	Horizontal	
4924.000	34.94	5.07	34.32	41.70	47.39	74	-26.61	Pass	Horizontal	
7386.000	36.44	6.83	34.90	39.83	48.20	74	-25.80	Pass	Horizontal	
9848.000	38.14	7.53	35.03	38.09	48.73	74	-25.27	Pass	Horizontal	
1188.980	30.20	2.50	34.98	45.60	43.32	74	-30.68	Pass	Vertical	
1800.416	31.40	3.08	34.44	43.45	43.49	74	-30.51	Pass	Vertical	
3436.944	33.22	5.53	34.55	43.01	47.21	74	-26.79	Pass	Vertical	
4924.000	34.94	5.07	34.32	41.67	47.36	74	-26.64	Pass	Vertical	
7386.000	36.44	6.83	34.90	40.81	49.18	74	-24.82	Pass	Vertical	
9848.000	38.14	7.53	35.03	37.20	47.84	74	-26.16	Pass	Vertical	

	Test mode:	802.11g(6N	lbps)	Test Freq	uency: 24	12MHz	Remark: Peak				
	Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
	1188.980	30.20	2.50	34.98	45.87	43.59	74	-30.41	Pass	Horizontal	
ä.,	1791.273	31.38	3.08	34.44	42.95	42.97	74	-31.03	Pass	Horizontal	
5	3552.582	33.13	5.51	34.56	43.03	47.11	74	-26.89	Pass	Horizontal	
2	4824.000	34.73	5.10	34.35	42.81	48.29	74	-25.71	Pass	Horizontal	
	7236.000	36.42	6.69	34.90	41.18	49.39	74	-24.61	Pass	Horizontal	
	9648.000	37.93	7.70	35.07	38.29	48.85	74	-25.15	Pass	Horizontal	
	1213.441	30.26	2.53	34.95	44.63	42.47	74	-31.53	Pass	Vertical	
	1597.401	31.05	2.92	34.59	45.99	45.37	74	-28.63	Pass	Vertical	
	3308.185	33.33	5.56	34.53	44.69	49.05	74	-24.95	Pass	Vertical	
	4824.000	34.73	5.10	34.35	44.17	49.65	74	-24.35	Pass	Vertical	
	7236.000	36.42	6.69	34.90	41.92	50.13	74	-23.87	Pass	Vertical	
2	9648.000	37.93	7.70	35.07	38.85	49.41	74	-24.59	Pass	Vertical	

Test mode:	802.11g(6N	lbps)	Test Free	quency: 24	37MHz	Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1195.049	30.21	2.51	34.97	44.84	42.59	74	-31.41	Pass	Horizontal	
1809.605	31.41	3.09	34.43	43.40	43.47	74	-30.53	Pass	Horizontal	
3057.166	33.55	5.61	34.51	43.54	48.19	74	-25.81	Pass	Horizontal	
4874.000	34.84	5.09	34.33	42.37	47.97	74	-26.03	Pass	Horizontal	
7311.000	36.43	6.76	34.90	42.54	50.83	74	-23.17	Pass	Horizontal	
9748.000	38.03	7.61	35.05	36.85	47.44	74	-26.56	Pass	Horizontal	
1263.883	30.38	2.59	34.9	44.25	42.32	74	-31.68	Pass	Vertical	
1809.605	31.41	3.09	34.43	43.09	43.16	74	-30.84	Pass	Vertical	
3176.155	33.44	5.58	34.52	43.71	48.21	74	-25.79	Pass	Vertical	
4874.000	34.84	5.09	34.33	43.54	49.14	74	-24.86	Pass	Vertical	
7311.000	36.43	6.76	34.9	41.42	49.71	74	-24.29	Pass	Vertical	
9748.000	38.03	7.61	35.05	38.48	49.07	74	-24.93	Pass	Vertical	

Test mode:	802.11g(6N	lbps)	Test Freq	uency: 24	62MHz	Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1241.562	30.32	2.56	34.92	44.68	42.64	74	-31.36	Pass	Horizontal	
1634.419	31.12	2.95	34.56	43.80	43.31	74	-30.69	Pass	Horizontal	
3342.042	33.30	5.55	34.54	43.69	48.00	74	-26.00	Pass	Horizontal	
4924.000	34.94	5.07	34.32	42.05	47.74	74	-26.26	Pass	Horizontal	
7386.000	36.44	6.83	34.90	41.01	49.38	74	-24.62	Pass	Horizontal	
9848.000	38.14	7.53	35.03	37.55	48.19	74	-25.81	Pass	Horizontal	
1263.883	30.38	2.59	34.90	44.13	42.20	74	-31.80	Pass	Vertical	
1791.273	31.38	3.08	34.44	43.49	43.51	74	-30.49	Pass	Vertical	
3543.550	33.14	5.52	34.56	42.63	46.73	74	-27.27	Pass	Vertical	
4924.000	34.94	5.07	34.32	43.65	49.34	74	-24.66	Pass	Vertical	
7386.000	36.44	6.83	34.90	41.33	49.70	74	-24.30	Pass	Vertical	
9848.000	38.14	7.53	35.03	38.12	48.76	74	-25.24	Pass	Vertical	

52 of 61

Page 52 of 61

Test mode:	802.11n(HT	20)(6.5N	1bps)	Test Freque	ency: 2412M	Hz F	Remark: Pea	ak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limi (dBµV	Limit	Result	Antenna Polaxis
1188.980	30.20	2.50	34.98	44.56	42.28	74	-31.72	2 Pass	Horizontal
1809.605	31.41	3.09	34.43	43.07	43.14	74	-30.80	6 Pass	Horizontal
3266.346	33.36	5.57	34.53	44.71	49.11	74	-24.89	9 Pass	Horizontal
4824.000	34.73	5.10	34.35	42.20	47.68	74	-26.32	2 Pass	Horizontal
7236.000	36.42	6.69	34.90	41.09	49.30	74	-24.70) Pass	Horizontal
9648.000	37.93	7.70	35.07	37.61	48.17	74	-25.8	3 Pass	Horizontal
1276.818	30.41	2.60	34.88	46.47	44.60	74	-29.40) Pass	Vertical
2070.980	31.86	3.44	34.32	42.78	43.76	74	-30.24	4 Pass	Vertical
3316.617	33.32	5.56	34.53	43.91	48.26	74	-25.74	1 Pass	Vertical
4824.000	34.73	5.10	34.35	41.68	47.16	74	-26.84	4 Pass	Vertical
7236.000	36.42	6.69	34.90	40.15	48.36	74	-25.64	4 Pass	Vertical
9648.000	37.93	7.70	35.07	37.01	47.57	74	-26.43	B Pass	Vertical

Test mode:	802.11n(HT	20)(6.5N	1bps)	Test Frequency: 2437MHz Remar				ark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Lir (dBµ'	nit V/m)	Over Limit (dB)	Result	Antenna Polaxis	
1303.086	30.46	2.63	34.86	43.12	41.35	7	4	-32.65	Pass	Horizontal	
1983.272	31.68	3.22	34.31	43.77	44.36	7	4	-29.64	Pass	Horizontal	
3266.346	33.36	5.57	34.53	44.21	48.61	74	4 😸	-25.39	Pass	Horizontal	
4874.000	34.84	5.09	34.33	42.33	47.93	7.	4	-26.07	Pass	Horizontal	
7311.000	36.43	6.76	34.90	39.86	48.15	7.	4	-25.85	Pass	Horizontal	
9748.000	38.03	7.61	35.05	36.94	47.53	7.	4	-26.47	Pass	Horizontal	
1323.141	30.51	2.65	34.84	45.75	44.07	7.	4	-29.93	Pass	Vertical	
1846.834	31.47	3.12	34.40	47.51	47.70	7.	4	-26.30	Pass	Vertical	
3498.735	33.17	5.52	34.55	42.88	47.02	74	4	-26.98	Pass	Vertical	
4874.000	34.84	5.09	34.33	42.40	48.00	74	4	-26.00	Pass	Vertical	
7311.000	36.43	6.76	34.90	40.95	49.24	74	4	-24.76	Pass	Vertical	
9748.000	38.03	7.61	35.05	37.61	48.20	74	4 🔇	-25.80	Pass	Vertical	

Page 53 of 61

Report No. : EED32I00208205

Test mode:	802.11n(HT	20)(6.5N	lbps)	Test Freque	ency: 2462M	Hz F	emark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/	Limit	Result	Antenna Polaxis
1263.883	30.38	2.59	34.90	44.53	42.60	74	-31.40	Pass	Horizontal
1814.218	31.42	3.09	34.43	42.62	42.70	74	-31.30	Pass	Horizontal
3359.099	33.29	5.55	34.54	43.28	47.58	74	-26.42	Pass	Horizontal
4924.000	34.94	5.07	34.32	42.07	47.76	74	-26.24	Pass	Horizontal
7386.000	36.44	6.83	34.90	41.74	50.11	74	-23.89	Pass	Horizontal
9849.000	38.14	7.53	35.03	38.12	48.76	74	-25.24	Pass	Horizontal
1286.606	30.43	2.61	34.87	43.79	41.96	74	-32.04	Pass	Vertical
1755.164	31.32	3.05	34.47	43.33	43.23	74	-30.77	Pass	Vertical
3570.714	33.12	5.51	34.56	42.69	46.76	74	-27.24	Pass	Vertical
4924.000	34.94	5.07	34.32	42.12	47.81	74	-26.19	Pass	Vertical
7386.000	36.44	6.83	34.90	39.73	48.10	74	-25.90	Pass	Vertical
9848.000	38.14	7.53	35.03	37.72	48.36	74	-25.64	Pass	Vertical

Remark:

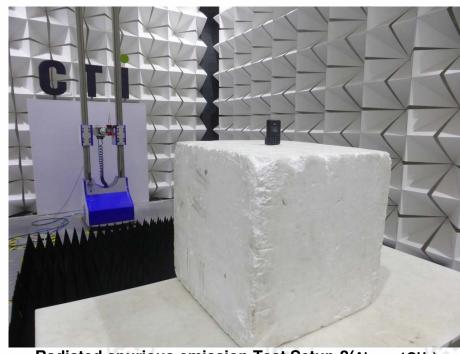
1) Through Pre-scan transmitting mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20),and then Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

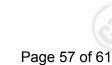
3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

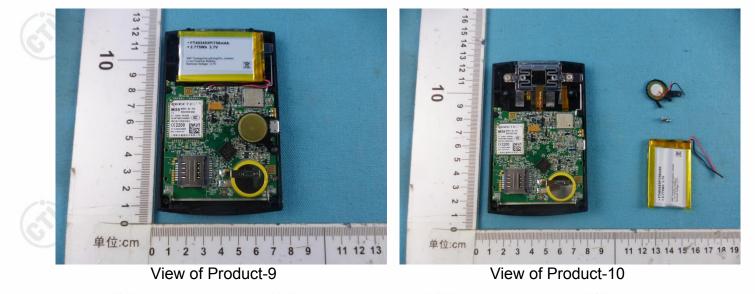


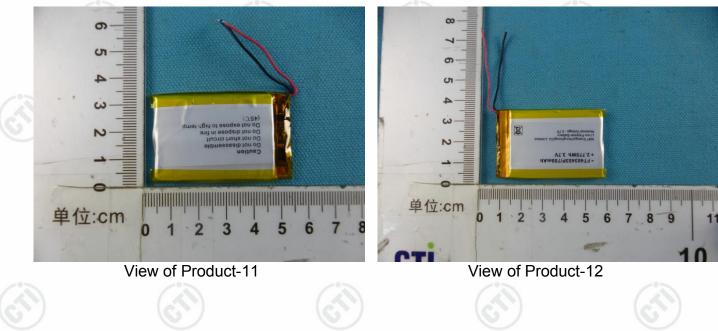
Test model No.: WisePad 2

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)


Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

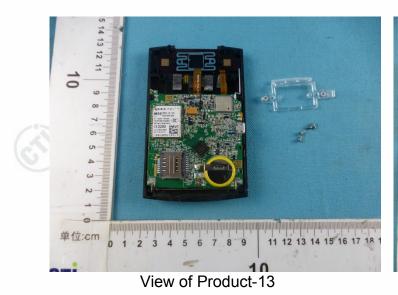


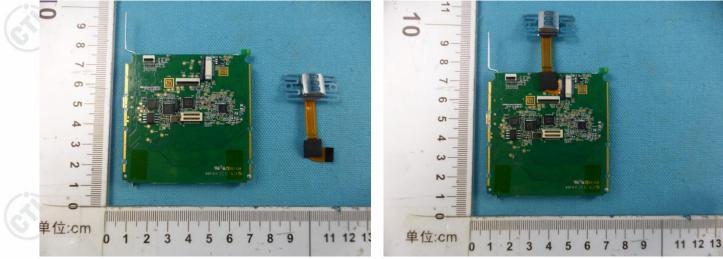


View of Product-7

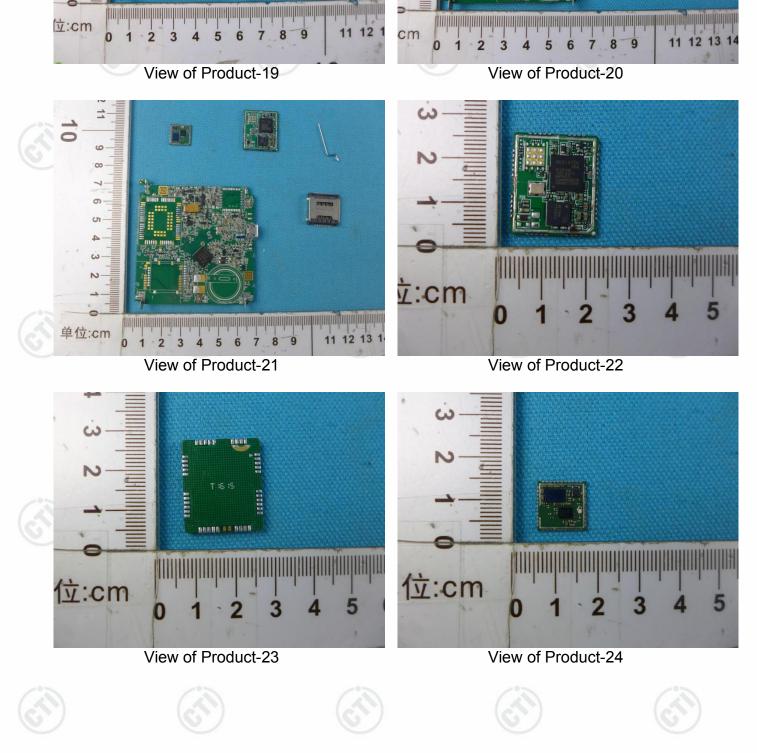
View of Product-8

21


Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

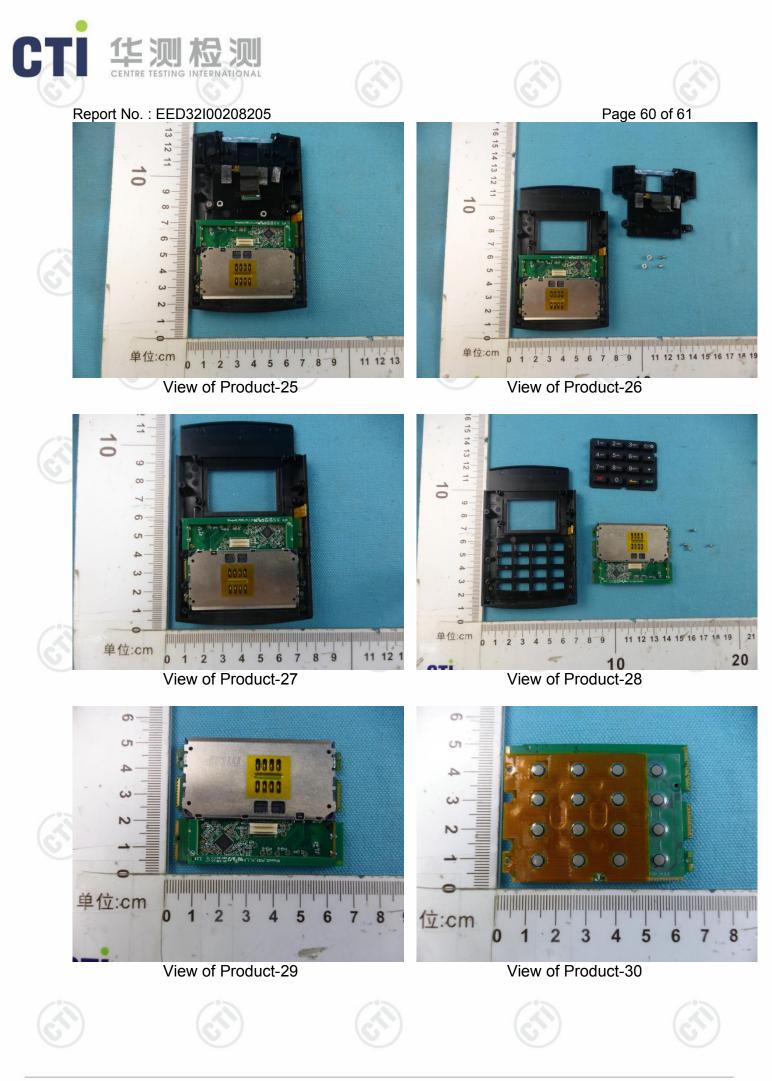


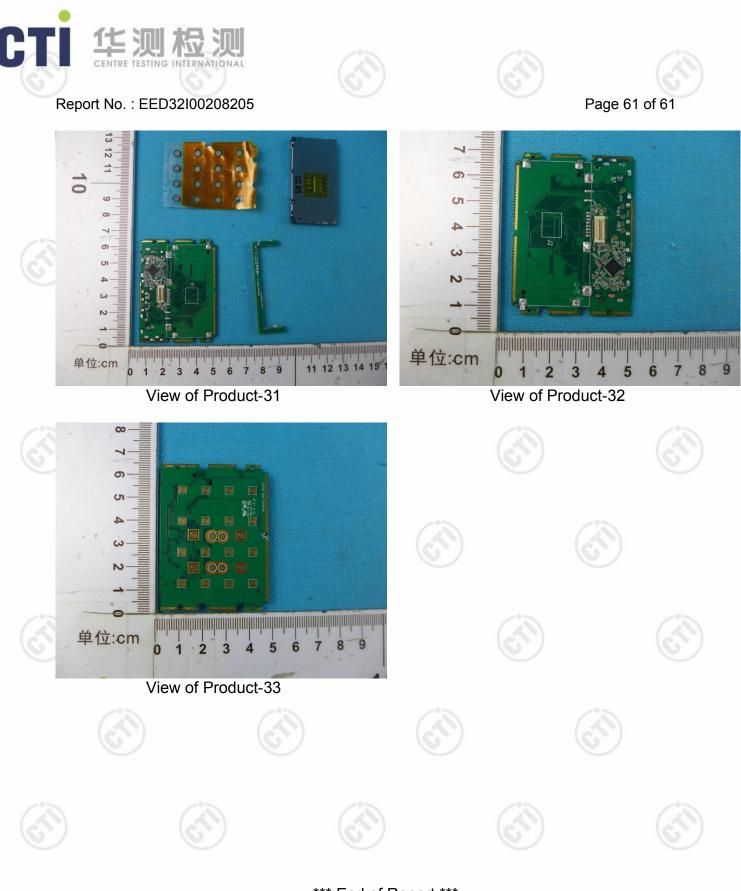
View of Product-14



View of Product-15

View of Product-16


G


00

Page 59 of 61

CTI 华测检 CENTRE TESTING INTERN

00

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.